ABSOLUTE CONTINUITIES OF EXIT MEASURES AND TOTAL WEIGHTED OCCUPATION TIME MEASURES FOR SUPER－α－STABLE PROCESSES＊

Zhang Jing（张静）
College of Science and Technology，Inner Mongolia University，Hohhot 010020，China School of Mathematical Sciences，Peking University，Beijing 100871，China
Ren Yanxia（任艳雫）
LMAM School of Mathematical Sciences，Peking University，Beijing 100871，China

Abstract

Suppose X is a super－α－stable process in $\mathbf{R}^{d},(0<\alpha<2)$ ，whose branching rate function is $d t$ ，and branching mechanism is of the form $\Psi(z)=z^{1+\beta}(0<\beta \leq 1)$ ．Let X_{τ} and Y_{τ} denote the exit measure and the total weighted occupation time measure of X in a bounded smooth domain D ，respectively．The absolute continuities of X_{τ} and Y_{τ} are discussed．

Key words Super－α－stable process，absolute continuity，exit measure，total weighted occupation time measure

2000 MR Subject Classification 60J80，60J45

1 Introduction

For every Borel－measurable space $(E, \mathcal{B}(E))$ ，we denote by $\mathcal{M}(E)$ the set of all finite measures on $\mathcal{B}(E)$ endowed with the topology of weak convergence；denote by $\mathcal{M}_{c}(E)$ the set of all finite measures on $\mathcal{B}(E)$ with compact support；denote by $\mathcal{M}_{0}(E)$ the set of all finite measures on $\mathcal{B}(E)$ with finite points support．The expression $\langle f, \mu\rangle$ stands for the integral of f with respect to μ ，that is，$\langle f, \mu\rangle=\int f(x) \mu(d x)$ ．We write $f \in \mathcal{B}(E)$ if f is a $\mathcal{B}(E)$－measurable function．Writing $f \in p \mathcal{B}(E)(b \mathcal{B}(E))$ means that，in addition，f is positive（bounded）．We put $b p \mathcal{B}(E)=b \mathcal{B}(E) \cap p \mathcal{B}(E)$ ．If $E=\mathbf{R}^{d}$ ，we simply write \mathcal{B} instead of $\mathcal{B}\left(\mathbf{R}^{d}\right)$ and \mathcal{M} instead of $\mathcal{M}\left(\mathbf{R}^{d}\right)$ ．

Let $\xi=\left\{\xi_{s}, \Pi_{x}, s \geq 0, x \in \mathbf{R}^{d}\right\}$ denote a symmetric α－stable process $(0<\alpha<2)$ ． We denote by \mathcal{T} the set of all exit times from open sets in \mathbf{R}^{d} ．Set $\mathcal{F}_{\leq r}=\sigma\left(\xi_{s}, s \leq r\right)$ ； $\mathcal{F}_{>r}=\sigma\left(\xi_{s}, s>r\right)$ and $\mathcal{F}_{\infty}=\cup\left\{\mathcal{F}_{\leq r}, r \geq 0\right\}$ ．For $\tau \in \mathcal{T}$ ，we put $F \in \mathcal{F}_{\geq r}$ if $F \in \mathcal{F}_{\infty}$ and if for each $r,\{F, \tau>r\} \in \mathcal{F}_{>r}$ ．

Throughout this article，C denotes a constant which may change values from line to line．

For $\beta \in(0,1]$, there exists a Markov process $X=\left(X_{t}, P_{\mu}\right)$ in \mathcal{M} such that the following conditions are satisfied:
(1) If f is a bounded continuous function, then $\left\langle f, X_{t}\right\rangle$ is right continuous in t on $[0, \infty)$.
(2) For every $\mu \in \mathcal{M}$ and for every $f \in b p \mathcal{B}$,

$$
\begin{equation*}
P_{\mu} \exp \left\langle-f, X_{t}\right\rangle=\exp \left\langle-v_{t}, \mu\right\rangle, \tag{1}
\end{equation*}
$$

where v is the unique solution of the integral equation

$$
\begin{equation*}
v_{t}(x)+\Pi_{x} \int_{0}^{t}\left(v_{t-s}\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s=\Pi_{x} f\left(\xi_{t}\right) \tag{2}
\end{equation*}
$$

Moreover, for every $\tau \in \mathcal{J}$, there are corresponding random measures X_{τ} and Y_{τ} on \mathbf{R}^{d} associated with the first exit time τ such that, for $f, g \in b p \mathcal{B}$

$$
\begin{equation*}
P_{\mu} \exp \left\{-\left\langle f, X_{\tau}\right\rangle-\left\langle g, Y_{\tau}\right\rangle\right\}=\exp \langle-u, \mu\rangle, \tag{3}
\end{equation*}
$$

where u is the unique solution of the integral equation

$$
\begin{equation*}
u(x)+\Pi_{x} \int_{0}^{\tau}\left(u\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s=\Pi_{x}\left[\int_{0}^{\tau} g\left(\xi_{s}\right) \mathrm{d} s+f\left(\xi_{\tau}\right)\right] . \tag{4}
\end{equation*}
$$

We call $X=\left\{X_{t}, X_{\tau}, Y_{\tau}, P_{\mu}\right\}$ the super- α-stable process with branching mechanism $z^{1+\beta}$. Throughout this paper τ denotes the first exit time of ξ from an open set D in \mathbf{R}^{d}, that is, $\tau \equiv \inf \left\{t>0: \xi_{t} \notin D\right\}$. And we call X_{τ} the exit measure of X in D, Y_{τ} the total weighted occupation time measure of X in D. From the properties of the super- α - stable process, we know that the support of X_{τ} is contained in \bar{D}^{c}, the support of Y_{τ} is contained in D. We will discuss the absolute continuity of X_{τ} and Y_{τ}.

2 Absolute Continuity of X_{τ}

From this point on, we always assume that D is a bounded smooth domain in \mathbf{R}^{d}. Let $K_{D}(x, z)$ denote the Poisson kernel of ξ in D. For $\nu \in \mathcal{M}\left(\bar{D}^{c}\right), f \in b \mathcal{B}\left(\bar{D}^{c}\right)$, define

$$
\begin{gather*}
H_{D} \nu(x)= \begin{cases}\int_{\bar{D}^{c}} K_{D}(x, z) \nu(\mathrm{d} z), & d=1, \\
A(d, \alpha) \int_{\bar{D}^{c}} K_{D}(x, z) \nu(\mathrm{d} z), & d \geq 2,\end{cases} \tag{5}\\
H_{D} f(x)=\Pi_{x} f\left(\xi_{\tau}\right)= \begin{cases}\int_{\bar{D}^{c}} K_{D}(x, z) f(z) \mathrm{d} z, & d=1, \\
A(d, \alpha) \int_{\bar{D}^{c}} K_{D}(x, z) f(z) \mathrm{d} z, & d \geq 2,\end{cases} \tag{6}
\end{gather*}
$$

where

$$
A(d, \alpha)=\frac{\alpha 2^{\alpha-1} \Gamma\left(\frac{\alpha+n}{2}\right)}{\pi^{d / 2} \Gamma\left(1-\frac{\alpha}{2}\right)} .
$$

Obviously, if $\nu(\mathrm{d} y)=f(y) \mathrm{d} y$, then $H_{D} f=H_{D} \nu$.

