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Abstract The  exit measures of super-Brownian motions with branching mechanism # ( z )  = z', 1 < 0 S 2 ,  from a 
h)undcd smooth domain D in Ed+' are known to be absolutely mntinuous with respect to the surface area on aD if d 

2 2 < 7, whereas in the caw d > 1 + x, they are singular. However, if the branching is restricted to a singular 

hyperplane, it is proved that thcy hiwe ah.wlutely continuous states for all d>l. 
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Assume that 

E ( r , d y )  = E ~ ( r , y d ) ) d y d E 1 ( r . d ~ 1 ) . ~  = [ y d , ~ 1 1  Rd X R, (0 .1)  

where El is a one-dimensional kernel, whereas Ed is a bounded rneasurhble function on R+ x IRd. 
Consider the d  + 1-dimensional super-Brownian motion X = 1 X, ; t 0 1 ( d  2 1)  with the above 

factored branching rate kernel F (  r ,  dy)  . Let A!(dt ) : = d ~ j ~ ( t ,  dy)  a,( W, ) be a continuous 

additive function associated with the branching rate kcrnel E ( r ,  dy)  given by ( 0 .  1 ) .  It is well 
known that if  €(  r, dy ) = pdy, where ,o>O is the constant branching rate, X, is singular about 

the Lcbesgue measure on R" ' . But if [( r ,  dy ) is given by (0 .1)  such that the additive function 

Ac(d t  ) is a .  e .  -regular, Dawson and ~leischmann~']  showed that X,  is absolutely continuous for 

all d > l .  For example if t l ( d y l )  = a,, c E R (the branching effect is restricted to a single hy- 

perplane) the additive function Ai( d t  ) is a .  e .  -regular. Ilawson and ~leischmann''] also gave two 

examples of randomly selected branching rate function (The  branching is allowed only at a 
countable collection of hyperplanes) such that the associated additive function Ai(dt  ) is a.  e.  -reg- 
ular. 

In the case €( r ,  dy ) = pdy,  where ,o>O is a constant, an enhanced model of super-Browni- 
an motion was introduced by ~ ~ n k i n ' ~ ] .  For every open set D in Rd+', as a special case of 

~ynk in" ] ,  there is a corresponding random exit measure XD related to the boundary value prob- 
lem 

where ,f is a positive bounded measurable function on an. The states of the random exit measures 
- . . . . - - - . . 

* Pmjwt supported by the National Natural Science Foundation of China (Grant No. 16931063). 
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XD were studied by Abraham and Le ~ r a l l ' ~ ]  and s h e d 4 ] .  It was shown that if d < l ,  the states of 

XD are absolutely continuous with respect to the surface area on aD, whereas in the case d > 1, 

they are singular. But i f  E (  r ,  dy)  is given by (0.1) such that the associated additive function 

A((dt  ) is a.  e. -regular, the question as to what properties the random exit measures XD have left 

open. In the present paper we focus our attention on the extremely simple case of branching al- 

lowed only at a single, non-moving and non-random hyperplane. More precisely, we consider the 

exit measures X I ,  related to the (formal) equation 

Here c € &, j. is a positive bounded function on a D  and (/, is given by the formula 

where n i s a  kernel fromJRd+' to ( 0 , m )  a n d c c ( x ) , b ( x )  andA(a : )  = u A u2n,(du)  are I," 
positive bounded Borel functions. We prove that the random exit measure XD related to the above 

boundary value problem (0 .3)  is absolutely continuous for all d 21. But before we study the ab- 

solutely continuous propc,rty of X D ,  we must first prove that the random measure XD related to 

problem (0 .3 )  exists. 

1 Preliminaries and main results 

1 . 1 Preliminaries 

Fix dimension d 4 I ( d  >, 1 ) . For a Borel set E in 15fdt1, we denote by g ( E )  the Borel a-al- 

gebra of E .  We writc f f . 2 (E ) ,  if f 1s a g ( E )  - measureable function. Writing f 
E p 9 (  E ) ( b q ( E ) )  means that, in addition, f is positive ( bounded). We put bpCd(E) 

= ( b  A( E )  p 3 ( E )  ) . If E - R"', we simply wrlte 3 instead of ~ J ( R ~ " ) .  We will use the 
~ J P  

symbol to denote bounded pointwise convergence (recall that functions converge boundedly 

pointwisc if thty are uniformfly bounded and converge pointwise). 

