
Available online at  www.sciencedirect.com 

s c i e N c e  @DIRECT*  

Acta Mathematica Scientia 2006,26B(2) :358-370 &FBB?N 
www.wipm.ac.cn/publish/ 

ABSOLUTE CONTINUITIES OF EXIT MEASURES 
AND TOTAL WEIGHTED OCCUPATION TIME 

MEASURES FOR SUPER-a-STABLE PROCESSES* 

Zhang Jzng ( %4+ ) 
College of Science and Technology, Inner Mongolia University, Hohhot 010020, China 

School of Mathematical Sciences, Peking University, Beijing 100871, China 

Ren Yamia ( .K#L ) 
LMAM School of Mathematical Sciences, Peking University, Beijing 100871, China 

Abstract Suppose X is a super-a-stable process in Rd, (0 < a < 2), whose branching 
rate function is dt, and branching mechanism is of the form a(.) = zl+@ (0  < 5 1). Let 
X, and Y, denote the exit measure and the total weighted occupation time measure of X 
in a bounded smooth domain D, respectively. The absolute continuities of X ,  and Y, are 
discussed. 
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1 Introduction 

For every Borel-measurable space ( E , B ( E ) ) ,  we denote by M ( E )  the set of all finite 
measures on B(E)  endowed with the topology of weak convergence; denote by M,(E) the set 
of all finite measures on B ( E )  with compact support; denote by Mo(E)  the set of all finite 
measures on B ( E )  with finite points support. The expression (f, p )  stands for the integral of f 
with respect to p, that is, (f, p)  = f(z)p(dz). We write f E B(E)  if f is a B(E)-measurable 
function. Writing f E pB(E)(bB(E))  means that, in addition, f is positive (bounded). We put 
bpB(E) = bB(E) n p B ( E ) .  If E = Rd, we simply write B instead of B(Rd) and M instead of 

Let [ = {[s,rJz,s 2 0,s E Rd} denote a symmetric a- stable process (0 < a < 2). 
We denote by 7 the set of all exit times from open sets in Rd. Set 3sr = cr(Jsrs 5 T ) ;  

3>r = a(&, s > r )  and 3, = U { 3 5 , ,  T 2 0). For T E 7, we put F E 3~~ if F E 3, and if for 
each T ,  {F,  T > r }  E 3 > r .  

Throughout this article, C denotes a constant which may change values from line to line. 

M ( R ~ ) .  
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For ,B E (0,1], there exists a Markov process X = (Xt,P,,) in M such that the following 

(1) If f is a bounded continuous function, then (f, Xt) is right continuous in t on [O,m). 

(2) For .every p E M and for every f E bpB, 

conditions are satisfied: 

where v is the unique solution of the integral equation 

Moreover, for every T E 3, there are corresponding random measures X ,  and Y, on Rd asso- 
ciated with the first exit time r such that, for f , g  E bpB 

where u is the unique solution of the integral equation 

4.) + nz p C d ' + P d s  = nz [ 1, g(Q)ds + f(ST)]. (4) 

We call X = {Xt, X,, Y,, P,,} the super-a-stable process with branching mechanism zl+O. 

Throughout this paper T denotes the first exit time of < from an open set D in Rd, that is, 
r 3 inf{t > 0 : & $2 D}. And we call X ,  the exit measure of X in D, Y, the total weighted 
occupation time measure of X in D. From the properties of the super-a- stable process, we 
know that the support of X ,  is contained in 3, the support of Y, is contained in D. We will 
discuss the absolute continuity of X, and Y,. 