The study of the fundamental solutions of the following integral equation plays an important role in the investigation of the absolute continuity of X_{τ},

$$
\begin{equation*}
u(x)+\Pi_{x} \int_{0}^{\tau} u^{1+\beta}\left(\xi_{s}\right) \mathrm{d} s=H_{D} \nu(x), \quad x \in D \tag{7}
\end{equation*}
$$

where $\nu \in \mathcal{M}_{0}\left(\bar{D}^{c}\right)$.
For $\nu=\sum_{i=1}^{m} \lambda_{i} \delta_{z_{i}}$ with $z_{1}, z_{2}, \cdots, z_{m} \in \bar{D}^{c}, \lambda_{i} \in \mathbf{R}^{+}, i=1,2, \cdots, m$, let

$$
\begin{equation*}
\nu_{n}(\mathrm{~d} z)=f_{n}(z) \mathrm{d} z, \tag{8}
\end{equation*}
$$

where $\mathrm{d} z$ denotes the Lebesgue measure on \bar{D}^{c} and

$$
\begin{gather*}
f_{n}(z)=\sum_{i=1}^{m} \lambda_{i} f_{n}^{z_{i}}(z), \tag{9}\\
f_{n}^{z_{i}}(z)= \begin{cases}\frac{1}{V\left(\bar{D}^{c} \cap B\left(z_{i}, 1 / n\right)\right)}, & z \in B\left(z_{i}, 1 / n\right), \\
0, & z \notin B\left(z_{i}, 1 / n\right)\end{cases} \tag{10}
\end{gather*}
$$

with $V\left(\bar{D}^{c} \cap B\left(z_{i}, 1 / n\right)\right)$ being the volume of $\bar{D}^{c} \cap B\left(z_{i}, 1 / n\right)$. Clearly, as $n \rightarrow \infty, \nu_{n} \xrightarrow{w} \nu . \nu_{n}$ is called the regularization of ν.

We now give a theorem on the fundamental solutions of the integral equation (7).
Theorem 2.1 Suppose $D \subset \mathbf{R}^{d}$ is a bounded smooth domain, $\nu=\sum_{i=1}^{m} \lambda_{i} \delta_{z_{i}}, z_{1}, z_{2}, \cdots$, $z_{m} \in \bar{D}^{c}, \lambda_{i} \in \mathbf{R}^{+}, i=1,2, \cdots, m$. Let ν_{n} be defined by (8), (9) and (10). Then we have
(1) (Existence and Uniqueness) There is exactly one measurable nonnegative function $U[\nu]$ defined in D which satisfies the equation (7).
(2) (Continuity of Regularization) The solution $U[\nu]$ is continuous with respect to the operation of regulation of ν in the following sense:

$$
\begin{equation*}
U\left[\nu_{n}\right](\cdot) \xrightarrow{b p} U[\nu](\cdot)(n \rightarrow \infty) \quad \text { in } D . \tag{11}
\end{equation*}
$$

(3) (First Derivative with Respect to Small Parameter)

$$
\begin{equation*}
\lambda^{-1} U[\lambda \nu](\cdot) \xrightarrow{b p} H_{D} \nu(\cdot)(\lambda \rightarrow 0) \quad \text { in } D . \tag{12}
\end{equation*}
$$

Using the above theorem we get the main result with respect to the absolute continuity of X_{τ}.

Theorem 2.2 Suppose $\mu \in \mathcal{M}_{c}(D)$, there exists a random measurable function x_{D} defined on \bar{D}^{c} such that

$$
P_{\mu}\left\{X_{\tau}(\mathrm{d} z)=x_{D}(z) \mathrm{d} z\right\}=1
$$

that is, X_{τ} is P_{μ}-a.s. absolutely continuous with respect to the Lebesgue measure $\mathrm{d} z$ on \bar{D}^{c}.

3 Absolute Continuity of Y_{τ}

Let $G_{D}(x, y)$ denote the Green function of ξ in D. For $\nu \in \mathcal{M}(D), f \in b \mathcal{B}(D)$, define

$$
G_{D} \nu(x)=\int_{D} G_{D}(x, y) \nu(\mathrm{d} y)
$$

$$
\begin{equation*}
G_{D} f(x)=\Pi_{x} \int_{0}^{\tau} f\left(\xi_{s}\right) \mathrm{d} s=\int_{D} G_{D}(x, y) f(y) \mathrm{d} y \tag{13}
\end{equation*}
$$

Obviously, if $\nu(\mathrm{d} y)=f(y) \mathrm{d} y$, then $G_{D} f=G_{D} \nu$.
The study of the fundamental solutions of the following integral equation plays an important role in the investigation of the absolute continuity of Y_{τ} :

$$
\begin{equation*}
u(x)+\Pi_{x} \int_{0}^{\tau} u^{1+\beta}\left(\xi_{s}\right) \mathrm{d} s=G_{D} \nu(x), \quad x \in D \backslash N_{\nu} \tag{14}
\end{equation*}
$$

where $N_{\nu}=\left\{x: G_{D} \nu(x)=\infty\right\}, \nu \in \mathcal{M}_{0}(D)$.
For $\nu=\sum_{i=1}^{m} \lambda_{i} \delta_{y_{i}}$ with $y_{1}, y_{2}, \cdots, y_{m} \in D, \lambda_{i} \in \mathbf{R}^{+}, i=1,2, \cdots, m$, let

$$
\begin{equation*}
\nu_{n}(\mathrm{~d} y)=g_{n}(y) \mathrm{d} y \tag{15}
\end{equation*}
$$

where $\mathrm{d} y$ denotes the Lebesgue measure on \bar{D} and

$$
\begin{gather*}
g_{n}(y)=\sum_{i=1}^{m} \lambda_{i} g_{n}^{y_{i}}(y), \tag{16}\\
g_{n}^{y_{i}}(z)= \begin{cases}\frac{1}{V\left(D \cap B\left(y_{i}, 1 / n\right)\right)}, & z \in B\left(y_{i}, 1 / n\right), \\
0, & y \notin B\left(y_{i}, 1 / n\right)\end{cases} \tag{17}
\end{gather*}
$$

ν_{n} is the regularization of ν.
Note that for $\nu=\sum_{i=1}^{m} \lambda_{i} \delta_{y_{i}}, y_{1}, y_{2}, \cdots, y_{m} \in D, \lambda_{i} \in \mathbf{R}^{+}, i=1,2, \cdots, m$, we have $N_{\nu}=$ $\operatorname{supp}(\nu)=\left\{y_{1}, y_{2}, \cdots, y_{m}\right\}$.