Write M ( E : )  lor the set of all finite measures on E, endowed with the topology of weak 

convergence. .l'h(: expression if', p )  stands for the integral of f with respect to p .  Let W 
= ( W,, n,) be a Brownian motion in 2~"'. In this paper we will concentrate on the following 

simple additive function 

A, (d t )  = r l t j , . , ~ .  ( r , )S , (  w,)dyd x dyl  = a,( ~ ] ) d t ,  

where (. E !%and W, .- [ w:, ~f 1 .  For a point c E R, A, ( d t  ) can be interpreted as the collision 

local time of W :it the hyperplane l ( x ~  ) ; xd E Xd i or as the Brownian local time LC (d t  ) of W: 
at point r . .  Without loss of generality we assume c = 0 and denote 

A ( d t )  = A o ( d t )  = a,,( ~ i ) d t .  

Throughout this paper rr, denotes the first exit time of W from an open set D, i. e. r~ - inf i t ; W, 6 I )  i . For .x E I l ,  the exit distril~ution H, , (Z ,  . ) of D for Brownian motion start- 

ing at ;r is defined by 

H , ( x , A )  = n , ( r D  < w ,  W, E A ) ,  A E g. 
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It is abvious that H D ( x ,  . ) is concentrated on the boundary a D  of D .  For f E bps, define 

H ~ f ( x )  = J f ( y ) ~ ~ ( x , d y ) '  = ~ J ( w , ) .  
If D is a bounded smooth domain, then H D ( x , d y )  = k ( z ,  y ) S ( d y ) ,  where k ( x ,  y )  is the 

Poisson kernel, and S (dy  ) is the surface area on a D . For v € M(a D )  define 

H D ~ ( x )  = J ~ ( x . Y ) v ( ~ Y ) .  

1 . 2  Main results 

First of all we remark that we will always interpret eq. ( 0 . 3 )  in its mild form, i .  e.  as an in- 

tegral equation: 

U ( X )  + & J ? 4 ( w t ,  u ( ~ t ) ) ~ ( d t )  = H D ~ ( I ) ,  ( 1 .1 )  

where D is an open set in Rd+', f E bpg.  If D is a bounded smooth domain we will also study 

the fundamental solutions of the following integral equation 

b 

wherev = ~ ~ p 3 , ~ . z ,  t aD. A ,  E W', i = 1 , 2 , . . . , k  . 
r = l  

Theorem 1 .1 .  Let 4 be given by ( 0 . 4 ) .  The following results hold. 

( 1 ) There corresponds a Markov process X = ( X, , P, ) in M ( IRd + ' ) such that for every f 

E b p 9  and  ,uE M ( R ~ + ' ) ,  we have 

P,expl- ( f ,  X,) I = expr - (u , ,  pCL) 1 ,  ( 1 . 3 )  
where u, is the unique bounded solution to the equation 

(2 )  For every bounded open set D in Rid + I ,  there exists a random exit measure XD such that 

for  every f €  h p g  and  ,uE M ( R ~ + ' )  

P,expl- ( f ,  XD) I = expl- ( u ,  ,u) l ,  ( 1 . 5 )  
where u is the unique bounded solution of ( 1 . 1 ) .  

Moreover for n 2 2 ,  the joint probability distribution of Xnl ,  a * . ,  XDm is described as follows. 

Let 

I =  { 1 , 2 , . . . , ~ 2 / ,  , r 1 = r n i n { ~ ~ ~ , . - - , r ~ ~ / ,  A = m i n { i : r ~ , = r ~ j .  

Then 

where the functions ul are determined recursively by the integral equations 

with 

GI [ f ~  + U I - A  I ( Wr4i) 
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(note that ( 1 . 6 )  and (1 .7 )  with n = 1 and u, = 0 coincide with ( 1 . 5 )  and ( 1 . 1 ) ) .  Following 

Dynkin, we call X = (X,,  XD, P, ) the super-Brownian motion with parameters ( 4 ,  A ) .  

The flrst part of the above theorem is proved by ~ ~ n k i n [ ' ] .  The proof of the second part is 

given in sec. 2 .  The approach given in this paper 1s a modification of Theorem 1.1 in ref. [ 2 ]  in 

which the additive functions are of the form A (d t  ) = E( t , W, )d t  , where E( r ,  x ) is a positive 

measurable function on 10, m) x EXdt1 satisfying: For every a E R+, there exits a constant C, 

such that f ( r ,  x )  < C, for all r E [O, a), x E litd+'. 

