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Abstract—Suppose that D is an unbounded domain in R? with a compact boundary 8D and k(x)
is a strictly positive Holder continuous function on D such that

[ g (el k(w) ds < oo,
zll2a

for some constant a > 0. In this paper, we study the nonlinear elliptic equation (1/2)Au = k(x)u®(z)
on D, where o € (1,2] is a constant. First, we give explicit expressions in terms of super-Brownian
motions for positive solutions of the above equation with the boundary conditions: ulsp = 0 and
limy g oo (w(x) /log(llz]])) = ¢ (0 < ¢ < o0). Then we give a complete classification of all posi-
tive solutions of the above equation with the boundary condition u|sp = 0 when k behaves like
flz} =2 (log(}|x}|)) " near co for some constant [ > 1 + a. In the one-dimensional case, we also have
similar results. © 2003 Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION AND MAIN RESULTS

Suppose that k(z) is a bounded strictly positive continuous function on R% and 1 < o < 2 is a
constant. It is well known that the following nonlinear elliptic equation

%Au = k(x)u*(z), r € R, (1.1)

is closely connected with super-Brownian motion. In this paper, we are going to study the
equation above by using this connection. We first recall the super-Brownian motion that we are
going to use.

Let W := {W,,1l;,s > 0, z € R%} denote a Brownian motion started at € R®. Let B be the
Borel o-field on R4, M be the collection of all finite measures on B, and let 7 be the collection of
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exit times by the Brownian motion W from open sets in R%. In this paper, we use the expression
(f, 1), for the integral of f with respect to u. According to Dynkin [1], there exists a Markov
process X = (X, P,) with state space M such that the following conditions are satisfied.
(a) If f is a bounded continuous function, then the function ¢ + (f, X;) is right continuous
on R™.
(b) For every pp € M and for every bounded positive f € B,

Pﬂexp<—f7Xt> =exp<—vt,,u), ,U‘EMa (12)

where v is the unique solution of the integral equation
¢
v(z) + 11, [/ k(W) v (W,)ds| =, f(Wy). (1.3)
0

Moreover, for every 7 € T, there corresponds a random measure X, on R? such that, for every
bounded positive f € B,

P#exp{_ (va‘r)} = exp (~u, i) peE M, (1.4)

where u is the unique solution of the integral equation
u(z) + 1, [/ k(Ws)u® (Ws) ds| = I f(W;) (1.5)
0

(f(W,) =0 if 7 = 00). We call X = {X,, X, P,} the super-Brownian motion with branching
mechanism ¥(z, z) = k(z)z®.

By using the super-Brownian motion above, Sheu [2] studied the structure of the set of all
positive solutions of the nonlinear elliptic equation (1.1) in Dimension 3 under the condition

lim sup A ” [l — y||2_d k(y) dy =0. (1.6)
yli>r

700 zeRd

In this paper, we discuss similar problems in Dimensions 1 and 2.

Suppose that k(z) is a bounded strictly positive Holder continuous function on R?, and D is an
unbounded domain in R? with a compact nonempty boundary 8D which consists of finitely many
Jordan curves. For simplicity, we suppose D = (0, 00) is the half straight line in one dimension.
We consider the structure of solutions to the problem

%Au =k (z) u*(z), in D,
u > 0, in D, (1.7)
u =0, on 8D.

Problem (1.7) with a more general nonlinear term has been studied by Ufuktepe and Zhao [3].
A similar equation in Dimension 1 has been studied by Zhao [4]. By using probabilistic potential
theory and fixed-point theory, they proved that, under certain conditions on k, (1.7) has solutions.
But they did not provide probabilistic expressions for their solutions. The main goal of this paper
is to give probabilistic expressions in terms of super-Brownian motion for all solutions to (1.7).