We now give a theorem on the fundamental solutions of the integral equation (14).
Theorem 3.1 Suppose $D \subset \mathbf{R}^{d}$ is a bounded smooth domain, $\nu=\sum_{i=1}^{m} \lambda_{i} \delta_{y_{i}}$, $y_{1}, y_{2}, \cdots, y_{m} \in D, \lambda_{i} \in \mathbf{R}^{+}, i=1,2, \cdots, m$. Let ν_{n} be defined by (15), (16) and (17). Assume that there exists a sequence of bounded smooth domains $\left\{D_{n}\right\}_{n=1}^{\infty}$ satisfying $D_{n} \uparrow\left(D \backslash N_{\nu}\right)$ as $n \uparrow \infty$ and

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \Pi_{x} \int_{\tau_{k}}^{\tau}\left(G_{D} \nu_{n}\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s \rightarrow 0(k \rightarrow \infty), \quad \text { for } x \in D \backslash N_{\nu} \tag{18}
\end{equation*}
$$

where $\tau_{k} \equiv \inf \left\{t>0: \xi_{t} \notin D_{k}\right\}$. Then we have
(1) (Existence and Uniqueness) There is exactly one measurable nonnegative function $U[\nu]$ defined in D which satisfies the equation (14).
(2) (Continuity of Regularization) The solution $U[\nu]$ is continuous with respect to the operation of regulation of ν in the following sense:

$$
\begin{equation*}
U\left[\nu_{n}\right](\cdot) \xrightarrow{b p} U[\nu](\cdot)(n \rightarrow \infty) \quad \text { in each compact subsect } K \text { of } D \backslash N_{\nu} . \tag{19}
\end{equation*}
$$

(3) (First Derivative with Respect to Small Parameter)

$$
\begin{equation*}
\lambda^{-1} U[\lambda \nu](\cdot) \xrightarrow{b p} G_{D} \nu(\cdot)(\lambda \rightarrow 0) \text { in each compact subsect } K \text { of } D \backslash N_{\nu} . \tag{20}
\end{equation*}
$$

Using the above theorem we get the main results with respect to the absolute continuity of Y_{τ}.

Theorem 3.2 Suppose there exists a Borel subset N of D with 0 Lebesgue measure such that for every $\nu \in M_{0}(D \backslash N)$ condition (18) holds. Then for $\mu \in \mathcal{M}_{c}(D)$, there exists a random measurable function y_{D} defined on D such that

$$
P_{\mu}\left\{Y_{\tau}(\mathrm{d} y)=y_{D}(y) \mathrm{d} y\right\}=1
$$

that is, Y_{τ} is P_{μ}-a.s. absolutely continuous with respect to the Lebesgue measure $\mathrm{d} y$ on D.
Theorem 3.3 Suppose $\mu \in \mathcal{M}_{c}(D)$. When $d<\alpha+\alpha / \beta, Y_{\tau}$ is P_{μ}-a.s. absolutely continuous with respect to the Lebesgue measure $\mathrm{d} y$ on D.

4 Proofs of Theorems in Sections 2 and 3

In the sequel we will use the following two lemmas. By the Fubini theorem and the Markov property of ξ, using an argument similar to that appearing in Lemma 2.1 in [1], we have the following lemma:

Lemma 4.1 Let $\tau \in \mathcal{T}, g \in b p \mathcal{B}, C$ is a positive constant. Assume that $\omega \in \mathcal{B}, F \in \mathcal{F} \geq \tau$ satisfy

$$
\Pi_{x} \int_{0}^{\tau}\left|\omega\left(\xi_{s}\right)\right| \mathrm{d} s<\infty, \quad \Pi_{x}|F|<\infty, \quad x \in \mathbf{R}^{d}
$$

Then

$$
g(x)=\Pi_{x}\left[\mathrm{e}^{-C \tau} F+\int_{0}^{\tau} \mathrm{e}^{-C s} \omega\left(\xi_{s}\right) \mathrm{d} s\right]
$$

if and only if

$$
g(x)+\Pi_{x} \int_{0}^{\tau} C g\left(\xi_{s}\right) \mathrm{d} s=\Pi_{x}\left[F+\int_{0}^{\tau} \omega\left(\xi_{s}\right) \mathrm{d} s\right] .
$$

We will also use another lemma which is a modification of Lemma 2.7.1 in [2].
Lemma 4.2 Let Y be a random measure defined on a probability space ($\Omega, \mathcal{B}(E), P)$ with values in $\mathcal{M}(E)$. Assume that
(1) there exists a Borel subset N of E of Lebesgue measure 0 such that for $\forall z \in E \backslash N$, there exists a sequence $\varepsilon_{n}(z) \rightarrow 0(n \rightarrow \infty)$, and as $n \rightarrow \infty$

$$
\frac{Y\left(O_{\varepsilon_{n}}(z)\right)}{V\left(O_{\varepsilon_{n}}(z)\right)} \xrightarrow{d} \eta(z)
$$

where $O_{\varepsilon}(z) \equiv\{x:\|x-z\|<\varepsilon\}, \varepsilon>0$, and $\eta(z)$ is a random variable with $P \eta(z)<\infty$.
(2) $P\langle f, Y\rangle=\int_{E} f(z) P \eta(z) \mathrm{d} z$ for all $f \in b p \mathcal{B}(E)$.

Then there exists a random measurable function y in E such that

$$
P\{Y(\mathrm{~d} z)=y(z) \mathrm{d} z\}=1,
$$

and for $\forall z \in E \backslash N$, the random variable $y(z)$ and $\eta(z)$ are identically distributed. In particular, Y is P-a.s. absolutely continuous with respect to $\mathrm{d} z$ in E.

Proof of Theorem 2.1 Assume that, $u_{n}, n=1,2, \cdots$ is a nonnegative solution of the equation (7) with ν replaced by ν_{n}, that is, u_{n} satisfies the following equation

$$
\begin{equation*}
u_{n}(x)=H_{D} \nu_{n}(x)-\Pi_{x} \int_{0}^{\tau} u_{n}^{1+\beta}\left(\xi_{s}\right) \mathrm{d} s=\Pi_{x} f_{n}\left(\xi_{\tau}\right)-\Pi_{x} \int_{0}^{\tau} u_{n}^{1+\beta}\left(\xi_{s}\right) \mathrm{d} s \tag{21}
\end{equation*}
$$

However, for $x \in D$,

$$
\Pi_{x} f_{n}\left(\xi_{\tau}\right)= \begin{cases}\int_{\bar{D}^{c}} K_{D}(x, z) \nu_{n}(\mathrm{~d} z), & d=1 \\ A(d, \alpha) \int_{\bar{D}^{c}} K_{D}(x, z) \nu_{n}(\mathrm{~d} z), & d \geq 2\end{cases}
$$

