S-polar sets of super-Brownian motions and solutions of nonlinear differential equations

LI Qiuyue & REN Yanxia

LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China Correspondence should be addressed to Ren Yanxia (email: yxren@math.pku.edu.cn) Received January 11, 2005

Abstract This paper gives probabilistic expressions of the minimal and maximal positive solutions of the partial differential equation $-\frac{1}{2}\Delta v(x) + \gamma(x)v(x)^{\alpha} = 0$ in *D*, where *D* is a regular domain in $\mathbb{R}^d(d \ge 3)$ such that its complement D^c is compact, $\gamma(x)$ is a positive bounded integrable function in *D*, and $1 < \alpha \le 2$. As an application, some necessary and sufficient conditions for a compact set to be S-polar are presented.

Keywords: super-Brownian motion, nonlinear differential equation, minimal positive solutions, maximal positive solutions, S-polar sets.

DOI: 10.1360/022005-009

1 Introduction

We consider the positive solutions of the differential equation:

$$-\frac{1}{2}\Delta v(x) + \gamma(x)v(x)^{\alpha} = \rho(x) \quad \text{for } x \in D,$$
(1)

where Δ is the Laplace operator, $1 < \alpha \leq 2$, D is a domain in $\mathbb{R}^d (d \geq 3)$ such that its complement D^c is compact. Here $\gamma(x)$ and $\rho(x)$ satisfy the following condition:

* $\gamma(x), \rho(x) \in C^{0,\lambda}(D)$ are positive bounded integrable functions in D, where $C^{0,\lambda}(D)$ denotes the Hölder continuous functions in D with exponent $\lambda \in (0, 1]$.

The differential operator $\frac{1}{2}\Delta$ is the generator of a Brownian motion $\xi = (\xi_t, \Pi_x)$ in \mathbb{R}^d . Let \mathcal{R}^d be the Borel σ -algebra in \mathbb{R}^d , M be the set of all finite measures on \mathbb{R}^d and \mathcal{M} be the σ -algebra in M generated by the functions $f_B(\mu) = \mu(B)$ with $B \in \mathcal{R}^d$. There exists a measure-valued Markov process $X = (X_t, P_\mu)$ in (M, \mathcal{M}) such that:

(a) If f is a bounded continuous function in \mathbb{R}^d , then $\langle f, X_t \rangle$ is right-continuous in t on \mathbb{R}^+ (writing $\langle v, \mu \rangle$ means the integral of v with respect to μ);

(b) for every $\mu \in M$,

 $P_{\mu}\exp\{-\langle f, X_t\rangle\} = \exp\langle -v_t, \mu\rangle,$

where v_t is the unique solution of the integral equation

$$v_t(x) + \prod_x \int_0^t \gamma(\xi_s) v_{t-s}(\xi_s)^\alpha ds = \prod_x f(\xi_t).$$

Moreover, for every open set $D \in \mathbb{R}^d$, there exist correspondingly the random measures X_{τ} and Y_{τ} on \mathbb{R}^d associated with the first exit time $\tau = \inf\{t : \xi_t \notin D\}$ from D, such that:

$$P_{\mu} \exp\left\{-\langle \rho, Y_{\tau} \rangle - \langle f, X_{\tau} \rangle\right\} = \exp\langle-v, \mu\rangle, \tag{2}$$

where

$$v(x) + \prod_{x} \int_{0}^{\tau} \gamma(\xi_{s}) v(\xi_{s})^{\alpha} ds = \prod_{x} \left[\int_{0}^{\tau} \rho(\xi_{s}) ds + f(\xi_{\tau}) \mathbf{1}_{(\tau < \infty)} \right].$$
(3)

We call $X = (X_t, X_\tau, Y_\tau; P_\mu)$ the super-Browian motion with parameters $(\frac{1}{2}\Delta, \gamma(x)z^{\alpha})$.

For every $\epsilon \ge 0$, we denote by \mathcal{R}_{ϵ} the minimal closed set which contains the supports S_t of X_t for all $t \ge \epsilon$. And the set $\mathcal{R} = \mathcal{R}_0$ is called the range of X.

We say that B is S-polar if, for every $\mu \in M$ and every $\epsilon > 0$, there exists an analytic set $A \supset B$ such that $P_{\mu}(\mathcal{R}_{\epsilon} \cap A \neq \emptyset) = 0$. Dynkin^[1] proved that an analytic set B is S-polar if and only if

$$P_{\delta_x}(\mathcal{R} \cap B \neq \emptyset) = 0 \quad \text{for all} \ x \notin B.$$
(4)

Suppose D is a regular Greenian domain, and γ and ρ satisfy the condition *. Let φ be a positive bounded continuous function on ∂D and has limit c at infinity if ∂D is unbounded. Consider the boundary condition

$$v(x) \to \varphi(a) \quad \text{as} \ x \to a \in \partial D, x \in D;$$
 (5)

$$v(x) \to c \text{ as } ||x|| \to \infty, x \in D.$$
 (6)

Let $\{D_n\}$ be a sequence of bounded domains such that $\overline{D_n} \subset D_{n+1}$ and $D_n \uparrow D$, here the sign $\overline{D_n}$ denotes the closure of set D_n . Let τ_n denote the first exit time from D_n .

Ren, Wu and $\text{Yang}^{[2]}$ proved that there is a unique bounded solution of (1), (5) and (6):

$$v(x) = -\log P_{\delta_x} \exp\left\{-\langle \rho, Y_\tau \rangle - \langle \varphi, X_\tau \rangle - cZ_D\right\},\tag{7}$$

where

$$Z_D = \lim_{n \to \infty} \langle \Pi_{\cdot}(\tau = \infty), X_{\tau_n} \rangle.$$
(8)

Dynkin^[2] studied some analytic properties of the range of X and S-polar sets, and obtained some connections between S-polar sets and the solutions of partial differential equations. He assumed there that D is bounded and $\gamma(x)$ satisfies the condition: $\inf_x \gamma(x) > 0$. More generally, this paper arrives at the similar results to Dynkin's by using more relaxed confinements on D and $\gamma(x)$.