We write p E M ,  ( D )  if p E M ( D )  and ,u has a compact support in D.  
Theorem 1 . 2 .  Suppose D is u hounded smooth domain in Rd" and  is given by ( 0 . 4 )  

with u=O. Then 

( 1)  if p E M ,  ( L) ) , there exts t~ u rundorn meusuruble function XD on aD such that 

P , {XD(dz )  = x D ( z ) S ( d z )  1 = 1 ;  

(2 )  for euth Jinzte collection zl, ... , z, of points in a D \ 1, the Laplace function of the 

random vector [ XI, ( z 1 ) , ... , x2-n ( zm ) ] with respect to P, is given by 

e x -  x z , ]  = e x -  , , i  2 0 ,  

where ,u E Mc ( D ), I = 1 ( xd ,  0)  ; xd E Rd I and  u is the unique (fundamental ) solution of 

( 1 . 2 )  with v = 2\A,cYZ 
, - I  

2 Construction of superprocesses 

Throughout this section D is a bounded open set. Let us first state some lemmas on the inte- 

gral equation ( 1 . 1  ) . For c E p9l and f f 3, put 

C ; r ) , ~ f = ~ ( : ) , ~ , f i  H D , A ~ = H ; , A ~ .  

Lemma 2 . 1  . Suppose c belongs to hp 9. For every f € bpg .  u E b p g  is a solution of 

( 1 . 1  ) if und only  ~f u E hp.R i.c u ~olution of the following integral equation : 

u = Hb,A_f + G ~ , A ( c u  - $ ( u ) ) ,  ( 2 . 1 )  

w h e r e + ( u ) ( x )  = + ( I ,  u ( x ) ) , x  E lRdil. 

Proof. Since A ( d t  ) = Lo ( d t  ) , where LO is the Brownian local time of W: at zero. We 

have 

G,,,A 1 = n,l:"~(dt) < 11 n,=~ 11 < ". (2 .2)  

By the Markov property and Fubini's theorem, it is easy to check that if f ,  g E b g ,  then 

C;I),A~~= (;~I,A(cGII,AK) + G D , A ~  = GD,A(cG;) ,A~)  + GD,A~,  (2 .3 )  

H , I , A ~  = Hi,j + G D , A ( ~ H D , A ~ )  = H;),,qf + GD,A(cHh,Af). ( 2 .4 )  

If u is a posit~ve bounded solution of (1. I ) ,  we have 

= H D , . ~ -  G D , A ~ ( u )  
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= & , A f -  G D , A $ ( u )  + % . A [ C ( H D , A ~ -  G D , A $ ( u ) ) I  

= Hb,&- G D , A $ ( u )  + G ~ , A ( c u )  

= &,,qf + G ' D , A ( ~ ~  - $ ( u ) ) ,  
which is ( 2 . 1 ) .  

Conversely if u  is a positive bounded solution of (2.  I ) ,  using ( 2 . 3 )  and (2 .4)  with g = cu 
- $( u  ) , we obtain 

G , j , ~ ( c u ) =  G D , A [ c H D , A ~ +  ~ G ~ , A ( c u  - $ ( u ) ) I  

= H D , A ~ -  H b , ~ f  + G D , A ( C U  - $ ( u ) )  - G ~ , A ( c u  - $ ( u ) )  

= H D , A ~ +  G D , A ( C U  - $ ( u ) )  - u .  

Therefore u  = HI,, pf + G,, ,$( u  ) . 
Lemma 2.2 .  Let c ,  f and A  belong to p g .  If h ,  E p g  satisfy the following conditions : 

G D . A ( A ~ o )  < 
h n ( x )  < H L : ~  + qGb:il + G C $ $ ( A ~ , - ~ ) ,  for cc f IRd+', n  E N, 

where M and q are positive constants, then 

h , , ( x )  <&,& + ~ G D , A ~  

In particulur , if h 0 = 0 or i f  h ,  does not depend on n  , then 

h , , ( x )  < & , A f ( x )  + qGf ,A l ,  for x E Itd+'. 

Proof. By induction in n  , we get 

Clearly, this implies (2 .5  ) . Letting n  w in inequality ( 2 . 5  ) , by the dominated convergence 

theorem, we get ( 2 . 6 ) .  
For0 < p < 1,  let 
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Then Ap  is bounded in Rd + ' , R p  ( x , z ) is increasing about z and 

0 < R p ( x ,  z )  < A p ( x ) z ,  for x E Etd+', z E [O,w) .  ( 2 . 1 0 )  

Theorem 2.1. For every f € b p g ,  there exists a positive solution u ( /3, f )  of ( 1 . 1  ) with 
$ replaced by $p .  