Suppose $d=1$, without loss of generality, let $D=(a, b)$. From [3] we know for $x \in D, z \in$ \bar{D}^{c}, the following estimate holds:

$$
\begin{align*}
K_{D}(x, z) & \leq C \frac{|x-a|^{\alpha / 2}|x-b|^{\alpha / 2}}{|z-a|^{\alpha / 2}|z-b|^{\alpha / 2}} \frac{1}{|x-z|} \\
& \leq C \frac{|x-a|^{\alpha / 2}|x-b|^{\alpha / 2}}{|z-a|^{\alpha / 2}|z-b|^{\alpha / 2}} \frac{1}{\delta(z)} \tag{22}\\
& \leq C \frac{1}{|z-a|^{\alpha / 2}|z-b|^{\alpha / 2}} \frac{1}{\delta(z)} \leq C \frac{1}{\delta(z)^{1+\alpha}}
\end{align*}
$$

where $\delta(z) \equiv \min \{|z-a|,|z-b|\}$.
Suppose $d \geq 2$, from [4] we know for $x \in D, z \in \bar{D}^{c}$, the following estimate holds:

$$
\begin{align*}
K_{D}(x, z) & \leq \frac{C|x-z|^{\alpha / 2}}{\delta(z)^{\alpha / 2}(1+\delta(z))^{\alpha / 2}} \frac{1}{|x-z|^{d}} \\
& =\frac{C}{\delta(z)^{\alpha / 2}(1+\delta(z))^{\alpha / 2}} \frac{1}{|x-z|^{d-\alpha / 2}} \tag{23}\\
& \leq \frac{C}{\delta(z)^{\alpha / 2}(1+\delta(z))^{\alpha / 2}} \frac{1}{\delta(z)^{d-\alpha / 2}} \leq \frac{C}{\delta(z)^{d}}
\end{align*}
$$

where $\delta(x)=d(x, \partial D)$ denotes the distance between x and ∂D.
Noticing that ν_{n} is only charged on $B\left(z_{i}, 1 / n\right), i=1,2, \cdots, m$, from (22) and (23), we conclude that there exists an n_{0} such that, for $n \geq n_{0}$,

$$
\Pi_{x} f_{n}\left(\xi_{\tau}\right) \leq C \int_{\bar{D}^{c}} \nu_{n}(\mathrm{~d} z) \leq C
$$

Then from $\nu_{n} \xrightarrow{w} \nu$ it follows that

$$
\begin{equation*}
\Pi_{x} f_{n}\left(\xi_{\tau}\right) \xrightarrow{b p} H_{D} \nu(x), \quad n \rightarrow \infty, \quad x \in D \tag{24}
\end{equation*}
$$

Let

$$
M=\left(\sup _{x \in D, n \geq n_{0}} H_{D} f_{n}(x)\right) \vee 1, \quad \eta=(1+\beta) M^{\beta}, \quad R(z)=\eta z-z^{1+\beta}
$$

From (21) it follows that for $x \in D, n \geq n_{0}, 0 \leq u_{n}(x) \leq M$. Since $0 \leq \frac{d(R(z))}{d z} \leq \eta$ for $z \in(0, M)$, we have $\left|R\left(z_{1}\right)-R\left(z_{2}\right)\right| \leq \eta\left|z_{1}-z_{2}\right|, \quad 0 \leq z_{1}, z_{2} \leq M$.

Then we get, for $x \in D, m, n \geq n_{0}$,

$$
\begin{equation*}
\left|R\left(u_{m}(x)\right)-R\left(u_{n}(x)\right)\right| \leq \eta\left|u_{m}(x)-u_{n}(x)\right| . \tag{25}
\end{equation*}
$$

Using Lemma 4.1 with

$$
g=u_{n}, \quad F=f_{n}\left(\xi_{\tau}\right), \quad \omega=\eta u_{n}-u_{n}^{1+\beta}, \quad C=\eta
$$

we get

$$
\begin{equation*}
u_{n}(x)=\Pi_{x}\left[\mathrm{e}^{-\eta \tau} f_{n}\left(\xi_{\tau}\right)\right]+\Pi_{x} \int_{0}^{\tau} \mathrm{e}^{-\eta s} R\left(u_{n}\left(\xi_{s}\right)\right) \mathrm{d} s \tag{26}
\end{equation*}
$$

From (25) and (26) we have for $x \in D, m, n \geq n_{0}$,

$$
\begin{equation*}
\left|u_{m}(x)-u_{n}(x)\right| \leq \Pi_{x} \mathrm{e}^{-\eta \tau}\left|f_{m}\left(\xi_{\tau}\right)-f_{n}\left(\xi_{\tau}\right)\right|+\Pi_{x} \int_{0}^{\tau} \mathrm{e}^{-\eta s} \eta\left|u_{m}\left(\xi_{s}\right)-u_{n}\left(\xi_{s}\right)\right| \mathrm{d} s \tag{27}
\end{equation*}
$$

Iterating the inequality (27) $l \geq 1$ times, using the strong Markov property of ξ and the fact that $\int \cdots \int_{0<s_{1}<\cdots<s_{l}<s}=\frac{1}{l!} \int_{0}^{s} \cdots \int_{0}^{s}$, we get

$$
\begin{equation*}
\left|u_{m}(x)-u_{n}(x)\right| \leq \Pi_{x}\left|f_{m}\left(\xi_{\tau}\right)-f_{n}\left(\xi_{\tau}\right)\right|+2 M \Pi_{x} \int_{0}^{\tau} \eta \mathrm{e}^{-\eta s} \frac{(\eta s)^{l}}{l!} \mathrm{d} s \tag{28}
\end{equation*}
$$

From (24) we have

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} \Pi_{x}\left|f_{m}\left(\xi_{\tau}\right)-f_{n}\left(\xi_{\tau}\right)\right|=0, \quad x \in D \tag{29}
\end{equation*}
$$

Noticing $\Pi_{x} \tau<\infty$, and by using the dominated convergence theorem it follows that

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \Pi_{x} \int_{0}^{\tau} \eta \mathrm{e}^{-\eta s} \frac{(\eta s)^{l}}{l!} \mathrm{d} s=0 \tag{30}
\end{equation*}
$$

Combing (28), (29) and (30), we have

$$
\limsup _{m, n \rightarrow \infty}\left|u_{m}(x)-u_{n}(x)\right|=0, \quad x \in D .
$$

Therefore there exists a nonnegative measurable function u in D such that,

$$
u_{n}(x) \xrightarrow{b p} u(x), \quad n \rightarrow \infty, \quad x \in D .
$$

By the dominated convergence theorem it follows that, u solves the equation (7). Repeating the procedure from the beginning with two different solutions of the equation (7) instead of u_{n} and u_{m}, respectively, we can conclude that u is uniquely determined by the equation. Summarizing the above, we now have proved the statements (1) and (2) of Theorem 2.1.

It remains to verify the asymptotic property (12). Let $U[\lambda \nu]$ be the nonnegative solution of the equation (7) with ν replaced by $\lambda \nu$, then

$$
\begin{align*}
\left|\lambda^{-1} U[\lambda \nu]-H_{D} \nu\right|(x) & =\Pi_{x} \int_{0}^{\tau} \lambda^{-1} U^{1+\beta}[\lambda \nu]\left(\xi_{s}\right) \mathrm{d} s \\
& \leq \Pi_{x} \int_{0}^{\tau} \lambda^{-1}\left(\lambda H_{D} \nu\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s \tag{31}\\
& =\lambda^{\beta} \Pi_{x} \int_{0}^{\tau}\left(H_{D} \nu\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s
\end{align*}
$$

Noticing that ν is only charged on finite points, we know that $H_{D} \nu(\cdot)$ is bounded in D, it follows that

$$
\Pi_{x} \int_{0}^{\tau}\left(H_{D} \nu\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s<\infty
$$

Let $\lambda \downarrow 0$ in (31), it follows that

$$
\lim _{\lambda \downarrow 0}\left|\lambda^{-1} U[\lambda \nu]-H_{D} \nu\right|(x) \leq \lim _{\lambda \downarrow 0} \lambda^{\beta} \Pi_{x} \int_{0}^{\tau}\left(H_{D} \nu\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s=0
$$

Therefore we conclude that

$$
\lambda^{-1} U[\lambda \nu](\cdot) \xrightarrow{p} H_{D} \nu(\cdot)(\lambda \rightarrow 0) \quad \text { in } D .
$$

But $\lambda^{-1} U[\lambda \nu](\cdot)$ are dominated by $H_{D} \nu(\cdot)$ and $H_{D} \nu(\cdot)$ is bounded in D. The statement (3) follows.

