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1 Introduction

We consider the positive solutions of the differential equation:

−1
2
Δv(x) + γ(x)v(x)α = ρ(x) for x ∈ D, (1)

where Δ is the Laplace operator, 1 < α � 2, D is a domain in R
d(d � 3) such that its

complement Dc is compact. Here γ(x) and ρ(x) satisfy the following condition:

∗ γ(x), ρ(x) ∈ C0,λ(D) are positive bounded integrable functions in D, where C 0,λ(D)
denotes the Hölder continuous functions in D with exponent λ ∈ (0, 1].

The differential operator 1
2
Δ is the generator of a Brownian motion ξ = (ξt,Πx) in R

d.
Let Rd be the Borel σ-algebra in R

d, M be the set of all finite measures on R
d and M

be the σ-algebra in M generated by the functions fB(μ) = μ(B) with B ∈ Rd. There
exists a measure-valued Markov process X = (Xt, Pμ) in (M,M) such that:

(a) If f is a bounded continuous function in R
d, then 〈f,Xt〉 is right-continuous in t on

R
+ (writing 〈v, μ〉 means the integral of v with respect to μ);

(b) for every μ ∈ M ,

Pμ exp{−〈f,Xt〉} = exp〈−vt, μ〉,
where vt is the unique solution of the integral equation

vt(x) + Πx

∫ t

0

γ(ξs)vt−s(ξs)αds = Πxf(ξt).
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Moreover, for every open set D ∈ R
d, there exist correspondingly the random measures

Xτ and Yτ on R
d associated with the first exit time τ = inf{t : ξt /∈ D} from D, such

that:
Pμ exp {−〈ρ, Yτ 〉 − 〈f,Xτ 〉} = exp〈−v, μ〉, (2)

where

v(x) + Πx

∫ τ

0

γ(ξs)v(ξs)αds = Πx

[∫ τ

0

ρ(ξs)ds + f(ξτ)1(τ<∞)

]
. (3)

We call X=(Xt,Xτ , Yτ ;Pμ) the super-Browian motion with parameters ( 1
2
Δ, γ(x)zα).

For every ε � 0, we denote by Rε the minimal closed set which contains the supports
St of Xt for all t � ε. And the set R = R0 is called the range of X .

We say that B is S-polar if, for every μ ∈ M and every ε > 0, there exists an analytic
set A ⊃ B such that Pμ(Rε ∩ A �= ∅) = 0. Dynkin[1] proved that an analytic set B is
S-polar if and only if

Pδx
(R ∩ B �= ∅) = 0 for all x /∈ B. (4)

Suppose D is a regular Greenian domain, and γ and ρ satisfy the condition ∗. Let
ϕ be a positive bounded continuous function on ∂D and has limit c at infinity if ∂D is
unbounded. Consider the boundary condition

v(x) → ϕ(a) as x → a ∈ ∂D, x ∈ D; (5)

v(x) → c as ‖x‖ → ∞, x ∈ D. (6)

Let {Dn} be a sequence of bounded domains such that Dn ⊂ Dn+1 and Dn ↑ D, here
the sign Dn denotes the closure of set Dn. Let τn denote the first exit time from Dn.

Ren, Wu and Yang[2] proved that there is a unique bounded solution of (1), (5) and (6):

v(x) = − log Pδx
exp {−〈ρ, Yτ 〉 − 〈ϕ,Xτ 〉 − cZD}, (7)

where
ZD = lim

n→∞〈Π.(τ = ∞),Xτn
〉. (8)

Dynkin[2] studied some analytic properties of the range of X and S-polar sets, and
obtained some connections between S-polar sets and the solutions of partial differen-
tial equations. He assumed there that D is bounded and γ(x) satisfies the condition:
infx γ(x) > 0. More generally, this paper arrives at the similar results to Dynkin’s by
using more relaxed confinements on D and γ(x).

We organize this paper as follows. In Section 2, we obtain the minimal and maximal
positive solutions of the problem⎧⎪⎪⎨

⎪⎪⎩
1
2
Δv(x) = γ(x)v(x)α in D,

v(x) → +∞ as D � x → a ∈ ∂D, (E1)

v(x) → c as ‖x‖ → ∞.
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Using the results obtained in Section 2, we give several necessary and sufficient condi-
tions for a compact set Γ to be S-polar in different cases in Section 3.