For any domain U, we use 1y to denote the first exit time of W from U. Let Gp(z,y) be the
Green function of D. For any Borel function f in D, the Green operator is defined as

Gpf(z) =TI, [ /0 ’ f(Wt)dt} - /D Go (z,9) f (v) dv.
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For z € D, put
h(z) == lim Gp (z,y). (1.8)
y—0o
Then h is a harmonic function in D such that
lim h{z)=0, for any z € 0D, (1.9)
D3x—z
and h(z)
z
lim ——— =1. 1.10
lizli—oo log (|||} (110
(See [3, Proposition 2.1].)
The following two theorems are the main results of this paper.
THEOREM 1. Suppose k satisfies
| k(@) og(fel))® do < o0, (111)
izl >a :

for some constant a > 0.
(1) Let h > 0 be given by (1.8). For every 4 € M with compact support in D, 7 =
limy, _,oo(h, X exists P,-a.s. and for every ¢ > 0,

uc(x) = —log P, exp{—cZ} (1.12)

TDnB(o,n))

is the unique solution of (1.7) satisfying the condition

o ulz)
lim ———— =¢. 1.13
5, Tog (Jal) -
(2) If u(x) is a solution of (1.7) and satisfies limsup,_, .. (u(z)/log(||z]|)) < oo, then u = u,

for some ¢ > 0. ‘

(3)
J(z) := —log Ps_, (Z=0) (1.14)
is the smallest solution to (1.7) satisfying the condition
- u(z)
lim ——— = o0, 1.15
5% Tog () (119
and

I(z) := ~log Ps_, (Xrpns(o.m =0 for n sufficiently large) (1.16)
is the largest solution to problem (1.7) satisfying condition (1.15).

If k(z) ~ ||z|| "% log(]|z])~* near oo for some constant | > 1 + a, the following result shows
that I = J is the unique solution to (1.7) satisfying condition (1.15). (Here f ~ ¢ near oo means
there exist two positive constants Cy, Cy such that C) f(z) > g(||z]]) = Caf(z) for z sufficiently
large.) But we do not know if I = J for a general function k.

THEOREM 2. If k(z) ~ |iz||"%log(||z||)~" near co for some constant I > 1 + «, then (1.7) has
only one solution satisfying condition (1.15). Moreover, we have

I(z) = J(z) ~ (log (lIz]}))* , (1.17)
where g = (I — 2)/{a — 1).

We also have similar results in Dimension 1. For simplicity, we assume that D = (0, 00) in this
case. So, in Dimension 1, we are dealing with the following problem:

S'(z) = znt(@),  in (0,00,
u >0, in (0,00), (1.18)
u(0) = 0.

The analogue of Theorem 1 in this case is as follows.
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THEOREM 3. Suppose k satisfies
/ k(x)|z|” dz < oo,
lzllza

for some constant a > 0.

(1) Let h be the function h(x) = z. For every u € M with compact support in (0, co),
Z = limp 00 (h, X"'Dr\B(o,n)> exists P,-a.s. and for every ¢ > 0,

uc(z) := ~log Ps, exp {—cZ}
is the unique solution of (1.18) satisfying the condition

lim u(z) =c.

n—oo |zl

(2) If u(z) is a solution of (1.18) and satisfles limsup,_, . (u(z)/|z|) < oo, then u = u, for
some ¢ > 0.

3
J(z):= —log Ps_, (Z=0)

is the smallest solution to (1.18) satisfying the condition

lim ulz) = 00, (1.19)

A, T
and
I(z) := ~log Ps_, (X

TDAB(0,n)

=0, for n sufficiently large)
is the largest solution to problem (1.18) satisfying condition (1.19).
Here is the analogue of Theorem 2 in the one-dimensional case.

THEOREM 4. If k(z) ~ |z|~! near oo for some constant | > 1 + «, then (1.18) has only one
solution satisfying condition (1.19). Moreover, we have

I(z) = J(z) ~ |z]7, (1.20)

where ¢ = (I — 2)/(a — 1).
We are only going to prove Theorems 1 and 2 in this paper, the proof of Theorems 3 and 4 are
similar to the proof of Theorems 1 and 2, respectively. We omit the details.

