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Abstract

Let L be a uniformly elliptic operator in Rd. We investigate limit properties of solutions to the boundary singularity
problem of non-linear equation Lu = u�; 1¡�62, by a probabilistic method. c© 2001 Elsevier Science B.V. All rights
reserved
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1. Introduction

Let D be a bounded C2-domain in Rd with boundary @D, and let f be a continuous and non-negative
function on @D. Suppose 0 belongs to @D. Consider the boundary singularity problem{

Lu= u� in D;

u|@D\{0} = f;
(1.1)

where L is a uniformly elliptic operator in Rd, 1¡�62.
The boundary value problem (1.1) has been studied recently by probabilistic and purely analytic methods.
Gmira and V�eron (1991) showed that, in the case d¡1 + 2=(�− 1), there are three classes of solutions of

(1.1): removable singularity, weak singularity and strong singularity, in which the solutions of (1.1) are in
the distribution sense. Gmira and V�eron’s treatment about problem (1.1) is purely analytic.
Le Gall (1997) succeeded in describing all positive solutions of the equation �u= u2 in a smooth domain

D in R2. He established a 1–1 correspondence between all positive solutions and all pairs (�; �), where � is
a closed subset of @D and � is a Radon measure on @D\�.
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Marcus and V�eron (1998) investigated the equation �u=u�, �¿1, in the unit d-dimensional ball by analytic
methods. For every positive solution u they de�ned the trace (�; �) of u in terms of the boundary behavior
of u.
Dynkin and Kuznetsov (1998) investigated the trace of positive solutions of the nonlinear equation Lu=u�,

1¡�62, in a bounded C2; � domain. Their de�nition of the trace is di�erent from that of Marcus and V�eron
(1998). The main tool they used is the (L; �)-superdi�usion.
The objective of this paper is to describe the limit behavior of classical non-negative solutions of (1.1)

near singular point 0 by a probabilistic method.

2. Main result

To state the main result of this paper let us introduce some notations.
Suppose �=(�t ; �x) is a di�usion with generator L. For every open set U , let �U denote the �rst exit time

of � from U . A point a∈ @D is called regular if �a(�D = 0) = 1. A domain D is regular if all points a∈ @D
are regular. Every C2-domain is regular. For non-negative measurable function f on @D and non-negative
measurable function g on D,

�xf(��D) =
∫
@D
k(x; y)f(y)� (dy);

�x

∫ �D

0
g(�s) ds=

∫
D
GD(x; y)g(y) dy;

where GD(x; y) is the Green function of L in D, k(x; y) is the Poisson kernel and � is a �nite measure on
@D such that

∫
@D k(x; y)� (dy) = 1.

We denote by M(D) the set of all �nite measures in D. To every open set U ⊂D, there corresponds a
random measure XU such that, for every non-negative Borel function f,

P� exp〈−f; XU 〉= exp〈−u; �〉; �∈M(D); (2.1)

where

u(x) +�x

∫ �U

0
u�(�s) ds=�xf(��U ): (2.2)

The joint probability distribution of XU1 ; : : : ; XUn is determined by (2.1) and the Markov property: for every
positive F⊃U -measurable Y ,

P�{Y |F⊂U}= PXU Y; (2.3)

where F⊂U is the �-algebra generated by XU1 with U1⊂U and F⊃U is the �-algebra generated by XU2 with
U2⊃U . We call XD = (XU ; P�;U ⊂D; �∈M(D)) the (L; �)-superdi�usion in D. Let RD denote the support
of XD.
We say that a positive solution u of Lu = u� is moderate if it is dominated by an L-harmonic function.

Every positive L-harmonic function on D has a unique representation

h(x) =
∫
@D
k(x; y)� (dy);

where � is a �nite measure on @D. The condition d¡1 + 2=(� − 1) implies that the empty set is the only
RD-polar set, and the formula

u(x) +�x

∫ �D

0
u�(�s) ds=

∫
@D
k(x; y)� (dy)



Y. Ren / Statistics & Probability Letters 51 (2001) 173–179 175

established a 1–1 correspondence between moderate solutions u and �nite measures � on @D (see Dynkin and
Kuznetsov, 1996a). We call � the trace of the moderate solution u.
Suppose u is an arbitrary positive solution of Lu= u�, according to Theorem 1:2 in Dynkin and Kuznetsov

(1998), for every compact subset B of @D, there exists the maximal solution uB dominated by u and equal
to 0 on @D\B. There exists a unique (�; �) satis�es: (a) � is a closed subset of @D and O = @D\� is the
maximal open subset O of @D such that uB is moderate for every compact B⊂O; (b) � is a measure on O
such that, for every compact B⊂O, the trace of uB coincides with the restriction of � to B. We call the pair
(�; �) the trace of u.
Dynkin and Kuznetsov (1996b) showed that, if d¡1+2=(�−1), then, for every �¿0, there exists a unique

moderate solution of Lu= u� with trace f(z)� (dz) + ��0, which we denote by uf;�. Let Um
f and Un

f be the
collections of all moderate solutions of (1.1) and all non-moderate solutions of (1.1), respectively.
Now we are ready to state the main result of this paper.