2 Minimal positive and maximal positive solutions

Lemma 1. Suppose D is a regular domain. γ is a positive bounded integrable func-
tion in D such that for every bounded subset D0 satisfying D0 ⊂ D,

inf
x∈D0

γ(x) > 0. (9)

For each x0 ∈ D, let U = {x : |x − x0| < R} with R small enough such that U ⊂ D.
Put

u(x) = λ(R2 − r2)−
2

α−1 ,

where r = |x − x0| and
λ = cR

2
α−1 (10)

with c being a constant depending only on α, the dimension d and the lower bound for γ

in U . Then we have
1
2
Δu − γuα � 0 in U, (11)

and lim
x→a,x∈U

u(x) = ∞ for all a ∈ ∂U .

Proof. By a direct computation we get
1
2
Δu − γuα = λ(R2 − r2)−

2α
α−1 [c1r

2 + c2d(R2 − r2) − γλα−1], (12)

where c1 = 4(α + 1)(α − 1)−2, c2 = 2(α − 1)−1. Clearly (12) implies (11) if

c1r
2 + c2d(R2 − r2) − γλα−1 � 0 for all 0 � r � R. (13)

Let A = inf
U

γ(x). The condition (9) implies A > 0. So (13) holds if λα−1 � ( c1
A

+
c2
A

d)R2, which is true for λ given by (10).

Lemma 2. Suppose D is a regular domain satisfying D c being compact. Let C 2(D)
denote the class of all functions which are twice differentiable in D and all their partial
derivatives are continuous in D. If u and v belong to C 2(D) and satisfy

1
2
Δu(x) − γ(x)u(x)α �

1
2
Δv(x) − γ(x)v(x)α for all x ∈ D, (14)

and
lim sup
‖x‖→∞

[u(x) − v(x)] � 0; (15)

if ∂D is not empty, and u, v also satisfy

lim sup
x→a,x∈D

[u(x) − v(x)] � 0 for all a ∈ ∂D, (16)

then u(x) � v(x) in D.

Proof. Suppose ∂D is not empty. The case when D = R
d is similar. Let w = u− v.

If the statement is false, then D̃ := {x ∈ D : w(x) > 0} is not empty. Clearly D̃ is
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open and not loss of generality, we assume that D̃ is connected. If we can prove that D̃

is bounded, then by Theorem 0.5 in Dynkin [1], w(x) � 0 in D̃, which contradicts the
definition of D̃.

So we are left to prove that D̃ is bounded. If not, choose a point x0 ∈ D̃. Since
∂D is bounded, there exists a constant A > 0 such that for every r > A, we have
D̃ ∩ ∂B(x0, r) �= ∅. By (15), lim sup‖x‖→∞ w(x) � 0. Then there exists a constant

R > A, such that for every x ∈ B(x0, R)c, w(x) � 1
2
w(x0). Let D1 = D̃

⋂
B(x0, R).

By (14),
1
2
Δw(x) =

1
2
Δu(x) − 1

2
Δv(x) � γ(x)u(x)α − γ(x)v(x)α � 0 in D1.

By (16), lim sup
x→a,x∈D̃

w(x) � 0 for all a ∈ ∂D̃ \ ∂B(x0, R), and notice that w(x) �

1
2
w(x0) on ∂B(x0, R). Then the maximum can not be reached on the boundary of D 1.

This contradicts the maximum principle for linear elliptic equations in D1 (see, Theorem
2.7.19 in ref. [3]). Now we complete the proof.

Assume hereafter that γ(x) satisfies the condition (9), D is a regular domain satisfying
Dc being compact, and τ denotes the first exit time from D.

Theorem 1. v∞, c, D(x) := − log Pδx
{1(Xτ =0) exp(−cZD)} is the minimal positive

solution of the problem⎧⎪⎪⎨
⎪⎪⎩

1
2
Δv(x) = γ(x)v(x)α in D,

v(x) → +∞ as D � x → a ∈ ∂D, (E1)

v(x) → c as ‖x‖ → ∞.