2. PROOF OF THEOREM 1

In this section, we are going to give the proof of Theorem 1. In order to do that, we need some
preparations first. The following result is a particular case of Theorem 0.5 in [1].

LEMMA 2.1. MAXIMUM PRINCIPLE.
Suppose U is a bounded domain and v : U x RT — R satisfy the condition

¥ (z,u) > ¢ (z,v), for every u > v € R" and every z € U.

If u,v > 0 belong to C?(U) and satisfy the conditions:
1 1
iAu(x) - (z,u(z)) > —2‘AU(.’E) — 1 (z,v(x)), inU,

and
limsup [u(z) — v(z)] <0, for all a € 8U,

z—a,zelU
then u(z) < v(z) in U.
The following results will be used repeatedly in this paper.
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LEMMA 2.2. Suppose that U is a bounded regular domain and that u is a solution of (1/2)Au =
ku® on U. If Uy C U is a bounded regular domain such that U; C U, then

'U,(:l:) = ‘_logexp <'_ua){‘r'u1 >7 T € Ul' (21)

ProoF. It follows from Theorem 1.1 in [1] that —logexp{(—u, X, ) is the unique bounded
solution of (1/2)Au = ku® on U; with the boundary value w on 6U;. By our assumption, u is
also a bounded solution of (1/2)Au = ku® on Uy with boundary value u on 8U;. Therefore, (2.1)
is true. )

LeEMMA 2.3. Suppose that B(0,r) is a disk such that 0D C B(0,r) and that ¢ > 0 is a bounded
continuous function on 8D. If {u,} is a sequence of positive solutions of (1/2)Au = ku* in
DN B(0,r) and if u = limp o 4y in DN B(0,7), then u is also a solution of (1/2)Au = ku® in
DN B(0,r). Furthermore, if, for each n, u, satisfies the boundary condition u,, = ¢ on 8D, then
the same condition holds for u.

PROOF. We first prove that u satisfies (1/2)Au = ku® on DN B(0,7). Let U ¢ DN B(0,r) be
an arbitrary smooth domain such that U ¢ D n B(0,7). It follows from Lemma 2.2 that

Uy () = — log Ps_ exp (tn, X1, ), zeU. (2.2)

Let U; be a smooth domain such that U ¢ U; ¢ U; € DNB(0,r). Since infzep, k(z) > 0, we can
use Theorem 2.1 in [1] to conclude that there exists a nonnegative solution v of (1/2)Av = kv®
in Uy with the boundary value oo on 8U;. By the maximum principle, u,(z) < v(x) for z € U.
Thus, {u,} is uniformly bounded in U. Applying the bounded convergence theorem, we get that
limy, oo (tn, Xry) = {u, X7, ), Ps,-a.s. for z € U. Upon letting n — oo in (2.2), we get that

u{x) = —log Ps_ exp (—u, Xy), rel.

Using Theorem 1.1 in [1] again, we see that u is a solution of (1/2)Au = ku® on U. Since the
smooth domain U C U C D N B(0,r) is arbitrary, u is a solution in D N B(0,r).

Next, we prove that u has boundary value ¢(z) at z € 8D. Choose 0 < ry < r such that
0D C B(0,r0). It follows from Lemma 2.2 that for any x € D N B(0,7q),

un(x) = —log P, exp <—un, X

TDNB(0,rp) >

= —log Ps_ exp (-/ O(2) Xrpep o,y (d2) —/ Un{2) Xrpn0.rg) (dz)) ,
ap S§(0,70)

where $(0,7¢) is the circle of radius ro centered at 0. From the proof of the first part, we
know that {u,} is uniformly bounded on S(0,7). Letting n — oo and applying the bounded
convergence theorem, we obtain that

u(z) = —log Ps, exp <—¢, X

TDnB(o,r0)> ’

where
_ p(2), z€dD,
p(z) =
u(z), z€S(0,m).
Now, applying Theorem 1.1 in [1}, we get that u has boundary value ¢(z) at z € 8D.
The following result is a modified version of Theorems 4.6.6 and 4.6.7 in [5].

