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Abstract

Let L be a uniformly elliptic operator in Rd. We investigate positive solutions to the interior singularity
problem of the nonlinear equation Lu= u�; 1¡�6 2, by a probabilistic method.
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1. Introduction and main results

Let D be a bounded C2-domain in Rd with boundary @D, and let f be a continuous and nonneg-
ative function on @D. Suppose 0 belongs to D. Consider the interior singularity problem{

Lu= u� in D \ {0};
u|@D = ’;

(1.1)

where L is a uniformly elliptic operator in Rd; 1¡�6 2.
The interior value problem (1.1) has been studied by purely analytic methods. Particularly, when

L=�, V>eron (1981) showed that, in the case d¡ 2+2=(�−1), there are three classes of solutions of
(1.1): removable singularity, weak singularity and strong singularity. But in the case d¿ 2+2=(�−1)
problem (1.1) has one unique bounded solution.
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The objective of this paper is to describe the limit behavior of classical nonnegative solutions of
(1.1), near the singular point 0, by a probabilistic method and represent all nonnegative solutions of
(1.1) in terms of superdi9usion.
To state the main result of this paper let us introduce some notations.
Suppose �=(�t; �x) is a di9usion with generator L. For every open set U , let �U denote the Drst

exit time of � from U . A point a∈ @D is called regular if �a(�D = 0) = 1. A domain D is regular
if all points a∈ @D are regular. Every C2-domain is regular.
For every Borel-measurable space (E;B(E)), we denote by M (E) the set of all Dnite measures

on B(E) endowed with the topology of weak convergence. The expression 〈f; �〉 stands for the
integral of f with respect to �. We write f∈B(E) if f is a B(E)—measurable function. Writing
f∈pB(E)(bB(E)) means that, in addition, f is positive (bounded). We put bpB(E) = bB(E) ∩
pB(E). If E = Rd, we simply write B instead of B(E) and M instead of M (Rd).
We denote by T the set of all exit times from open sets in Rd. Set F6r = �(�s; s6 r); F¿r =

�(�s; s¿ r) and F∞ = ∨{F6r ; r¿ 0}. For �∈T, we put F ∈F¿� if F ∈F∞ and if, for each
r; {F; �¿ r}∈F¿r .
According to Dynkin (1991) there exists a Markov process X = (Xt; P�) in M such that the

following conditions are satisDed:

(a) If f is a bounded continuous function, then 〈f; Xt〉 is right continuous in t on R+.
(b) For every !∈M and for every f∈ bpB,

P� exp〈−f; Xt〉= exp〈−vt; �〉; �∈M; (1.2)

where v is the unique solution of the integral equation

vt(x) +�x

[∫ t

0
v�t−s(�s) ds

]
=�xf(�t): (1.3)

Moreover, for every �∈T, there correspond random measures X� and Y� on Rd associated with the
Drst exit time � such that, for f; g∈ bpB,

P� exp{−〈f; X�〉 − 〈g; Y�〉}= exp〈−u; �〉; �∈M; (1.4)

where u is the unique solution of the integral equation

u(x) +�x

[∫ �

0
u�(�s) ds

]
=�x

[
f(��) +

∫ �

0
g(�s) ds

]
: (1.5)

We call X = {Xt; X�; Y�;P�} the (L; �)-superdi9usion (enhanced model). Throughout this paper �D
denotes the Drst exit time of � from an open set D in Rd, i.e., �D= inf{t: �t �∈ D}. We call X�D the
exit measure, and Y�D the total weighted occupation time of X in D.
Let F⊂U denote the �-algebra generated by X�U1

with U1 ⊂ U , and let F⊃U denote the �-algebra
generated by X�U2

with U2 ⊃ U . Then we have the following special Markov property: for every
positive F⊃U -measurable Y

P�{Y |F⊂U}= P�U Y: (1.6)

