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Intensities for continuous-time Markov chains

Assume X is a continuous time Markov chain in Zd. Then

P{X(t+ ∆t)−X(t) = l|X(t) = k} ≈ βl(k)∆t,

and hence

E[f(X(t+ ∆t))− f(X(t))|FX
t ] ≈

∑
l

βl(X(t))(f(X(t) + l)− f(X(t))∆t

≡ Af(X(t))∆t

Then
Af(k) =

∑
l

βl(k)(f(k + l)− f(k))

is the generator for the chain
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Martingale problems

≈ is made precise by the requirement that

f(X(t))− f(X(0))−
∫ t

0
Af(X(s))ds

be a {FX
t }-martingale for f in an appropriate domain D(A).

X is called a solution of the martingale problem for A.
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Martingale problem

E state space (a complete, separable metric space)

A generator (a linear operator with domain and range in B(E)

µ ∈ P(E)

X is a solution of the martingale problem for (A, µ) if and only if
µ = PX(0)−1 and there exists a filtration {Ft} such that

f(X(t))−
∫ t

0
Af(X(s))ds

is an {Ft}-martingale for each f ∈ D(A)
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Examples

Standard Brownian motion (E = Rd)

Af =
1

2
∆f, D(A) = C2

c (Rd)

Poisson process (E = {0, 1, 2 . . .}, D(A) = B(E))

Af(k) = λ(f(k + 1)− f(k))

Pure jump process (E arbitrary)

Af(x) = λ(x)

∫
E

(f(y)− f(x))µ(x, dy)

Diffusion (E = Rd)

Af(x) =
1

2

∑
i,j

aij(x)
∂2

∂xi∂xj
f(x) +

∑
i

bi(x)
∂

∂xi
f(x), D(A) = C2

c (Rd)
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Uniqueness and the Markov property

Theorem 1 If any two solutions of the martingale problem for A sat-
isfying PX1(0)−1 = PX2(0)−1 also satisfy PX1(t)

−1 = PX2(t)
−1 for

all t ≥ 0, then the f.d.d. of a solution X are uniquely determined by
PX(0)−1

If X is a solution of the MGP for A and Xa(t) = X(a+ t), then Xa is
a solution of the MGP for A.

Theorem 2 If the conclusion of the above theorem holds, then any
solution of the martingale problem for A is a Markov process.
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General approaches to averaging

Models with two time scales: (X, V ), V is “fast”

Occupation measure: ΓV (C × [0, t]) =
∫ t

0 1C(V (s))ds

Replace integrals involving V by integrals against ΓV∫ t

0
f(X(s), V (s))ds =

∫
EV×[0,t]

f(X(s), v)ΓV (dv × ds)

≈
∫ t

0

∫
EV

f(X(s), v)ηs(dv)ds

How do we identify ηs?
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Generator approach

Suppose Brf(x, v) = rCf(x, v) + Df(x, v) where C operates on f as a
function of v alone.

f(Xr(t), Vr(t))− r
∫
EV×[0,t]

Cf(Xr(s), v)ΓVr (dv × ds)

−
∫
EV×[0,t]

Df(Xr(s), v)ΓVr (dv × ds)

Assuming (Xr,Γ
V
r )⇒ (X,ΓV ), dividing by r, we should∫

EV×[0,t]
Cf(X(s), v)ΓV (dv × ds) =

∫
EV×[0,t]

Cf(X(s), v)ηs(dv)ds = 0

(1)

Suppose that for each x, the solution µx ∈ P(EV ) of
∫
EV Cf(x, v)µx(dv) =

0, f ∈ D, is unique. Then ηs(dv) = µX(s)(dv)
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Prohorov metric

The Prohorov metric on Mf(S), the space of finite measures on a
complete, separable metric space S, is

ρ(µ, ν) = inf{ε > 0 : µ(B) ≤ ν(Bε) + ε, ν(B) ≤ µ(Bε) + ε, B ∈ B(S)},
(2)

where Bε = {x ∈ S : infy∈B d(x, y) < ε}.

Lemma 3 (Mf(S), ρ) is a complete, separable metric space.