Theorem 2.1. Assume that D is a bounded C2-domain in Rd; 0∈ @D; 26d¡1 + 2=(� − 1), and f is a
continuous and non-negative function on @D.
(i)

uf(x) =−logP�xexp〈−f; XD〉; x∈D (2.4)

is the unique non-negative bounded solution of (1:1).
(ii) Um

f = {uf;�; �¿0}. For every u∈Um
f; the trace of u is f(z)� (dz) + ��0 with � given by

�= lim
x∈D; x→0

u(x)−�xf(��D)
k(x; 0)

= lim sup
x∈D; x→0

u(x)
k(x; 0)

; (2.5)

i.e.; u= uf;� with � given by (2:5).
(iii) u belongs to Un

f if and only if the trace of u is ({0}; f(z)�@D\{0}(dz)); where �@D\{0} (dz) is the
restriction of � (dz) to @D\{0}. Moreover;
uf;∞(x) = lim

�→∞
uf;�(x); x ∈ D; (2.6)

is the minimal element of Un
f; and

w(x) =−logP�x{exp〈−f; XD〉; 0 6∈ RD}; x∈D; (2.7)

is the maximal element of Un
f.

Remark 2.1. If 26d¡ 1 + 2=(� − 1) and f = 0 on @D\{0}, Theorem 2.1 shows that u ≡ 0 is the unique
bounded non-negative solution of (1.1), and there are two classes of positive solutions of (1.1): moderate
solutions and non-moderate solutions. This coincides with the result that, in the case 26d¡ 1 + 2=(� − 1),
set {0}⊂ @D is a non-removable singularity.
As we know, it is the �rst time to investigate the behavior of singular solutions of (1.1) near the singular

point 0 in terms of k(x; 0) (see (2.5)). Le Gall (1997) proved that the non-moderate solution of (1.1) is
unique for L= �; �= 2. Marcus and V�eron (1998) proved this result for L= � and for a ball D by analytic
method. But in general case, we do not know whether there is only one element in Un

f.

3. Proof of the main result

We �x a bounded C2-domain D in Rd. Suppose 0∈ @D and f is a non-negative bounded continuous
function on @D.
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Lemma 3.1 (Dynkin 1992, Theorem 1:2). Suppose un is a sequence of non-negative solutions of Lu= u� in
D and un converge pointwise in D to u. Then u is a solution of Lu= u� in D.
Let O be a relatively open subset of @D. If un satisfy the boundary condition un=f on O; then the same

condition holds for u.

Lemma 3.2. Let g be a locally bounded function in an open set D and F(x)=�x
∫ �D
0 g(�s) ds. If g∈C0; �(D)

and F(x) is locally bounded in D, then F ∈C2; �(D) and LF =−g in D.

Proof. Lemma 3.2 is a generalization of Theorem 0:3 in Dynkin (1991). It is easy to prove by the strong
Markov property of �, and Theorems 0:2 and 0:3 in Dynkin (1991). We omit the details.

Lemma 3.3. Suppose � is a relative closed subset of @D. Then

−logP�x{exp〈−f; XD〉;RD ∩ � = ∅}
is the maximal non-negative solution of Lu= u� with boundary condition u= f on @D\�.

Proof. The proof of Lemma 3.3 is similar to that of Theorem 2.1 in Dynkin (1992). We omit the details.

In the following of this paper, the notation C always denotes a constant which may change values from
line to line.