Proof. By (7), vk(x) = − log Pδx
{exp(−〈k,Xτ 〉 − cZD)} is a solution of the

problem ⎧⎪⎪⎨
⎪⎪⎩

1
2
Δv(x) = γ(x)v(x)α in D,

v(x) → k as D � x → a ∈ ∂D,

v(x) → c as ‖x‖ → ∞.

Then
Pδx

{exp(−〈k,Xτ 〉 − cZD)} ↓ Pδx
{1(Xτ =0) exp(−cZD)}, as k ↑ ∞,

so we get vk(x) ↑ v∞, c, D(x).

For each x0 ∈ D, let U = B(x0,
r
2
), Ũ = B(x0, r). Choose r being small enough

such that Ũ ⊂ D, then u(x) = − log Pδx
exp〈−vk,XτU

〉 is the solution of the problem⎧⎨
⎩

1
2
Δu(x) = γ(x)u(x)α in U,

u|∂U = vk.

By the uniqueness of the above problem, we get

u(x) = vk(x) = − log Pδx
exp〈−vk,XτU

〉 in U.

Copyright by Science in China Press 2005



S-polar sets of super-Brownian motions & solutions of nonlinear differential equations 1687

And by Lemma 1, there exists a function w(x) such that⎧⎪⎨
⎪⎩

1
2
Δw(x) � γ(x)w(x)α, x ∈ Ũ ,

lim
x→a,x∈Ũ

w(x) = ∞, a ∈ ∂Ũ .

By the maximum principle, vk � w in Ũ . Then we have for all positive integers k,

vk(x) � max
x∈U

w(x) := M < ∞, ∀x ∈ U. (17)

By the dominated convergence theorem,

v∞, c, D(x) = lim
k→∞

vk(x)

= lim
k→∞

(− log Pδx
exp〈−vk,XτU

〉)
= − log Pδx

exp〈−v∞, c, D,XτU
〉, ∀x ∈ U.

Then v∞, c, D also satisfies ⎧⎨
⎩

1
2
Δu(x) = γ(x)u(x)α in U,

u|∂U = v∞, c, D.

Since x0 ∈ D is arbitrary, we have 1
2
Δv∞, c, D = γvα

∞, c, D in D.

Notice that vk � v∞, c, D for all k, we get for every a ∈ ∂D,

lim
x∈D,x→a

v∞, c, D(x) = ∞.

And by lim
‖x‖→∞

vk(x) = c, we have

lim inf
‖x‖→∞

v∞, c, D(x) � c. (18)

Let D1 be a regular domain such that Dc
1 is compact and D1 ⊂ D. Since every open

covering of ∂D1 has a finite sub-covering, by (17), we have A := sup
x∈∂D1

sup
k

vk(x) < ∞,

and then

vk(x) = − log Pδx
{exp(−〈k,Xτ 〉 − cZD)}

= − log Pδx
{exp(−〈vk,XτD1

〉 − cZD1)}
� − log Pδx

{exp(−〈A,XτD1
〉 − cZD1)} := u(x), for each x ∈ D1.

Letting k → ∞, we get v∞, c, D(x) � u(x) for each x ∈ D1. However, u(x) has the
limit c at infinity, so

lim sup
‖x‖→∞

v∞, c, D(x) � c. (19)

Combining (18) and (19) we get lim
‖x‖→∞

v∞, c, D(x) = c. Thus v∞, c, D is a solution of

(E1).

Let u � 0 be any solution to problem (E1), then by Lemma 2, vk � u in D and
therefore v∞, c, D � u, which says that v∞, c, D is the minimal solution to problem (E1).

Lemma 3. Let σk be the first exit time from Bk = B(0, k) and τk = σk ∧ τ , then

lim
k→∞

〈Π.(τ = ∞),Xτk
〉 exists Pδx

-a.s. for all x ∈ D.
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Proof. We claim that, {exp〈−Π.(τ = ∞),Xτk
〉;Fτk

, Pδx
} is a submartingale.

In fact,

Pδx
(exp〈−Π.(τ = ∞),Xτk

〉/Fτk−1)

= PXτk−1
(exp〈−Π.(τ = ∞),Xτk

〉)
= exp〈−v,Xτk−1〉, x ∈ D,

(20)

where v(x) satisfies

v(x) + Πx

∫ τk

0

γ(ξs)v(ξs)αds = Πx(Πξτk
(τ = ∞)).

