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Absolutely continuous states of exit measures for
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Abstract The exit measures of super-Brownian motions with branching mechanism ¢(z) = 2°, 1<a<2, from a
bounded smooth domain D in K?*! are known to be absolutely continuous with respect to the surface area on 3D if d

<

P whereas in the case d > 1 + %, they are singular. However, if the branching is restricted to a singular

hyperplane, it is proved that they have absolutely continuous states for all d2>1.
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Assume that
&(r,dy) = £&,(r, y)dysbi(r,dy),y = [y 3] € R XR, (0.1)
where &, is a one-dimensional kernel, whereas £, is a bounded measurable function on R* X R¥.
Consider the d + 1-dimensional super-Brownian motion X = 1X,; t 220} (d == 1) with the above

factored branching rate kerncl £(r,dy). Let A (d¢) := dtJE(t,dy)By(W,) be a continuous

additive function associated with the branching rate kernel £(r, dy) given by (0.1). It is well
known that if £(7,dy) = pdy, where p==0 is the constant branching rate, X, is singular about

the Lebesgue measure on R?*!. But if £(r, dy) is given by (0.1) such that the additive function

[1]

A(dt) is a.e.-regular, Dawson and Fleischmann''' showed that X, is absolutely continuous for

all d=1. For example if £,(dy,) = 8., ¢ € R (the branching effect is restricted to a single hy-

(1] 4ls0 gave two

perplane) the additive function A.(d¢) is a.e. -regular. Dawson and Fleischmann
examples of randomly selected branching rate function € (The branching is allowed only at a
countable collection of hyperplanes) such that the associated additive function A.(d¢) is a. e. -reg-
ular.

In the case §(r,dy) = pdy, where p==0 is a constant, an enhanced model of super-Browni-

(2] For every open set D in R%*!, as a special case of

an motion was introduced by Dynkin
Dynkin!?), there is a corresponding random exit measure X, related to the boundary value prob-
lem

1
-

e

Au = &u* inD, wu=f ondD, (0.2)

where f is a positive bounded measurable function on dID. The states of the random exit measures
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Xp were studied by Abraham and Le Gall'®! and Sheu!*). It was shown that if d<C1, the states of
X are absolutely continuous with respect to the surface area on dD, whereas in the case d >1,
they are singular. But if £(r,dy) is given by (0.1) such that the associated additive function
A¢(d?) is a.e.-regular, the question as to what properties the random exit measures Xp, have left
open. In the present paper we focus our attention on the extremely simple case of branching al-
lowed only at a single, non-moving and non-random hyperplane. More precisely, we consider the
exit measures X, related to the (formal) equation

‘

1 _ -
{ ydul(z)= d(z)¢(x,ulz))xz = (z4s, z] € D, (0.3)
¢ u= f onadD.
Here ¢ € K, fis a positive bounded function on 3D and ¢ is given by the formula
P(r,2) = alx)z + b(x)2® + J:(e_"z -1+ uz)n.(du), (0.4)

where 7 is a kernel from R**! to (0, ©) and a(x),b5(x) and A(z) = Jo u N u?n.(du) are

positive bounded Borel functions. We prove that the random exit measure Xp, related to the above
boundary value problem (0.3) is absolutely continuous for all d=>1. But before we study the ab-
solutely continuous property of X, we must first prove that the random measure Xp related to
problem (0.3) exists.

1 Preliminaries and main results

1.1 Preliminaries

Fix dimensiond + 1(d > 1). For a Borel set E in*?*!, we denote by Z(E) the Borel o-al-
gebra of E. We writc f € 3(E), if f is a @(E)- measureable function. Writing f
€ pB(E)(b%(E)) means that, in addition, f is positive (bounded). We put bp%(E)
= (64(E) N pB(E)). HE = R%"', we simply write & instead of B(R**!). We will use the

symbol e, to denote bounded pointwise convergence (recall that functions converge boundedly
pointwise il they are uniformfly bounded and converge pointwise) .