Proof. By Lemma 2 . 1 ,  we only need to prove that ( 2 . 1 1 )  has a positive bounded solution 

u = wD:&f + GD:$RP(u ) .  ( 2 . 1 1 )  

Define a sequence u,  ( p, f )  by recursive formulae: 

u o ( P , f )  = 0 ;  

u , ( P , f ) =  f%:%f + G L : ~ P R ~ ( U , - ~ ( P ,  f ) ) .  ( 2 . 1 2 )  

By Lemma 2 . 2  

o <  u , ( P , f )  < H t , d <  11 f 11 
where II f I /  , = sup I f (  x ) I . Since R p (  x ,  z )  is increasing about z ,  there exists u ( P ,  f )  E 

bp53 such that for all I € IRA+', u,(/3, f ) ( x )  -f u ( P ,  f ) ( x ) .  
Using the monotone convergence theorem, letting n+m in ( 2 . 1 2 ) ,  we know u (/3, f )  is a 

positive bounded solution of (2 .11  ) and therefore a solution of ( 1.1  ) . 
Theorem 2.2. Let $ be given by ( 0 . 4 ) .  The following results hold. 
( 1 ) (Existence and uniqueness ) . For every f € bpB(a D )  , there is exactly one measurable 

nonnegative function U (  f )  defined on IRd + '  which solves ( 1 . 1 ) .  

( 2 )  ( Continuity).  U (  f )  as a map of bpg(aD)-+bp.!28 i s  continuous. 
( 3 )  (First derivative with respect to a small parameter). 

Proof. ( 1 ) Let $p( x,  z ) ,  0 < /3 < 1 be given by ( 2 . 7 ) ,  and let u ( p ,  f )  be the solution 

of ( 1.1  ) with $ replaced by +B constructed in Theorem 2.1 .  Note that 

So, for every C E ( 0 ,  03 ), there exist constants a ( P ,  C )  + 0 as /3 -+ 0 such that 

11 $ ( x ,  z )  - $ p ( x ,  z )  1 1  < a ( P ,  C ) ,  for all /3 E ( 0 ,  I ) ,  0 < z < C. ( 2 . 1 3 )  

Let L>1 be a constant such that II f / I  , < L ,  and let 
w 

A ( x ) =  [ 2 h ( r )  +I u A u 2 n , ( d u ) ] ~ ;  
0 

Then 
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+ J [ U ( ~  - 1 + e-"')n,(du), 

which means for all .r E R ~ " ,  0 < z < I_ .  0 < [ ~ ( x ,  z)]: < A ( x ) .  
Consequent 1 y 

I R(.T, z l )  - R ( x ,  z 2 )  I < A ( Z )  1 2 1  - 2 2  1 ,  for all x € lRdt', 0 < z l ,  z2 < L .  

(2.16) 
Combining (2.13) and (2.16) we get 

I R ~ ( X , ~ I )  - ~ ~ , ( . z , z 2 ) 1 < a ( , R , ~ )  + a ( P ' , L )  + A ( X ) I Z ~ - Z ~ I ,  
for z E I R ~ + ' ,  0 < z1, 2 2  < L ,  P, P' E (O , l ) ,  (2.17) 

wherea(p,  L )  and /? E ( 0 , l )  are constants satisfying a ( ~ ,  L )  - t o  as P + O .  By Lemma2.1, 
for every PE (0,  I ) ,  u ( p, f )  satisfies 

u (P ,  f )  = ~ i ; y 3 +  GL:;R(u(P,f)). 
Let hp, pz = I u (P ,  j') - u (P', f )  I . By (2 .17)  and the above equality we have 

4% P' < q c b ' l i l  + ~ ~ ~ ( A h p , p , ) ,  
where q = a ( p ,  L )  + a(P ' ,  I - ) .  By Lemma 2 . 2 ,  hp,pf < q G 5 , ~ l .  BY (2.21, 1 1  G D , A ~  1 1  
< a .  So there exists a function U(  f )  E hpB' such that 

bP 
u ( P , f >  -U( f> .  

The dominated convergence theorem implies U (  f )  is a bounded positive solution of ( 1.1)  . 
The uniqueness can be proved similarly as above. In fact, assume that u , uz E bpg  are two 

solutions of ( 1 . 1  ) , and L 3 1 is a constant such that 0 < u u2 < L . Let A and R be defined as 
in (2.14) and (2 .15 ) ,  respectively. Then similarly we get 

1.1 - u ~ I < G ; ; : ; ( A ( I ~ ~  - ~ 2 1 ) ) .  
By Lemma 2 .2 ,  u l - - u 2 .  