We call XD=(X�U ; P�;U ⊂ D; �∈M (D)) the (L; �)-superdi9usion in D. Let RD denote the support
of XD. RD is also called the range of superdi9usion X in D.
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For a bounded smooth domain D, the absolute continuity of the exit measure X�D is closely related
to the following boundary singularity problem:{

Lu= u�; in D;

u|@D\{0} = f;
(1.7)

where L is a uniformly elliptic operator in Rd, 0∈ @D, and 1¡�6 2. If d¡ 1 + 2=(� − 1), X�D
is absolutely continuous with respect to the surface measure S( dz) on @D (see Sheu, 1996 and
Ren, 2000), and the corresponding boundary singularity problem (1.7) has three classes of solutions:
removable singularity, weak singularity and strong singularity (see Gmira and V>eron, 1991). But, if
d¿ 1 + 2=(� − 1), X�D is singular and problem (1.7) has one unique bounded solution. By using
this relationship, Ren discussed all nonnegative solutions of problem (1.7) (see Ren, 2001).
So, we easily think that the interior singularity problem (1.1) is closely related to the absolute

continuity of Y�D . In Ren (2002), Ren discussed the absolute continuity of Y�D with general branching
mechanism.
Let GD(x; y) denote the Green function of the di9usion � in D. For f∈ bB(D) and !∈M (D),

deDne

GDf(x) =�x

∫ �D

0
f(�s) ds=

∫
D

GD(x; y)f(y) dy; GD!(x) =
∫
D

GD(x; y)!(dy):

Obviously, if !( dy) = f dy, GDf = GD!.
We write �∈Mc(D) if �∈M (D) and has a compact support in D. Let M1(D) denotes the set of

all measures ! in M (D) such that GD! being super-harmonic in D. Set N!= {x; GD!(x)=∞}. Then
N! is a closed set having zero Lebesgue measure.
The following Proposition 1.1 is the main result of Ren (2002) for particular branching mechanism

 (z) = z�.

Proposition 1.1. Suppose D is a bounded C2-domain in Rd. If d¡ 2 + 2=(�− 1); then we have:
(1) for =xed �∈Mc(D) ∩ M1(D), there exists a random measurable function yD de=ned on LD

such that

P�{Y�D(dy) = yD(y) dy}= 1;
(2) for each =nite collection y1; : : : ; yk of points in D \ N�, the Laplace function of the random

vector [yD(y1); : : : ; yD(ym)] with respect to P� is given by

P� exp

[
−〈f; Y�D〉 −

k∑
i=1

0iyD(yi)

]
= exp〈−u; �〉; 01; : : : ; 0k ¿ 0; (1.8)

where �∈Mc(D)∩M1(D), and u is the unique positive solution of the following integral equation:

u(x) +�x

∫ �D

0
u�(�s)) ds= GD!(x); x∈D \ N! (1.9)

with !(dy) = f(y) dy +
∑k

i=1 0i1yi( dy).
If d¿ 2 + 2=(�− 1). For every �∈Mc(D), Y�D is P�-a.s. singular with respect to the Lebesgue

measure on LD.
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In this paper, we, using the relationship between the absolute continuity of Y�D and interior interior
singularity problem (1.1), discuss all nonnegative solutions to problem (1.1).

De�nition 1.1. Suppose u is a nonnegative unbounded solution of (1.1). u is called a weak singularity
of (1.1) at 0 if u satisDes

lim sup
x→0

u(x)
GD(x; 0)

¡∞

u is called a strong singularity of (1.1) at 0 if u satisDes

lim sup
x→0

u(x)
GD(x; 0)

=∞:

The following Theorem 1.1 is the main result of this paper.