LEMMA 2.4. Suppose that p is a positive bounded integrable function on D. Then we have

(1) limpsz—e Gpp(z) =0, for every a € OD;

(2) Gpp € COMD);

(3) if p € CON(D), then Gpp € C>*(D) and (1/2)AGpp = —p in D.

Pick a fixed point a € R*\ D and a number r > 0 such that D > B} = R?\ B(a,r). Using
the explicit formula for G g.(-,-), one can easily prove the following result.
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LEMMA 2.5. The family of functions {Gp(z, )k(-)h*"1(:) : = € D} is uniformly integrable
over D, where h is given by (1.8).

LEMMA 2.6. If f > 0 is a harmonic function having boundary value 0 on 8D, then f is a constant
multiple of the function h defined in (1.8).

PROOF. Pick a fixed point @ € R?\ D and a number r > 0 such that D O B* = R?\
B(a,r). The Kelvin transform of f relative to the circle S(a,7) is f*(z*) = f(z), where z =
a+ (r?/||z* — a|?*)(z* — a). f*(z*) is a positive harmonic function on D* \ {a}. By defining
f*(a) = liminfz. . f*(z*), we get a function f* which is superharmonic on D* with 0 boundary
value on 8D*. By the Riesz decomposition theorem and Theorem 6.1.4 in [5], there exists a
constant ¢ > 0 such that f*(z*) = ¢cGp-(z*,a), for every z* € D*, and hence, f(z) = ch(z) for
everyz € D,

ProposITION 2.1. Let {D,} be a sequence of bounded domains such that D, T D and h be
defined by (1.8).

(1) There exists a random variable Z such that for every u € M with compact support in D,
Z = limy, 0 (b, X;p, ) < 00, Py-aus.

(2) If u is a solution to (1.7), then there exists a random variable Z, such that for every
u € M with compact support in D, Zy, = limp—c0 (%, X7, ) < 00, Py-a.s.

PRrROOF. Result (2) is proved in Section 5.5 in Dynkin [1]. Here we only give the outline of the
proof of Result (1).

It follows from (1.4),(1.5) and the special Markov property (see [6, Section 2.1.A}) that exp(—h,
X:p,) is a bounded submartingale. Thus, for every p € M with compact support in D, Z =
limy o0 (h, X7pp_ ) exists Py-a.s. It follows from (1.4),(1.5) that P, ¢, X, )= (h,u) <oo for any
pe M with compact support in D. Using Fatou’s lemma, we get that P, Z <liminf, o (h, X}, )
< oo, which implies that Z < oo, P,-a.s., for all 4 € M with compact support in D.

We can further prove the limits do not depend on p and the choice of D,,. For details, please
see the proof of Theorem 2.2(1) in [7].

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1.
(1) Set
Ue,p (x) =: —log Ps, exp (—ch, X7 niom ) - (2.3)

It follows from (1.4),(1.5) that u. , satisfies the equation
TDNB(0,n)
Uen(Z) + HZ/ k(Ws)ug. (W) ds = ch(z), z € DN B(0,n). (2.4)
0

We get from Proposition 2.1 that u.(z) = limp_ o uen(z), for all z € D. It follows from
(1.10),(1.11) that k(y)h*(y) is integrable in D, and therefore, [, Gp(z,y)k(y)h*(y)dy < oo.
Note that, for fixed ¢>0, each u,, is dominated by ch. Thus, Iy f°""™ k(W,)ug(Ws)ds <
I, fo 7 k(Ws)h*(Ws)ds = ¢* [, Gp(z, y)k(y)h*(y)dy < oo. Letting n — oo in (2.4) and
applying dominated convergence, we get that

ue (z) + Gp (kud) (z) = ch (z), z e D. (2.5)

