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Abstract

In this paper we consider a super-Brownian motion X with branching mech-
anism k(x)zα, where k(x) > 0 is a bounded Hölder continuous function on
Rd and infx∈Rd k(x) = 0. we prove that if k(x) ≥ ‖x‖−l(0 ≤ l < ∞) for
sufficiently large x, then X has compact support property, and for dimension
d = 1, if k(x) ≥ exp(−l‖x‖)(0 ≤ l < ∞) for sufficiently large x, then X also
has compact support property. The maximal order of k(x) for finite time ex-
tinction is different for d = 1, d = 2 and d ≥ 3: it is O(‖x‖−(α+1)) in one
dimension, O(‖x‖−2(log ‖x‖)−(α+1)) in two dimension, and O(‖x‖2) in higher
dimensions. These growth orders also turn out to be the maximum order for
the nonexistence of a positive solution for 1

2∆u = k(x)uα.

Keywords super-Brownian motion, compact support property, finite time extinc-

tion, positive solutions to nonlinear pde’s
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1 Introduction and Main Results

Suppose X = {Xt, Pµ} is a super-Brownian motion with branching mechanism k(x)zα(1 < α ≤
2) with k being a nonnegative, bounded, Hölder continuous function on Rd. It is well known that if

infx∈Rd k(x) > 0, then X has the compact support property and becomes extinct. In [1], Dawson,

Fleischmann and Mueller investigated the finite time extinction of super-Brownian motions with

catalysts in one dimension. They pointed out that if k(x) = 0 in some interval (a, b), then the

superprocess survives in finite time, and they gave an abstract sufficient criterion for finite time

extinction based on the idea of good and bad paths( see Theorem 10 in [1]). Using this abstract

criterion they showed that if k(x) = ‖x‖q ∧ 1(q > 0), the super-Brownian motion X dies in finite

time. In this article, we investigate the compact support property and finite time extinction of

super-Brownian motion X in the case k(x) ∼ ‖x‖−l as x → ∞ for some constant l ≥ 0, by

using the connections between superdiffusions and partial differential equations. (Writing f ∼ g

as x →∞ means there exist two positive constants C1, C2 such that C1f(x) ≥ g(x) ≥ C2f(x) for

x sufficiently large.)

Let W := {Ws,Πx, s ≥ 0, x ∈ Rd} denote the Brownian motion in Rd. For every Borel-

measurable space (E,B(E)), we denote by M(E) the set of all finite measures on B(E) endowed

with the topology of weak convergence. The expression < f, µ > stands for the integral of f with

respect to µ. We write f ∈ B(E) if f is a B(E)−measurable function. Writing f ∈ pB(E)(bB(E))

means that, in addition, f is positive (bounded). We put bpB(E) = bB(E)∩pB(E). If E = Rd, we

simply write B instead of B(E) and M instead of M(Rd). For an open set D, we write µ ∈ Mc(D)

if µ ∈ M(D) and has a compact support in D.

We denote by T the set of all exit times from open sets in Rd. Set F≤r = σ(Ws, s ≤ r);

F>r = σ(Ws, s > r) and F∞ = ∨{F≤r, r ≥ 0}. For τ ∈ T , we put F ∈ F≥τ if F ∈ F∞ and if, for

each r, {F, τ > r} ∈ F>r.

According to Dynkin[4], for every non-negative bounded Borel function k(x) in Rd and 1 <

α ≤ 2, there exists a Markov process X = (Xt, Pµ) in M such that the following conditions are

satisfied.

(a) If f is a bounded continuous function, then < f, Xt > is right continuous in t on R+.
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(b) For every µ ∈ M and for every f ∈ bpB,

Pµ exp < −f,Xt >= exp < −vt, µ >, µ ∈ M (1.2)

where v is the unique solution of the integral equation

vt(x) + Πx

[∫ t

0

k(Ws)vα
t−s(Ws)ds

]
= Πxf(Wt). (1.3)

Moreover, for every τ ∈ T , there corresponds a random measure Xτ on Rd associated with the

first exit time τ such that, for f ∈ bpB,

Pµ exp{− < f, Xτ >} = exp < −u, µ >, , µ ∈ M (1.4)

where u is the unique solution of the integral equation

u(x) + Πx

[∫ τ

0

k(Ws)uα(Ws)ds

]
= Πxf(Wτ ) (1.5)

(f(Wτ ) = 0 if τ = ∞). We call X = {Xt, Xτ , Pµ} the super-Brownian motion with branching

mechanism ψ(x, z) = k(x)zα (enhanced model).

The class of all k times continuously differentiable functions in a domain D is denoted by

Ck(D). For constant λ > 0, we put f ∈ C0,λ(D) if f is locally Hölder continuous on D with

exponent λ > 0 that is if for every compact set K ⊂ D, there exists a constant CK depending

only on K such that |f(x)− f(y)| ≤ CK‖x− y‖λ for all x, y ∈ K. Put f ∈ Ck,λ(D) if f ∈ Ck(D)

and if the derivations of order ≤ k belong to C0,λ(D). Throughout this paper, we suppose k is a

bounded function in Rd, k ∈ Cλ(Rd), λ ∈ (0, 1] and k > 0.