We organize this paper as follows. In Section 2, we obtain the minimal and maximal positive solutions of the problem

$$\begin{cases} \frac{1}{2}\Delta v(x) = \gamma(x)v(x)^{\alpha} & \text{ in } D, \\ v(x) \to +\infty & \text{ as } D \ni x \to a \in \partial D, \\ v(x) \to c & \text{ as } \|x\| \to \infty. \end{cases}$$
(E1)

Copyright by Science in China Press 2005

Using the results obtained in Section 2, we give several necessary and sufficient conditions for a compact set Γ to be S-polar in different cases in Section 3.

2 Minimal positive and maximal positive solutions

Lemma 1. Suppose D is a regular domain. γ is a positive bounded integrable function in D such that for every bounded subset D_0 satisfying $\overline{D_0} \subset D$,

$$\inf_{x \in D_0} \gamma(x) > 0. \tag{9}$$

For each $x_0 \in D$, let $U = \{x : |x - x_0| < R\}$ with R small enough such that $\overline{U} \subset D$. Put

$$u(x) = \lambda (R^2 - r^2)^{-\frac{2}{\alpha - 1}},$$

where $r = |x - x_0|$ and

$$\lambda = cR^{\frac{2}{\alpha - 1}} \tag{10}$$

with c being a constant depending only on α , the dimension d and the lower bound for γ in U. Then we have

$$\frac{1}{2}\Delta u - \gamma u^{\alpha} \leqslant 0 \quad \text{in } U, \tag{11}$$

and $\lim_{x \to a, x \in U} u(x) = \infty$ for all $a \in \partial U$.

Proof. By a direct computation we get

$$\frac{1}{2}\Delta u - \gamma u^{\alpha} = \lambda (R^2 - r^2)^{-\frac{2\alpha}{\alpha - 1}} [c_1 r^2 + c_2 d(R^2 - r^2) - \gamma \lambda^{\alpha - 1}], \qquad (12)$$

where $c_1 = 4(\alpha + 1)(\alpha - 1)^{-2}$, $c_2 = 2(\alpha - 1)^{-1}$. Clearly (12) implies (11) if $c_1 r^2 + c_2 d(R^2 - r^2) - \gamma \lambda^{\alpha - 1} \leq 0$ for all $0 \leq r \leq R$. (13)

Let $A = \inf_{U} \gamma(x)$. The condition (9) implies A > 0. So (13) holds if $\lambda^{\alpha-1} \ge \left(\frac{c_1}{A} + \frac{c_2}{A}d\right)R^2$, which is true for λ given by (10).

Lemma 2. Suppose D is a regular domain satisfying D^c being compact. Let $C^2(D)$ denote the class of all functions which are twice differentiable in D and all their partial derivatives are continuous in D. If u and v belong to $C^2(D)$ and satisfy

$$\frac{1}{2}\Delta u(x) - \gamma(x)u(x)^{\alpha} \ge \frac{1}{2}\Delta v(x) - \gamma(x)v(x)^{\alpha} \quad \text{for all} \ x \in D,$$
(14)

and

$$\lim_{\|x\|\to\infty} \sup[u(x) - v(x)] \leqslant 0; \tag{15}$$

if ∂D is not empty, and u, v also satisfy

$$\lim_{x \to a, x \in D} \sup [u(x) - v(x)] \leq 0 \quad \text{for all} \ a \in \partial D,$$
(16)

then $u(x) \leq v(x)$ in D.

Proof. Suppose ∂D is not empty. The case when $D = \mathbb{R}^d$ is similar. Let w = u - v. If the statement is false, then $\widetilde{D} := \{x \in D : w(x) > 0\}$ is not empty. Clearly \widetilde{D} is open and not loss of generality, we assume that \widetilde{D} is connected. If we can prove that \widetilde{D} is bounded, then by Theorem 0.5 in Dynkin^[1], $w(x) \leq 0$ in \widetilde{D} , which contradicts the definition of \widetilde{D} .

So we are left to prove that \widetilde{D} is bounded. If not, choose a point $x_0 \in \widetilde{D}$. Since ∂D is bounded, there exists a constant A > 0 such that for every r > A, we have $\widetilde{D} \cap \partial B(x_0, r) \neq \emptyset$. By (15), $\limsup_{\|x\|\to\infty} w(x) \leq 0$. Then there exists a constant R > A, such that for every $x \in B(x_0, R)^c$, $w(x) \leq \frac{1}{2}w(x_0)$. Let $D_1 = \widetilde{D} \cap B(x_0, R)$. By (14),

$$\frac{1}{2}\Delta w(x) = \frac{1}{2}\Delta u(x) - \frac{1}{2}\Delta v(x) \geqslant \gamma(x)u(x)^{\alpha} - \gamma(x)v(x)^{\alpha} \geqslant 0 \quad \text{in} \ \ D_1.$$

By (16), $\limsup_{x \to a, x \in \widetilde{D}} w(x) \leq 0$ for all $a \in \partial \widetilde{D} \setminus \partial B(x_0, R)$, and notice that $w(x) \leq \frac{1}{2}w(x_0)$ on $\partial B(x_0, R)$. Then the maximum can not be reached on the boundary of D_1 . This contradicts the maximum principle for linear elliptic equations in D_1 (see, Theorem 2.7.19 in ref. [3]). Now we complete the proof.

Assume hereafter that $\gamma(x)$ satisfies the condition (9), D is a regular domain satisfying D^c being compact, and τ denotes the first exit time from D.

Theorem 1. $v_{\infty, c, D}(x) := -\log P_{\delta_x}\{1_{(X_\tau=0)}\exp(-cZ_D)\}$ is the minimal positive solution of the problem

$$\begin{cases} \frac{1}{2}\Delta v(x) = \gamma(x)v(x)^{\alpha} & \text{ in } D, \\ v(x) \to +\infty & \text{ as } D \ni x \to a \in \partial D, \\ v(x) \to c & \text{ as } \|x\| \to \infty. \end{cases}$$
(E1)

Proof. By (7), $v_k(x) = -\log P_{\delta_x} \{ \exp(-\langle k, X_\tau \rangle - cZ_D) \}$ is a solution of the problem

$$\begin{cases} \frac{1}{2}\Delta v(x) = \gamma(x)v(x)^{\alpha} & \text{ in } D, \\ v(x) \to k & \text{ as } D \ni x \to a \in \partial D, \\ v(x) \to c & \text{ as } ||x|| \to \infty. \end{cases}$$

Then

 $P_{\delta_x}\{\exp(-\langle k, X_\tau\rangle - cZ_D)\} \downarrow P_{\delta_x}\{1_{(X_\tau=0)}\exp(-cZ_D)\}, \text{ as } k \uparrow \infty,$ so we get $v_k(x) \uparrow v_{\infty, c, D}(x).$