By Lemma 2.4(2), we know that Gp(ku®) € C%*(D); thus, by (2.5), we get that u. € CO*(D).
From Lemma 2.4(3), we know that Gp(ku2) € C**(D) and that (1/2)AGp(ku®) = —kuZ, and
therefore, (1/2)Au? = ku? in D. From Lemma 2.4(1), we know that Gp{kuZ) has the boundary
value 0 on 8D, and thus, from (2.5), we get that u. has the boundary value 0 on 8D. Now we
check that limyz—oo(tc(z)/h(x)) = c. It is enough to prove that

Gp (kug) (z)

T h@ (26)
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It follows from (2.5) that u.(z) < ch(z), z € D. So we only need to prove

Gp (kh®)(z) ([ Gp(z,y)k(y)h* (y) _
lellwoo B () <—/D h(z) dy>-0' @)

By Theorem 2.2 in [3], we know that there exists a constant C' > 0 depending on D only such

that
Gp (z,y) Gp (¥,2)
Gp(z,2)

<C(Gp(z,y)+Gp(y,2) +1), r,y,z€ D.

This equality is called the (3-G) inequality for Green functions on D. Using the (3-G) inequality,
we get

Gp (=Y kw)h* (v) _ . Gp(@y)Gp W 2)ky) h* 1 ()
h(z) 200 Gp(z,2)

S zl-i»noloC(GD (z,y) + Gp (¥, 2) + 1) k (y) k"t (v)
< C(Gp(z,y) +h(y) + 1) k(y) ket (y).

It follows from Lemma 2.5 that the family of functions {G p(z, )k(-)h*~1(") : x € d} is uniformly
integrable over D. Using the fact that [, (h(y) + 1)k(y)h* ! (y) dy < oo, we get that the family
{Gp(z, )k(-)h*(-)/h(z) : T € D} is uniformly integrable over D. Since Gp(x,y) — 0 as * — 0o
for fixed y € D, we have Gp(z, y)k(y)h*(y)/h(z) — 0 as x — oo. Thus, (2.7) holds.

Suppose that u(z) is a solution of (1.7) satisfying lim,_, (u(z)/h(x)) = ¢. Then Gp(ku*) < 0o
on D, and lim,_,oo(Gp{ku®)(z)/h(z)) = 0. Let h(z) = u(z) + Gp(ku®)(z). It follows from
Lemma. 2.4 that (1/2)AGp(ku®)(z) = —k(z)u®(z), z € D, and that Gp(ku®) has the boundary
value 0 on 8D. Thus, h is a positive harmonic function on D having the boundary value 0 on 8D
and satisfies lim, o0 (h(x)/h(z)) = c. Now Lemma 2.6 implies that h(x) = ch(z), which means
that

u(z) + Gp (ku®) (z) = ch (z). (2.8)

It follows from Lemma 2.2 that, for n large enough,
u(z) = — log Ps, exp{—u, XTDHB(MQ . (2.9)

Since u(z) < ch(z), z € D, we have u(z) < —log Ps, exp{—ch, X
get

TonBom ) Letting n — oo, we

u(z) < ~log Ps_ exp (—cZ). (2.10)

However, from (2.8) and (2.9), we know that, for n large enough,
u(z) = —log Ps, exp ((—ch + Gp (ku*)) ’XTDnB(o,n)>

Gp (ku®
= —log Fs_exp <—chIaB(o,n) ) (1 - —DC(T‘—)> vana<o.n>> -

Since limy g oo (G p(ku®)(x)/h(z)) = 0, we know that, for every € > 0, there exists an integer N
such that Gp(ku®){z)/ch(z) < e for n > N and z € dB(0,n), and hence,

U(w)Z—IOgPsmexP(—C(l—e)h,X for n > N.

"‘DnB(o,n)> ?