In the sequel we will frequently use the notation A ⊂⊂ B, which means that A is bounded

and A ⊂ B. For 0 6= µ ∈ Mc(Rd). we say that the measure-valued process corresponding to Pµ

possesses the compact support property if

Pµ

(∪0≤s≤tsuppXs ⊂⊂ Rd
)

= 1, for all t ≥ 0.

In the first part of this paper, we will investigate the compact support property for super-

Brownian motions. This problem have been discussed by Engländer and Pinsky (see [5] and [6])

for superdiffusions. According to Engländer and Pinsky’s results in [5], if infx∈Rd k(x) > 0, then

the super-Brownian motion with branching mechanism k(x)zα(1 < α ≤ 2) possesses the compact

support property. By checking their proofs and making some modification, we get the following

Theorems 1.1 and 1.2.

Theorem 1.1 Suppose there exist constants M > 0, l ≥ 0 such that k(x) ≥ M
(‖x‖−l ∧ 1

)

for x ∈ Rd.
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(1) The Cauchy-problem




∂u
∂t = 1

2∆u− k(x)uα, on Rd × (0,∞),

limt→0 u(x, t) = 0.

(C)

has no nonnegative nonzero solution.

(2) The super-Brownian motion with branching mechanism k(x)zα(1 < α ≤ 2) possesses the

compact support property.

For dimension d = 1, we have a stronger result.

Theorem 1.2 Suppose d = 1 and there exists constants M, l > 0 such that k(x) ≥ M exp(−l‖x‖)
for x ∈ R1. Then results (1) and (2) in Theorem 1.1 hold.

Remark In the case d = 1, Engländer and Pinsky [5] pointed out that if k(x) = exp(−(x2 +

1)2), then the process does not possess the compact support property.

A path X(·) of the super-Brownian motion survives if X(t) 6= 0 for all t ≥ 0 and becomes

extinct if X(t) = 0 for all sufficiently large t. The super-Brownian motion corresponding to Pµ

becomes extinct (survives) if Pµ(X(·) survives) = 0(> 0).

By using the connections between superdiffusions and partial differential equations, Sheu[9]

studied the structure of the set of all positive solutions for nonlinear elliptic equation:

1
2
∆u = k(x)uα(x), x ∈ Rd (1.6)

for dimension d ≥ 3 under the condition:

lim
r→∞

sup
x∈Rd

∫

‖y‖>r

g(x, y)k(y)dy = 0, (1.7)

where g(x, y) is the Green function of the operator 1
2∆ on Rd. In section 3, we give the structures

of all positive solutions of (1.6) on an unbounded domain D for dimension d ≤ 2 in terms of

superdiffusions (see Theorems 1.3 and 3.1). Then, in section 4, by using the connections between

superdiffusions and structures of positive solutions of nonlinear partial differential equations, we

obtain the finite time extinction results of super-Brownian motions (see Theorem 1.4).

Theorem 1.3 Consider the elliptic differential equation

1
2
∆u = k(x)uα in Rd (E)

(1) Let d = 1. If
∫∞

a
k(y)yαdy < ∞(or

∫ −a

−∞ k(y)yα < ∞) for some constant a > 0, then E has

a nonnegative solution satisfying limx→∞
u(x)

x = ∞ (or limx→−∞
u(x)
−x = ∞). If k(x) ≥ c/‖x‖1+α

for ‖x‖ >> 1 and some c > 0, then E has no nonnegative nonzero solution.
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(2) Let d = 2. If k(x) ≤ k(‖x‖) for x sufficiently large, and
∫∞

a
sk(s)(log(1 + s))αds < ∞

for some constant a > 0, then E has a nonnegative solution satisfying lim‖x‖→∞
u(x)

ln(‖x‖) = ∞. If

k(x) ≥ c/‖x‖2(log ‖x‖)α+1 for ‖x‖ >> 1 and some c > 0,

then E has no nonnegative nonzero solution.

(3) Let d ≥ 3. If k(x) ≤ k(‖x‖) for x sufficiently large, and
∫∞

a
sk(s) < ∞ for some a > 0,

then E has nonnegative nonzero solution. If k(x) ≥ c/‖x‖2 for ‖x‖ >> 1 and some c > 0, then E

has no nonnegative nonzero solution.

Theorem 1.4 Let X be a super-Brownian motion with branching mechanism k(x)zα.

(1) If

k(x) ≤





c/
[‖x‖1+α+ε

]
, d = 1;

c/
[‖x‖2(log ‖x‖)1+α+ε

]
, d = 2;

c/‖x‖2+ε, d ≥ 3.

(1.8)

for sufficiently large ‖x‖ and some ε, c > 0, then X survives.

(2) If

k(x) ≥





c/
[‖x‖1+α

]
, d = 1;

c/
[‖x‖2(log ‖x‖)1+α

]
, d = 2;

c/‖x‖2, d ≥ 3.