Since Π.(τ = ∞) = 0 on ∂D, we have

Πx(Πξτk
(τ = ∞))

= Πx(Πξσk∧τ
(τ = ∞)) = Πx(Πξσk

(τ = ∞), τ > σk)

= Πx(τ = ∞, τ > σk) � Πx(τ = ∞), x ∈ D,

(21)

then v(x) � Πx(τ = ∞). So, by (20),

Pδx
(exp〈−Π.(τ = ∞),Xτk

〉/Fτk−1) � exp〈−Π.(τ = ∞),Xτk−1〉,
and therefore {exp〈−Π.(τ = ∞),Xτk

〉;Fτk
, Pδx

} is a submartingale.

By the convergence theorem of bounded submartingale, lim
k→∞

exp〈−Π.(τ = ∞),Xτk
〉

exists Pδx
-a.s., and then lim

k→∞
〈Π.(τ = ∞),Xτk

〉 exists Pδx
-a.s., x ∈ D.

Lemma 4. Suppose {Dk} is a sequence of regular domains such that Dk ⊂ Dk+1,
Dc

k is compact and Dk ↑ D. Let σk, τk be the first exit time from Bk = B(0, k) and Dk

respectively. Then for every x ∈ D,

lim inf
k→∞

〈Π.(τ = ∞),Xτk∧σk
|∂Dk

〉 = 0 Pδx
-a.s.

Proof. By Fatou’s Lemma,

Pδx
(lim infk→∞〈Π.(τ = ∞),Xτk∧σk

|∂Dk
〉)

� lim infk→∞ Pδx
(〈Π.(τ = ∞),Xτk∧σk

|∂Dk
〉)

= lim infk→∞ Πx(Πξτk∧σk
(τ = ∞); ξτk∧σk

∈ ∂Dk).

Notice that Π.(τ = ∞)|∂D = 0, then

lim inf
k→∞

Πx(Πξτk∧σk
(τ = ∞); ξτk∧σk

∈ ∂Dk) = 0.

So we have

lim inf
k→∞

〈Π.(τ = ∞),Xτk∧σk
|∂Dk

〉 = 0 Pδx
-a.s.

Theorem 2. V∞, c, D(x) := − log Pδx
{exp(−cZD);R ⊂ D} is the maximal solu-

tion of the problem (E1).

Proof. Let {Dk} be a sequence of regular domains such that Dk ⊂ Dk+1, Dc
k is

compact and Dk ↑ D. Let τk be the first exit time from Dk , and σk the first exit time from
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Bk. Then τk ∧σk is the first exit time from Bk ∩Dk . Suppose k is large enough such that
∂D ⊂ Bk. Then for x ∈ D,

V∞, c, D(x) := − log Pδx
{exp(−cZD);R ⊂ D}

= − log Pδx
{exp(−c limk→∞〈Π.(τ = ∞),Xτk∧σk

〉);∪∞
k=1(Xτk

= 0)}
= limk→∞ − log Pδx

{exp(−c〈Π.(τ = ∞),Xτk∧σk
〉);Xτk

= 0}.
By the special Markov property,

V∞, c, D(x) = limk→∞ − log Pδx
{exp(−c〈Π.(τ = ∞),Xτk∧σk

〉) · PXτk∧σk
(Xτk

= 0)}
= limk→∞ − log Pδx

{exp(−〈cΠ.(τ = ∞),Xτk∧σk
〉) · exp〈−vk,Xτk∧σk

〉}
= limk→∞ − log Pδx

{exp(−c〈Π.(τ = ∞) + vk,Xτk∧σk
〉)}

= limk→∞ uk(x), x ∈ D,

where vk(x) is the minimal positive solution of the problem⎧⎪⎪⎨
⎪⎪⎩

1
2
Δv(x) = γ(x)v(x)α in Dk,

v(x) → +∞ as Dk � x → a ∈ ∂Dk,

v(x) → 0 as ‖x‖ → ∞,

and uk(x) is the solution of the problem⎧⎨
⎩

1
2
Δu(x) = γ(x)u(x)α in Dk ∩ Bk,

u|∂(Dk∩Bk) = cΠ.(τ = ∞) + vk.