(2)  Let A ,  R be given by ( 2 .  14) and ( 2 .  15) ,  respectively with constant L satisfying L 
3 1  V / /  f~ 1 1  V 11 J; 1 1  , . Then 

/ u(.f ' l)  -- U(f2 )  / < HE:; / fi - f 2  I + Gg;(A I U(f11 - U(f2) I >.  
By Lemma2.2, 1 U ( f l )  - ~ ( f 2 / )  < HEsA I f 1  - f 2 I  < I (  f l  - f 2  11 ,, which means state- 
ment (2)  is valid. 

( 3 )  By Lemma (2 .  1 )  U(Af) satisfies 

U(Aj.1 = AH&,.& - G",,*@( U(Af)),  (2.18) 

where @( x ,  z )  = $(r, z )  - LL ( x  ) z . Consequently, @(s, z )  is increasing about 2 3 0  and for 
any constant C > 0, @(x, CA)/A + 0  as A -0'. Letting n + a  in (2.  IS) ,  by (2 .2 )  and the 

1 bP 
dominated convergence theorem we have -U ( A f )  -Hi;, Af as A + 0' . A 

A real-valued function u on the Abelian semigroup G = bp% is called negative definite if 

A,A,u(g, + g,) < 0 .  
,, , = 1 

For every n 3 2 ,  all g ..-, g ,  E G and all A ..., A, E R such that C A, = 0 .  It is known that 

if u is negative definite, then L ( f )  = e-"") is positive definiteL2] . 
Proof of Theorem 1 . 1 . By Theorem 2 .2 ,  u satisfying ( 1 . 7 )  exists and is unique, and GI 
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and ul arc! positivct i f  j;>,O. We consider GI and ul as functions of (f ', -.. f n  ) € ( b p g ) "  . By in- 

duction on ti and thc construction process of u, given by Theorems 2 . 1  and 2.2,  we can prove 

that ul is negativtz definite and vanishes i f  f 1  = ... = f, = 0 (For details see e .  g .  ~ ~ n k i n ' ~ ] ) .  Let 

LA,( j'l, .-., f n )  = exp(- u,, ,u). 

Then Lr is positive definite. Hy Theorem 2 . 2  LI is continuous. It follows from Lemma 1 . 4  and 

sec. 1 . 6  in ref. 12 1 that thcre exists a unique probability measure P, on M ( R ~ + ' ) "  such that 

(1 .6)  and (1 .7 )  hold. It is easy tosee that Ll(fl;.., f n )  = LJ(f l , . . . ,  f n - , )  if J = {l,..., n 

- 11 and . f n  = 0 .  Therefore the existence of the stochastic process (XD, P, )  subject to statement 

(2 )  of Theorem 1 . 1 follows from Kolmogorov' s theorem. 

3 Absolute continuous states of XU 

The purpose of this section is devoted to the proof of Theorem 1 . 2 .  Throughout this section, 

D is a bounded smcwth domain. Notation C always denotes a constant which may change values 

from line to line. For y E lRd+' we denote y = [ yd, y1 ] with yd € Rd, y1 = R. For any set r 
C x d - l ,  let ro = : .vd E 7" such that [yd,O] E I'i . We replace ( 1 . 2 )  by an equivalent integral 

equation 

where g ( J ,  y ) is the Green function of Brownian motion in D, and k ( x ,  z )  is the Possion ker- 

nel. Note that therr: is a constant C depending only on D such that 

k ( ~ ,  Z )  < C: I/ 3 - z i! d ,  x E D ,  z E JD. (3 .2 )  
Theorem 3.1 . Lrt v,  E M ( E 0 ll ) he u sequence of measures such thut there esc-ists a com- 

puctsetB.wtisfying s u p p ( v n ) C B u n J B f l l = ~ ,  ~ h e r e l = { ( x ~ , 0 ) , x ~ E ~ ~ ~ .  Sup- for 

ruch t i ,  u,, is u solufion of ( 3 . 1 )  with Y replucrd by v , .  If vn converges weakly to v  in M ( a D ) ,  

then thrrr exists u su6.sequetic.e nh+m (as k + m )  and  u measuruble function u in D such thut 
bP 

u -u in every compact set K C D  urzd u sutisfies (3 .1  ) . 
"1 

Pr-oo,/'. SIC/' 1 .  Wc show that the family +( u,) ( [ yd,  01) is relatively weakly compact in 

L1(Do,  dyd ) .  By the Dunford-Pettis theorem (see e.  g. IV. 8, Corollary 11 of ref. [6]  ) we on- 

ly need to prove that for any E >0 ,  i t  is possible to find o>O such that for any n and any measur- 

able set E:CDn, 

where m is the l.cxt~esgue measure in > , ' I .  