Write M(E) for the set of all finite measures on E, endowed with the topology of weak
convergence. The expression (f, u) stands for the integral of f with respect to 4. Let W
= (W,, II,) be a Brownian motion in &“*'. In this paper we will concentrate on the following

simple additive function

A (de) = dzJ 8 ()8, (W) dy, X dy; = 8,(Whde,
L

where ¢ € Rand W, = [ WY, W!]. For a point ¢ € R, A,(dt) can be interpreted as the collision
local time of W at the hyperplane | (z,); x4 € R4} or as the Brownian local time L°(dz) of W'
at point ¢. Without loss of generality we assume ¢ =0 and denote

A(dt) = Ag(de) = §(W})de.

Throughout this paper 7, denotes the first exit time of W from an open set D, i.e. p
= infit; W, & Di. For x € D, the exit distribution H,,(x, *) of D for Brownian motion start-
ing at x is defined by

Hp(x,A) = O.(rp < o0, W, € A), A€ @
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It is abvious that H(x, *) is concentrated on the boundary 9D of D. For f € bp%, define
Hof () = [f(5) Hplz,dy) = IA(W, ).

If D is a bounded smooth domain, then Hp(x,dy) = k(x,y)S(dy), where £(x, y) is the
Poisson kernel, and S{dy) is the surface area on 4D . For v € M{(3D) define

Ho(2) = [z, 2)0(dy).
Abviously if v = f(y)S(dy), Hpv = Hpf.

1.2 Main results
First of all we remark that we will always interpret eq. (0.3) in its mild form, i.e. as an in-

tegral equation:

w(e) + IL] "9 (W u(W))IAL) = Haf(z), (1.1)
where D is an open set in RY", £ € b6p%. If D is a bounded smooth domain we will also study
the fundamental solutions of the following integral equation

u(x)+HIJ(:D¢(W,,u(Wt))A(dt) = Hy, (1.2)

b
where v = ZAié‘z,zi €aD, ,, €ERY, i =1,2,, k.

i=1

Theorem 1.1. Let ¢ be given by (0.4). The following results hold .
(1) There corresponds a Markov process X =(X,, P,) in M(R4*YY such that for every f
€ bp% and ,uEM(RdH), we have

Poexpl— (f, X0t = expi— (u,y ) f, (1.3)
where u, is the unique bounded solution to the equation
ulz) + HILSI)(WS, ui- (W) A(s) = ILF(W,), x € RI*L. (1.4)

(2) For every bounded open set D in R?*!, there exists a random exit measure Xp such that
for every fE bp% and p € M(R?)
Peexpi— (f, Xp) ! = expl~ (u, w1, (1.5)
where u is the unique bounded solution of (1.1).
Moreover for n==2, the joint probability distribution of X p,» s Xp is described as follows.

Let

I =11,2,,nt, T = miniz‘DI,"',rD I, A =minli{:p = 1.

Then

P#exp{— 2<fivXDi>}:exp<— uI),U>’ (16)
i=1
where the functions u; are determined recursively by the integral equations
w(z) + H_,K's/;(Wz, G (W)YA(d?) = LG (1.7)

with
Gr=1[fi+ uI—A](WtDA)
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(note that (1.6) and (1.7) with n =1 and u,=0 coincide with (1.5) and (1.1)). Following
Dynkin, we call X = (X,, Xp, P,) the super-Brownian motion with parameters (¢, A).

The first part of the above theorem is proved by Dynkinm

. The proof of the second part is
given in sec.2. The approach given in this paper is a modification of Theorem 1.1 in ref.[2] in
which the additive functions are of the form A(dz) = £(z, W,)dt, where &(r, x) is a positive
measurable function on [0, ©) x R?*! satis{lying: For every @ € R', there exits a constant C,
such that §(», z) < C, forall » € [0,a), = € R*'.

We write £ € M.(D) if p € M(D) and g has a compact support in D.