Theorem 1.1. Suppose D is a bounded C2-domain; 0∈D; and 26d¡ 2 + 2=(�− 1).
(1) u’(x) =−logP1x exp〈−’; X�D〉 is the unique bounded solution of (1.1).
(2) u is a weak singularity of (1.1) at 0 iA there exists a 0¿ 0 such that

u(x) =−logP1X exp{−〈’; X�D〉 − 0yD(0)}
and 0 is uniquely determined by the formula

0= lim
x→0

u(x)
GD(x; 0)

¡∞: (1.10)

(3) −logP1x{exp〈−’; X�D〉;yD(0) = 0} is the minimal strong singularity of (1.1) at 0;
−logP1x{exp〈−’; X�D〉;RD ∩ {0}= ∅} is the maximal strong singularity of (1.1) at 0.

2. Properties of the range RD

In this section, we Drst study some properties of the range RD.

Lemma 2.1 (Dynkin (1992), Theorem 1.2). Suppose un is a sequence of nonnegative solutions of
Lu= u� in D and un converge pointwise in D to u. Then u is a solution of Lu= u� in D.

Let O be a relatively open subset of @D. If un satisfy the boundary condition un = f on O, then
the same condition holds for u.

Lemma 2.2. Let U ⊂ D be open sets. Then

{RD ⊂ LU} ⊂ {X�D( LU
c) = 0} P�- a:s: for every �∈M (Rd); (2.1)

{X�U (D) = 0} ⊂ {RD ⊂ LU} P�- a:s: for every �∈M (Rd) (2.2)

and

{RD ⊂ LU}= {X�D( LU
c) = 0} P�- a:s for every �∈M ( LU ): (2.3)
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Proof. (2.1) and (2.2) follow from Lemmas 2.1 and 2.2 in Dynkin (1992). To prove (2.3); it is
suOcient to prove that

{X�D( LU
c) = 0} ⊂ {X�U (D) = 0} P�-a:s: for �∈M ( LU ):

But this inclusion follows easily from the special Markov property (1.6). In fact; for every �∈M ( LU )

P�(X�U (D) = 0;X�D( LU
c)¿ 0) = P�(PX�U

(X�D( LU
c)¿ 0);X�U (D) = 0) = 0:

The last inequality follows from the fact that X�D = !; P!-a.s. if !(D) = 0 and !( LUc) = 0 if ! is
concentrated on LU .

Proposition 2.1. Suppose D is an open set and 6 ⊂ D is a compact set:
(1) Put

Dn = {x∈D; d(x; 6)¿ 1=n}; 6n = {x; d(x; 6) = 1=n}:
Then

{X�Dn
(6n) = 0}= {X�Dn

(D) = 0} ↑ {RD ∩ 6 = ∅} P�-a:s: (2.4)

for every �∈M (Rd).
(2) If D is regular and ’ is a continuous function on @D, then

−logP1x{exp〈−’; X�D〉; RD ∩ 6 = ∅}
is the maximal nonnegative solution of{

Lu= u� in D \ 6;

u= ’ on @D:
(2.5)

Proof. (1) By Lemma 2.2; we have the following inclusions:

{X�Dn
(6n) = 0} ⊂ {X�Dn

(D) = 0} ⊂ {RD ⊂ LDn} ⊂ {RDn+1 ⊂ LDn}
⊂ {X�Dn+1

( LDc
n) = 0} ⊂ {X�Dn+1

(6n+1) = 0} P�-a:s:; �∈M:

Hence; (2.4) holds.
(2) Put

un(x) =−logP1x exp(〈−’; X�D〉;X�Dn
(6n) = 0):

By (2.4)

un(x) ↓ −log1x(exp〈−’; X�D〉;RD ∩ 6 = ∅): (2.6)

Note that X�D = �, P�-a.s. if �(D) = 0. By the special Markov property, for x∈Dn,

un(x) =−logP1x(PX�Dn
exp〈−’; X�D〉;X�Dn

(6n) = 0)

=−logP1x(exp〈−’; X�Dn
〉;X�Dn

(6n) = 0):

Thus we have

−logP1x(exp〈−’I@D − 0I6n ; X�Dn
〉) ↑ −logP1x(exp〈−’; X�Dn

〉;X�Dn
(6n) = 0) = un:
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By Theorem 1.1 in Dynkin (1991) and Lemma 2.1, un is a solution of Lu = u� in Dn having
boundary value ’ on @D and boundary value +∞ on 6n. Therefore, using Lemma 2.1 again, we
obtain −logP1x(exp〈−’; X�D〉;RD∩6=∅) is a solution of (2.5). The maximality follows easily from
the comparison principle.