2 Absolute Continuity of X ,  

From this point on, we always assume that D is a bounded smooth domain in Rd. Let 
K D ( z ,  z) denote the Poisson kernel of 5 in D. For v E M ( F ) ,  f E bB(D"), define 

d =  1, 
HDV(Z)  = (5) 

where 

Obviously, if v(dy) = f(y)dy, then Hof = HDV. 
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The study of the fundamental solutions of the following integral equation plays an impor- 
tant role in the investigation of the absolute continuity of X,, 

where v E M o ( 5 ) .  
--c m 

i=l 
Forv=CXiGz,  wi thz l ,z2 , . . . , zmED , X i ~ R + , i = 1 , 2 ; . . , m , l e t  

vn(dz) = fn(z)dz, (8) 

where dz denotes the Lebesgue measure on 5 and 

@ B k i ,  l /n>  
W with V ( 3  n B(zi, 1/71)) being the volume of 5 n B(zi,  1/71). Clearly, as n + 00, v, - v. v, 

is called the regularization of v. 
We now give a theorem on the fundamental solutions of the integral equation (7). 
Theorem 2.1 

m 

i= 1 
Suppose D c Rd is a bounded smooth domain, v = C Xi6,, , z1,22, . . ., 

zm E 3, Xi  E Rt, i = 1 ,2 , .  . . , rn. Let v, be defined by (8), (9) and (10). Then we have 

defined in D which satisfies the equation (7). 

operation of regulation of v in the following sense: 

(1) (Existence and Uniqueness) There is exactly one measurable nonnegative function V[v] 

(2) (Continuity of Regularization) The solution V[v] is continuous with respect to the 

~ [ v , ] ( . )  2 ~ [ v ] ( . ) ( n  + a) in D. (11) 

(3) (First Derivative with Respect to Small Parameter) 

X-'U[X~](.) -% H D ~ ( . ) ( x  -, 0) in D. (12) 

Using the above theorem we get the main result with respect to the absolute continuity of 
x,. 

Theorem 2.2 Suppose p E M c ( D ) ,  there exists a random measurable function XD 
defined on 3 such that 

Pp { X ,  (dz) = ZD (z)dz} = 1. 

that is, X ,  is P,-as. absolutely continuous with respect to the Lebesgue measure dz on fl. 

3 Absolute Continuity of Y, 

Let GD(x ,  y) denote the Green function of in D. For v E M ( D ) ,  f E bB(D),  define 

G D ~ ( x )  = G D ( ~ ,  p)v(d~) ,  
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GDf (x) = nz 1' f(&)ds = 1 GD(x7 y)f(!/)dY. (13) 
D 

Obviously, if u(dy) = f(y)dy, then G o  f = GDU. 

tant role in the investigation of the absolute continuity of Y,: 
The study of the fundamental solutions of the following integral equation plays an impor- 

i=l 

where dy denotes the Lebesgue measure on D and 

m 

i= 1 

u, is the regularization of u. 
m 

We now give a theorem on the fundamental solutions of the integral equation (14). 

Theorem 3.1 
m 

i=l 
Suppose D c Rd is a bounded smooth domain, v = C Xi6,,, 

yl,yz, . . . ,ym E D,Xi E R+,i = 1 , 2 , . . - , m .  Let v, be defined by (15), (16) and (17). Assume 
that there exists a sequence of bounded smooth domains {Dn}F=i satisfying D, (D \Nu) as 
n t 00 and 

where Tk = inf{t > 0 : & @ Dk}. Then we have 

defined in D which satisfies the equation (14). 

operation of regulation of u in the following sense: 

(1) (Existence and Uniqueness) There is exactly one measurable nonnegative function U[v]  

(2) (Continuity of Regularization) The solution V[v] is continuous with respect to the 

(19) 
b 

U[v, ] ( . )  - U[v](.)(n + m) in each compact subsect K of D \ N,. 

(3) (First Derivative with Respect to Small Parameter) 

X-lU[Xv](.) -% GDV(.)(X + 0 )  in each compact subsect k of D \ N,. (20) 

Using the above theorem we get the main results with respect to the absolute continuity of Y,. 
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Theorem 3.2 Suppose there exists a Borel subset N of D with 0 Lebesgue measure such 
that for every v E Mo(D\ N )  condition (18) holds. Then for ,u E M , ( D ) ,  there exists a random 
measurable function y o  defined on D such that 

that is, Y, is Pp-a.s. absolutely continuous with respect to the Lebesgue measure dy on D. 

continuous with respect to the Lebesgue measure dy on D. 
Theorem 3.3 Suppose ,u E M,(D) .  When d < a + alp,  Y, is P,-as. absolutely 