Notc that 

$ ' ( . l . ,  z ) =  u ( . ~ ) z  + b ( . r ) z 2  + ( U Z  - 1 + e-Uz)n,(du)  + ( u z  - 1 + e-")n,(du) C 

For every E C I ) , ,  satisfying m( E ) < 1  and M >0,  we have 
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= C [ M ' ~ ( E )  - J w ~ 2 d p n ( ~ ) ] ,  M (3.5)  

where 8. ( A ) = I dyd, A > 0 .  set h n ( x )  = I k ( x ,  z)v,(dz).  
D , ~ ( u , , > A )  a D  

Clearly u, < h,, and therefore ,El, ( A ) < y, ( A ), where y, ( A ) = J D , n ( h n > A )  dyd. By the as- 

sumption of supp ( v ,  ) C B and noticing that sup,u,(aD) < m, we have 

k([yd,OIr z)dyd. (3 .6)  

Choosing (r > 2, by Holder' s inequality, we have for z E B , 
1 1 

k([yd,O], z ) d ~ d  < ( y n ( A ) ) 7  F ( z ) i ,  (3.7)  

1 1  where- + - = 1 and F ( z )  = k([yd,O], z)"d,. By ( 3 . 2 )  F ( Z )  < CS 11 Lyd90] - 
a a 

Do 

z 1) a d d y d .  Since Do is bounded and B n 1 = 8, su F (  z )  < a. Combining (3.6)  and (3.7)  

1 
we get AY,(A) < Cy,(A)h, and so 

Pn(A) < Y,(A) < CA-a for all A > 0.  

By integration by parts and (3 .8) ,  
m 

- J2'dpn(A) = M'P,(M) + 2~),(A)AdA 

Condition (3 .3)  follows easily from (3 .5)  and (3.91,  and therefore #J( u,) ( [ yd, 01 ) 1 is rela- 
tively weakly compact. 

Step 2.  Choose a sequence n k + m  such that { #J( u,,) ([ yd, 01) 1 converges weakly to w in 

L' (  DO, dyd). Fix I E D and let B. = y ; I /  y - r 11 < ; . Then for sufficiently large m ,  

B, C D and 
I I 

g(x, [ ~ d , O l ) # J ( u ~ ~ ) ( [ ~ d , O I ) d y d  = I + Jr (3.10) 

where 

and 

./ = g ( x ,  [ y d 9 0 1 ) # J ( u n 6 ) ( [ ~ d , 0 1 ) d ~ d .  (3.12) 
Do ' (B,,,)n 

since g ( x ,  [yd,O]) is bounded in DO \ (B,,,)o, 
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For any compact set K C D,  u,  is uniformly bounded in K by the following domination: 

U . , ( Y )  c h. (y )  c CJ I/ Y - II - d ~ n ( d z ) .  
aD 

Hance by ( 2 . 2 )  and the dominated convergence theorem 

I < c&jrD~.  ( w , ) A ( ~ s )  +o .  as m - m .  
0 "' 

( 3 . 1 4 )  

Letting k e r n  and letting r n - a  in ( 3 .  l o ) ,  by (3 .11 ) - (3 .14 )  we obtain 
r P 

Since vn converges weakly to v , h,  ( x ) converges to h ( x ) , where 

h ( x )  = I I D b ( x ,  z ) v ( d z ) .  

Passing to a limit in ( 3 . 1 )  with u = unb and v = v ,  we obtain, by (3 .151 ,  u,&+ u ( x ) point- 

wisely and 

bp 
Since u,  is uniformly bounded in any compact set K C D, unk -u  in any compact set K C  D . 
It remains to prove that $( u ( [ yd, 01 ) = w ( yd 1, yd € DO. TO do this it suffices to show that 

$ ( u n h ) ( [ y d , O ] )  converges weakly in ~ ' ( D o , d y ~ )  to $ ( u ) ( [ ~ ~ , O ] ) .  Let f E L W ( D o , d y d )  

and K be an arbitrary compact set in D.  Then 

where 

+ 03 and then K f D in ( 3 . 1 6 )  we get 

/ $ ( ~ ~ , ) ( [ ~ d ~ O l ) f ( ~ d ) d ~ d  -r ~ ( u ) ( [ Y d * O I ) f ( ~ d ) ~ Y d ,  
I.',, 