Theorem 1.2.  Suppose D is a bounded smooth domain in R**' and ¢ is given by (0.4)
with a=0. Then

(1) if p€ M (D), there exists a random measurable function xpon 3D such that

P, 1Xp(dz) = zp(2)S(dz)} = 1;
(2) for each finite collection z,, ***, z,, of points in ID \ [, the Laplace function of the

random wvector [ xp(z1), , xp(z,, )] with respect to P, is given by

i

Pﬂexp{ﬁ Elixn(z,j)} = exp<‘ U, /A,>,A1,"', Ay =0,
i=1
where pE M (D), | = {(24,0); 2, € R} and u is the unique ( fundamental) solution of

(1.2) withy = D>)A8. .
i=1 '

2 Construction of superprocesses

Throughout this section D is a bounded open set. Let us first state some lemmas on the inte-
gral equation (1.1). For ¢ € p% and f€ %, put

Hi af = II. [f( W,D)exp(—L:DC(WS)A(dS)”;

oy af = H.Kuf( W,)exp(—J;c(WS)A(ds))A(dt);

Gp,af= Gb,afs  Hpaf = Hpaf.
Lemma 2. 1.  Suppose ¢ belongs to bp 4. For every f< bp%B. u € bp% is a solution of
(1.1) ifand only if W€ bpB is a solution of the following integral equation :
u = Hp af + Gp aleu = ¢(u)), (2.1)
where p(u)(x) = ¢z, u(x)), x € R,
Proof. Since A(ds) = L°(d¢), where L® is the Brownian local time of W' at zero. We

have

Gp,al = H,J()”A(dz) < ozl < 0. (2.2)

By the Markov property and Fubini’s theorem, it is easy to check that if f, g€ 6%, then
Gp a8 = Gp,alcGp, ag) + Gh, ag = Gp,a(cGp, ag) + Gh, 48 (2.3)
Hy, af = Hp af + Gp,a(cHp, af) = Hp af + Gp,a(cHp, af). (2.4)

If u is a positive bounded solution of (1.1), we have

u= Hp af — Gp, a¢(u)
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Hp, af = Gb,a¢(u) + Gp alc(Hp af = Gp,agp(u))]
b.af = Gp,a¢(u) + Gp, alcu)
boaf + Gb,alcu — ¢(u)),

il

which is (2.1).
Conversely if « is a positive bounded solution of (2.1), using (2.3) and (2.4) with g = cu
— ¢(u), we obtain
Gp. alcu)= Gp sl cHp af + ¢GhH alcu — ¢(u))]
= Hp,af — Hp af + Gp,alcu — ¢(u)) = Gp, a(cu — ¢(u))
= Hp af + Gp, alcu — ¢(u)) — u.
Therefore u = Hp of + Gp, a¢(u).
Lemma 2.2. Let ¢, fand A belong to p%. Ifh, & pB satisfy the following conditions :
Gp a(Ahgy) < oo,
h,(x) < HYAf + ¢G5 41 + G5 4(Ah,.), forx € R¥Y, n €N,
where M and q are positive constants, then

h,(x) <<Hp, af + ¢Gb,al

+ HIL:DA(dt)exp(— J;(c + A)(WS)A(dS))

-1

(J;A(W,.)Ams))"

DT AW (W), (2.5)
In particular, if ho=0 or if h, does not depend on n, then
h,(x) << Hp, of(x) + qGp, a1, for x € R*L. (2.6)
Proof. By induction in n, we get
: a ([raomoawn)
ha(2) <I, {exp(*[op(c + A)(WS)A(ds))- 2 f(WrD)}

v qHIJ;UA(d’)eXP(“ J;(c + A)(WS)A(ds)). 5 (JoA(Ws)A(dS))

i=0 il

' H_,.J(:DA(dt)exp(— [t A)(W_JA(ds))

(J;A(WS)A(ds))H

(n —1)!
Clearly, this implies (2.5). Letting 7> in inequality (2.5), by the dominated convergence

A(Wt)hO(Wt)-

theorem, we get (2.6).
For0 < g <1, let

oo, 2) = a(x)z+J )(e“”z—1+uz)nx(du)