4 Proofs of Theorems in Sections 2 and 3 

In the sequel we will use the following two lemmas. By the Fubini theorem and the Markov 
property of 6 ,  using an argument similar to that appearing in Lemma 2.1 in [l], we have the 
following lemma: 

Lemma 4.1 Let T E T, g E bpB, C is a positive constant. Assume that w E B, F E 3 2 ,  
satisfy 

II, 1, Iw(&)lds < 00, II,lFI < 00, z E Rd. 

g(z) = II, [e-crF + I‘ e-Cs~(&)ds] 
Then 

if and only if 

We qill also use another lemma which is a modification of Lemma 2.7.1 in [2]. 
Lemma 4.2 Let Y be a random measure defined on a probability space (0, &?(E), P) 

(1) there exists a Borel subset N of E of Lebesgue measure 0 such that for Vz E E \ N ,  
with values in M ( E ) .  Assume that 

there exists a sequence E,,(z) -+ 0 (n  + oo), and as n -+ oo 

where OE(z) = {z : 112 - zll < E } ,  E > 0, and q ( z )  is a random variable with Pq(z) < 00. 

(2) P(f, Y )  = J, f(z)Pv(z)dz for all f E bpB(E). 
Then there exists a random measurable function y in E such that 

P{Y(dz) = y(z)dz} = 1, 

and for Vz E E\N, the random variable y(z) and ~ ( z )  are identically distributed. In particular, 
Y is P-as.  absolutely continuous with respect to dz in E. 

Assume that, u,,, n = 1,2,. . . is a nonnegative solution of the 
equation (7) with v replaced by u,,, that is, u,, satisfies the following equation 

Proof of Theorem 2.1 
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However, for x E D, 

K D ( ~ ,  z)vn(dz), d = l ,  

A(& a) kc KD(x,Z)Vn(dZ), d 2 2. 
nZfn('$T) = [ 'c 

Suppose d = 1, without loss of generality, let D = (a, b) .  F'rom [3] we know for 2 E D ,  z E 
--c D , the following estimate holds: 

12 - ul"/21x - bl*/2 

12 - ul"/21z - b y 2  6(z) 

Iz - a(+)z  - b ( 4 2  s(l> - 

1 

1 1 1 

IC 

IC <C- 
6 ( Z ) l + "  ' 

where 6(z )  = min{)z - a ( ,  )z  - b l } .  
Suppose d 2 2, from [4] we know for x E D, z E F ,  the following estimate holds: 

where 6 ( x )  = d(x, dD) denotes the distance between x and dD. 

conclude that there exists an no such that, for n 2 no, 
Noticing that un is only charged on B ( z i , l / n ) , i  = 1 , 2 , . . . , r n ,  from (22) and (23), we 

nzjn(<T) 5 c /- Vn(dZ> I C. 
DC 

Then from un u it follows that 

Using Lemma 4.1 with 
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we get 

un(2) = flZ[e-"'fn(tT)] + n, e-'"R(un(<,))ds. (26) 1' 
From (25) and (26) we have for 2 E D, m,n 2 no, 

Iurn(x) - un(x:)I 5 nze-"Ifm(<r) - fn(tr)I + n x  e-'"qIum(<s) - Un(&)ldS. (27) I' 
Iterating the inequality (27) 1 2 1 times, using the strong Markov property of 6 and the fact 
that s ~ - ~ J o < s l < . . . < s ~ < s  - - n J" 0 . . . J:, we get 

Noticing IIX7 < 00, and by using the dominated convergence theorem it follows that 

Combing (28), (29) and (30), we have 

limsup Iu,(x) - un(z)I = 0, 2 E D. 
m,n+m 

Therefore there exists a nonnegative measurable function u in D such that, 

By the dominated convergence theorem it follows that, u solves the equation (7). Repeating the 
procedure from the beginning with two different solutions of the equation (7) instead of u, and 
urn, respectively, we can conclude that u is uniquely determined by the equation. Summarizing 
the above , we now have proved the statements (1) and (2) of Theorem 2.1. 