J ' =  15 [ # ( u n k )  - $ ( ~ ) l ( [ y d , o l ) f ( ~ d ) d ~ d  
''0 ' KO 

which complets the proof of Theorem 3.1. 
Theorem 3.2  (Fundamental solutions) . Suppose that z i  , i = 1,  ... , m are points belong- 

ing to aD \ I .  The fillowing statements hold. 
( 1  ) ( Existence and uniqueness) . There is exactly one measurable nonnegative function U 

. 

m 

( v )  defined in IRd" which soives ( 1 . 2 )  iw thv  = A ,  € , i = l , . . . , m .  
t = l  

( 2 )  ( First derivative with respect to small parameter) . I f  y, is  given by ( 0 . 4 )  with a 0 

The bounded convergence theorem implies that 1' + 0 as k -+ co. By Fatou ' s lemma, J' 
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arid v hu.5 a finite suppol-t sutisfying supp( v )  fl L = Q),  then 
bP 

1 - 1  ~ ( i v )  = j d I P ( x ,  z ) v ( d z )  ( 3 . 1 7 )  

in any cornpuct set I ( C D .  

Proof. (1) Existence. Without lossof generality, assume v = A16,,,zl E aD\L,A1 

E R' . Let 

0,  = x ; x  2: ED, 11  x - 21 11 < - ; n / 

v, = A l f n ( z ) S ( d z ) .  ( 3 . 1 9 )  

Clearly as ,z+a, vr ,  converges weakly to v . Let U(  v ,  ) be a solution of ( 3 . 1 )  with v replaced 

by vrl.  By Theorem 3 . 1 ,  there exists a sequence n,+m such that U ( v U h )  + U ( v )  in D and U 

( v ) satisfies ( 3 . 1  ) which is equivalent to ( 1  . 2 )  . 
Uniqurriess. Let u l ,  u2 be two solutions of ( 1 . 2 ) .  Then 

U I  - u2 + G D , A ( $ ( u I )  - $ ( ~ 2 ) )  = 0  (3 .20 )  

and 

0  < u l ,  u ,  < h b ) ,  (3 .21 )  

where h ( x )  = i $ ( x ,  z ) v ( d z ) .  

Note that ( 2 . 3 )  is also valid for c E p?il and g E 3 satisying GD,A  I g I < 00.  Therefore, 

using ( 2 . 3 )  with g = $ ( u l )  - $ ( u 2 ) ,  ( 3 . 2 0 )  can be rewritten as 
G a + A  

U I  - ~2 = D , A [ R ( ~ I )  - R ( u z ) I ,  ( 3 . 2 2 )  

where 
U) 

A ( r ) =  [ 2 6 ( x )  + j o u  A u 2 n , ( d u ) ] ~ ( r ) ;  L ( r )  = h ( s )  + 1, 

R ( x ,  z ) =  ( a  + A ( x ) ) z  - +(J, z ) .  

As in the proof of Theorem 2 . 2 ,  for all x E D, 0  < z l ,  z 2  < L ( x )  

1 R ( s z : ,  z l )  - R ( J ,  2,) 1 < A ( s )  1 zl - 2 2  1 .  ( 3 . 2 3 )  

Consequently, by (3.21),  ( 3 . 2 2 )  and ( 3 . 2 3 )  

Iu i  - u ~ / < @ ~ A I ~ I  - 4). ( 3 . 2 4 )  

By ( 3 . 2 )  and the assumption on v ,  we get 

Since Al u ,  I <  C 7 ( h ( x )  + l ) h ( x ) ,  i  = 1,2 ,  by ( 2 . 2 ) ,  we have 

GI,, n ( A  I u. 1 )C C M ( M  + l ) j  g(x, [yd,Ol)dyd 
Do 

Thus by Lemma 2 .2 ,  u I - U Z  = 

( 2 )  Note that 
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and k ( r , z ) u ( d z  ) = h ( r ) is locally bounded in D . T o  prove the desired result, it suffices to 
a I )  

prove that for x E D ,  

1 
A )  = g(x. [ Y ~ . O ~ ) ) ( U ( A Y ) ) ( [ Y ~ ~ O I ) ~ Y ~ + O ~  X E D ,  as 1 + 0 .  

"0 

By ( 3 . 2 5 )  

u ( A v ) ( [ y d , O l )  < Ah([yd ,O] )  < AM, yd E Do. 
Therefore 

Since J , o g ( I ,  [ y d ,  O I  Idyd = G D , , l ( x )  < a ,  letting n + m  in the above inequality, using 

( 3 . 4 )  and the dominated convergence theorem, we get AA (x )+O as A + O t  . This finishes the 

proof o f  Theorem 3.2.  