Letting ¢ — 0, we get
u(z) > —log Ps, exp (~cZ). (2.11)

Combining (2.10) and (2.11), we get u(z) = — log Ps, exp(—cZ).
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(2) If u is a solution of (1.7) satisfying limsup,_, ., (u(z)/h(z)) < oo, using the same method as
above, we can prove that (2.8) holds for some constant ¢ > 0, and thus, u(z) = — log Pj, exp(—cZ).

(3) Since J(z) = lim¢_o0 uc(), it follows from Lemma 2.2 that J(z) is a solution to (1.7). It is
obvious that limg_,o{J(x)/h(x)) = co. So by the maximum principle, J is the smallest solution
to (1.7) with limg 0 (u(z)/h(zx)) = co.

For large n, put

I (z) = —log P5, (Xrpnp00.. (OB (0,n)) =0), ze DNB(O,n).

Note that —log Ps, exp(—AX:, 5., (0B(0,n))) T In(z) as A T co. Lemma 2.3 implies that I, is
a solution of (1/2)Au = ku® on DN B(0,n) with the boundary value 0 on 8D and the boundary
value oo on 8B(0,n). Since I(z) = limp_,00 In{z), We know from Lemma 2.3 that [ is a solution
to (1.7). The maximum principle implies that I is the largest solution to (1.7). ]

3. PROOF OF THEOREM 2

Throughout this section, C is a positive constant whose value may change from line to line.

As an important step in proving Theorem 2, we first consider the special case where k(z) =
C|lz|l~2(log(]|z]|)) ~* near oo for some constant [ > 1+a. To that end, we consider positive radial
solutions of the equation

%Au = Cr~2 (log (r)) " u®, in B¢(0, R), (3.1)

where r = ||z|| and { > 1 + a.

PRrROPOSITION 3.1. Suppose that u(r) is a radial solution to (3.1) and satisfies

u(r)

r—oo log (r)

k]

then u(r) ~ (log(r))? near infinity, where ¢ = (I — 2)/{a— 1) > 1.

Before we give the proof of Proposition 3.1, we give three lemmas.

LEMMA 3.1. Suppose that | > 1 + « and R > 0 is a large constant. If u is a positive solution
of (1/2)u”"(z) = z~'u®(x) on the interval (R,00) and if u satisfies im0 (u(z)/T) = 00, then
liminf, o0 (z?/u(z)) < 00, where ¢ = (1 — 2}/(a — 1) > 1.

PROOF. Suppose the result were false and so lim;_ o (z9/u(z)) = o0. Set w(z) = z %u(zx),
z € (R,00). Then w — 0 as x — oo and w satisfies

2q w w
Setting s = log x, (3.2) becomes
wes + (2 — Nws +w [g(g - 1) — Cw® 1] =0, 5 € (log R, 00).

Using analytic method (see the arguments in Step 4 in the proof of Theorem 4.3 in [8]), we can
prove that w(s) < Cexp(—es) for some constants C, e > 0 near oo, thus, we have u(z) < Cz97°.
Therefore, for large z,

— < Cri~1-¢. ' (3.3)
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Choose € # (¢ ~1)/a™, n = 1,2,.... Substituting estimate (3.3) into the integral representa-
tion of u, we obtain, for £ > R,

u(x):u'(R)erC/I: dt/}:s_lu"‘(s)ds+u(R)

=u’(R)z+C/z($——s)s*lu"‘(s) ds +u(R)
R

<u (R)z+ C’x/ sTH@=9ads + 4 (R)

R
T

=y (R)z + Cx/ s972**ds + u(R).
R

Thus, we have
x

<u'(R)+ C/ si727ca g,
R

u(zx)

Since € # (¢ — 1}/, we have ¢ - 2 — ear # —1. If ¢ — 2 — ea < —1, then u(z)/x < C for some
constant C > 0, which contradicts the assumption on u. If ¢ — 2 — e > —1, then there exists a
constant C' > 0 such that

xq—l-—ea S Cmq—l—ea’ (34)

u(x) , C
el S g —_—
T —u(R)+q—1-ea

for = large, which improves (3.3). Let K = min{n; n satisfies ¢ — 1 < a"e}. Iterating (3.4), after
K steps, we conclude that there exists a constant C > 0 such that

u

@ ¢
T — ’

for x large, which contradicts the assumption on u.