Then as the same argument in Theorem 1, V∞, c, D(x) satisfies
1
2
ΔV∞, c, D(x) = γ(x)V∞, c, D(x)α, x ∈ D.

Notice {R ⊂ D} ⊂ {Xτ = 0}, then

V∞, c, D(x) = − log Pδx
{exp(−cZD);R ⊂ D}

� − log Pδx
{exp(−cZD);Xτ = 0} = v∞, c, D(x),

where v∞, c, D is the minimal positive solution of the problem (E1). Therefore
V∞, c, D|∂D = ∞.

Now we prove that
lim

‖x‖→∞
V∞, c, D(x) = c.

First, by V∞, c, D(x) � v∞, c, D(x) and lim
‖x‖→∞

v∞, c, D(x) = c, we have

lim inf
‖x‖→∞

V∞, c, D(x) � c. (22)

Put
vn(x) = − log Pδx

{exp(−cZDn
);Xτn

= 0}.
By Lemma 2 and Theorem 1, V∞, c, D(x) � vn(x) in Dn , and therefore

V∞, c, D(x) � lim inf
n→∞ vn(x) in D . (23)

Suppose n is large enough, let {D(n)
k } be a sequence of regular domains such that

D
(n)
k ↑ Dn, D

(n)
k ⊂ D

(n)
k+1 and (D(n)

k )
c

is compact. Let τ
(n)
k be the first exit time from
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D
(n)
k , σk be the first exit time of Bk and σ

(n)
k := τ

(n)
k ∧ σk. By the definition of ZD (see

(8)),

ZDn
= lim

k→∞
〈Π.(τn = ∞),X

σ
(n)
k

〉
= lim

k→∞
〈Π.(τn = ∞),X

σ
(n)
k

|∂Bk
〉 + lim

k→∞
〈Π.(τn = ∞),X

σ
(n)
k

|
∂D

(n)
k

〉
� lim inf

k→∞
〈Π.(τn = ∞),Xτn∧σk

〉 + lim
k→∞

〈Π.(τn = ∞),X
σ

(n)
k

|
∂D

(n)
k

〉,
Using Lemma 3 and Lemma 4 continues the above domination:

ZDn
� lim

k→∞
〈Π.(τn = ∞),Xτn∧σk

〉 Pδx
-a.s., ∀x ∈ D.

Then we have

vn(x) = − log Pδx
{exp(−cZDn

);Xτn
= 0}

� − log Pδx
{exp(−c lim

k→∞
〈Π.(τn = ∞),Xτn∧σk

〉);Xτn
= 0}

= lim
k→∞

− log Pδx
{exp(−〈cΠ.(τn = ∞),Xτn∧σk

〉);Xτn
= 0}.

(24)

Notice that Xτn∧σk
|∂Dn

� Xτn
and

Pδx
〈Π.(τn = ∞),Xτn

〉 = Πx(Πξτn
(τn = ∞); τn < ∞) = 0.

Then
〈Π.(τn = ∞),Xτn∧σk

〉 = 〈Π.(τn = ∞),Xτn∧σk
|∂Bk

〉, Pδx
-a.s. (25)

If k is large enough,
Xτn∧σk

|∂Bk
� Xτk∧σk

|∂Bk
. (26)

Then by (24), (25) and (26), we have

vn(x) � lim inf
k→∞

− log Pδx
{exp(−〈cΠ.(τn = ∞),Xτk∧σk

|∂Bk
〉);Xτn

= 0}
� lim inf

k→∞
− log Pδx

{exp(−〈cΠ.(τn = ∞),Xτk∧σk
〉);Xτn

= 0}
= − log Pδx

{exp(−cZD);Xτn
= 0}.

Letting n → ∞, we get

lim sup
n→∞

vn(x) � V∞, c, D(x) in D . (27)

By (23), (27) and {vn(x)} being decreasing for all x ∈ D,

vn(x) ↓ V∞, c, D(x) as n → ∞, for all x ∈ D.

For each ε > 0, there exists R > 0 such that v1(x) < c + ε, ∀x ∈ B(0, R)c. Since
{vn(x)} is decreasing, vn(x) � c + ε, ∀x ∈ B(0, R)c. And therefore V∞, c, D(x) <

c + ε for x ∈ B(0, R)c, then lim sup
‖x‖→∞

V∞, c, D(x) � c + ε. Since ε is arbitrary, we get

lim sup
‖x‖→∞

V∞, c, D(x) � c. (28)

Combining (22) with (28), we get lim
‖x‖→∞

V∞, c, D(x) = c. Thus V∞, c, D is a solution to

problem (E1).