(B,

+2b6(z2)B %[ -1+ Bel; 2.7
Aga) = 26(x) B! +J(ﬁm)un1(du), (2.8)
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Rp(z,2)= [a(x) + Ag(x) ]z — ¢p(x, 2)
- Lﬁ (L= ), (du) + 26(0) 21— &) (2.9)
Then Ay is bounded in R, Rﬁ(x, z) is increasing about z and
0 << Rplx, 2) << Ap(x) 2, for x € R**L, 2 € [0, ). (2.10)

Theorem 2.1. For every f€ bp%B, there exists a positive solution u (8, f) of (1.1) with

¢ replaced by J;.
Proof. By Lemma 2.1, we only need to prove that (2.11) has a positive bounded solution

u = H“DTﬁﬁf + G?)fﬁﬁRﬁ(u). (2.11)
Define a sequence u, (8, f) by recursive formulae;
wo(B, f)=0;
u, (B, f)= Hp hef + Gb 4Ry 1(B, ). (2.12)

By Lemma 2.2
0< u, (B H<Hp A< | fll s

where || fll « = sup | f(x) |. Since Ry(x, z) is increasing about z, there exists « (B, f) €
bp® such that for all x € R, w, (B, F)(x)+ u(B, H(z).

Using the monotone convergence theorem, letting n—>20 in (2.12), we know u(f, f) is a
positive bounded solution of (2.11) and therefore a solution of (1.1).

Theorem 2.2. Let ¢ be given by (0.4). The following results hold .

(1) (Existence and uniqueness). For every f€ bp%(3D), there is exactly one measurable
nonnegative function U(f) defined on R**! which solves (1.1).

(2) (Continuity). U(f) as a map of bpB(3D)—>bp% is continuous .

(3) (First derivative with respect to a small parameter).

AU —L> Hp af,  f € bp@@3D).

Proof. (1) Let ¢4(x,2), 0 < B < 1be given by (2.7), and let u (8, f) be the solution
of (1.1) with ¢ replaced by ¢, constructed in Theorem 2.1. Note that

‘gb(x,z)—%(x,z”éj (e -1+ uz)n,(du)

[0, 8]

+25(2) 7 | g e 1

1 22 1 3
<J‘[0,ﬂ] U= n, (du) + 3b(x)ﬂz .

So, for every C € (0, ), there exist constants a (8, C) = 0 as 8 — 0 such that
| ¢z, 2) = gplx,2) [ w < a(B,C), foral € (0,1), 0<2<<C. (2.13)
Let L=1 be a constant such that || £l w<XL, and let

Alx)= [26(x) +J:u A u?n,(du)]L; (2.14)

R(z,2)= (a(x) + A(x))z — ¢(x, 2). (2.15)
Then

[R(x,2)). = Alx) - [26(=) + j:um - e (du) ]2
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= 26(2) (L - =) + j;u(Lu — 14 e ) n, (du)

+J ul(lL —1+e“)n,(du),
1

which means for all x € R, 0 << 2 << L. 0<[R(x,2)]! < A(x).
Consequently
lR(I, z;) — R(x, zz)|< Alx) ! 21 forall x € R, 0<C 2,2, < L.

(2.16)

Combining (2.13) and (2.16) we get
| Ry(a,2) = Ry, (a0, 22) | << a(B, L) + a(f, L) + Alx) | 21 — =2},

forz € R, 0<< 2y, 2, <L, B, B € (0,1), (2.17)
where a (3, L) and B € (0, 1) are constants satisfying «(8, L) = 0 as 8 — 0. By Lemma 2.1,
for every BE€ (0,1), u(g, f) satisfies

u(B, f) = HHAf + G aR(u(B, ).
Lethg g =1 u(B, f) — u(B’, f) 1. By (2.17) and the above equality we have
he y < qGH A1 + G5 4(Ahg z),

where ¢ = «(B8, L) + «(f’, L). By Lemma 2.2, hy g << ¢Gh,41. By (2.2), Il Gp,alll »
< . So there exists a function U(f) € bp% such that

w(B, ) LU,
The dominated convergence theorem implies U( f) is a bounded positive solution of {1.1).