LEMMA 3.2. Suppose thatl > 1+ o and R > 0 is a large constant. If u is a positive solution
of (1/2)u"(z) = z~'u®(z) on the interval (R,oc0) and if u satisfies lim,_,o(u(z)/z) = oo, then
liminf, oo {u(z)/z%) < 00, where ¢ = (1 —2)/(a — 1) > 1.

PROOF. Suppose that the result were false and so lim, .o (u(z)/29) = 0. Set v(z) = 27 %u(z),
z € (R,00). Then v — 00 as £ — o0, and v satisfies

2q v v
Uxm’{’?vx'{“q(q—l)—z__i_.C;f:O' (35)

Rewrite (3.5) as
(m2qu)z = 2?72 [p* — Cq(q - 1)v], z € (R,00). (3.6)

Since v(z) — oo at 0o and R is large, we have
1
(Izqu)x > 5:52"“21)0‘, z € (R,00), (3.7)

and the inequality v.(R) > 0 holds for large R. Integrating (3.7) first from R to t and then
from R to x, we arrive at

v(z) > v(R) + 7@117_1_) Rm % {1 - (%)Qq_l} v® (s) ds.

Now the same argument in the proof of Theorem 2.1 in [9] leads to a contradiction. Since the
argument is purely analytic and is not the main point of this paper, we omit the details.
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LEMMA 3.3. Suppose that! > 1+ a and R > 0 is a large constant. If u is a positive solution
of (1/2)u”(z) = z~'u*(x) on the interval (R,o0) and if u satisfies limz— oo (u(z)/z) = 00, then
u(x) ~ x9 near infinity, where ¢ = (I — 2)/(a — 1) > 1.

PROOF. Put up(z) = [g(g — 1)/2C)¥ (>~ V4 1 > 0. It is easy to check that ug is a solution of
(1/2)u"” = Cku® in (R, 0o) and satisfies lim, . (ug(z)/z) = 0.

First, we prove that there exists a constant M; > 0 such that u(z) > Mjz?, on (R, o).
It follows from Lemma 3.1 that liminf, . (up(z)/u(z)) < co. Thus, there exists a sequence
Yn T oo such that lim,, oo (uo(yn)/u(yn)) < oo. Hence, there exists a constant M > 1 such
that uo(R) < Mu(R) and uo(yn) < Mu(y,) for every integer n. Using Lemma 2.2 and Hoélder's
inequality, we get that, for large n,

ug (z) = — log Ps_ exp (— <u0, XT(R,W)»
< —log Ps, exp (=M (u, X, ,.,))

~log Ps, [exp (~ (u, XT(R,yn>>)]M
—log [Ps, exp (— (u, XT(RM,»]M = Mu(z), z€(R,yn).

Il

IA

Consequently, we have ug < Mu on (R,00). Therefore, v > Mjz? on (R,00) for M; =
(1/M)lg(q - 1)/2C)/ (>0,

Next, we prove that there exists a constant M > 0 such that u(x) < Maz? on (R, o).
It follows from Lemma 3.2 that liminf, . (u(x)/uo{x)) < oco. Thus, there exists a sequence
Yn T 00 such that lim, oo (w(yn)/uo(yn)) < 0o. Hence, there exists a constant M’ > 1 such that
w(R) € M'ug(R) and u(yn) < M'ug(y,) for every integer n. Using Lemma 2.2 and Hélder’s
inequality again, we get that, for large n,

<U’0*XT(n.y")>)

(_.
1
> —log Ps, exp (‘M? (u, XT(R,.-/n)>)
]I/M(

ug (z) = —log Ps, exp

= —log P;, [exp (— (u, Xr(r,.,))
1/ M’ 1
> —log [Ps, exp (— <U7Xr<n,yn)>)] = —Mu(x), z € (R,yn).