3. Proof of Theorem 1.1

To prove Theorem 1.1, we need some Lemmas. Let 8(x) = d(x; @D) be the distance from x to
@D.

Lemma 3.1. Suppose d¿ 3; D is a bounded C2-domain in Rd. There exists a constant C ¿ 0 such
that if ‖x − z‖6 8(x) ∧ 8(z); then

GD(x; z)¿C‖x − z‖2−d:

Proof. If L = �; Lemma 3.1 is a particular case of Lemma 6.7 in Chung and Zhao (1995). For a
general L; Lemma 3.1 follows immediately from the fact that in a bounded C2-domain D; quotients
of Green functions are uniformly bounded (see Hueber and Sieveking; 1982).

Lemma 3.2. For a bounded C2-domain D in R2; there exists a constant C ¿ 0 such that for all
x; y∈D

1
C
ln
(
1 +

8(x)8(y)
‖x − y‖2

)
6GD(x; y)6C ln

(
1 +

8(x)8(y)
‖x − y‖2

)
:

Proof. If L=�; this result is exactly Theorem 6.13 in Chung and Zhao (1995). Therefore; Lemma
3.2 also holds for general L by the same reason used in the proof of Lemma 3.1.

Lemma 3.3. Suppose 0∈D; 26d¡ 2 + 2=(�− 1) and u is a solution of (1.1). If u(x)=GD(x; 0) is
bounded in a neighborhood of 0; then

lim
x→0

∫
D GD(x; y)u�(y) dy

GD(x; 0)
= 0: (3.1)

Proof. Since u is continuous in LD \ {0} and u(x)=GD(x; 0) is bounded in a neighborhood of 0; there
exists a constant C ¿ 0 such that

u(x)6C(GD(x; 0) + 1); x∈D \ {0}:
By Minkowski inequality∫

D
GD(x; y)u(y)� dy6

[(∫
D

C�GD(y; 0)�GD(x; y) dy
)1=�

+
(∫

D
C�GD(x; y) dy

)1=�]�

:
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Since
∫
D GD(x; y) dy is bounded in D; to prove (3.1); we only need to prove that

lim
x→0

1
GD(x; 0)

∫
D

GD(y; 0)�GD(x; y) dy = 0: (3.2)

Note that

1
GD(x; 0)

∫
D

GD(y; 0)�GD(x; y) dy = I1 + I2;

where

I1 =
∫
D∩{y : ‖y−x‖¿‖x‖=2}

f(x; y) dy;

I2 =
∫
D∩{y : ‖y−x‖¡‖x‖=2}

f(x; y) dy;

f(x; y) =
GD(x; y)GD(y; 0)�

GD(x; 0)
:

(1) In the case d¿ 3, by Lemma 3.1, for x∈D satisfying ‖x‖6 8(x) ∧ 8(0),

f(x; y)6C
‖x‖d−2

‖x − y‖d−2 ‖y‖(2−d)�:

Thus for suOciently small x and y∈D ∩ {y : ‖y − x‖¿ ‖x‖=2}
f(x; y)6C‖y‖(2−d)�:

The assumption d¡ 2 + 2=(� − 1) implies that ∫D ‖y‖(2−d)� dy¡∞. It is obvious that for any
y∈D \ {0}, f(x; y) → 0 as x → 0. The dominated convergence theorem implies that I1 → 0 as
x → 0.
Now we estimate I2. By noticing that ‖y − x‖¡ ‖x‖=2 implies that ‖x‖=26 ‖y‖, we have