(1.9)

for sufficiently large ‖x‖ and some c > 0 , then X dies in finite time.

2 Compact Support Property (Proof of Theorem 1.1 and

Theorem 1.2)

Proof of Theorem 1.1 By Theorem 3.4 in [5], statements (1) and (2) are equivalent. So,

we only need to prove statement (1).
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Let u ≥ 0 be a solution to (C). Define

uR(x, t) = (λ + γrm)(R2 − r2)−2/(α−1)eKt, ‖x‖ < R, t ≥ 0, (2.1)

where r = ‖x‖ and m, γ,K and λ are to be fixed later. We prove that

1
2
∆uR − k(x)uα

R − (uR)t ≤ 0, for sufficiently large R > 0, (2.2)

if γ, K, λ are sufficiently large. Since limr→R uR(x, t) = ∞, for x, t fixed, and since uR(x, 0) > 0,

it follows from the parabolic maximum principle that u(x, t) ≤ uR(x, t) for ‖x‖ < R, t > 0. Since

limR→∞ uR(x, t) = 0, we conclude that u ≡ 0. It remains to prove (2.2). Put

f = (λ + γrm), g(r) = (R2 − r2)−2/(α−1)

Then

f ′ = mγrm−1, f ′′ = m(m− 1)γrm−2,

g′ =
4r

(α− 1)
(R2 − r2)−(α+1)/(α−1),

g′′ =
4

α− 1
(R2 − r2)−(α+1)/(α−1) +

8(α + 1)
(α− 1)2

r2(R2 − r2)−2α/(α+1).

Note that

e−Kt
[
1
2∆uR − k(x)uα

R − (uR)t

]

= e−Kt
[
1
2u′′R(r, t) + d−1

2r u′R(r, t)− k(x)uα
R(r, t)− (uR)t(r, t)

]

= 1
2fg′′ + (f ′ + d−1

2r f)g′ + ( 1
2f ′′ + d−1

2r f ′ −Kf)g − k(x)fαgαe(α−1)Kt

≤ 4(α+1)
(α−1)2 r2(λ + γrm)(R2 − r2)−2α/(α−1) + 1

α−1 [4mγrm + 2d(λ + γrm)] (R2 − r2)−(α+1)/(α−1)

+
[
1
2m(m− 1)γrm−2 + 1

2 (d− 1)mγrm−2 −K(λ + γrm)
]
(R2 − r2)−2/(α−1)

−k(x)(λ + γrm)α(R2 − r2)−2α/(α−1) ≡ ∑
.

.

To show that
∑ ≤ 0, it is enough to prove that

4(α+1)
(α−1)2 r2(λ + γrm) + 1

α−1 [4mγrm + 2d(λ + γrm)] (R2 − r2)

+
[
1
2m(m− 1)γrm−2 + 1

2 (d− 1)mγrm−2 −K(λ + γrm)
]
(R2 − r2)2

−M(r−l ∧ 1)(λ + γrm)α ≡ I + II + III − IV ≤ 0.
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First, let r > 1. We consider separately the cases R2 ≤ 2r2 and R2 > 2r2. When R2 ≤ 2r2,

III ≤ γ
[
1
2m(m− 1) + 1

2 (d− 1)m−Kr2)
]
rm−2(R2 − r2)2

≤ γ
[
1
2m(m + d− 2)−K

]
rm−2(R2 − r2)2.

Let K > 1
2m(m + d− 2). Then III ≤ 0.

I + II ≤ 2r2
[

2(α+1)+d(α−1)
(α−1)2 (λ + γrm) + 2m

α−1γrm
]

≤ 2r2
[

2(α+1)+d(α−1)
(α−1)2 (λ + γrm) + 2m

α−1 (λ + γrm)
]

≤ 2
[

2(α+1)+(d+2m)(α−1)
(α−1)2

]
r2(λ + γrm).

Thus,

I + II − IV ≤
[

4(α+1)+2(d+2m)(α−1)
(α−1)2

]
r2(λ + γrm)−Mr−l(λ + γrm)α

≤ (λ + γrm)r2
[

4(α+1)+2(d+2m)(α−1)
(α−1)2 −Mγα−1r−l−2+(α−1)m

]

If we choose m ≥ l+2
α−1 and γ ≥

[
4(α+1)+2(d+2m)(α−1)

M(α−1)2

]1/(α−1)

, then I + II − IV ≤ 0.

Consider now the case R2 ≥ 2r2. Then

II ≤ 1
α−1 [4mγ + 2d(λ + γ)] rm(R2 − r2)

≤ 1
α−1 [4mγ + 2d(λ + γ)] rm−2(R2 − r2)2

III ≤
[
1
2
m(m + d− 2)−K

]
γrm−2(R2 − r2)2.

Let K ≥
[

4m+2d
α−1 + 1

2m(m + d− 2) + 2dλ
(α−1)γ

]
. Then

II + III ≤
[
4m + 2d

α− 1
γ +

1
2
m(m + d− 2)γ +

2dλ

(α− 1)
−Kγ

]
rm−2(R2 − r2)2 ≤ 0.