Proof of Theorem 2.2 (1) We choose $z_{1}, z_{2}, \cdots, z_{m} \in \bar{D}^{c}$ and let

$$
\nu_{n}(\mathrm{~d} z)=\sum_{i=1}^{m} \lambda_{i} f_{n}^{z_{i}}(z) \mathrm{d} z,
$$

where $f_{n}^{z_{i}}(z)$ is given by (10), $\lambda_{i} \in \mathbf{R}^{+}, i=1,2, \cdots, m$. We have by (3)

$$
P_{\mu} \exp \left\langle-\sum_{i=1}^{m} \lambda_{i} f_{n}^{z_{i}}, X_{\tau}\right\rangle=\exp \left\langle-U\left(\nu_{n}\right), \mu\right\rangle,
$$

where $U\left[\nu_{n}\right]$ is the unique solution of (7) with ν replaced by ν_{n}. Clearly

$$
\nu_{n} \xrightarrow{w} \nu \equiv \sum_{i=1}^{m} \lambda_{i} \delta_{z_{i}}, \quad n \rightarrow \infty .
$$

By Theorem 2.1

$$
\begin{equation*}
U\left[\nu_{n}\right] \xrightarrow{b p} U[\nu](n \rightarrow \infty) \quad \text { in } D, \tag{32}
\end{equation*}
$$

where $U[\nu]$ is the unique solution of (7). Then it follows that

$$
\begin{equation*}
\exp \left\langle-U\left[\nu_{n}\right], \mu\right\rangle \rightarrow \exp \langle-U[\nu], \mu\rangle, \quad n \rightarrow \infty \tag{33}
\end{equation*}
$$

Let $O_{n}\left(z_{i}\right) \equiv\left\{x \in \bar{D}^{c}:\left|x-z_{i}\right|<\frac{1}{n}\right\}$, then the left-hand side of (33) determines the Laplace transform of the random vector

$$
\left(\frac{X_{\tau}\left(O_{n}\left(z_{1}\right)\right)}{V\left(O_{n}\left(z_{1}\right)\right)}, \frac{X_{\tau}\left(O_{n}\left(z_{2}\right)\right)}{V\left(O_{n}\left(z_{2}\right)\right)}, \cdots, \frac{X_{\tau}\left(O_{n}\left(z_{m}\right)\right)}{V\left(O_{n}\left(z_{m}\right)\right)}\right) .
$$

Note that

$$
\langle U[\nu], \mu\rangle \leq\left\langle H_{D} \nu, \mu\right\rangle \leq\|\mu\| \sup _{x \in \operatorname{supp}(\mu)} H_{D} \nu(x) \leq C|\lambda|,
$$

where $|\lambda|=\max _{i} \lambda_{i}$. Therefore the right-hand side of (33) determines the Laplace transform of a random vector, we denote $\left(\eta\left(z_{1}\right), \eta\left(z_{2}\right), \cdots, \eta\left(z_{m}\right)\right)$. Consequently as $n \rightarrow \infty$,

$$
\left(\frac{X_{\tau}\left(O_{n}\left(z_{1}\right)\right)}{V\left(O_{n}\left(z_{1}\right)\right)}, \frac{X_{\tau}\left(O_{n}\left(z_{2}\right)\right)}{V\left(O_{n}\left(z_{2}\right)\right)}, \cdots, \frac{X_{\tau}\left(O_{n}\left(z_{m}\right)\right)}{V\left(O_{n}\left(z_{m}\right)\right)}\right) \xrightarrow{d}\left(\eta\left(z_{1}\right), \eta\left(z_{2}\right), \cdots, \eta\left(z_{m}\right)\right),
$$

where

$$
\begin{equation*}
P_{\mu} \exp \left\{-\sum_{i=1}^{m} \lambda_{i} \eta\left(z_{i}\right)\right\}=\exp \langle-U[\nu], \mu\rangle . \tag{34}
\end{equation*}
$$

Assumption (1) of Lemma 4.2 is satisfied.
(2) Set $m=1$, and write λ and z instead of λ_{1} and z_{1}, respectively. Then

$$
\begin{equation*}
P_{\mu} \exp \{-\lambda \eta(z)\}=\exp \left\langle-U\left[\lambda \delta_{z}\right], \mu\right\rangle . \tag{35}
\end{equation*}
$$

Differentiating with respect to λ at $\lambda=0$ in (35), we get

$$
P_{\mu}(-\eta(z))=\left.\exp \left\langle-U\left[\lambda \delta_{z}\right], \mu\right\rangle\left\langle-\frac{\mathrm{d} U\left[\lambda \delta_{z}\right]}{\mathrm{d} \lambda}, \mu\right\rangle\right|_{\lambda=0} .
$$

Further by (12)

$$
\begin{aligned}
P_{\mu}(\eta(z)) & =\left\langle H_{D} \delta_{z}, \mu\right\rangle \\
& = \begin{cases}\left\langle K_{D}(\cdot, z), \mu\right\rangle=\int_{\bar{D}^{c}} K_{D}(x, z) \mu(d x), & d=1, \\
\left\langle A(d, \alpha) K_{D}(\cdot, z), \mu\right\rangle=\int_{\bar{D}^{c}} A(d, \alpha) K_{D}(x, z) \mu(d x), & d \geq 2 .\end{cases}
\end{aligned}
$$

By (3) it follows that for $\forall f \in b p \mathcal{B}\left(\widetilde{D}^{c}\right)$

$$
\begin{equation*}
P_{\mu} \exp \left\langle-\lambda f, X_{\tau}\right\rangle=\exp \left\langle-v_{\lambda}, \mu\right\rangle, \tag{36}
\end{equation*}
$$

where v_{λ} is the unique solution of the integral equation

$$
\begin{equation*}
v_{\lambda}(x)=\lambda \Pi_{x} f\left(\xi_{\tau}\right)-\Pi_{x} \int_{0}^{\tau} v_{\lambda}^{1+\beta}\left(\xi_{s}\right) \mathrm{d} s \tag{37}
\end{equation*}
$$