For each $x_0 \in D$, let $U = B(x_0, \frac{r}{2})$, $\tilde{U} = B(x_0, r)$. Choose r being small enough such that $\overline{\tilde{U}} \subset D$, then $u(x) = -\log P_{\delta_x} \exp\langle -v_k, X_{\tau_U} \rangle$ is the solution of the problem

$$\begin{cases} \frac{1}{2}\Delta u(x) = \gamma(x)u(x)^{\alpha} & \text{in } U, \\ u|_{\partial U} = v_k. \end{cases}$$

By the uniqueness of the above problem, we get

$$u(x) = v_k(x) = -\log P_{\delta_x} \exp\langle -v_k, X_{\tau_U} \rangle \quad \text{in } U.$$

Copyright by Science in China Press 2005

And by Lemma 1, there exists a function w(x) such that

$$\begin{cases} \frac{1}{2}\Delta w(x) \leqslant \gamma(x)w(x)^{\alpha}, & x \in \widetilde{U}, \\ \lim_{x \to a, x \in \widetilde{U}} w(x) = \infty, & a \in \partial \widetilde{U}. \end{cases}$$

By the maximum principle, $v_k \leq w$ in U. Then we have for all positive integers k,

$$v_k(x) \leq \max_{x \in U} w(x) := M < \infty, \quad \forall x \in U.$$
(17)

By the dominated convergence theorem,

$$v_{\infty, c, D}(x) = \lim_{k \to \infty} v_k(x)$$

=
$$\lim_{k \to \infty} (-\log P_{\delta_x} \exp\langle -v_k, X_{\tau_U} \rangle)$$

=
$$-\log P_{\delta_x} \exp\langle -v_{\infty, c, D}, X_{\tau_U} \rangle, \quad \forall x \in U.$$

Then $v_{\infty, c, D}$ also satisfies

$$\begin{cases} \frac{1}{2}\Delta u(x) = \gamma(x)u(x)^{\alpha} & \text{in } U\\ u|_{\partial U} = v_{\infty, c, D}. \end{cases}$$

Since $x_0 \in D$ is arbitrary, we have $\frac{1}{2}\Delta v_{\infty,c,D} = \gamma v_{\infty,c,D}^{\alpha}$ in D.

Notice that $v_k \leq v_{\infty, c, D}$ for all k, we get for every $a \in \partial D$,

$$\lim_{x \in D, x \to a} v_{\infty, c, D}(x) = \infty.$$
ave

And by $\lim_{\|x\|\to\infty} v_k(x) = c$, we have

$$\liminf_{\|x\|\to\infty} v_{\infty,\,c,\,D}(x) \ge c. \tag{18}$$

Let D_1 be a regular domain such that D_1^c is compact and $\overline{D_1} \subset D$. Since every open covering of ∂D_1 has a finite sub-covering, by (17), we have $A := \sup_{x \in \partial D_1} \sup_k v_k(x) < \infty$, and then

$$\begin{split} v_k(x) &= -\log P_{\delta_x} \{ \exp(-\langle k, X_\tau \rangle - cZ_D) \} \\ &= -\log P_{\delta_x} \{ \exp(-\langle v_k, X_{\tau_{D_1}} \rangle - cZ_{D_1}) \} \\ &\leqslant -\log P_{\delta_x} \{ \exp(-\langle A, X_{\tau_{D_1}} \rangle - cZ_{D_1}) \} := u(x), \text{ for each } x \in D_1. \end{split}$$

Letting $k \to \infty$, we get $v_{\infty, c, D}(x) \leq u(x)$ for each $x \in D_1$. However, u(x) has the limit c at infinity, so

$$\limsup_{\|x\| \to \infty} v_{\infty, c, D}(x) \leqslant c.$$
(19)

Combining (18) and (19) we get $\lim_{\|x\|\to\infty} v_{\infty,c,D}(x) = c$. Thus $v_{\infty,c,D}$ is a solution of (E1).

Let $u \ge 0$ be any solution to problem (E1), then by Lemma 2, $v_k \le u$ in D and therefore $v_{\infty, c, D} \le u$, which says that $v_{\infty, c, D}$ is the minimal solution to problem (E1).

Lemma 3. Let σ_k be the first exit time from $B_k = B(0, k)$ and $\tau_k = \sigma_k \wedge \tau$, then $\lim_{k \to \infty} \langle \prod_{k \to \infty} (\tau = \infty), X_{\tau_k} \rangle$ exists P_{δ_x} -a.s. for all $x \in D$.

Proof. We claim that, $\{\exp\langle -\Pi_{\cdot}(\tau = \infty), X_{\tau_k}\rangle; \mathcal{F}_{\tau_k}, P_{\delta_x}\}$ is a submartingale. In fact,

$$P_{\delta_x}(\exp\langle -\Pi_{\cdot}(\tau=\infty), X_{\tau_k}\rangle / \mathcal{F}_{\tau_{k-1}})$$

= $P_{X_{\tau_{k-1}}}(\exp\langle -\Pi_{\cdot}(\tau=\infty), X_{\tau_k}\rangle)$
= $\exp\langle -v, X_{\tau_{k-1}}\rangle, \quad x \in D,$ (20)

where v(x) satisfies

$$v(x) + \prod_x \int_0^{\tau_k} \gamma(\xi_s) v(\xi_s)^\alpha ds = \prod_x (\prod_{\xi_{\tau_k}} (\tau = \infty)).$$

Since $\Pi_{\cdot}(\tau = \infty) = 0$ on ∂D , we have

$$\Pi_{x}(\Pi_{\xi_{\tau_{k}}}(\tau=\infty))$$

$$=\Pi_{x}(\Pi_{\xi_{\sigma_{k}\wedge\tau}}(\tau=\infty))=\Pi_{x}(\Pi_{\xi_{\sigma_{k}}}(\tau=\infty),\tau>\sigma_{k})$$

$$=\Pi_{x}(\tau=\infty,\tau>\sigma_{k})\leqslant\Pi_{x}(\tau=\infty), \quad x\in D,$$
(21)

then $v(x) \leqslant \Pi_x(\tau = \infty)$. So, by (20),

$$P_{\delta_x}(\exp\langle -\Pi_{\cdot}(\tau=\infty), X_{\tau_k}\rangle / \mathcal{F}_{\tau_{k-1}}) \ge \exp\langle -\Pi_{\cdot}(\tau=\infty), X_{\tau_{k-1}}\rangle,$$

and therefore $\{\exp\langle -\Pi_{\cdot}(\tau=\infty), X_{\tau_k}\rangle; \mathcal{F}_{\tau_k}, P_{\delta_x}\}$ is a submartingale.