Note that

I − IV = (λ + γrm)
[

4(α+1)
(α−1)2 r2 −Mr−l ((λ + γrm)α−1

]

≤ (λ + γrm)r2
[

4(α+1)
(α−1)2 −Mγr−l−2+m(α−1)

]
.
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Thus for m ≥ l+2
α−1 and γ ≥ 4(α+1)

(α−1)2M , we have I − IV ≤ 0.

Finally, consider the case r ≤ 1. For λ sufficiently large, we have

I − IV ≤ 4(α + 1)
(α− 1)2

(λ + γ)−Mλα ≤ 0.

Since, for λ > 1,

II + III ≤ 1
α− 1

[4mγ + 2d(λ + γ)]R2 +
[
1
2
m(m + d− 2)γ −Kλ

]
(R2 − r2)2.

Let K > m(m+d−2)γ
2λ . Then for sufficiently large R,

II + III ≤ 1
α− 1

[4mγ + 2d(λ + γ)]R2 +
[
1
2
m(m + d− 2)γ −Kλ

]
(R2 − 1)2 ≤ 0.

In light of the above calculations, for R sufficiently large, the inequality
∑ ≤ 0 for all 0 <

r < R will be satisfied if m, γ, λ and K are chosen as follows. First, choose m = l+2
α−1 and

γ =
[

4(α+1)+2(d+2m)(α−1)
M(α−1)2

]1/(α−1)

. Then choose λ > 1 so large that I − IV ≤ 0 for r ≤ 1. Finally,

let K >
[

4m+2d
α−1 + 1

2m(m + d− 2) + 2dλ
(α−1)γ

]
∨

[
m(m+d−2)γ

2λ

]
.

The proof of Theorem 1.2 is similar to that of Theorem 1.1. To make it easier for the reader

to follow, we give its detailed proof here.

Proof of Theorem 1.2 We only need to prove statement (2). Let u ≥ 0 be a solution to

(C). Define

uR(x, t) = [λ + γ exp(mr)] (R2 − r2)−2/(α−1)eKt, ‖x‖ < R, t ≥ 0, (2.3)

where r = ‖x‖ and γ, K and λ are to be fixed later. we prove that

1
2
∆uR − k(x)uα

R − (uR)t ≤ 0, for sufficiently large R > 0, (2.4)

if m, γ,K, λ are sufficiently large. Since limr→R uR(x, t) = ∞, for x, t fixed, and since uR(x, 0) > 0,

it follows from the parabolic maximum principle that u(x, t) ≤ uR(x, t) for ‖x‖ < R, t > 0. Since

limR→∞ uR(x, t) = 0, we conclude that u ≡ 0. It remains to prove (2.4). Put

f(x) = [λ + γ exp(mr)] , g(x) = (R2 − r2)−2/(α−1).

Then

f ′ = mγ exp(mr) ≤ mf, f ′′ = m2γ exp(mr) ≤ m2f

g′ =
4r

(α− 1)
(R2 − r2)−(α+1)/(α−1) =

4r

α− 1
(R2 − r2)gα,

9



g′′ = 4
α−1 (R2 − r2)−(α+1)/(α−1) + 8(α+1)

(α−1)2 r2(R2 − r2)−2α/(α+1)

= 4
α−1 (R2 − r2)gα + 8(α+1)

(α−1)2 r2gα.

Note that

e−Kt
[
1
2∆uR − k(x)uα

R − (uR)t

]

≤ 1
2fg′′ + f ′g′ + ( 1

2f ′′ −Kf)g −M exp (−lr)fαgα

≤ fgα
[

4(α+1)
(α−1)2 r2 +

(
2

α−1 + 4mr
)

(R2 − r2) + ( 1
2m2 −K)(R2 − r2)2 −M exp (−lr)fα−1

]
≡ ∑

.

.

To show that
∑ ≤ 0, it is enough to prove that

4(α+1)
(α−1)2 r2 +

(
2

α−1 + 4mr
)

(R2 − r2) + ( 1
2m2 −K)(R2 − r2)2 −M exp (−lr)fα−1

≡ I + II + III − IV ≤ 0.

First, consider r > 1. We consider separately the cases R2 ≤ 2r2 and R2 > 2r2. When

R2 ≤ 2r2, Let K ≥ 1
2m2. Then III ≤ 0.

I + II − IV ≤ 4(α+1)
(α−1)2 r2 + 2r2

α−1 + 4mr3 −M exp (−lr)γα−1 exp(m(α− 1)r)

If we choose m > l/(α − 1), and let γ ≥ supr≥1

[
4(α+1)r2+2(α−1)r2+4m(α−1)2r3

M(α−1)2 exp(m(α−1)−l)r

]1/(α−1)

, then I +

II − IV ≤ 0.

Consider now the case R2 ≥ 2r2. Let K ≥ 2
α−1 + 4m + 1

2m2. Then

II + III ≤
[

2
α− 1

+ 4m +
1
2
m2 −K

]
(R2 − r2)2 ≤ 0.