Differentiating with respect to λ at $\lambda=0$ in (36), we get

$$
\begin{aligned}
P_{\mu}\left\langle f, X_{\tau}\right\rangle & =\left\langle\Pi . f\left(\xi_{\tau}\right), \mu\right\rangle=\int_{D} \Pi_{x} f\left(\xi_{\tau}\right) \mu(\mathrm{d} x) \\
& = \begin{cases}\int_{D} \mu(d x) \int_{\bar{D}^{c}} K_{D}(x, z) f(z) \mathrm{d} z, & d=1 \\
\int_{D} \mu(d x) \int_{\bar{D}^{c}} A(d, \alpha) K_{D}(x, z) f(z) \mathrm{d} z, & d \geq 2\end{cases} \\
& = \begin{cases}\int_{\bar{D}^{c}} f(z) \int_{D} K_{D}(x, z) \mu(d x) \mathrm{d} z, & d=1 \\
\int_{\bar{D}^{c}} f(z) \int_{D} A(d, \alpha) K_{D}(x, z) \mu(d x) \mathrm{d} z, & d \geq 2\end{cases} \\
& =\int_{\bar{D}^{c}} f(z) P_{\mu}(\eta(z)) \mathrm{d} z .
\end{aligned}
$$

Assumption (2) of Lemma 4.2 is satisfied.
Therefore the statements of Theorem 2.2 follow from Lemma 4.2.
Proof of Theorem 3.1 Assume $u_{n}, n=1,2, \cdots$ is a nonnegative solution of the equation (14) with ν replaced by ν_{n}, that is, u_{n} satisfies the following equation

$$
\begin{equation*}
u_{n}(x)=G_{D} \nu_{n}(x)-\Pi_{x} \int_{0}^{\tau} u_{n}^{1+\beta}\left(\xi_{s}\right) \mathrm{d} s=\int_{D} G_{D}(x, y) g_{n}(y) \mathrm{d} y-\Pi_{x} \int_{0}^{\tau} u_{n}^{1+\beta}\left(\xi_{s}\right) \mathrm{d} s \tag{38}
\end{equation*}
$$

From [3] and [4] we know that for $x, y \in D$ the following estimate holds: for $d=1$

$$
G_{D}(x, y) \leq \begin{cases}C\left|\ln \frac{1}{|x-y|}\right|, & \alpha=1 \tag{39}\\ C|x-y|^{\alpha-1}, & \alpha \neq 1\end{cases}
$$

for $d \geq 2$

$$
\begin{equation*}
G_{D}(x, y) \leq C \frac{1}{|x-y|^{d-\alpha}} . \tag{40}
\end{equation*}
$$

Let K be any fixed compact subset of $D \backslash N_{\nu}$. Noticing that g_{n} is only non-zero on $B\left(y_{i}, 1 / n\right), i=$ $1,2, \cdots, m$, we have there exists an n_{0} such that, for $n \geq n_{0}, g_{n}=0$ in a neighborhood of K. Therefore, there exists constant $C>0$ such that

$$
G_{D}(x, y) \leq C, \quad \forall x \in K, y \in B\left(y_{i}, 1 / n\right)\left(n \geq n_{0}, i=1,2, \cdots, m\right) .
$$

Hence we have

$$
\begin{equation*}
0 \leq u_{n}(x) \leq \int_{D} G_{D}(x, y) g_{n}(y) \mathrm{d} y \leq C \int_{D} g_{n}(y) \mathrm{d} y=C \nu_{n}(D) \leq C, \quad x \in K, \quad n \geq n_{0} \tag{41}
\end{equation*}
$$

Therefore for $\forall k \geq 1$, there exists an integer n_{k} such that, for $n \geq n_{k}, g_{n}=0$ and $G_{D} g_{n}$ are uniformly bounded in D_{k}. Let

$$
M_{k}=\left(\sup _{x \in D_{k}, n \geq n_{k}} G_{D} g_{n}(x)\right) \vee 1, \quad \eta_{k}=(1+\beta) M_{k}^{\beta}, \quad R_{k}(z)=\eta_{k} z-z^{1+\beta}
$$

From (38) it follows that for $x \in D_{k}, n \geq n_{k}, 0 \leq u_{n}(x) \leq M_{k}$. Since $0 \leq \frac{d\left(R_{k}(z)\right)}{d z} \leq \eta_{k}$ for $z \in\left(0, M_{k}\right)$, we have

$$
\left|R_{k}\left(z_{1}\right)-R_{k}\left(z_{2}\right)\right| \leq \eta_{k}\left|z_{1}-z_{2}\right|, \quad 0 \leq z_{1}, z_{2} \leq M_{k} .
$$

Then we get, for $x \in D_{k}, m, n \geq n_{k}$,

$$
\begin{equation*}
\left|R\left(u_{m}(x)\right)-R\left(u_{n}(x)\right)\right| \leq \eta_{k}\left|u_{m}(x)-u_{n}(x)\right| . \tag{42}
\end{equation*}
$$

Using Lemma 4.1 with

$$
g=u_{n}, \quad F=\int_{\tau_{k}}^{\tau} g_{n}\left(\xi_{s}\right) \mathrm{d} s-\int_{\tau_{k}}^{\tau} u_{n}^{1+\beta}\left(\xi_{s}\right) \mathrm{d} s, \quad \omega=\eta_{k} u_{n}+g_{n}-u_{n}^{1+\beta}, \quad C=\eta_{k}
$$

and noticing that, for all $n \geq n_{k}, g_{n}=0$ in D_{k}, we get

$$
\begin{equation*}
u_{n}(x)=\Pi_{x}\left[\mathrm{e}^{-\eta_{k} \tau_{k}} \int_{\tau_{k}}^{\tau}\left(g_{n}\left(\xi_{s}\right)-u_{n}^{1+\beta}\left(\xi_{s}\right)\right) \mathrm{d} s\right]+\Pi_{x} \int_{0}^{\tau_{k}} \mathrm{e}^{-\eta_{k} s} R\left(u_{n}\left(\xi_{s}\right)\right) \mathrm{d} s \tag{43}
\end{equation*}
$$

From (42) and (43), using the strong Markov property of ξ and noticing that for $x \in D$, $u_{m}(x) \leq G_{D} g_{m}(x), u_{n}(x) \leq G_{D} g_{n}(x)$. We have for $x \in D \backslash N_{\nu}, m, n \geq n_{k}$ and sufficiently large k (satisfying $x \in D_{k}$),

$$
\begin{align*}
\left|u_{m}(x)-u_{n}(x)\right| \leq & \Pi_{x} \mathrm{e}^{-\eta_{k} \tau_{k}}\left|\Pi_{\xi_{\tau_{k}}} \int_{0}^{\tau}\left(g_{m}\left(\xi_{s}\right)-g_{n}\left(\xi_{s}\right)\right) \mathrm{d} s\right| \\
& \left.+\Pi_{x} \mathrm{e}^{-\eta_{k} \tau_{k}} \int_{\tau_{k}}^{\tau}\left[\left(G_{D} g_{n}\left(\xi_{s}\right)\right)^{1+\beta}+\left(G_{D} g_{m}\left(\xi_{s}\right)\right)^{1+\beta}\right)\right] \mathrm{d} s \tag{44}\\
& +\Pi_{x} \int_{0}^{\tau_{k}} \mathrm{e}^{-\eta_{k} s} \eta_{k}\left|u_{m}\left(\xi_{s}\right)-u_{n}\left(\xi_{s}\right)\right| \mathrm{d} s
\end{align*}
$$