By the convergence theorem of bounded submartingale, $\lim_{k\to\infty} \exp\langle -\Pi_{\cdot}(\tau=\infty), X_{\tau_k} \rangle$ exists P_{δ_x} -a.s., and then $\lim_{k\to\infty} \langle \Pi_{\cdot}(\tau=\infty), X_{\tau_k} \rangle$ exists P_{δ_x} -a.s., $x \in D$.

Lemma 4. Suppose $\{D_k\}$ is a sequence of regular domains such that $\overline{D_k} \subset D_{k+1}$, D_k^c is compact and $D_k \uparrow D$. Let σ_k , τ_k be the first exit time from $B_k = B(0, k)$ and D_k respectively. Then for every $x \in D$,

$$\liminf_{k\to\infty} \langle \Pi_{\cdot}(\tau=\infty), X_{\tau_k\wedge\sigma_k}|_{\partial D_k} \rangle = 0 \quad P_{\delta_x}\text{-a.s.}$$

Proof. By Fatou's Lemma,

$$P_{\delta_x}(\liminf_{k\to\infty} \langle \Pi_{\cdot}(\tau=\infty), X_{\tau_k\wedge\sigma_k}|_{\partial D_k} \rangle)$$

$$\leqslant \liminf_{k\to\infty} P_{\delta_x}(\langle \Pi_{\cdot}(\tau=\infty), X_{\tau_k\wedge\sigma_k}|_{\partial D_k} \rangle)$$

$$= \liminf_{k\to\infty} \Pi_x(\Pi_{\xi_{\tau_k\wedge\sigma_k}}(\tau=\infty); \xi_{\tau_k\wedge\sigma_k} \in \partial D_k).$$

Notice that $\prod_{\alpha} (\tau = \infty)|_{\partial D} = 0$, then

$$\liminf_{k \to \infty} \prod_x (\prod_{\xi_{\tau_k \land \sigma_k}} (\tau = \infty); \xi_{\tau_k \land \sigma_k} \in \partial D_k) = 0.$$

So we have

$$\liminf_{k \to \infty} \langle \Pi_{\cdot}(\tau = \infty), X_{\tau_k \wedge \sigma_k} |_{\partial D_k} \rangle = 0 \quad P_{\delta_x}\text{-a.s.}$$

Theorem 2. $V_{\infty,c,D}(x) := -\log P_{\delta_x} \{ \exp(-cZ_D); \mathcal{R} \subset D \}$ is the maximal solution of the problem (E1).

Proof. Let $\{D_k\}$ be a sequence of regular domains such that $\overline{D_k} \subset D_{k+1}$, D_k^c is compact and $D_k \uparrow D$. Let τ_k be the first exit time from D_k , and σ_k the first exit time from

 B_k . Then $\tau_k \wedge \sigma_k$ is the first exit time from $B_k \cap D_k$. Suppose k is large enough such that $\partial D \subset B_k$. Then for $x \in D$,

$$V_{\infty,c,D}(x) := -\log P_{\delta_x} \{ \exp(-cZ_D); \mathcal{R} \subset D \}$$

= $-\log P_{\delta_x} \{ \exp(-c \lim_{k \to \infty} \langle \Pi_{\cdot}(\tau = \infty), X_{\tau_k \wedge \sigma_k} \rangle); \cup_{k=1}^{\infty} (X_{\tau_k} = 0) \}$
= $\lim_{k \to \infty} -\log P_{\delta_x} \{ \exp(-c \langle \Pi_{\cdot}(\tau = \infty), X_{\tau_k \wedge \sigma_k} \rangle); X_{\tau_k} = 0 \}.$

By the special Markov property,

$$\begin{aligned} V_{\infty, c, D}(x) &= \lim_{k \to \infty} -\log P_{\delta_x} \{ \exp(-c \langle \Pi_{\cdot}(\tau = \infty), X_{\tau_k \wedge \sigma_k} \rangle) \cdot P_{X_{\tau_k \wedge \sigma_k}}(X_{\tau_k} = 0) \} \\ &= \lim_{k \to \infty} -\log P_{\delta_x} \{ \exp(-\langle c \Pi_{\cdot}(\tau = \infty), X_{\tau_k \wedge \sigma_k} \rangle) \cdot \exp(-v_k, X_{\tau_k \wedge \sigma_k} \rangle \} \\ &= \lim_{k \to \infty} -\log P_{\delta_x} \{ \exp(-c \langle \Pi_{\cdot}(\tau = \infty) + v_k, X_{\tau_k \wedge \sigma_k} \rangle) \} \\ &= \lim_{k \to \infty} u_k(x), \quad x \in D, \end{aligned}$$

where $v_k(x)$ is the minimal positive solution of the problem

$$\begin{cases} \frac{1}{2}\Delta v(x) = \gamma(x)v(x)^{\alpha} & \text{ in } D_k, \\ v(x) \to +\infty & \text{ as } D_k \ni x \to a \in \partial D_k, \\ v(x) \to 0 & \text{ as } \|x\| \to \infty, \end{cases}$$

and $u_k(x)$ is the solution of the problem

$$\begin{cases} \frac{1}{2}\Delta u(x) = \gamma(x)u(x)^{\alpha} & \text{in } D_k \cap B_k, \\ u|_{\partial(D_k \cap B_k)} = c\Pi_{\cdot}(\tau = \infty) + v_k. \end{cases}$$

Then as the same argument in Theorem 1, $V_{\infty, c, D}(x)$ satisfies

$$\frac{1}{2}\Delta V_{\infty,\,c,\,D}(x) = \gamma(x)V_{\infty,\,c,\,D}(x)^{\alpha}, \quad x \in D.$$

Notice $\{\mathcal{R} \subset D\} \subset \overline{\{X_{\tau} = 0\}}$, then

$$V_{\infty, c, D}(x) = -\log P_{\delta_x} \{ \exp(-cZ_D); \mathcal{R} \subset D \}$$

$$\geq -\log P_{\delta_x} \{ \exp(-cZ_D); X_\tau = 0 \} = v_{\infty, c, D}(x),$$

where $v_{\infty,c,D}$ is the minimal positive solution of the problem (E1). Therefore $V_{\infty,c,D}|_{\partial D} = \infty$.