It remains to verify the asymptotic property (12). Let V[Xv] be the nonnegative solution 
of the equation (7) with v replaced by Xv, then 

Noticing that v is only charged on finite points, we know that HDY(.) is bounded in D, it 
follows that 

II, I '(HDv(&))l+Bds < 00. 

Let A 1 0  in (31), it follows that 

lim IX-'U[Xv] - H D V ~ ( Z )  5 limAPIT, (HDv(tS))'+'ds = 0. 
A10 A10  I' 
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Therefore we conclude that 

But X-’U[Xv](.) are dominated by H D Y ( . )  and H D V ( . )  is bounded in D. The statement (3) 
follows. 

Proof of Theorem 2.2 (1) We choose z1, z2,. . . , zm E Dc and let 

i=l 

where fz(z) is given by (lo),  Xi E R+, i = 1 , 2 , .  . . , rn. We have by (3) 

m 

~ p e x ~ ( - C x i . f i ~ , x T )  = ~ x P ( - u ( ~ ~ ) , P ) ,  
i= 1 

where U[v,] is the unique solution of (7) with Y replaced by v,. Clearly 

By Theorem 2.1 
~ [ v , ]  %. ~ [ v ] ( n  -+ m) in D ,  

where U[v] is the unique solution of (7). Then it follows that 

exP(-U[vnl,P) + e.P(-Vl4,P), n + 00. .(33) 
-. 

Let O,(zi) = {z E @ : )z - zil < A}, then the left-hand side of (33) determines the Laplace 
transform of the random vector 

where 1x1 = maxi Xi. Therefore the right-hand side of (33) determines the -aplace transform of 
a random vector, we denote ( ~ ( z I ) ,  q(z2), . . . , v(zm)). Consequently as n 4 00, 

m 
where 

p p  exp { - C Xiv(zi)} = exp(-~[v] ,  p) .  
i=l 

Assumption (1) of Lemma 4.2 is satisfied. 
(2) Set m = 1, and write X and z instead of X1 and z1, respectively. Then 

(34) 
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Differentiating with respect to X at X =<O in (35), we get 

Further by (12) 

By (3) it follows that for Vf E b p B ( 5 )  

where wx is the unique solution of the integral equation 

(36) 

(37) 

Assumption (2) of Lemma 4.2 is satisfied. 
Therefore the statements of Theorem 2.2 follow from Lemma 4.2. 
Proof of Theorem 3.1 Assume un, n = 1 , 2 , .  is a nonnegative solution of the equation 

(14) with v replaced by vn, that is, un satisfies the following equation 

Fkom [3\ and [4] we know that for x, y E D the following estimate holds: for d = 1 

for d 2 2 
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Let K be any fixed compact subset of D\Nu. Noticing that gn is only non-zero on B(yi, l / n ) ,  i = 

1 , 2 , .  - .  , m, we have there exists an no such that, for n 2 no, gn = 0 in a neighborhood of K .  
Therefore, there exists constant C > 0 such that 

GD(z, y) I C, Vx  E K ,  y E B ( y i ,  l / n ) ( n  2 no, i = 1 , 2 , .  - .  , m ) .  

Hence we have 

Therefore for Vk 2 1, there exists an integer nk such that, for n 2 nk, gn = 0 and GDgn are 
uniformly bounded in Dk. Let 

k f k  = ( SUP 
X E D k , n > n k  

GDg,(x)) v 1, r]k = ( 1  -f /?)kf!, &(z)  = 7Ik.Z - 2”’. 

From (38) it follows that for 2 E Dk, n 2 nk, 0 5 un(x) I Mk. Since 0 5 
z E (0, Mk),  we have 

I v k  for 

IRk(Z1) - Rk(Z2)I  2 v k l Z 1  - Z21, 0 I z1,z2 5 Mk. 