The uniqueness can be proved similarly as above. In fact, assume that u;, u, € bp% are two
solutions of (1.1), and L =1 is a constant such that 0<C &, u;<C L. Let A and R be defined as
in (2.14) and (2.15), respectively. Then similarly we get

Ly = | < GHA(A(ur — ua])).
By Lemma 2.2, u1=u,;.

(2) Let A, R be given by (2.14) and (2.15), respectively with constant L satisfying L

ZIV I fill «V | f2ll «. Then

LUf) = U [ HY A 1 = A2l + GEAATU) - U ]).
By Lemma 2.2, | U(f) - US } Y << Hp 4 | f1 - f24< I /1 = f2 |l », which means state-
ment (2) is valid.

(3) By Lemma (2.1) U(Af) satisfies

U(Af) = AHp, af — GH a2(U(AN)), (2.18)
where @(x, z) = ¢(x,2) — a{x)z. Consequently, ®(x, z) is increasing about 2=>0 and for
any constant C > 0, @(x,CA)/A—>0asxA—=0". Letting n—>0 in (2.18), by (2.2) and the

dominated convergence theorem we have lU(/\ f)—>H} af as A > 07.

A real-valued function u on the Abelian semigroup G = bp% is called negative definite if

ij=1
Forevery n=2, all g{, ", g, € Gand all A, -, 1, € R such that Zfli = 0. It is known that

u(f) [2].

if u is negative definite, then L(f) = e~ is positive definite

Proof of Theorem 1.1. By Theorem 2.2, u, satisfying (1.7) exists and is unique, and G;
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and u; are positive if £;220. We consider G; and u; as functions of ( f1, *** f,,) € (bp%)". By in-

duction on n and the construction process of u; given by Theorems 2.1 and 2.2, we can prove

that u; is negative definite and vanishes if f; = -+ = f, = 0 (For details see e. g. Dynkin!?!). Let
Li(f1ys fo) = exp{= up, p) .

Then L, is positive definite. By Theorem 2.2 L; is continuous. It follows from Lemma 1.4 and

sec. 1.6 in ref. [ 2] that there exists a unique probability measure P, on M(R**1)" such that
(1.6) and (1.7) hold. It is easy to see that L;(fy, "y f,) = Ly(f1, s fu-1) if J = {1,y n
— 11 and f, = 0. Therefore the existence of the stochastic process ( Xp, P,) subject to statement

(2) of Theorem !.1 follows from Kolmogorov’s theorem.

3 Absolute continuous states of X,

The purpose of this section is devoted to the proof of Theorem 1.2. Throughout this section,
D is a bounded smooth domain. Notation C always denotes a constant which may change values
from line to line. For y € R?*! we denote y = [ y;, y;] with y; € R, y, = R. For any set '
C R, et Ty = | vy € T¢such that [ y,,0] € I't. We replace (1.2) by an equivalent integral
equation

w(@) 4 [ 5l 0D 9 ([ 0Ddys = | k(2 2)v(de), z € D, (3.D)

where g (., y) is the Green function of Brownian motion in D, and k2(x, z) is the Possion ker-
nel. Note that there is a constant C depending only on D such that

k(r,2)<Clx-2z1 9% €D, z€aD. (3.2)

Theorem 3.1. Let v, € M(E€ D) be a sequence of measures such that there exists a com-

pact set B satisfying supp(v,)C B and BN 1=, where l=1{(x4,0), z,ER*}. Suppose for

each n, w, is a solution of (3.1) with v replaced by v,. If v, converges weakly tov in M(3D),

then there exists a subsequence n,—> (as k—> ) and a measurable function u in D such that

bp . .
u, —>u in every compact set KCD and u satisfies (3.1).