I26C‖x‖(2−d)(�−1)
∫
‖y−x‖¡‖x‖=2

‖x − y‖2−d dy

= C‖x‖(2−d)(�−1)
∫ ‖x‖=2

0
r dr

= C‖x‖(2−d)(�−1)‖x‖2

= C‖x‖2�−(�−1)d → 0 (‖x‖ → 0) (d¡ 2 + 2=(�− 1)):
Therefore, we have proved Claim (3.1) in the case d¿ 3.
(2) In the case d= 2, by Lemma 3.2

f(x; y)6C
ln
(
1 +

8(x)8(y)
‖x − y‖2

)

ln
(
1 +

8(x)8(0)
‖x‖2

) [
ln
(
1 +

8(0)8(y)
‖y‖2

)]�

:
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If ‖x‖¡8(0)=2, then 8(x)= inf z∈@D‖x− z‖¿ inf z∈@D‖z−0‖−‖x‖=8(0)−‖x‖¿ 8(0)=2. Therefore
there exists constant C1; C2; C3¿ 0 such that

f(x; y)6C
ln
(
1 +

C1
‖x − y‖2

)

ln
(
1 +

C2
‖x‖2

) [
ln
(
1 +

C3
‖y‖2

)]�

:

Thus, for x∈D satisfying ‖x‖¡8(0)=2 and y∈D ∩ {y : ‖y − x‖¿ ‖x‖=2}, we have

f(x; y)6C
ln
(
1 +

4C1
‖x‖2

)

ln
(
1 +

C2
‖x‖2

) [
ln
(
1 +

C3
‖y‖2

)]�

:

By noticing that

lim
x→0

ln
(
1 +

4C1
‖x‖2

)

ln
(
1 +

C2
‖x‖2

) = 4C1=C2

there exists constant 1¡8(0)=2 and C ¿ 0 such that, for ‖x‖6 1 and y∈D∩{y : ‖y−‖¿ ‖x‖=2},
we have

f(x; y)6C
[
ln
(
1 +

C3
‖y‖2

)]�

:

It is easy to check that
∫
D [ln(1 + C3=‖y‖2)]� dy¡∞. Since for Dxed y∈D \ {0}; f(x; y)→ 0 as

x → 0, by the dominated convergence theorem, we have I1 → 0 as x → 0.
In the following we estimate I2:

I26C
∫
‖y−x‖¡‖x‖=2

ln
(
1 +

C1
‖x − y‖2

)

ln
(
1 +

C2
‖x‖2

) [
ln
(
1 +

C3
‖y‖2

)]�

dy

6C

[
ln
(
1 +

4C3
‖x‖2

)]�

ln
(
1 +

C2
‖x‖2

) ∫ ‖x‖=2

0
ln
(
1 +

C1
r2

)
r dr

6C
[
ln
(
1 +

4C3
‖x‖2

)]�

‖x‖ 1

ln
(
1 +

C2
‖x‖2

) ln(1 + C1
r20

)
r0;
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where r0 is a point in (0; ‖x‖=2). Since
lim
x→0

[
ln
(
1 +

4C3
‖x‖2

)]�

‖x‖= lim
y→∞ [ln(1 + 4C3y

2)]�=y

=
(
lim

y→∞
ln(1 + 4C3y2)

y1=�

)�

= 0;

lim
x→0

1

ln
(
1 +

C2
‖x‖2

) = 0
and

lim
r0→0

ln
(
1 +

C1
r20

)
r0 = 0;

we conclude that limx→0 I2 = 0. Thus we proved (3.1) in the case d= 2.