Note that, for m > l
α−1 and γ ≥ supr≥1

[
4(α+1)r2

M(α−1)2 exp(m(α−1)−l)r

]1/(α−1)

,

I − IV =
4(α + 1)
(α− 1)2

r2 −M exp (−lr)γα−1 exp(m(α− 1)r) ≤ 0.

Finally, consider the case r ≤ 1. For λ sufficiently large, we have

I − IV ≤ 4(α + 1)
(α− 1)2

−M exp(−l)λα−1 ≤ 0.
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Since

II + III ≤
[

2
α− 1

+ 4m

]
R2 + (

1
2
m2 −K)(R2 − r2)2,

if let K > 1
2m2, then for sufficiently large R,

II + III ≤
[

2
α− 1

+ 4m

]
R2 + (

1
2
m2 −K)(R2 − 1)2 ≤ 0.

In light of the above calculations, for R sufficiently large, the inequality
∑ ≤ 0 for all 0 < r < R

will be satisfied if m, γ, λ and K are chosen as follows. First, choose m > l
α−1 , K ≥ 2

α−1 +4m+ 1
2m2

and γ = supr≥1

[
4(α+1)r2+2(α−1)r2+4m(α−1)2r3

M(α−1)2 exp(m(α−1)−l)r

]1/(α−1)

. Then choose λ > 1 so large that I−IV ≤ 0

for r ≤ 1.

3 Probabilistic Solutions of Nonlinear Differential Equations

on Unbounded Domains (Proof of Theorem 1.3)

In this section, we use D to denote the set (a,∞) or (−∞, a) with a being a constant for d = 1,

an unbounded domain in R2 with a compact nonempty boundary ∂D consisting of finitely many

Jordan curves for d = 2, and Rd for d ≥ 3. Now we first study probabilistic solutions of




1
2∆u = k(x)uα(x), on D;

u > 0, on D;

u = 0 on ∂D(in the case d ≤ 2).

(3.1)

Zhao discussed Problem (3.1) for d ≥ 3 and d = 1, respectively in 1993 and 1994 (see [11] and

[12]). In 1998, Ufuktepe and Zhao[10] discussed problem (3.1) for d = 2. They proved existence

theorems for problem (1.3) under certain conditions on k for all dimensions. The main tools used

by them are probabilistic potential theory and fixed-point theory. Their proofs also hold for a

more general nonlinear term. In 1995, Sheu [9], by using the connections between super-Brownian

motions and nonlinear differential equations, discussed the structure of all solutions of problem

(3.1) for d ≥ 3. In this section we describe the structures of all positive solutions of problem (3.1)

for d ≤ 2. To state our results, let us give some notations.

Let GD(x, y) denote the Green function for D. If d = 1, then G(a,∞)(x, y) = 2(|x− a| ∧ |y− a|)
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for x, y ∈ D. For a regular domain D, the Green operator is defined as

GDf(x) = Πx

[∫ τD

0

f(Wt)dt

]
=

∫

D

GD(x, y)f(y)dy,

where, f is a Borel function on D.For x ∈ D, put

h(x) =





|x− a|, d = 1;

π lim
y→∞

GD(x, y), d = 2;

1, d ≥ 3.

(3.2)

For dimension d = 2, by Proposition 2.1 in Ufuktepe and Zhao[10], h(x) is a harmonic function on

D satisfying

lim
D3x→z

h(x) = 0 for any z ∈ ∂D, (3.3)

and

lim
‖x‖→∞

h(x)
log ‖x‖ = 1. (3.4)

Put

g(x) =





‖x‖, d = 1;

log(‖x‖), d = 2;

1, d = 3

(3.5)

for large ‖x‖ > 1.

Theorem 3.1 Let D, h and g be defined as above. Suppose d ≤ 2 and k satisfies
∫

‖y‖>a

k(y)g(y)αdy < ∞ (3.6)

(1) For every µ ∈ Mc((0,∞)), Z = limn→∞ < h, XτD∩B(0,n) > exists Pµ-a.s. and for every

c > 0,

uc(x) := − log Pδx exp{−cZ} (3.7)

is the unique solution of (3.1) with condition

lim
x∈D,‖x‖→∞

u(x)
g(x)

= c. (3.8)
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(2) If u(x) is a solution of (3.1) and satisfies lim supx∈D,‖x‖→∞
u(x)
g(x) < ∞, then u = uc for

some c > 0.

(3)

J(x) := − log Pδx
(Z = 0) (3.9)

is the smallest solution to problem (3.1) with condition

lim
x∈D,‖x‖→∞

u(x)
g(x)

= ∞, (3.10)

and

I(x) := − log Pδx
(XτD∩B(0,n) = 0 for n sufficiently large) (3.11)

is the largest solution to problem (3.1) with condition (3.10).