Proof.  Step 1. We show that the family ¢(u,) ([ y4,0]) is relatively weakly compact in
L'(Dg. dy;). By the Dunford-Pettis theorem (see e.g. IV. 8, Corollary 11 of ref. [6]) we on-

ly need to prove that for any € >0, it is possible to find ¢ >0 such that for any n and any measur-
able set EC Dy,

m(E) < o implies | ¢(u,)([3,0]dy < e, (3.3)
where m is the Lebesgue measure in 5.

Note that

Pla,2)=alr)z + b(xr)2? + J;(uz -1+e*)n.(du) + I:o(uz -1+e*)n,(du)

<ala)z+b(x)e? + (%ﬁuzn,(du))zz

. ([l unx.(du))zg(f(z+:2). (3.4)
For every E C D), satisfying m(E)<{1 and M >0, we have
(E¢(u,,)([yd,0])<lyd< CL(u,, + u2)([94,0Ddy, < C_[Euf.([yd.O])dyd

J
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<C[M2J dyd+J uf,([yd,O])dyd]
E D,N (u, >M)
- C[Mzm(E) —J Azdﬂ,,(/l)], (3.5)
M
where £,(2) = [ Ay d > 0. Seth,(2) = | k(z,2)v,(d2).
DN (u >2) aD
Clearly u, << h, and therefore 8,(1) << 7,(A), where 7,(1) = J dy,. By the as-

DyN(h,>2)
sumption of supp (v, ) C B and noticing that supu,(9D) < oo, we have

(0= | ha[3a:0Ddyy = [ g £ (150,01, )dy,
D Nk, >4) aD DN (h >21)
< CfggJ.Doﬂ(h">a)k([yd,0],z)dyd. (3.6)
Choosing a >2, by Holder’s inequality, we have for z& B,
1 1
| k(Lyas 0], )dyy < (7,(A))7 + F(2)s, (3.7)
D,N(h >21)

where 2 + = = 1 and F(z) = JD k([ya,0], 2)%d,,. By (3.2) F(Z) < CJD I Lya,0] -

1} 0
z || "*dy,. Since Dy is bounded and B() { = @, sggF(z) < oo, Combining (3.6) and (3.7)
we get A7, (1) < C}’,,(A)%, and so
B, () < 7,(A) << CA™* forall A > 0. (3.8)
By integration by parts and (3.8),

- JMAZdB,,(A)= M?*B,(M) + sz"()‘““

< c[MH + 2JMA1“'dA ]< CM?e. (3.9)

Condition (3.3) follows easily from (3.5) and (3.9), and therefore { ¢(u,)([ s, 01)} is rela-
tively weakly compact.

Step 2. Choose a sequence n,—>2° such that { ¢( Uy, Y({54,01)} converges weakly to w in

LY(Dg,dy,). Fix £ € D and let B,, = . Then for sufficiently large m,

1
yilly -zl <.

B, CD and
JDOg(I’[yd’()])‘/)(unk)([yd;()])dyd =1+], (3.10)
where
I = LB )Og(I,[yd:()])‘/’(unk)([yd,()])dyd (3.11)
and
T Y S PR PO PR (3.12)

Since g(x, [ v4,0]) is bounded in Dg \ (B,, )0,



No. 6 ABSOLUTELY CONTINUOUS STATES OF EXIT MEASURES 591

J—*J' g(x,[y4,0)w(yy)dyy, ask—> . (3.13)
D()\(Bm)

]

For any compact set K C D, u, is uniformly bounded in K by the following domination:
wW(N < h (D <C| Ny 2l (0.
Hance by (2.2) and the dominated convergence theorem
I< CIIIKDIBM(WS)A(ds)—*O, as m —> . (3.14)
Letting £—>0© and letting m—>0 in (3.10), by (3.11)—(3.14) we obtain
Jr))g(r, [3,01) ¢(u,) (Lyas 01)dy, — jDOg(x, [34,0D) w(ys)dy,. (3.15)

(

Since v, converges weakly to v, h, () converges to h(x), where
hix) = J k(x, z)v(dz).
D

Passing to a limit in (3.1) with u = u, and v =y, we obtain, by (3.15), unk*u(x) point-

wisely and

u(x) + JD g(x, [y, 0D w(y)dy; = h(x).