Lemma 3.4. Suppose 26d¡ 2 + 2=(� − 1) and 0∈D. Then
∫
D GD(x; y)GD(y; 0)� dy is locally

bounded in D \ {0}; and for every a∈ @D;

lim
x∈D;x→a

∫
D

GD(x; y)GD(y; 0)� dy = 0:

Proof. Let K be a compact subset of D\{0} and K1={y :d(y; K)6 8(0; K)=2}. For every y∈K1∩D
we have ‖y‖¿ 8(0; K)=2; and for every x∈K; y∈D \K1 we have ‖x−y‖¿ 8(0; K)=2. Hence there
exists constant C such that∫

D
GD(x; y)GD(y; 0)� dy6C

(∫
D

GD(x; y) dy +
∫
D

GD(y; 0)� dy
)

; x∈K:

From the above inequality and the assumption d¡ 2 + 2=(�− 1); it is easy to see that ∫D GD(x; y)
GD(y; 0)� dy is bounded in K .
For suOciently large n (n¿ 3=8(0)) and x∈D ∩ B(a; 8(0)=3) we have, in the case d¿ 3,∫

D
GD(x; y)GD(y; 0)� dy

6C

[∫
‖y‖61=n

‖x − y‖2−d‖y‖(2−d)� dy +
∫
D∩{y:‖y‖¿1=n}

GD(x; y)‖y‖(2−d)� dy

]

6C

[(
8(0)
3

)2−d ∫ 1=n

0
r(2−d)�rd−1 dr + n(d−2)�

∫
D

GD(x; y) dy

]

and in the case d= 2∫
D

GD(x; y)GD(y; 0)� dy

6C
∫
‖y‖61=n

ln
(
1 +

8(x)8(y)
‖x − y‖2

)[
ln
(
1 +

8(x)8(0)
‖y‖2

)]�

dy
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+C
∫
D∩{y : ‖y‖¿1=n}

GD(x; y)
[
ln
(
1 +

8(x)8(0)
‖y‖2

)]�

dy

6C
∫ 1=n

0

[
ln
(
1 +

C
r2

)]�

r dr + C ln
(
1 + Cn2

) ∫
D

GD(x; y) dy:

Since limx∈D;x→0
∫
D GD(x; y) dy = 0, letting x → a and then n → ∞ in the above two inequalities,

we obtain

lim
x∈D;x→a

∫
D

GD(x; y)GD(y; 0)� dy = 0:

Lemma 3.5. Suppose 0∈D. If h is a L-harmonic function on D \ {0} having boundary value 0 on
@D and lim inf x→0 h=GD(x; 0)¿ 0; Then there exists 0¿ 0 such that h(x) = 0GD(x; 0); x∈D \ {0}.

Proof. By the assumption; there exists a constant C ¿ 0 such that h=GD(x; 0)¿− C. Let h1 = h+
CGD(x; 0). Then h1¿ 0 is also a L-harmonic function on D \ {0} having boundary value 0 on @D.
Since lim inf x→0h1=GD(x; 0)¿C ¿ 0; and lim inf x→0h1(x) = +∞; if letting h1(0) = +∞; then h1 is
lower semicontinuous in D. Therefore; h1 is a positive L-superharmonic function in D. By the Riesz
decomposition theorem (Blumenthal and Getoor; 1968; p. 272); h1 =GD�+ h2 for some measure �
on D and some L-harmonic function h2 on D such that GD� is L-superharmonic on D. Since h1 has
boundary value 0; h2 ≡ 0. Note that GD� is L-harmonic in D \ {0}; by Theorem 6.1.4 in Port and
Stone (1978) (Port and Stone’s result is for L=�; but their proof also holds for L ); �(D\{0})=0.
Set 01 = �({0}); then h1(x) = 01GD(x; 0) and hence h(x) = 0GD(x; 0); 0 = 01 − C. The assumption
lim inf x→0h=GD(x; 0)¿ 0 implies that 0¿ 0.

Lemma 3.6. Let g be a locally bounded function in an open set D and F(x) =�x
∫ �D
0 g(�s) ds. If

g∈C0; 0(D) and F(x) is locally bounded in D; then F ∈C2; 0(D) and LF =−g in D.