Sheu[9] discussed Problem (3.1) for d ≥ 3. We state Sheu’s result as follows:

Theorem 3.2 Suppose d ≥ 3, k(x) ≤ k(‖x‖) for x sufficiently large, and
∫∞

a
sk(s) < ∞ for

some a > 0. The result of Theorem 3.1 holds for D = Rd with d ≥ 3.

To prove Theorem 3.1, we quote some lemmas, in which the first two lemmas are refer to Sheu[9]

and Wang[8].

Lemma 3.1 Suppose k(x) satisfies (3.6). For every sequence of open sets {Dn} satisfying

Dn ↑ D, there exists a random variable Z such that Z = limn→∞ < h, XτDn
>< ∞, Pµ-a.s. for

every µ ∈ Mc(D). Moreover, the limit does not depend on µ and the choice of Dn.

Lemma 3.2 Suppose d ≤ 2. Let B(0, r) = {x ∈ R2, ‖x‖ < r} be a ball such that Dc ⊂ B(0, r)

for d = 2. If un is a sequence of solutions of differential equation 1
2∆u = kuα on D ∩B(0, r) and

u = limn→∞ un on D∩B(0, r), then u is also a solution of 1
2∆u = kuα on D∩B(0, r). Moreover, if

un has boundary value un at ∂D, and limn→∞ un(z) exists for every z ∈ ∂D, then u has boundary

value limn→∞ un(z) at z.

Lemma 3.3 If g is a positive bounded integrable function on D. Then

(1) GDg ∈ C0,λ(D);

(2) if g ∈ C0,λ(D), then GDg ∈ C2,λ(D) and 1
2∆GDg = −g in D.

Lemma 3.3 is Theorem 4.6.6 in Port and Stone[7] with some modifications.

Now let us give two results for dimension d = 2.

Pick a fixed point a ∈ R2 \D and r > 0 (small enough) such that D ⊃ B∗
r = R2 \B(a, r). Let

x∗ = a + r2 (x−a)
‖x−a‖2 be the Kelvin inversion from D ∪ {∞} to D∗, where D∗ = {x∗ ∈ B(a, r) : x ∈

D ∪ {∞}}. Using the explicit formula of GB∗r (·, ·), we can prove:
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Lemma 3.4 Suppose d = 2. For positive bounded function k, the family of functions

{GD(x, ·)k(·)hα−1(·)} with parameter x ∈ D is uniformly integrable over D.

Lemma 3.5 Suppose d = 2. If f > 0 is a harmonic function having boundary value 0 on ∂D,

then f = ch on D for some constant c > 0 with h given by (3.2).

Proof The Kelvin transformation of f relative to Sr(a) is f∗(x∗) = f(x), where x = a +
r2

‖x∗−a‖2 (x∗−a). f∗(x∗) is a positive harmonic function on D∗\{a}. Letting f∗(a) = lim infx∗→a f∗(x∗),

f∗ is a super-harmonic function on D∗ having boundary value 0 on ∂D∗. By the Riesz decom-

position theorem and Theorem 6.1.4 in Port and Stone[7], there exists a constant c > 0 such that

f∗(x∗) = cGD∗(x∗, a) for x∗ ∈ D∗ and hence f(x) = ch(x) for x ∈ D.

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1 We only give a proof for d = 2. The proof for d = 1 is similar.

(1) By (1.4) and (1.5),

uc,n(x) = − log Pδx exp < −ch,XτD∩B(0,n) > (3.13)

satisfies the following integral equation:

uc,n(x) + Πx

∫ τD∩B(0,n)

0

k(Ws)uα
c,n(Ws)ds = ch(x), x ∈ D ∩B(0, n). (3.14)

By Lemma 3.1, uc(x) = limn→∞ uc,n(x), x ∈ D. By (3.4) and (3.6), k(y)hα(y) is integrable in D.

Thus
∫

D
GD(x, y)k(y)hα(y)dy < ∞. Letting n →∞ in (3.14), by dominated convergence, we have

uc(x) + GD(kuα
c ) = ch(x), x ∈ D. (3.15)

By Lemma 3.3(1), GD(kuα
c ) ∈ C0,λ(D). Then by (3.15), uc ∈ C0,λ(D). Using Lemma 3.3(2),

GD(kuα
c ) ∈ C2,λ(D) and 1

2∆GD(kuα
c ) = −kuα

c , and therefore 1
2∆uα

c = kuα
c in D. Now we check

that lim‖x‖→∞
uc(x)
h(x) = c. It is enough to prove that

lim
‖x‖→∞

GD(kuα
c )

h(x)
= 0. (3.16)

Note that
GD(kuα

c )
h(x)

≤ cα

∫

D

GD(x, y)k(y)hα(y)
h(x)

. (3.17)

By the (3-G) inequality for Green functions on D (see Theorem 2.2 in Ufuktepe and Zhao[10]),
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there exists a constant C > 0 such that

GD(x, y)k(y)hα(y)
h(x)

= π lim
z→∞

GD(x, y)GD(y, z)k(y)hα−1(y)
GD(x, z)

≤ lim
z→∞

C(GD(x, y) + GD(y, z) + 1)k(y)hα−1(y)

≤ C(GD(x, y) + h(y) + 1)k(y)hα−1(y).