Now we prove that

$$\lim_{\|x\|\to\infty} V_{\infty,\,c,\,D}(x) = c.$$

First, by $V_{\infty,\,c,\,D}(x) \ge v_{\infty,\,c,\,D}(x)$ and $\lim_{\|x\|\to\infty} v_{\infty,\,c,\,D}(x) = c$, we have
$$\liminf_{\|x\|\to\infty} V_{\infty,\,c,\,D}(x) \ge c.$$
 (22)

Put

$$v_n(x) = -\log P_{\delta_x} \{ \exp(-cZ_{D_n}); X_{\tau_n} = 0 \}$$

By Lemma 2 and Theorem 1, $V_{\infty, c, D}(x) \leq v_n(x)$ in D_n , and therefore

 $V_{\infty, c, D}(x) \leq \liminf_{n \to \infty} v_n(x) \text{ in } D.$ (23)

Suppose n is large enough, let $\{D_k^{(n)}\}$ be a sequence of regular domains such that $D_k^{(n)} \uparrow D_n, \overline{D_k^{(n)}} \subset D_{k+1}^{(n)}$ and $(D_k^{(n)})^c$ is compact. Let $\tau_k^{(n)}$ be the first exit time from

 $D_k^{(n)}$, σ_k be the first exit time of B_k and $\sigma_k^{(n)} := \tau_k^{(n)} \wedge \sigma_k$. By the definition of Z_D (see (8)),

$$\begin{split} Z_{D_n} &= \lim_{k \to \infty} \langle \Pi_{\cdot}(\tau_n = \infty), X_{\sigma_k^{(n)}} \rangle \\ &= \lim_{k \to \infty} \langle \Pi_{\cdot}(\tau_n = \infty), X_{\sigma_k^{(n)}} |_{\partial B_k} \rangle + \lim_{k \to \infty} \langle \Pi_{\cdot}(\tau_n = \infty), X_{\sigma_k^{(n)}} |_{\partial D_k^{(n)}} \rangle \\ &\leqslant \liminf_{k \to \infty} \langle \Pi_{\cdot}(\tau_n = \infty), X_{\tau_n \wedge \sigma_k} \rangle + \lim_{k \to \infty} \langle \Pi_{\cdot}(\tau_n = \infty), X_{\sigma_k^{(n)}} |_{\partial D_k^{(n)}} \rangle, \end{split}$$

Using Lemma 3 and Lemma 4 continues the above domination:

$$Z_{D_n} \leq \lim_{k \to \infty} \langle \Pi_{\cdot}(\tau_n = \infty), X_{\tau_n \wedge \sigma_k} \rangle \ P_{\delta_x}\text{-a.s.}, \ \forall x \in D.$$

Then we have

$$v_{n}(x) = -\log P_{\delta_{x}} \{ \exp(-cZ_{D_{n}}); X_{\tau_{n}} = 0 \}$$

$$\leq -\log P_{\delta_{x}} \{ \exp(-c\lim_{k \to \infty} \langle \Pi_{\cdot}(\tau_{n} = \infty), X_{\tau_{n} \wedge \sigma_{k}} \rangle); X_{\tau_{n}} = 0 \}$$

$$= \lim_{k \to \infty} -\log P_{\delta_{x}} \{ \exp(-\langle c\Pi_{\cdot}(\tau_{n} = \infty), X_{\tau_{n} \wedge \sigma_{k}} \rangle); X_{\tau_{n}} = 0 \}.$$
(24)

Notice that $X_{\tau_n \wedge \sigma_k}|_{\partial D_n} \leq X_{\tau_n}$ and

$$P_{\delta_x}\langle \Pi_{\cdot}(\tau_n=\infty), X_{\tau_n}\rangle = \Pi_x(\Pi_{\xi_{\tau_n}}(\tau_n=\infty); \tau_n<\infty) = 0.$$

Then

$$\langle \Pi_{\cdot}(\tau_n = \infty), X_{\tau_n \wedge \sigma_k} \rangle = \langle \Pi_{\cdot}(\tau_n = \infty), X_{\tau_n \wedge \sigma_k} |_{\partial B_k} \rangle, \quad P_{\delta_x}\text{-a.s.}$$
(25)

If k is large enough,

$$X_{\tau_n \wedge \sigma_k} |_{\partial B_k} \leqslant X_{\tau_k \wedge \sigma_k} |_{\partial B_k}.$$
(26)

Then by (24), (25) and (26), we have

$$v_{n}(x) \leq \liminf_{k \to \infty} -\log P_{\delta_{x}} \{ \exp(-\langle c\Pi_{\cdot}(\tau_{n} = \infty), X_{\tau_{k} \wedge \sigma_{k}} |_{\partial B_{k}} \rangle); X_{\tau_{n}} = 0 \}$$

$$\leq \liminf_{k \to \infty} -\log P_{\delta_{x}} \{ \exp(-\langle c\Pi_{\cdot}(\tau_{n} = \infty), X_{\tau_{k} \wedge \sigma_{k}} \rangle); X_{\tau_{n}} = 0 \}$$

$$= -\log P_{\delta_{x}} \{ \exp(-cZ_{D}); X_{\tau_{n}} = 0 \}.$$

Letting $n \to \infty$, we get

$$\limsup_{n \to \infty} v_n(x) \leqslant V_{\infty, c, D}(x) \quad \text{in } D.$$
(27)

By (23), (27) and $\{v_n(x)\}$ being decreasing for all $x \in D$,

$$v_n(x) \downarrow V_{\infty, c, D}(x)$$
 as $n \to \infty$, for all $x \in D$

For each $\varepsilon > 0$, there exists R > 0 such that $v_1(x) < c + \varepsilon$, $\forall x \in B(0, R)^c$. Since $\{v_n(x)\}$ is decreasing, $v_n(x) \leq c + \varepsilon$, $\forall x \in B(0, R)^c$. And therefore $V_{\infty, c, D}(x) < c + \varepsilon$ for $x \in B(0, R)^c$, then $\limsup_{\|x\| \to \infty} V_{\infty, c, D}(x) \leq c + \varepsilon$. Since ϵ is arbitrary, we get

$$\limsup_{\|x\| \to \infty} V_{\infty, c, D}(x) \leqslant c.$$
(28)

Combining (22) with (28), we get $\lim_{\|x\|\to\infty} V_{\infty,c,D}(x) = c$. Thus $V_{\infty,c,D}$ is a solution to problem (E1).