T o  prove Theorem 1 . 2 ,  we first state a lemma which is a modification of  Lemma 2 . 7 . 1  in 

reference [ 1 ] . 
Lemma 3 . 1 .  Let Y be a random measure defined on a probability space (a, g, P )  with 

vuluee.~ in M ( a D )  . Assume that 

( a )  there exists (L Bore1 subset N C a D  of surface zero such that for each z E a D  \ N ,  there 

i.s u sequence E,, ( z )+0 and us n + a ,  

Y ( O , " ( Z ) )  - ~ ( z )  in l a w ,  
S ( 0 ,  ( 2 ) )  ? I - -  

w h e r e O , ( z ) =  i x ;  ;// x - z  1 1  < € \ ,  E > O  and ~ ( z )  i s a  random v a r i a b l e w i t h P l ( z ) < m .  

( b )  P ( f ,  Y )  = f ( z )  . P 7 ( z ) S ( d z )  forall f E C ( a D ) .  
,ID 

Then there exists u random measurable function y in  a D such that P { Y ( d z  ) = y ( x ) S ( d z  ) 1 
= 1,  and for euch z E [J D \ N ,  the random variable y ( z )  and v (  z )  are identically distribut- 

ed .  In purticulu7-, Y is a71 absolutely continuous measure ( w i t h  respect to S ( d z ) )  on a D .  

Morover, i f  ( u  ) even holds for vectors, i .  e .  there is an exceptional set N such that for 

each choice of finitely many points z l  , ... , z ,  in  a D \ N there is a sequence E ,  ( z l ,  ... , z ,  )+O 
and as n+m 

Y ( 0 ,  ( 2 , ) )  Y ( 0 ,  ( 2 , ) )  . . . I- some ( l ( z l ) ) ,  ..., ~ ( 2 , )  in  l a w ,  
S ( 0 ,  ( 2 1 ) ) '  ' S ( 0 ,  ( z , ) )  .-- I :  

then ( y ( z l ) , . . . ,  y ( z , , , ) ) = ( ~ ( z l ) ; . . ,  1 ( z m ) )  in  distribution. 

Proof of Theorern 1 .2 .  ( 1 ) (assumption ( a )  of Lemma 3 .1  ) . W e  choose z l ,  ... z ,  E a D  
\ L and let 

where f n ( z )  is given by ( 3 . 1 8 ) .  W e  have b y  ( 1 . 5 )  
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where U (  Y,) is the unique solution of ( 1 . 2 )  with v replaced by Y,. Clearly as n + m ,  v, con- 
I 

verges weakly to v = : d,6,, . By Theorem 3 .  1,  there exists a sequence n, +m such that 
2 - 1  

bP 
u ( v,,& ) - U ( v ) in all compact subset K C  D and U ( v ) is the unique solution of ( 1 . 2 ) .  The 

bounded convergence theorem implies that 

P,expi- ( U ( v n l ) , , u ) \  +exp i -  ( U ( v ) , , u ) \ .  (3 .26)  

The left-hand side of ( 3 .  26 ) determines the Laplace transform of the random vector 

[ X n ( O , ( z , > > , . . . ,  X , (O, (z ,>>l .  Note that 

where I d I = m a d ,  . Therefore the right-hand side of (3 .26)  determines the Laplace transform of 

a random vector, we denote [ I (  z1 ) , -.. , z ,  ) 1.  Consequently, 
C x n ( O , ( z , > ) ,  ...,X , ( O , ( z , > > I  + [7 ( z1 ) , . . . ,  ~ ( z , ) ]  in law, 

where 

= expl- ( U ( V ) , ~ ) \ .  (3.27)  

(2 )  (Assumption ( b )  of Lemma 3 . 1  ) . Set m = 1 and write z instead of z l  . By (3 .27)  and 
(3 .17)  we have 

U (  A6, ) 
P , A ( l ( z ) )  = lim - 

,I ..o ( ,PI = ( R ( . ,  z ) . ~ )  = j a ( ~ ,  z ) ~ ( ~ x ) .  

Thus, for every f €  C ( a D ) ,  by the above equality and ( 1 . 5 ) ,  

p , ( j ,  X I , )  = J I3 p ( d x ) J  an k ( x ,  z ) f ( z ) ~ ( d z )  = Jad(z)  P , ( v ( z ) ) s ( ~ ~ ) .  

Therefore the st at ements of Theorem 1 . 2  follow from Lemma 3 . 1  . 
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