Since
∫

D
(h(y) + 1)k(y)hα−1(y)dy < ∞ and the family of functions GD(x, ·)k(·)hα−1(·) with pa-

rameter x ∈ D is uniformly integrable over D by Lemma 3.4, the family of functions GD(x,·)k(·)hα(·)
h(x)

is uniformly integrable over D. It is obvious that GD(x,y)k(y)hα(y)
h(x) → 0 as x → ∞. Thus (3.16)

holds by (3.17).

Suppose u(x) is a solution of (3.1) satisfying limx→∞
u(x)
h(x) = c. Then

∫
D

GD(x, y)k(y)uα(y)dy <

∞, and limx→∞

∫
D

GD(x,y)k(y)uα(y)dy

h(x) = 0. Let h(x) = u(x) +
∫

D
GD(x, y)k(y)uα(y)dy. Then h is

a positive harmonic function on D having boundary value 0 at ∂D and satisfies limx→∞
h(x)
h(x) = c.

Hence, by Lemma 3.5, h(x) = ch(x), which means that

u(x) +
∫

D

GD(x, y)k(y)uα(y)dy = ch(x). (3.18)

By the maximum principle,

u(x) = − log Pδx exp < −u,XτD∩B(0,n) > . (3.19)

On one hand,

u(x) ≤ − log Pδx
exp < −ch,XτD∩B(0,n) > . (3.20)

On the other hand, by (3.19), we have, for n large enough (such that Dc ⊂ B(0, n)),

u(x) = − log Pδx exp < (−ch + GDkuα), XτD∩B(0,n) >

= − log Pδx
exp < −chI∂B(0,n)

(
1− GD(kuα)

ch

)
, XτD∩B(0,n) > .

Since lim‖x‖→∞
GD(kuα)(x)

h(x) = 0, we have, for every ε > 0, there exists an integer N such that
GD(kuα)(x)

ch(x) ≤ ε for n > N and x ∈ ∂B(0, n), and hence

u(x) ≥ − log Pδx
exp < −c(1 + ε)h,XτD∩B(0,n) > .

Letting ε → 0, we get

u(x) ≥ − log Pδx
exp(−cZ). (3.21)
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Combining (3.20) and (3.21), we get u(x) = − log Pδx
exp(−cZ).

(2) If u is a solution of (3.1) satisfying lim supx→∞
u(x)
h(x) < ∞, using the same method as above,

we can prove that (3.18) holds for some constant c > 0, and then u(x) = − log Pδx exp(−cZ).

(3) Since J(x) = limc→∞ uc(x), it follows from Lemma 2.2 that J(x) is a solution to problem

(3.1). It is obvious that limx→∞
J(x)
h(x) = ∞. By the maximum principle, J is the minimal solution

to problem (3.1) with limx→∞
u(x)
h(x) = ∞.

For large n (such that Dc ⊂ B(0, n)), put

In(x) = − log Pδx(XτD∩B(0,n)(∂B(0, n)) = 0), x ∈ D ∩B(0, n).

Note that − log Pδx
exp(−λXτD∩B(0,n)(∂B(0, n)) ↑ In(x) as n ↑ ∞. Using Lemma 3.2, we have In

is a solution of u′′ = kuα on D ∩ B(0, n) having boundary value 0 at ∂D and boundary value ∞
at ∂B(0, n). Since I(x) = limn→∞ In(x), by Lemma 3.2, I is a solution to problem (3.1). The

maximum principle implies that I is the largest solution to problem (3.1). 2

Theorem 3.3 If d = 1 and
∫∞

a
k(y)yαdy < ∞( or

∫ −a

−∞ k(y)yαdy < ∞) for some constant

a > 0, then there is a non-negative solution of equation (E) in R1 satisfying

lim
x→∞

u(x)
x

= ∞ ( or lim
x→−∞

u(x)
−x

= ∞). (3.22)

Proof Suppose
∫∞

a
k(y)yαdy < ∞. (The other case can be proved similarly.) By Theorem

3.2, J(x) = − log Pδx
(limn→∞ nXτ(a,n)(n) = 0) is a solution of 1

2u′′ = k(x)uα in (a,∞) satisfying

J(a) = 0 and limx→∞
J(x)

x = ∞. Let un(x) = − log Pδx(Xτ(−n,n) = 0). Then un is a nonnegative

solution of 



1
2u′′ = kuα, in (−n, n)

u(−n) = u(n) = ∞

.

By the elliptic maximum principle, for n > a,

un(x) ≥ J(x), x ∈ (a, n)

Letting n → ∞, u := limn→∞ un(x) ≥ J(x) in (a,∞). Therefore, u is a nonnegative solution of
1
2u′′ = kuα in R1 satisfying limx→∞ u

x = ∞.