Using Fubini theorem and the Markov property of ξ, iterating the inequality (44) $l \geq 1$ times yields

$$
\begin{align*}
\left|u_{m}(x)-u_{n}(x)\right| \leq & \Pi_{x}\left|\Pi_{\xi_{\tau_{k}}} \int_{0}^{\tau}\left(g_{m}\left(\xi_{s}\right)-g_{n}\left(\xi_{s}\right)\right) \mathrm{d} s\right| \\
& +\Pi_{x} \int_{\tau_{k}}^{\tau}\left[\left(G_{D} g_{m}\left(\xi_{s}\right)\right)^{1+\beta}+\left(G_{D} g_{n}\left(\xi_{s}\right)\right)^{1+\beta}\right] \mathrm{d} s \tag{45}\\
& +2 M_{k} \Pi_{x} \int_{0}^{\tau_{k}} \eta_{k} \mathrm{e}^{-\eta_{k} s} \frac{\left(\eta_{k} s\right)^{l}}{l!} \mathrm{d} s
\end{align*}
$$

From $\nu_{n} \xrightarrow{w} \nu$, it follows that for fixed k,

$$
\Pi_{x} \int_{0}^{\tau} g_{n}\left(\xi_{s}\right) \mathrm{d} s=G_{D} g_{n}(x)=G_{D} \nu_{n}(x) \xrightarrow{b p} G_{D} \nu(x), \quad n \rightarrow \infty, \quad x \in \bar{D}_{k} .
$$

From the dominated convergence theorem, we obtain

$$
\begin{equation*}
\lim _{m, n \rightarrow \infty} \Pi_{x}\left|\Pi_{\xi_{\tau_{k}}} \int_{0}^{\tau}\left(g_{m}\left(\xi_{s}\right)-g_{n}\left(\xi_{s}\right)\right) \mathrm{d} s\right|=0 \tag{46}
\end{equation*}
$$

Noticing $\Pi_{x} \tau_{k}<\infty$, and using the dominated convergence theorem, it follows that

$$
\begin{equation*}
\lim _{l \rightarrow \infty} \Pi_{x} \int_{0}^{\tau_{k}} \eta_{k} \mathrm{e}^{-\eta_{k} s} \frac{\left(\eta_{k} s\right)^{l}}{l!} \mathrm{d} s=0 \tag{47}
\end{equation*}
$$

Combining (45), (46), (47) and the condition (18), we have

$$
\limsup _{m, n \rightarrow \infty}\left|u_{m}(x)-u_{n}(x)\right|=0, \quad x \in D \backslash N_{\nu} .
$$

Therefore there exists a nonnegative measurable function u in $D \backslash N_{\nu}$ such that, for each compact subset $K \subset D \backslash N_{\nu}$,

$$
u_{n}(x) \xrightarrow{b p} u(x), \quad n \rightarrow \infty, \quad x \in K .
$$

Repeating the procedure from the beginning with this u instead of u_{m} we conclude that u solves the equation (14). By similar arguments we conclude that u is uniquely determined by the equation. Summarizing the above, we now have proved the statements (1) and (2) of Theorem 3.1.

It remains to verify the asymptotic property (20). Let $U[\lambda \nu]$ be the nonnegative solution of the equation (14) with ν replaced by $\lambda \nu$, then

$$
\begin{align*}
\left|\lambda^{-1} U[\lambda \nu]-G_{D} \nu\right|(x) & =\Pi_{x} \int_{0}^{\tau} \lambda^{-1} U^{1+\beta}[\lambda \nu]\left(\xi_{s}\right) \mathrm{d} s \\
& \leq \Pi_{x} \int_{0}^{\tau} \lambda^{-1}\left(\lambda G_{D} \nu\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s \tag{48}\\
& =\lambda^{\beta} \Pi_{x} \int_{0}^{\tau}\left(G_{D} \nu\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s
\end{align*}
$$

Condition (18) and Fatou Lemma imply that

$$
\Pi_{x} \int_{\tau_{k}}^{\tau}\left(G_{D} \nu\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s \rightarrow 0, \quad k \rightarrow \infty
$$

Noticing that for $n \geq n_{k}, G_{D} \nu_{n}$ is uniformly bounded in D_{k}, then it follows that

$$
\Pi_{x} \int_{0}^{\tau}\left(G_{D} \nu\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s<\infty
$$

Let $\lambda \downarrow 0$ in (48), it follows that

$$
\underset{\lambda \downarrow 0}{\limsup }\left|\lambda^{-1} U[\lambda \nu]-G_{D} \nu\right|(x) \leq \lim _{\lambda \downarrow 0} \lambda^{\beta} \Pi_{x} \int_{0}^{\tau}\left(G_{D} \nu\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s=0 .
$$

Therefore we conclude that

$$
\lambda^{-1} U[\lambda \nu](\cdot) \xrightarrow{p} G_{D} \nu(\cdot)(\lambda \rightarrow 0) \quad \text { in } D .
$$

But $\lambda^{-1} U[\lambda \nu](\cdot)$ is dominated by $G_{D} \nu(\cdot)$ and $G_{D} \nu(\cdot)$ is bounded in any compact subset K of $D \backslash N_{\nu}$, the statement (3) follows.

Proof of Theorem 3.2 Using an argument similar to that of the proof of Theorem 2.2, we can prove the results of Theorem 3.2. hold. We omit the details.

Proof of Theorem 3.3 We need only to prove that for every $\nu \in M_{0}(D)$, condition (18) holds. For $x \in D \backslash N_{\nu}$ and any integer k, from the proof of Theorem 3.1 we know that, there exists an integer n_{k} such that, for $n \geq n_{k}, G_{D} \nu_{n}(\cdot)$ is uniformly bounded in D_{k}. Then

$$
\lim _{n \rightarrow \infty} \Pi_{x} \int_{0}^{\tau_{k}}\left(G_{D} \nu_{n}\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s<\infty
$$

Consequently, condition (18) is satisfied if

$$
\lim _{n \rightarrow \infty} \Pi_{x} \int_{0}^{\tau}\left(G_{D} \nu_{n}\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s=\Pi_{x} \int_{0}^{\tau}\left(G_{D} \nu\left(\xi_{s}\right)\right)^{1+\beta} \mathrm{d} s<\infty
$$

that is,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{D} G_{D}(x, y)\left(G_{D} \nu_{n}(y)\right)^{1+\beta} \mathrm{d} y=\int_{D} G_{D}(x, y)\left(G_{D} \nu(y)\right)^{1+\beta} \mathrm{d} y<\infty \tag{49}
\end{equation*}
$$

From the dominated convergence theorem,

$$
\lim _{n \rightarrow \infty} \int_{D_{k}} G_{D}(\dot{x}, y)\left(G_{D} \nu_{n}(y)\right)^{1+\beta} \mathrm{d} y=\int_{D_{k}} G_{D}(x, y)\left(G_{D} \nu(y)\right)^{1+\beta} \mathrm{d} y<\infty .
$$