b,
Since Un, is uniformly bounded in any compact set K C D, Un, —Lu in any compact set KCD.
It remains to prove that ¢(u)({y,,0]) = w(y,;), vs € Dy. To do this it suffices to show that
&( u,,k)([yd, 0]) converges weakly in L'(Dg,dy,;) to ¢(u)([y;,0]). Let £ € L°(Dg,dy,)

and K be an arbitrary compact set in D. Then

[ 9 T 0D fCdds = [ ) (L 01) 1500

<I'+J, (3.16)

where

’

r= |], 19 - 9010 0D £ d

J’:

JDO\K0[¢( u”k) = ¢(u) (L2, 0D f(3a)dya

The bounded convergence theorem implies that I”—=0 as £ — o . By Fatou’ s lemma, J’
< C sngJDO\ Kogb( u,,k)([yd,()]) dyq . Condition (3.3) implies that J*—=0 as K # D. Letting &
— 00 and then K % D in (3.16) we get

J, #) L0 0D £+ [ 4 L0 0D )

which complets the proof of Theorem 3.1.

Theorem 3.2 (Fundamental solutions). Suppose that z;, i =1,*, m are points belong-
ing to 3D\ . The following statements hold .

(1) (Existence and uniqueness). There is exactly one measurable nonnegative function U

(v) defined in B¢ "' which solves (1.2) iwthy = ZAié‘z_,A,- ER i=1,",m.
i=1 !

(2) (First derivative with respect to small parameter). If ¢ is given by (0.4) with a =0
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and v has a finite support satisfying supp(v) (11 =0, then
b
? LDk(x,z)u(dz) (3.17)

x—=0*

AU )

in any compact set KCD.
Proof. (1) Existence. Without loss of generality, assume v = Alézl, zi € 3D\, A

& RY. Let
0, = ix;xéaD, |z — = |l <% ;

: _J1/8(0,), =z € O,
Ful2) ~{0, &0, (3.18)
v, = A fm(z)S(dz). (3.19)

Clearly as n—>%, v, converges weakly to v. Let U(v,) be a solution of (3.1) with v replaced
by v,. By Theorem 3.1, there exists a sequence n,—>% such that U( V“k) — U(y)inDand U
(v) satisfies (3.1) which is equivalent to (1.2).
Uniqueness. Let u;, uy be two solutions of (1.2). Then
up — uy t GD,A(t/J(IH) - ¢(u2)) =0 (3.20)
and
0 uy, up < hix), (3.21)

where A(x) = Lbk(x, z)y(dz).

Note that (2.3) is also valid for ¢ € p% and g € B satisying Gp, o | g | < . Therefore,
using (2.3) with g = ¢(u;) — ¢(u,), (3.20) can be rewritten as
uy — uy = Gy 4[R(u;) — R(uy) ], (3.22)
where

Alr)= [2[;(3:) +J:u A uznx(du)]L(x); L(z) = h(x) +1,

R(z,2z)=(a+ A(x))z — ¢(x, 2).
As in the proof of Theorem 2.2, forall z € D, 0 < 21, 2, < L(x)

|R(x,2,) - R(x,2) | < A(2) | 2 — 22]. (3.23)
Consequently, by (3.21), (3.22) and (3.23)
lur = uz | < GRIA(A | ur = w2 ). (3.24)
By (3.2) and the assumption on v, we get
M := sup h([y4,00) <L sup | [54,0] = = | "4 (dz) < oo. (3.25)
v, €D, aD 5,€ Db,

Since Al u; <X C(h{x) + 1)h(x), i = 1,2, by (2.2), we have
Gpoa (3w DS CMM + D g, [32,0])dsy
0

= CM(M + 1)HIJ;DA(dt) L %o, § =1,2.