Then we get, for x E Dk, m, n 2 nk, 
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From vn Y, it follows that for fixed k, 

From the dominated convergence theorem, we obtain 

Noticing nzTk  < 00, and using the dominated convergence theorem, it follows that 

Combining (45), (46), (47) and the condition (18), we have 

limsup Ium(x) - u,(x)I = 0 ,  2 E D \ N,. 
m,n-m 

Therefore there exists a nonnegative measurable function u in D\Nv such that, for each compact 
subset K c D \ N,, 

bp un(z) -u(z) ,  n + 00, 5 E K. 

Repeating the procedure from the beginning with this u instead of urn we conclude that u 
solves the equation (14). By similar arguments we conclude that u is uniquely determined 
by the equation. Surnmarizing the above, we now have proved the statements (1) and (2) of 
Theorem 3.1. 

It remains to verify the asymptotic property (20). Let U[Xv] be the nonnegative solution 
of the equation (14) with v replaced by Xv, then 

IX-'U[XV] - GDY~(z) = II, X-lU'+p[X~](<s)d~ I' 
= X'II, lT(GDv(<8))L+ods. 

Condition (18) and Fatou Lemma imply that 

(GDY(<,))'+'dS + 0, k -t 00. n, s,' 
Noticing that for n 2 nk, GDU, is uniformly bounded in Dk, then it follows that 

II, lT(GDv(tS))'+'ds < 00. 

Let X 1 0 in (48), it follows that 

Therefore we conclude that 

X-'U[XY](.) A GDV(.)(X -+ 0) in D. 
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But X-'V[Au](.) is dominated by GDV(*) and GDV(.) is bounded in any compact subset K of 
D \ N,, the statement (3) follows. 

Proof of Theorem 3.2 Using an argument similar to that of the proof of Theorem 2.2, 
we can prove the results of Theorem 3.2. hold. We omit the details. 

We need only to prove that for every u E Mo(D), condition 
(18) holds. For z E D \ N ,  and any integer k, from the proof of Theorem 3.1 we know that, 
there exists an integer nk such that, for n 2 nk, G D V ~ ( . )  is uniformly bounded in Dk. Then 

Proof of Theorem 3.3 

Consequently, condition (18) is satisfied if 

lim n, LT(GDun(&))'+'ds = II, (GDu(&))lfBds < 00, 
n+oo I' 

that is, 

GD(xc,y)(GDvn(y))l+'dy = G D ( ~ ,  Y)(GDv(y))l+'dy < 00. (49) &!% J, J, 
From the dominated convergence theorem, 

It is sufficient to prove 

SUP / GD(x,Y)(GDvn(y))'+'dy + 0, as k + 00. (50) 
n / l  D\Dk 

Without loss of generality, we can assume that x E Dk, k 2 1. Then there exists a constant C 
such that Go(x, y) 5 C, y E D \ Dk. Hence it is sufficient to show 
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where-B(y1) = so GD(Y, yl)'dy, + = 1. Then from (54), it follows that 

Using the estimate of the Green function in [3] and [4], we can conclude that when d > a, 

where diamD is the diameter of D. Since d < (1: + a/@, we can choose a > 1 + @ such that 

so diamD CTa(a-d)+d-'dr < 00. When d = (1: = 1, 

diamD 

lady I 1 CI 1nrl"dr %I) = GD(Y, ydady I CI In - 1 
J, IY -Y1I 

1 diamD 

= 1 C(-lnr)"dr + 1 . C(1nr)"dr < 00. 

When (1: > d = 1, 

diamD 
B(YI) = GD(Y, y1)"dy I Cr"("-')dr < 00. 

Thus we conclude that in any dimension d < (Y + alp, 

Xcrn(X) I c[a,(x)p, x > 0, n 2 1, 

that is, 
crn(X) 5 cx-", x > 0, n 2 1. (55)  

Since a > 1 + @, by integration by parts we have 
M 

X1+dda,(X) = M1+P(l: , (M) + (1 + @) 1 a,(X)XPdX 5 CMlfB-". (56) 
- Lrn M 

Combining (52), (53) and (56), we have 

L,D, (Gov, (Y)) '+Pdy I k,,, dy + CM1+P-a.  (57) 

Letting k -+ m,M -+ 00 in the above inequality, we conclude that (51) holds. 
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