Proof. Lemma 3.6 is a generalization of Theorem 0.3 in Dynkin (1991). It is easy to prove by the
strong Markov property of �; and Theorem 0.2 and Theorem 0.3 in Dynkin (1991). We omit the
details.

Proof of Theorem 1.1. (1) It is obvious that u’ is a bounded solution of (1.1). Suppose u is an
arbitrary bounded solution of (1.1). By Lemma 3.3; h(x)= u(x)+

∫
D GD(x; y)u�(y) dy is a bounded

solution of Lh = 0 in D \ {0} having boundary value ’ at @D. From the classical theory of the
regularity of solutions of elliptic equations near a interior point; we deduce that h and hence u can
be continuously extended to LD. By Lemma 3.1 and comparison principle we get u= u’.
(2) Put

u’;0(x) =−logP1x exp{−〈’; X�D〉 − 0yD(0)}:
It follows from Proposition 1.1 and its proof that, for any constant 0¿ 0, u’;0 satisDes

u’;0 +
∫
D

GD(x; y)u�
’;0(y) dy =�x’(��D) + 0GD(x; 0) (3.3)
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and

−logP1x exp{−〈’; X�D〉 − 0〈8n; Y�D〉} → u’;0;

where 8n(z) = I(B(0;1=n)∩D)(z)=m(B(0; 1=n) ∩ D), m is the Lebesgue measure in Rd. By Lemma 2.1,
u’;0 is a solution of Lu = u�. The boundary condition u’;0|@D = ’ follows from the inequality:
u’6 u’;06�x’(��D) + 0GD(x; 0).
From (3.3), u’;0=GD(x; 0) is bounded near 0 and therefore by Lemma 3.3

lim
x→0

u’;0=GD(x; 0) = 0:

Hence u’;0 admits a weak singularity of problem (1.1).
Conversely, Suppose u is a weak singularity of problem (1.1) at 0. Then there exits a constant C

such that

u(x)6C(GD(x; 0) + 1):

By Minkowski inequality∫
D

GD(x; y)u�(y) dy6C�

[(∫
D

GD(x; y)GD(y; 0)� dy
)1=�

+
(∫

D
GD(x; y) dy

)1=�]�

:

By Lemma 3.4,
∫
D GD(x; y)u�(y) dy is locally bounded in D \ 0. Put h(x) = u(x) +

∫
D GD(x; y)

u�(y) dy−�x’(��D). Then it follows from Lemma 3.6 that h satisDes Lh=0 in D \{0}. By Lemma
3.4, h has boundary value 0 on @D. Hence by Lemma 3.5 there exists 0¿ 0 such that

u(x) +
∫
D

GD(x; y)u�(y) dy =�x’(��D) + 0GD(x; 0):

By Proposition 1.1 , u’;0 is the unique positive solution of the above integral equation, which means
u= u’;0.
(3) Put

u’;∞ =−logP1x{exp〈−’; X�D〉;yD(0) = 0}:
Note that u’;0 ↑ u’;∞. By Lemma 2.1, u’;∞ is a solution of (1.1). It is obvious that

lim
x∈D;x→0

u’;∞
GD(x; 0)

= +∞:

Hence u’;∞ is a strong singularity of (1.1) at 0.
Suppose u is an arbitrary strong singularity of (1.1) at 0, then for any 0¿ 0,

lim sup
x∈D;x→0

(u(x)− u’;0(x))¿ 0:

The comparison principle implies that

u(x)¿ u’;0(x); x∈D; 0¿ 0:

Letting 0 → ∞, we get u(x)¿ u’;∞(x); x∈D. Hence u’;∞ is the minimal strong singularity of (1.1)
at 0.
By Proposition 2.1, −logP1x{exp〈−’; X�D〉;RD ∩ {0} = I} is the maximal solution of (1.1). So

it is also the maximal strong singularity of (1.1) at 0.
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