By (27) and Lemma 2, we know that V∞, c, D(x) is the maximal solution of the problem
(E1). Now we complete the proof.
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Corollary 1. V∞, ∞, D(x) := − log Pδx
(R ⊂⊂ D) is the maximal solution of the

problem ⎧⎪⎪⎨
⎪⎪⎩

1
2
Δv(x) = γ(x)v(x)α in D,

v(x) → +∞ as D � x → a ∈ ∂D, (E2)

v(x) → +∞ as ‖x‖ → ∞,

where {R ⊂⊂ D} denotes the union of the sets {R ⊂ Γ} over all compact sets Γ ⊂ D.

Proof. Let {Dn} be a sequence of bounded domains such that Dn ⊂ Dn+1 and
Dn ↑ D. Let τn denote the first exit time from Dn. Then by Theorem 1.2 in Dynkin [1],
vn(x) = − log Pδx

(Xτn
= 0) is the minimal positive solution of the problem⎧⎨

⎩
1
2
Δv(x) = γ(x)v(x)α in Dn,

v(x) → +∞ as Dn � x → a ∈ ∂Dn.

Clearly, vn(x) = − log Pδx
(Xτn

= 0) ↓ V∞, ∞, D(x) = − log Pδx
(R ⊂⊂ D). As the

same argument in Theorem 1, 1
2
ΔV∞,∞, D(x) = γ(x)V∞, ∞, D(x)α in D.

By the maximum principle, we have V∞, c, D(x) � vn(x) in Dn. Then V∞, c, D(x) �
V∞,∞, D(x) in D. For x ∈ ∂D,

∞ = lim
x→a,x∈D

V∞, c, D(x) � lim
x→a,x∈D

V∞,∞, D(x).

And
c = lim

‖x‖→∞
V∞, c, D(x) � lim

‖x‖→∞
V∞,∞, D(x).

Letting c → ∞, we have
lim

‖x‖→∞
V∞, ∞, D(x) = ∞.

Thus V∞,∞, D is a solution of (E2).

Suppose u � 0 is a solution to problem (E2), then by the maximum principle, u � vn

in Dn and therefore u � V∞,∞, D in D. Therefore, V∞, ∞, D is the maximal solution of
(E2).

3 S-polar sets

Theorem 3. Each of the following conditions is necessary and sufficient for a com-
pact set Γ to be S-polar:

A. If v � 0 satisfies the problem⎧⎨
⎩

1
2
Δv(x) = γ(x)v(x)α in D = Γc,

v(x) → 0 as ‖x‖ → ∞, (E3)
then v = 0.

B. The maximal solution of the problem (E3) in D is bounded.

Proof. First by Dynkin[1], Γ is S-polar if and only if Pδx
(R ∩ Γ = ∅) = 1 for all

x ∈ D. Then by Theorem 2, Γ is S-polar if and only if the maximal solution V∞, 0, D(x) =
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− log Pδx
(R ⊂ D) of problem (E3) is equal to zero. So any nonnegative solution of the

problem (E3) can only be zero.

Clearly A implies B. If B holds, let {Dn} be a sequence of bounded domains such that
Dn ⊂ Dn+1 and Dn ↑ D, and let τn denote the first exit time from Dn. For V∞, 0, D is
bounded, by (2.22) in Dynkin [1], we have for every x ∈ D, 〈V∞, 0, D,Xτn

〉 → 0, Pδx
-

a.s. Also, for each n, V∞, 0, D(x) = − log Pδx
exp{−〈V∞, 0, D,Xτn

〉} in Dn. Letting
n → ∞, we get V∞, 0, D(x) ≡ 0. So B also implies A.

Theorem 4. Suppose Γ is a compact set. If Γ is S-polar, then the maximal solution
V∞,∞, D of the equation 1

2
Δv(x) = γ(x)v(x)α in D = Γc coincides, in D, with the

maximal solution V∞,∞, Rd of this equation in R
d; conversely, if V∞,∞, D is bounded near

Γ, then Γ is S-polar.