By (27) and Lemma 2, we know that $V_{\infty, c, D}(x)$ is the maximal solution of the problem (E1). Now we complete the proof.

Copyright by Science in China Press 2005

S-polar sets of super-Brownian motions & solutions of nonlinear differential equations

 $V_{\infty,\infty,D}(x):=-\log P_{\delta_x}(\mathcal{R}\subset \subset D)$ is the maximal solution of the **Corollary 1.** problem

$$\begin{cases} \frac{1}{2}\Delta v(x) = \gamma(x)v(x)^{\alpha} & \text{ in } D, \\ v(x) \to +\infty & \text{ as } D \ni x \to a \in \partial D, \\ v(x) \to +\infty & \text{ as } \|x\| \to \infty, \end{cases}$$
(E2)

where $\{\mathcal{R} \subset \subset D\}$ denotes the union of the sets $\{\mathcal{R} \subset \Gamma\}$ over all compact sets $\Gamma \subset D$.

Let $\{D_n\}$ be a sequence of bounded domains such that $\overline{D_n} \subset D_{n+1}$ and Proof. $D_n \uparrow D$. Let τ_n denote the first exit time from D_n . Then by Theorem 1.2 in Dynkin^[1], $v_n(x) = -\log P_{\delta_x}(X_{\tau_n} = 0)$ is the minimal positive solution of the problem

$$\begin{cases} \frac{1}{2}\Delta v(x) = \gamma(x)v(x)^{\alpha} & \text{in } D_n, \\ v(x) \to +\infty & \text{as } D_n \ni x \to a \in \partial D_n. \end{cases}$$

Clearly, $v_n(x) = -\log P_{\delta_x}(X_{\tau_n} = 0) \downarrow V_{\infty, \infty, D}(x) = -\log P_{\delta_x}(\mathcal{R} \subset \subset D).$ As the same argument in Theorem 1, $\frac{1}{2}\Delta V_{\infty, \infty, D}(x) = \gamma(x)V_{\infty, \infty, D}(x)^{\alpha}$ in D .

By the maximum principle, we have $V_{\infty,c,D}(x) \leq v_n(x)$ in D_n . Then $V_{\infty,c,D}(x) \leq v_n(x)$ $V_{\infty,\infty,D}(x)$ in D. For $x \in \partial D$,

$$\infty = \lim_{x \to a, x \in D} V_{\infty, c, D}(x) \leqslant \lim_{x \to a, x \in D} V_{\infty, \infty, D}(x).$$

And

Clearly, $v_n(x)$

$$c = \lim_{\|x\| \to \infty} V_{\infty, c, D}(x) \leqslant \lim_{\|x\| \to \infty} V_{\infty, \infty, D}(x).$$

Letting $c \to \infty$, we have

$$\lim_{\|x\|\to\infty}V_{\infty,\,\infty,\,D}(x)=\infty.$$

Thus $V_{\infty,\infty,D}$ is a solution of (E2).

Suppose $u \ge 0$ is a solution to problem (E2), then by the maximum principle, $u \le v_n$ in D_n and therefore $u \leq V_{\infty,\infty,D}$ in D. Therefore, $V_{\infty,\infty,D}$ is the maximal solution of (E2).

3 S-polar sets

Theorem 3. Each of the following conditions is necessary and sufficient for a compact set Γ to be S-polar:

A. If
$$v \ge 0$$
 satisfies the problem

$$\begin{cases} \frac{1}{2}\Delta v(x) = \gamma(x)v(x)^{\alpha} & \text{ in } D = \Gamma^{c}, \\ v(x) \to 0 & \text{ as } \|x\| \to \infty, \end{cases}$$
(E3)

then v = 0.

Β. The maximal solution of the problem (E3) in D is bounded.

First by Dynkin^[1], Γ is S-polar if and only if $P_{\delta_x}(\mathcal{R} \cap \Gamma = \emptyset) = 1$ for all **Proof.** $x \in D$. Then by Theorem 2, Γ is S-polar if and only if the maximal solution $V_{\infty,0,D}(x) =$

 $-\log P_{\delta_x}(\mathcal{R} \subset D)$ of problem (E3) is equal to zero. So any nonnegative solution of the problem (E3) can only be zero.

Clearly A implies B. If B holds, let $\{D_n\}$ be a sequence of bounded domains such that $\overline{D_n} \subset D_{n+1}$ and $D_n \uparrow D$, and let τ_n denote the first exit time from D_n . For $V_{\infty,0,D}$ is bounded, by (2.22) in Dynkin^[1], we have for every $x \in D$, $\langle V_{\infty,0,D}, X_{\tau_n} \rangle \to 0$, P_{δ_x} -a.s. Also, for each n, $V_{\infty,0,D}(x) = -\log P_{\delta_x} \exp\{-\langle V_{\infty,0,D}, X_{\tau_n} \rangle\}$ in D_n . Letting $n \to \infty$, we get $V_{\infty,0,D}(x) \equiv 0$. So B also implies A.

Theorem 4. Suppose Γ is a compact set. If Γ is S-polar, then the maximal solution $V_{\infty,\infty,D}$ of the equation $\frac{1}{2}\Delta v(x) = \gamma(x)v(x)^{\alpha}$ in $D = \Gamma^c$ coincides, in D, with the maximal solution $V_{\infty,\infty,\mathbb{R}^d}$ of this equation in \mathbb{R}^d ; conversely, if $V_{\infty,\infty,D}$ is bounded near Γ , then Γ is S-polar.

Proof. By Corollary 1,

$$V_{\infty,\infty,D}(x) = -\log P_{\delta_x}(\mathcal{R} \subset D), \quad x \in D,$$

and

$$V_{\infty,\infty,\mathbb{R}^d}(x) = -\log P_{\delta_x}(\mathcal{R} \subset \subset \mathbb{R}^d), \quad x \in \mathbb{R}^d$$

If Γ is S-polar, then $P_{\delta_x}(\mathcal{R} \cap \Gamma = \emptyset) = 1$. So we get $V_{\infty, \infty, D}(x) = -\log P_{\delta_x}(\mathcal{R} \subset \mathbb{R}^d) = V_{\infty, \infty, \mathbb{R}^d}(x)$ for $x \in D$.