It is sufficient to prove

$$
\begin{equation*}
\sup _{n \geq 1} \int_{D \backslash D_{k}} G_{D}(x, y)\left(G_{D} \nu_{n}(y)\right)^{1+\beta} \mathrm{d} y \rightarrow 0, \quad \text { as } k \rightarrow \infty . \tag{50}
\end{equation*}
$$

Without loss of generality, we can assume that $x \in D_{k}, k \geq 1$. Then there exists a constant C such that $G_{D}(x, y) \leq C, y \in D \backslash D_{k}$. Hence it is sufficient to show

$$
\begin{equation*}
\sup _{n \geq 1} \int_{D \backslash D_{k}}\left(G_{D} \nu_{n}(y)\right)^{1+\beta} \mathrm{d} y \rightarrow 0, \quad k \rightarrow \infty . \tag{51}
\end{equation*}
$$

Put $g_{n}(x)=G_{D} \nu_{n}(x), \alpha_{n}(\lambda)=\int_{D \cap\left(G_{D} \nu_{n}>\lambda\right)} \mathrm{d} y$. For $M>0$, we have

$$
\begin{equation*}
\int_{D \backslash D_{k}}\left(G_{D} \nu_{n}(y)\right)^{1+\beta} \mathrm{d} y \leq M^{1+\beta} \int_{D \backslash D_{k}} \mathrm{~d} y+\int_{D \cap\left(g_{n}>M\right)} g_{n}^{1+\beta}(y) \mathrm{d} y, \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{D \cap\left(g_{n}>M\right)} g_{n}^{1+\beta}(y) \mathrm{d} y=-\int_{M}^{\infty} \lambda^{1+\beta} \mathrm{d} \alpha_{n}(\lambda) . \tag{53}
\end{equation*}
$$

Then we have the estimate

$$
\begin{align*}
\lambda \alpha_{n}(\lambda) & \leq \int_{D \cap\left(g_{n}>\lambda\right)} g_{n}(y) \mathrm{d} y=\int_{D} \nu_{n}\left(\mathrm{~d} y_{1}\right) \int_{D \cap\left(g_{n}>\lambda\right)} G_{D}\left(y, y_{1}\right) \mathrm{d} y \tag{54}\\
& \leq C \sup _{y_{1} \in D} \int_{D \cap\left(g_{n}>\lambda\right)} G_{D}\left(y, y_{1}\right) \mathrm{d} y .
\end{align*}
$$

Choose $a>1+\beta$, from the Hölder inequality, we have

$$
\int_{D \cap\left(g_{n}>\lambda\right)} G_{D}\left(y, y_{1}\right) \mathrm{d} y \leq\left(B\left(y_{1}\right)\right)^{\frac{1}{a}}\left(\alpha_{n}(\lambda)\right)^{\frac{1}{b}},
$$

where $B\left(y_{1}\right)=\int_{D} G_{D}\left(y, y_{1}\right)^{a} \mathrm{~d} y, \frac{1}{a}+\frac{1}{b}=1$. Then from (54), it follows that

$$
\lambda \alpha_{n}(\lambda) \leq C \sup _{y_{1} \in D}\left(B\left(y_{1}\right)\right)^{\frac{1}{a}}\left(\alpha_{n}(\lambda)\right)^{\frac{1}{b}} .
$$

Using the estimate of the Green function in [3] and [4], we can conclude that when $d>\alpha$,

$$
B\left(y_{1}\right)=\int_{D} G_{D}\left(y, y_{1}\right)^{a} \mathrm{~d} y \leq \int_{D} C\left(\frac{1}{\left|y-y_{1}\right|^{d-\alpha}}\right)^{a} \mathrm{~d} y \leq \int_{0}^{\operatorname{diamD}} C r^{a(\alpha-d)+d-1} \mathrm{~d} r
$$

where $\operatorname{diam} D$ is the diameter of D. Since $d<\alpha+\alpha / \beta$, we can choose $a>1+\beta$ such that $\int_{0}^{\mathrm{diam} D} C r^{a(\alpha-d)+d-1} \mathrm{~d} r<\infty$. When $d=\alpha=1$,

$$
\begin{aligned}
B\left(y_{1}\right) & =\int_{D} G_{D}\left(y, y_{1}\right)^{a} \mathrm{~d} y \leq \int_{D} C\left|\ln \frac{1}{\left|y-y_{1}\right|}\right|^{a} \mathrm{~d} y \leq \int_{0}^{\mathrm{diam} D} C|\ln r|^{a} \mathrm{~d} r \\
& =\int_{0}^{1} C(-\ln r)^{a} \mathrm{~d} r+\int_{1}^{\mathrm{diam} D} C(\ln r)^{a} \mathrm{~d} r<\infty
\end{aligned}
$$

When $\alpha>d=1$,

$$
B\left(y_{1}\right)=\int_{D} G_{D}\left(y, y_{1}\right)^{a} \mathrm{~d} y \leq \int_{D} C\left|y-y_{1}\right|^{a(\alpha-1)} \mathrm{d} y \leq \int_{0}^{\operatorname{diam} D} C r^{a(\alpha-1)} \mathrm{d} r<\infty
$$

Thus we conclude that in any dimension $d<\alpha+\alpha / \beta$,

$$
\lambda \alpha_{n}(\lambda) \leq C\left[\alpha_{n}(\lambda)\right]^{\frac{1}{b}}, \quad \lambda>0, \quad n \geq 1
$$

that is,

$$
\begin{equation*}
\alpha_{n}(\lambda) \leq C \lambda^{-a}, \quad \lambda>0, \quad n \geq 1 . \tag{55}
\end{equation*}
$$

Since $a>1+\beta$, by integration by parts we have

$$
\begin{equation*}
-\int_{M}^{\infty} \lambda^{1+\beta} \mathrm{d} \alpha_{n}(\lambda)=M^{1+\beta} \alpha_{n}(M)+(1+\beta) \int_{M}^{\infty} \alpha_{n}(\lambda) \lambda^{\beta} \mathrm{d} \lambda \leq C M^{1+\beta-a} . \tag{56}
\end{equation*}
$$

Combining (52), (53) and (56), we have

$$
\begin{equation*}
\int_{D \backslash D_{k}}\left(G_{D} \nu_{n}(y)\right)^{1+\beta} \mathrm{d} y \leq M^{1+\beta} \int_{D \backslash D_{k}} \mathrm{~d} y+C M^{1+\beta-a} \tag{57}
\end{equation*}
$$

Letting $k \rightarrow \infty, M \rightarrow \infty$ in the above inequality, we conclude that (51) holds.

References

[^0]
[^0]: 1 Ren Y X. Absolute continuities of exit measures for superdiffusions. Science in China (Series A), 2000, 43(5): 449-457
 2 Dawson D A, Fleischmann K. Super-Brownian motion in higher dimensions with absolutely continuous measure states. J Theo Prob, 1995, 8(1): 179-206
 3 Bogdan K, Byczkowski T. Potential theory for Schrödinger operator based on fractional Laplacian. Probab Math Statist, 2000, 20: 293-335
 4 Chen Z Q, Song R M. Estimates on Green functions and Poisson kernels for symmetric stable processes. Math Ann, 1998, 312(3): 465-501