Consequently, we have ug > (1/M’)u on (R, 00). Therefore, u < Maz? on (R, 00) for My =
M’[q(q - 1)/2C]V/ (=D

PROOF OF PROPOSITION 3.1. Since u is radial, we can define a function u on (R, oo) by setting
u(r) = u(||z||) for any z satisfying ||x]| = r. The function u satisfies

u’ (r) + %u’ (r) = Cr~2 (logr) " u®, r> R. (3.8)
Putting u(r) = v(t) and t =logr, the equation above becomes
v’ (t) = Ct v (¢), t>log(R). (3.9)
From the definition of v, we can easily check that

lim ii-tl - . (3.10)

t—0o0

Applying Lemma 3.3, we get that v(t) ~ t? near infinity, which implies that u(r) ~ (logr)? near
infinity.



" Nonlinear Elliptic Equations 781

PRrROOF OF THEOREM 2. By assumption, there exist two constants Cq,Cz > 0 such that

C1 ||zl 72 (log (llz)) ™ < k(z) < Callz|l ™ (tog ([1=11)) ", (3.11)

when ||z|| is large. Suppose that ks, s = 1,2, are bounded strictly positive Holder continuous
functions on R2 such that k;(x) < k(z) < ka(z) for z € R? and k, = Cs|z|| "2 log(]|z]|) " near co.
Suppose that D; = B%(a,rs), s = 1,2 satisfy D; ¢ D and D € D,. Let I,, J, denote the largest
and smallest solution of (1.7) satisfying limy)_,oo(u(z)/log(l|zll)) = oo with k replaced by k,
and D by D, respectively. The maximum principle implies that when ||z|| is large enough, we
have

L(z)<I(z) <Ii(z)
and
Thus, we have .
I(z) _ Li(=z)
J(z) ~ J2(z)’
when ||z|| is large enough. Since I; and J, are radial, Proposition 3.1 implies that I, J; ~
(log(llz]iN?, s = 1,2 near infinity. Hence, there exists a constant M > 0 such that

<

I (x)
< .
7@ =M (3.12)
when ||z|| is large enough.
It follows from Proposition 2.1(2) that both
ZI = nl—l—bnéo <I7X7"Dng(o‘n)> = nli_’n;o S(0.1) I (Z) XTDF\B(O,n) (dZ)
and
ZJ = 111—1520 <J7 XTDnB(o,n)> = nll»nolo S(O,n) J(z)XTDnB(o,n) (dz)
exist Ps_-a.s., and
I(s) = —logPs, exp(~Z1),  J(z) = —log Ps, exp(~Zy).
Note that
: 1(z)
Zr=1
1 nLn;o S(O,n) h (Z) h‘ (Z) X"'DnB(o,n) (dZ), ) (313)
_ J (2)
Zy= nanolo som B ) h(2) Xrpapon (d2), (3.14)
and
Z = lim h(2) Xrpaponm (d2)- (3.15)

nTeeJs(0,m)

Since limyz—oo{I(2)/h(2)) = limy, 00 (J(2)/h(2)) = oo, we get from (3.13)-(3.15) that Z; =
Zj =00 on (Z > 0). Thus, we have

—log Ps, (Z =0) = J(z) = —log Ps5_exp(—2Z,) = —log Ps_lexp(—Z;);Z =0].

Hence, (Z = 0) implies (Z; = 0), Ps,-a.s. From (3.12), we know that I(z) < MJ(z) when ||z||
is sufficiently large, which implies that Z; = 0 on (Z = 0), P, -a.s. Therefore,

I(z)=—logPs_exp(—Z1)=—logPs_lexp(—Z1);Z =0] = —log Ps, [Z =0] = J (x).
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