Proof. By Corollary 1,

V∞,∞, D(x) = − log Pδx
(R ⊂⊂ D), x ∈ D,

and
V∞,∞, Rd(x) = − log Pδx

(R ⊂⊂ R
d), x ∈ R

d.

If Γ is S-polar, then Pδx
(R ∩ Γ = ∅) = 1. So we get V∞,∞, D(x) = − log Pδx

(R ⊂⊂
R

d) = V∞,∞, Rd(x) for x ∈ D.

Now suppose V∞,∞, D is bounded near Γ. Clearly

V∞, 0, D = − log Pδx
(R∩ Γ = ∅) � V∞,∞, D,

where V∞, 0, D is the maximal solution of the problem (E3), then V∞, 0, D is bounded near
Γ. By Theorem 3B, Γ is S-polar.

Moreover, we have

Theorem 5. Each of the following conditions is necessary and sufficient for a com-
pact set Γ to be S-polar:

A. For every 0 � c < ∞, the solution of the problem⎧⎨
⎩

1
2
Δv(x) = γ(x)v(x)α in D = Γc,

v(x) → c as ‖x‖ → ∞ (E4)
is unique.

B. There exists 0 � c < ∞ such that the maximal solution of the above problem in
D is bounded.

Proof. By Theorem 2, the maximal solution of problem (E4) is

V∞, c, D(x) = − log Pδx
{exp(−cZD);R ∩ Γ = ∅}.

By (7) and Lemma 2, the minimal solution of problem (E4) is

v0, c, D(x) = − log Pδx
{exp(−cZD)}.

So we get Γ is S-polar if and only if

V∞, c, D = v0, c, D,
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which is equivalent to say the solution of the problem (E4) is unique.

Clearly A implies B. Now suppose there exists c � 0 such that V∞, c, D is bounded, we
get that V∞, 0, D is also bounded, where V∞, 0, D is the maximal solution of problem (E3).
Then by Theorem 3B, Γ is S-polar.

We say that an analytic set B is B-polar if

Πx{ξt /∈ B for all t > 0} = 1, ∀x ∈ Bc.

It is easy to see that B is B-polar if and only if

Πx{σ = ∞} = 1, ∀x ∈ Bc,

where σ = inf{t : ξt ∈ B}.

Lemma 5. Suppose a compact set K is contained in a domain D. Let D̃ = D \ K .
If K is B-polar, then ZD = Z

D̃
Pδx

-a.s., for all x ∈ D̃.

Proof. Let {Dn} be a sequence of bounded regular Greenian domains such that
Dn ⊂ Dn+1 and Dn ↑ D, {Kn} be a sequence of compact sets such that Kn ↓ K .
Let D̃n = Dn \ Kn, then D̃n ↑ D̃. Let σn, σ be the first hitting times of Kn and K

separately, and let τn be the first exit time from Dn. Put τ̃n = τn ∧ σn, τ̃ = τ ∧ σ, then
τ̃n is the first exit time from D̃n and τ̃ is the first exit time from D̃. So

〈Π.(τ̃ = ∞),Xτ̃n
〉

= 〈Π.(τ̃ = ∞),Xτ̃n
|∂Dn

〉 + 〈Π.(τ̃ = ∞),Xτ̃n
|∂Kn

〉
� 〈Π.(τ = ∞),Xτn

〉 + 〈Π.(τ̃ = ∞),Xτ̃n
|∂Kn

〉.
(29)

As the same argument in Lemma 4, lim inf
n→∞ < Π.(τ̃ = ∞),Xτ̃n

|∂Kn
〉 = 0, Pδx

-a.s.

Letting n → ∞ in (29), we get

Z
D̃

� ZD Pδx
-a.s., ∀x ∈ D̃. (30)

Assume that we have proved

Pδx
(exp(−ZD)) � Pδx

(exp(−Z
D̃

)), ∀x ∈ D̃, (31)

then together with (30), we have ZD = Z
D̃

Pδx
-a.s. for all x ∈ D̃. Now we are left to

prove (31).