Lemma 3.4. If d¡ 1 + 2=(�− 1); then

lim
x∈D; x→0

1
k(x; 0)

∫
D
GD(x; y)k(y; 0)� dy = 0: (3.1)

Proof. We �rst quote two inequalities:

C1�(x)‖x − z‖−d6k(x; z)6C−1
1 �(x)‖x − z‖−d; x∈D; z ∈ @D; (3.2)

(see Dynkin and Kuznetsov, 1996a)

GD(x; y)6C2
�(x)�(y)

‖x − y‖d
; x; y∈D; (3.3)

where �(x) = d(x; @D) is the distance from x to @D, and C1 and C2 are two positive constants depending
only on L and D. For L=�, inequality (3.3) was proved in Chung and Zhao (1995), and in the general case
this follows easily from the fact that quotients of Green functions are uniformly bounded (see Hueber and
Siereking, 1982).
Note that

1
k(x; 0)

∫
D
GD(x; y)k(y; 0)� dy = I1 + I2; (3.4)

where

I1 =
∫
D∩{y:‖x−y‖¿‖x‖=2}

g(x; y) dy;

I2 =
∫
D∩{y:‖x−y‖¡‖x‖=2}

g(x; y) dy;

g(x; y) =
GD(x; y)k(y; 0)�

k(x; 0)
:
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We �rst prove limx∈D;x→0 I1 = 0. Using (3.2) and (3.3), we get

g(x; y)6C
‖x‖d

‖x − y‖d
‖y‖−�(d−1)+1:

Then we conclude that limx∈D;x→0 g(x; y) = 0 for any y∈D, and g(x; y)62dC‖y‖−�(d−1)+1 for y∈D ∩
{y: ‖x− y‖¿‖x‖=2}. Note that ∫D ‖y‖−�(d−1)+1 dy6C ∫ diam(D)0 rd−�(d−1) dr ¡∞(d¡ 1+ 2=(�− 1)). By the
dominated convergence theorem, limx∈D;x→0 I1 = 0.
Next we prove limx∈D;x→0 I2 = 0. By Corollaries 6:13 and 6:25 in Chung and Zhao (1995), we have

GD(x; y)k(y; 0)
k(x; 0)

6



C(‖x − y‖2−d + ‖y‖2−d) if d¿3;

C[(ln 1
‖x−y‖) ∨ 1 + (ln

1
‖y‖) ∨ 1] if d= 2:

(3.5)

Note that ‖y − x‖¡ ‖x‖=2 implies ‖y‖¿‖x‖=2. In the case d¿3, we have
g(x; y)6C(‖x − y‖2−d + ‖y‖2−d)k(y; 0)�−1

6C(‖x − y‖2−d + ‖y‖2−d)‖y‖(�−1)(1−d)

6C(‖x‖(�−1)(1−d)‖x − y‖2−d + ‖x‖2−d+(�−1)(1−d)):
Thus

I26C
∫
‖x−y‖6 1

2‖x‖
(‖x‖(�−1)(1−d)‖x − y‖2−d + ‖x‖2−d+(�−1)(1−d)) dy

6C‖x‖2+(�−1)(1−d)→0 (since d¡1 + 2=(�− 1)):
In the case d= 2, we have

g(x; y)6C
[(
ln

1
‖x − y‖

)
∨1 +

(
ln
1

‖y‖
)
∨1
]
k(y; 0)�−1

6C
[(
ln

1
‖x − y‖

)
∨1 +

(
ln
1

‖y‖
)
∨1
]
‖y‖(�−1)(1−d):

Thus for su�ciently small x(‖x‖¡ 2=3).

I26C
∫
‖x−y‖6‖x‖=2

(
ln

1
‖x − y‖ + ln

1
‖y‖

)
‖x‖(�−1)(1−d) dy

6C

(
‖x‖(�−1)(1−d)

∫ ‖x‖=2

0
−r ln r dr + ‖x‖(�−1)(1−d) ln 2

‖x‖

)
→ 0:

Therefore, by (3.4), we obtain the desired result (3.1).

Lemma 3.5. Assume d¡ 1 + 2=(�− 1). For every a∈ @D\{0}; we have

lim
x∈D; x→a

∫
D
GD(x; y)k(x; 0)� dy = 0:
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Proof. Note that∫
D
GD(x; y)k(y; 0)� dy=

∫
D\B(a;|a|=2)

GD(x; y)k(y; 0)� dy

+
∫
D∩B(a;|a|=2)

GD(x; y)k(y; 0)� dy:

For x∈B(a; |a|=4), y∈D\B(a; |a|=2), by estimates (3.2) and (3.3) we have

GD(x; y)k(y; 0)�6C
�(x)�(y)�+1

‖x − y‖d‖y‖�d
64dC|a|−d‖y‖�+1−�d:

Since
∫
D ‖y‖�+1−�d dy¡∞ (d¡1 + 2=(� − 1)) and limx∈D;x→a GD(x; y) = 0, it follows from the dominated

convergence theorem that∫
D\B(a;|a|=2)

GD(x; y)k(y; 0)�→0 as x∈D; x → a:

For x∈B(a; |a|=4), y∈D ∩ B(a; |a|=2), we similarly have the estimate

GD(x; y)k(y; 0)�6C
�(y)�

‖y‖�d
GD(x; y)6C|a|−�dGD(x; y):

Since limx∈D;x→a
∫
D GD(x; y) dy = 0, we have∫

D∩B(a;|a|=2)
GD(x; y)k(y; 0)� dy→ 0 as x∈D; x→ a:

Thus we complete the proof of Lemma 3.5.