Thus by Lemma 2.2, u1=u,.
(2) Note that
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U(aw)/a = ka(x, z)v(dz) — '}(JD gz, [v4,01)¢(U))([y4,0])dyy,

and LI k(x, 2)v(dz) = h(x) is locally bounded in D. To prove the desired result, it suffices to
aD

prove that for € D,
A i= +[g(e, 050,01 9(UG)) [30,0])d3, =0, z € D, as 2 0.
By (3.25)
Uav)([y4,0]) < Ar([y4,0]) < AM, y; € Dy.
Therefore

A < | g T30 01) 6L, 01, AM)/ Adyy.

Since JD g(x, [3,0)dy; = Gp al(x) < oo, letting n—>0 in the above inequality, using
0

(3.4) and the dominated convergence theorem, we get A;(z)—>0 as A—=0". This finishes the
proof of Theorem 3.2.
To prove Theorem 1.2, we first state a lemma which is a modification of Lemma 2.7.1 in
reference [1].
Lemma 3.1. Let Y be a random measure defined on a probability space (Q,%, P) with
valuees in M(ID). Assume that
(a) there exists a Borel subset N 3D of surface zero such that for each z 3D \ N, there
is a sequence €,(z)—>0 and as n-—>o0,
Y(0, () ,
S(0. (2)) g 7(z) in law,

where O, (z)=1x; [l 2 — 2 || <el, €>0 and y(z) is a random variable with Pp(z)<oo.
() P, Y) = | f(=) - Py(=)S(d=) for all f € C(aD).

Then there exists a random measurable function y in 3D such that P{Y(dz) = y(x)S(dz)!|

=1, and for each z€ID \ N, the random variable y(z) and 9(z) are identically distribut-

ed . In particular, Y is an absolutely continuous measure (with respect to S(dz)) on 3D.
Morover, if (a) even holds for vectors, i.e. there is an exceptional set N such that for

each choice of finitely many points z{, ***, 2,, in 3D \ N there is a sequence €,( 21, """, 2, )—>0

and as n—>®

Y(0,(z)  Y(O, (2,)) .

SC0, (1)) e 500, (z,)) } . Some (77(21)), * 77(2,,,) in law,

then (y(z,),, v(2,))=(n(zy), -, 9(z,)) in distribution.
Proof of Theorem 1.2. (1) (assumption (a) of Lemma 3.1). We choose 2, ***2,, €aD
\ [ and let

V,,(dz) = ZAJn(z,)S(dZ),

i=1

where f,(z) is given by (3.18). We have by (1.5)
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€Xp | — <§J/1J,,(z,»),XD> = expl— (U(v,), w |,

i=1
where U(v,) is the unique solution of {1.2) with v replaced by v,. Clearly as n—>20, v, con-

”

verges weakly to v =: 2/\,62, By Theorem 3.1, there exists a sequence n;, > such that
i=] '

b
u(u,lk) LN U(v) in all compact subset KCD and U(v) is the unique solution of (1.2). The

bounded convergence theorem implies that
Peexpi— (U(y, ), w2 = expl= (U(), w1 (3.26)

The left-hand side of (3. 26) determines the Laplace transform of the random vector
[Xp(O,(2,)),, Xp(0,(2,))]. Note that

(U(w), 1) < (Hp,av, o) < e | Sup Hpa(z) < Clal,
where | A | = maxA;. Therefore the right-hand side of (3.26) determines the Laplace transform of

a random vector, we denote [ 7(z,), ", 7(z,,)]. Consequently,
[XD((),,(ZI)), Tty XD(On(Zm))] - [77(21)’ Ty 7](2”,)] in 1aW,

where

Peexp| — D Aq(=)| = expl— (U(v), u) . (3.27)
i=1
(2) (Assumption (b) of Lemma 3.1). Set m =1 and write z instead of z,. By (3.27) and
(3.17) we have

P,(5(2)) = 1m<y—(~§8—3#> = (RCo2) ) = | bz ) atde).

Thus, for every f& C(dD), by the above equality and (1.5),
P,(f) Xy) = JD;;(dx)LDk(x,z)f(z)S(dz) - LDf(z) . P,(y(2))S(dz).

Therefore the statements of Theorem 1.2 follow from Lemma 3.1.
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