Since K is B-polar, we have Πx{σ = ∞} = 1, ∀x ∈ Kc. Then Πx(τ = ∞) =
Πx(τ̃ = ∞), ∀x ∈ Kc, and

ZD = lim
n→∞〈Π.(τ = ∞),Xτn

〉
= lim

n→∞〈Π.(τ̃ = ∞),Xτn
〉. (32)

Notice that
Pμ{exp〈−Π.(τ̃ = ∞),Xτn

〉} = exp〈−vn, μ〉,
where vn satisfies

vn(x) + Πx

∫ τn

0

γ(ξs)vn(ξs)αds = Πx(Πξτn
(τ̃ = ∞)).

And
Pμ{exp〈−Π.(τ̃ = ∞),Xτ̃n

〉} = exp〈−ṽn, μ〉,
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where ṽn satisfies

ṽn(x) + Πx

∫ τ̃n

0

γ(ξs)ṽn(ξs)αds = Πx(τ̃ = ∞).

Notice that

vn(x) � Πx(Πξτn
(τ̃ = ∞) � Πx(Πξτn

(τ = ∞))

= Πx(τ = ∞) = Πx(τ̃ = ∞), ∀x ∈ Kc.

Since τ̃n � τn, by the special Markov property,

Pδx
(exp〈−Π.(τ̃ = ∞),Xτn

〉/Fτ̃n
)

= PXτ̃n
(exp〈−Π.(τ̃ = ∞),Xτn

〉) = exp〈−vn,Xτ̃n
〉

� exp〈−Π.(τ̃ = ∞),Xτ̃n
〉, x ∈ D̃. (33)

Letting n → ∞, by Theorem 2.2.4 in Renvez [4] and by noticing (32), we have, for x ∈ D̃,

Pδx
(exp(−ZD)/

⋃
n

Fτ̃n
) � exp(−Z

D̃
) Pδx

-a.s.

Taking the expectation on both sides of the above inequality, we get

Pδx
(exp(−ZD)) � Pδx

(exp(−Z
D̃

)), x ∈ D̃.

This completes the proof.

Theorem 6. Suppose a compact set Γ is contained in a domain D. If Γ is B-polar
and S-polar, then for every 0 � c < ∞, the maximal solution V∞, c, D̃

of the problem⎧⎨
⎩

1
2
Δv(x) = γ(x)v(x)α in D̃ = D \ Γ,

v(x) → c as ‖x‖ → ∞
coincides, in D̃, with the maximal solution V∞, c, D of the problem⎧⎨

⎩
1
2
Δv(x) = γ(x)v(x)α in D,

v(x) → c as ‖x‖ → ∞,

and hence V∞, c, D̃
is bounded in a neighborhood of Γ.

Conversely, if there exists a constant 0 � c < ∞ such that the maximal solution
V∞, c, D̃

is bounded near Γ, then Γ is S-polar.

Proof. By Theorem 2,

V∞, c, D̃
(x) = − log Pδx

{exp(−cZ
D̃

),R ⊂ D̃}, x ∈ D̃,

and
V∞, c, D(x) = − log Pδx

{exp(−cZD), R ⊂ D}, x ∈ D.

If Γ is S-polar, then Pδx
{R ⊂ Γc} = 1, ∀x ∈ Γc. By Lemma 5, Z

D̃
= ZD, so we get

V∞, c, D̃
= V∞, c, D in D̃, and hence V∞, c, D̃

is bounded in a neighborhood of Γ.

Conversely, suppose that V∞, c, D̃
is bounded near Γ. Notice that − log Pδx

(R ∩ Γ =
∅) � − log Pδx

(R ⊂ D̃) � − log Pδx
{exp(−cZ

D̃
),R ⊂ D̃} = V∞, c, D̃

(x), so
− log Pδx

(R ∩ Γ = ∅) is bounded near Γ and it is the maximal solution of the prob-
lem (E3). By Theorem 3B, Γ is S-polar.
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Remark. If Γ is B-polar and S-polar, V∞, c, Rd(x) = − log Pδx
{exp(−cZRd)}

is the unique solution to problem (E4). In fact, Theorem 5 says that the solution is
unique, and by Theorem 6, the maximal solution V∞, c, D coincides, in D = Γc with
V∞, c, Rd(x) = − log Pδx

{exp(−cZRd)}, the maximal solution of problem (E4) with D

replaced by R
d.
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