Now suppose $V_{\infty,\infty,D}$ is bounded near Γ . Clearly

$$V_{\infty,0,D} = -\log P_{\delta_x}(\mathcal{R} \cap \Gamma = \emptyset) \leqslant V_{\infty,\infty,D},$$

where $V_{\infty, 0, D}$ is the maximal solution of the problem (E3), then $V_{\infty, 0, D}$ is bounded near Γ . By Theorem 3B, Γ is S-polar.

Moreover, we have

Theorem 5. Each of the following conditions is necessary and sufficient for a compact set Γ to be S-polar:

A. For every
$$0 \leq c < \infty$$
, the solution of the problem

$$\begin{cases} \frac{1}{2}\Delta v(x) = \gamma(x)v(x)^{\alpha} & \text{in } D = \Gamma^{c}, \\ v(x) \to c & \text{as } \|x\| \to \infty \end{cases}$$
(E4)

is unique.

B. There exists $0 \le c < \infty$ such that the maximal solution of the above problem in D is bounded.

Proof. By Theorem 2, the maximal solution of problem (E4) is

$$V_{\infty, c, D}(x) = -\log P_{\delta_x} \{ \exp(-cZ_D); \mathcal{R} \cap \Gamma = \emptyset \}.$$

By (7) and Lemma 2, the minimal solution of problem (E4) is

 $v_{0, c, D}(x) = -\log P_{\delta_x} \{ \exp(-cZ_D) \}.$

So we get Γ is S-polar if and only if

$$V_{\infty, c, D} = v_{0, c, D},$$

Copyright by Science in China Press 2005

which is equivalent to say the solution of the problem (E4) is unique.

Clearly A implies B. Now suppose there exists $c \ge 0$ such that $V_{\infty, c, D}$ is bounded, we get that $V_{\infty, 0, D}$ is also bounded, where $V_{\infty, 0, D}$ is the maximal solution of problem (E3). Then by Theorem 3B, Γ is S-polar.

We say that an analytic set B is B-polar if

$$\Pi_x \{ \xi_t \notin B \text{ for all } t > 0 \} = 1, \quad \forall x \in B^c.$$

It is easy to see that B is B-polar if and only if

$$\Pi_x\{\sigma=\infty\}=1, \quad \forall x\in B^c,$$

where $\sigma = \inf\{t : \xi_t \in B\}.$

Lemma 5. Suppose a compact set K is contained in a domain D. Let $\widetilde{D} = D \setminus K$. If K is B-polar, then $Z_D = Z_{\widetilde{D}} P_{\delta_x}$ -a.s., for all $x \in \widetilde{D}$.

Proof. Let $\{D_n\}$ be a sequence of bounded regular Greenian domains such that $\overline{D_n} \subset D_{n+1}$ and $D_n \uparrow D$, $\{K_n\}$ be a sequence of compact sets such that $K_n \downarrow K$. Let $\widetilde{D}_n = D_n \setminus K_n$, then $\widetilde{D}_n \uparrow \widetilde{D}$. Let σ_n, σ be the first hitting times of K_n and K separately, and let τ_n be the first exit time from D_n . Put $\widetilde{\tau}_n = \tau_n \wedge \sigma_n$, $\widetilde{\tau} = \tau \wedge \sigma$, then $\widetilde{\tau}_n$ is the first exit time from \widetilde{D}_n and $\widetilde{\tau}$ is the first exit time from \widetilde{D} . So

$$\langle \Pi_{.}(\tilde{\tau} = \infty), X_{\tilde{\tau}_{n}} \rangle$$

$$= \langle \Pi_{.}(\tilde{\tau} = \infty), X_{\tilde{\tau}_{n}} |_{\partial D_{n}} \rangle + \langle \Pi_{.}(\tilde{\tau} = \infty), X_{\tilde{\tau}_{n}} |_{\partial K_{n}} \rangle$$

$$\leq \langle \Pi_{.}(\tau = \infty), X_{\tau_{n}} \rangle + \langle \Pi_{.}(\tilde{\tau} = \infty), X_{\tilde{\tau}_{n}} |_{\partial K_{n}} \rangle.$$

$$(29)$$

As the same argument in Lemma 4, $\liminf_{n\to\infty} < \Pi_{\cdot}(\tilde{\tau} = \infty), X_{\tilde{\tau}_n}|_{\partial K_n} > 0$, P_{δ_x} -a.s. Letting $n \to \infty$ in (29), we get

$$Z_{\widetilde{D}} \leqslant Z_D \quad P_{\delta_x} \text{-a.s.}, \quad \forall x \in \widetilde{D}.$$
(30)

Assume that we have proved

$$P_{\delta_x}(\exp(-Z_D)) \ge P_{\delta_x}(\exp(-Z_{\widetilde{D}})), \quad \forall x \in D,$$
(31)

then together with (30), we have $Z_D = Z_{\widetilde{D}} P_{\delta_x}$ -a.s. for all $x \in \widetilde{D}$. Now we are left to prove (31).

Since K is B-polar, we have $\Pi_x \{ \sigma = \infty \} = 1$, $\forall x \in K^c$. Then $\Pi_x (\tau = \infty) = \Pi_x (\tilde{\tau} = \infty)$, $\forall x \in K^c$, and

$$Z_D = \lim_{n \to \infty} \langle \Pi_{\cdot}(\tau = \infty), X_{\tau_n} \rangle$$

=
$$\lim_{n \to \infty} \langle \Pi_{\cdot}(\tilde{\tau} = \infty), X_{\tau_n} \rangle.$$
 (32)

Notice that

$$P_{\mu}\{\exp\langle -\Pi_{\cdot}(\tilde{\tau}=\infty), X_{\tau_n}\rangle\} = \exp\langle -v_n, \mu\rangle,$$

where v_n satisfies

$$v_n(x) + \prod_x \int_0^{\tau_n} \gamma(\xi_s) v_n(\xi_s)^\alpha ds = \prod_x (\prod_{\xi_{\tau_n}} (\widetilde{\tau} = \infty)).$$