Proof of Theorem 2.1. (i) By Theorem 1:1 in Dynkin (1991) uf is the unique bounded solution of Lu= u�

with boundary condition u|@D=f, and therefore a bounded solution of (1.1). Conversely suppose u is bounded
solution of (1.1). By Lemma 3.2, h(x)=u(x)+

∫
D GD(x; y)u

�(y) dy is a bounded solution of Lu=0 in D having
boundary value f on @D\{0}. From the classical theory of the regularity of solutions of elliptic equation near
a boundary point, we deduce that h and hence u can be continuously extended to �D. Thus u is a bounded
solution of Lu= u� with boundary condition u|@D = f. Hence we have u= uf.
(ii) For every �¿0, uf;� satis�es

uf;�(x) +
∫
D
GD(x; y)u�f;�(y) dy =�xf(��D) + �k(x; 0): (3.6)

Dynkin and Kuznetsov (1996b) showed that uf;� is a moderate solution of Lu=u�. From Minkowski inequality
and Lemma 3.5,

∫
D GD(x; y)u

�
f;�(y) dy has boundary value zero at a∈ @D\{0}. Then, by (3.6), uf;� has

boundary value f on @D\{0}. Therefore uf;� is a moderate solution of (1.1).
Now suppose u is a moderate solution of (1.1). There exists a �nite measure � on @D such that

u(x) +
∫
D
GD(x; y)u�(y) dy =

∫
@D
k(x; z)� (dz): (3.7)

By Fatou’s Lemma and (3.2),

lim sup
x→0

∫
@D k(x; z)� (dz)
k(x; 0)

6
∫
@D
lim sup
x→0

k(x; z)
k(x; 0)

� (dz) = �({0})¡∞:

Then there exists a constant C¿ 0 such that u(x)6Ck(x; 0) in a neighborhood U of 0. As u is bounded in
D\U , we can choose C big enough such that

u(x)6C(k(x; 0) + 1): (3.8)
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By Minkowski inequality,∫
D
GD(x; y)u�(y) dy6C

[(∫
D
GD(x; y) dy

)1=�
+
(∫

D
GD(x; y)k(y; 0)� dy

)1=�]�
: (3.9)

It is easy to check that
∫
D GD(x; y)k(y; 0)

� dy is locally bounded in D. By (3.9),
∫
D GD(x; y)u(y)

� dy is
locally bounded in D. Then it follows from Lemma 3.2 that h(x) = u(x) +

∫
D GD(x; y)u(y)

� dy is a solution
of Lh= 0. By (3.9) and Lemma 3.5,

∫
D GD(x; y)u

�(y) dy has boundary value zero at a∈ @D\{0}. So h is a
bounded solution of Lh= 0 having boundary value f on @D\{0}. From the Martin’s representation theorem
(see, e.g., Theorem 4:3 and its proof in Hunt and Wheeden, 1970), there exists a constant �¿0 such that

h(x) =�xf(��D) + �k(x; 0)

and therefore

u(x) +
∫
D
GD(x; y)u�(y) dy =�xf(��D) + �k(x; 0): (3.10)

Hence u= uf;� belongs to Um
f .

By (3.9) and Lemma 3.4,

lim
x∈D; x→0

1
k(x; 0)

∫
D
GD(x; y)u�(y) dy = 0:

Then by (3.10), assertion (2.5) holds
(iii) It follows easily from result (ii) that u is a non-moderate solution of (1.1) if and only if the trace of u

is ({0}; f(z)�@D\{0} (dz)). The maximum principle implies that u� is increasing in �¿ 0. Then uf;� ↑ uf;∞.
By Lemma 3.1 uf;∞ is a non-moderate solution of (1.1). It is obvious that

lim
x∈D;x→0

uf;∞(x)−�xf(��D)
k(x; 0)

= lim sup
x∈D;x→0

uf;∞(x)
k(x; 0)

=∞:

By Lemma 3.3, w is the maximal solution of (1.1), and then the maximal element of Un
f.

Comparing our result with that of Gmira and V�eron (1991), we �nd that uf is the only removable singularity
of (1.1), and Um

f and Un
f are the collections of all weak singularities of (1.1) and all strong singularities of

(1.1), respectively.
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