Theorem 3.4 If d = 2, k(x) ≤ k(‖x‖) for x sufficiently large, and
∫∞

a
sk(s)(log(1+s))αds <

∞ for some constant a > 0, then there is a positive solution of equation (E) in R2 satisfying

lim
‖x‖→∞

u(x)
ln(‖x‖) = ∞ . (3.23)
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Proof Let un(x) = − log Pδx
(XτB(0,n) = 0). Then un is a nonnegative solution of





1
2∆u = kuα, in B(0, n)

u|∂B(0,n) = ∞

.

un is decreasing in n. Put u(x) = limn→∞ un(x), x ∈ R2. u is a solution of 1
2∆u = kuα in R2. For

every fixed x0 ∈ Rd, there exists a ball B(x1, r0) such that x ∈ B
c
(x1, r0). By Theorem 3.1(3),

there is a solution J of 1
2∆u = k(x)uα in Bc(x1, r0) satisfying J = 0 on ∂B(x1, r0) and

lim
‖x‖→∞

J(x)
ln(‖x‖) = ∞. (3.24)

By the elliptic maximum principle, for n sufficiently large (such that B(x1, r0) ⊂ B(0, n) and

x0 ∈ B(0, n)),

un(x) ≥ J(x), x ∈ B(0, n) \B(x1, r0) (3.25)

Letting n → ∞, u ≥ J(x) in Bc(x0, r0). Particularly, u ≥ J > 0 in a neighborhood of x0. Since

x0 is an arbitrary point of Rd, u is a positive solution of 1
2∆u = kuα in R2. By (3.24) and (3.25),

u satisfies lim‖x‖→∞
u(x)

ln(‖x‖) = ∞.

The following Theorem 3.5 gives the nonexistence result. For details see Cheng and Lin [2].

Theorem 3.5 If k satisfies (1.9), then E does not possess any positive solution in Rd.

Proof of Theorem 1.3 The results of Theorem 1.3 follow from Theorems 3.1 - 3.5.

4 Finite Time Extinction (Proof of Theorem 1.4)

To prove Theorem 1.4, we need the following Theorem 4.1, which is proved in [5].

Theorem 4.1 (1) There exists a nonnegative function ω(x), which solves the equation 1
2∆u =

kuα on Rd, and for which

Pµ(X(·) is extinct) = exp
(
−

∫

Rd

ω(x)µ(dx)
)

, µ ∈ Mc(Rd). (4.1)
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Moreover, ω(x) = limt→∞ limn→∞ un(x, t), where un(t, x) is the minimal nonnegative solution to




ut = 1
2∆u− kuα in Rd × (0,∞)

u(·, 0) ≡ n.

(4.2)

Furthermore, ω is either identically zero or positive everywhere in Rd.

(2) Let C denote the event that the range of the process is compactly embedded in Rd, that is

C ≡ {∪0≤s≤∞suppXs ⊂⊂ Rd
}

.

There exists a maximal nonnegative solution to 1
2∆u = kuα on Rd, ωmax, and

Pµ(C) = exp
(
−

∫

Rd

ωmaxµ(dx)
)

, ∀µ ∈ Mc(Rd). (4.3)

also

Pµ(C ∩ {X(·) is survival }) = 0, ∀µ ∈ Mc(Rd). (4.4)

(3) If the compact support property holds, then ω ≡ ωmax.

Proof of Theorem 1.4 (1) Suppose k(x) = k(‖x‖) is a strictly positive Hölder continuous

function in Rd satisfying

k(‖x‖) =





c/
[‖x‖1+α+ε

]
, d = 1;

c/
[‖x‖2(log ‖x‖)1+α+ε

]
, d = 2;

c/‖x‖2+ε, d ≥ 3

(4.5)

for ‖x‖ sufficiently large, and

k(y) ≤ k(x) = k(‖x‖), for all x ∈ Rd. (4.6)

Let X be the super-Brownian motion corresponding to the differential equation 1
2∆u = kuα. By

Theorem 1.1, X has the compact support property. Then, by Theorem 4.1(2), ωX(x) = ωX
max(x)

in Rd. By Theorem 1.3,

lim
‖x‖→∞

ωX(x)
g(x)

= lim
‖x‖→∞

ωX
max(x)
g(x)

= ∞ (4.7),

where g(x) is defined by (3.5). By Theorem 4.1(1),

ωX(x) = lim
t→∞

lim
n→∞

uX
n (t, x) (4.8)
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and

ωX(x) = lim
t→∞

lim
n→∞

uX
n (t, x), (4.9)

where uX
n (x, t) is the minimal nonnegative solution to (3.12), and uX

n (x, t) is the minimal nonneg-

ative solution to (4.5) with k replaced by k. By the parabolic maximum principle and the proof

of Lemma A1 in [5],

uX
n (x, t) ≥ uX

n (x, t). (4.10)

Hence, by (4.8), (4.9) and (4.10),

ωX ≥ ωX in Rd (4.11).

Therefore, by (4.7) and (4.11),

lim
‖x‖→∞

ωX

g(x)
= ∞, (4.12)

and X survives.

(2) This result is obvious by Theorem 3.5 and Theorem 4.1.
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