And

$$P_{\mu}\{\exp\langle -\Pi_{\cdot}(\tilde{\tau}=\infty), X_{\tilde{\tau}_n}\rangle\} = \exp\langle -\tilde{v}_n, \mu\rangle$$

where \tilde{v}_n satisfies

$$\widetilde{v}_n(x) + \Pi_x \int_0^{\widetilde{\tau}_n} \gamma(\xi_s) \widetilde{v}_n(\xi_s)^{\alpha} ds = \Pi_x(\widetilde{\tau} = \infty).$$

Notice that

$$v_n(x) \leqslant \Pi_x(\Pi_{\xi_{\tau_n}}(\tilde{\tau}=\infty) \leqslant \Pi_x(\Pi_{\xi_{\tau_n}}(\tau=\infty)))$$

= $\Pi_x(\tau=\infty) = \Pi_x(\tilde{\tau}=\infty), \ \forall x \in K^c.$

Since $\tilde{\tau}_n \leqslant \tau_n$, by the special Markov property,

$$P_{\delta_{x}}(\exp\langle -\Pi_{.}(\tilde{\tau} = \infty), X_{\tau_{n}} \rangle / \mathcal{F}_{\tilde{\tau}_{n}})$$

$$= P_{X_{\tilde{\tau}_{n}}}(\exp\langle -\Pi_{.}(\tilde{\tau} = \infty), X_{\tau_{n}} \rangle) = \exp\langle -v_{n}, X_{\tilde{\tau}_{n}} \rangle$$

$$\geq \exp\langle -\Pi_{.}(\tilde{\tau} = \infty), X_{\tilde{\tau}_{n}} \rangle, \quad x \in \tilde{D}.$$
(33)

Letting $n \to \infty$, by Theorem 2.2.4 in Renvez^[4] and by noticing (32), we have, for $x \in D$, $P_{\delta_x}(\exp(-Z_D)/\bigcup \mathcal{F}_{\tilde{\tau}_n}) \ge \exp(-Z_{\widetilde{D}}) \quad P_{\delta_x}$ -a.s.

Taking the expectation on both sides of the above inequality, we get

$$P_{\delta_x}(\exp(-Z_D)) \ge P_{\delta_x}(\exp(-Z_{\widetilde{D}})), \quad x \in D.$$

This completes the proof.

Theorem 6. Suppose a compact set Γ is contained in a domain D. If Γ is B-polar and S-polar, then for every $0 \leq c < \infty$, the maximal solution $V_{\infty,c,\widetilde{D}}$ of the problem

$$\begin{cases} \frac{1}{2}\Delta v(x) = \gamma(x)v(x)^{\alpha} & \text{ in } \widetilde{D} = D \setminus \Gamma, \\ v(x) \to c & \text{ as } \|x\| \to \infty \end{cases}$$

coincides, in \widetilde{D} , with the maximal solution $V_{\infty, c, D}$ of the problem

$$\begin{cases} \frac{1}{2}\Delta v(x) = \gamma(x)v(x)^{\alpha} & \text{ in } D, \\ v(x) \to c & \text{ as } \|x\| \to \infty, \end{cases}$$

and hence $V_{\infty, c, \widetilde{D}}$ is bounded in a neighborhood of Γ .

Conversely, if there exists a constant $0 \leq c < \infty$ such that the maximal solution $V_{\infty, c, \widetilde{D}}$ is bounded near Γ , then Γ is S-polar.

Proof. By Theorem 2,

$$V_{\infty, c, \widetilde{D}}(x) = -\log P_{\delta_x} \{ \exp(-cZ_{\widetilde{D}}), \mathcal{R} \subset \widetilde{D} \}, \quad x \in \widetilde{D},$$

and

$$V_{\infty,c,D}(x) = -\log P_{\delta_x} \{ \exp(-cZ_D), R \subset D \}, \quad x \in D.$$

If Γ is S-polar, then $P_{\delta_x} \{ \mathcal{R} \subset \Gamma^c \} = 1$, $\forall x \in \Gamma^c$. By Lemma 5, $Z_{\widetilde{D}} = Z_D$, so we get $V_{\infty, c, \widetilde{D}} = V_{\infty, c, D}$ in \widetilde{D} , and hence $V_{\infty, c, \widetilde{D}}$ is bounded in a neighborhood of Γ .

Conversely, suppose that $V_{\infty,c,\widetilde{D}}$ is bounded near Γ . Notice that $-\log P_{\delta_x}(\mathcal{R} \cap \Gamma = \emptyset) \leqslant -\log P_{\delta_x}(\mathcal{R} \subset \widetilde{D}) \leqslant -\log P_{\delta_x}\{\exp(-cZ_{\widetilde{D}}), \mathcal{R} \subset \widetilde{D}\} = V_{\infty,c,\widetilde{D}}(x)$, so $-\log P_{\delta_x}(\mathcal{R} \cap \Gamma = \emptyset)$ is bounded near Γ and it is the maximal solution of the problem (E3). By Theorem 3B, Γ is S-polar.

Copyright by Science in China Press 2005

Remark. If Γ is B-polar and S-polar, $V_{\infty, c, \mathbb{R}^d}(x) = -\log P_{\delta_x} \{\exp(-cZ_{\mathbb{R}^d})\}$ is the unique solution to problem (E4). In fact, Theorem 5 says that the solution is unique, and by Theorem 6, the maximal solution $V_{\infty, c, D}$ coincides, in $D = \Gamma^c$ with $V_{\infty, c, \mathbb{R}^d}(x) = -\log P_{\delta_x} \{\exp(-cZ_{\mathbb{R}^d})\}$, the maximal solution of problem (E4) with D replaced by \mathbb{R}^d .

Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 10471003) and Foundation for Authors Awarded Excellent Ph. D. Dissertation.

References

- 1. Dynkin, E. B., A probabilistic approach to one class of nonlinear differential equations, Probab. Th. Rel. Fields, 1991, 89: 89–115.
- Ren, Y. X., Wu, R., Yang, C. P., Super-Brownian motion and one class of nonlinear differential equations on unbounded domains, Acta Mathematica Sinica, New Series, 1998, 14: 749-756.
- 3. Friedman, A., Partial Differential Equations of Parabolic Type, Englewood Cliffs: Prentice-Hall, Inc., 1964.
- 4. Renvez, D., Yor, M., Continuous Martingales and Brownian Motion, Berlin: Springer, 1991.
- 5. Port, S. C., Stone, C. J., Brownian Motion and Classical Potential Theory, New York: Academic Press, 1978.