Lemma 4 Convergence in the Prohorov metric is equivalent to weak
convergence, that is, ρ(µn, µ)→ 0 if and only if∫

fdµn →
∫
fdµ, f ∈ C̄(S).
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Convergence of random measures

Lemma 5 Let {Γn} be a sequence ofMf(S)-valued random variables.
Then Γn is relatively compact if and only if {Γn(S)} is relatively com-
pact as a family of R-valued random variables and for each ε > 0, there
exists a compact K ⊂ S such that supn P{Γn(Kc) > ε} < ε.

Corollary 6 Let {Γn} be a sequence of Mf(S)-valued random vari-
ables. Suppose that supnE[Γn(S)] < ∞ and that for each ε > 0, there
exists a compact K ⊂ S such that

lim sup
n→∞

E[Γn(K
c)] ≤ ε.

Then {Γn} is relatively compact.
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Space-time measures

Let L(S) be the space of measures on [0,∞)×S such that µ([0, t]×S) <
∞ for each t > 0, and let Lm(S) ⊂ L(S) be the subspace on which
µ([0, t] × S) = t. For µ ∈ L(S), let µt denote the restriction of µ to
[0, t] × S. Let ρt denote the Prohorov metric on M([0, t] × S), and
define ρ̂ on L(S) by

ρ̂(µ, ν) =

∫ ∞

0
e−t1 ∧ ρt(µt, νt)dt,

that is, {µn} converges in ρ̂ if and only if {µtn} converges weakly for
almost every t. In particular, if ρ̂(µn, µ) → 0, then ρt(µ

t
n, µ

t) → 0 if
and only if µn([0, t]× S)→ µ([0, t]× S).
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Relative compactness in Lm(S)

Lemma 7 A sequence of (Lm(S), ρ̂)-valued random variables {Γn} is
relatively compact if and only if for each ε > 0 and each t > 0, there
exists a compact K ⊂ S such that infnE[Γn([0, t]×K)] ≥ (1− ε)t.

Lemma 8 If Vr takes values in a locally compact space EV , ψ ≥ 1 and
{v ∈ EV : ψ(v) ≤ c} is compact for each c > 1, and

sup
r
E[

∫ t

0
ψ(Vr(s))ds] = sup

r

∫ t

0
E[ψ(Vr(s))]ds <∞,

then the family of occupation measures {Γr} is relatively compact in
Lm(EV ).
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Disintegration of measues

Lemma 9 Let Γ be an (L(S), ρ̂)-valued random variable adapted to a
complete filtration {Ft} in the sense that for each t ≥ 0 and H ∈ B(S),
Γ([0, t]×H)) is Ft-measurable. Let λ(G) = Γ(G×S). Then there exists
an {Ft}-optional, P(S)-valued process γ such that∫

[0,t]×S
h(s, y)Γ(ds× dy) =

∫ t

0

∫
S

h(s, y)γs(dy)λ(ds). (3)

for all h ∈ B([0,∞)×S) with probability one. If λ([0, t]) is continuous,
then γ can be taken to be {Ft}-predictable.
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Convergence of integrals

Lemma 10 Let {(xn, µn)} ⊂ DE[0,∞)× L(S), and (xn, µn)→ (x, µ).
Let h ∈ C̄(E × S). Define

un(t) =

∫
[0,t]×S

h(xn(s), y)µn(ds×dy), u(t) =

∫
[0,t]×S

h(x(s), y)µ(ds×dy)

zn(t) = µn([0, t]× S), and z(t) = µ([0, t]× S).

a) If x is continuous on [0, t] and limn→∞ zn(t) = z(t), then limn→∞ un(t) =
u(t).

b) If (xn, zn, µn)→ (x, z, µ) in DE×R[0,∞)×L(S), then (xn, zn, un, µn)→
(x, z, u, µ) in DE×R×R[0,∞)×L(S). In particular, limn→∞ un(t) =
u(t) at all points of continuity of z.
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c) The continuity assumption on h can be replaced by the assumption
that h is continuous a.e. νt for each t, where νt ∈M(E×S) is the
measure determined by νt(A × B) = µ{(s, y) : x(s) ∈ A, s ≤ t, y ∈
B}.

d) In both (a) and (b), the boundedness assumption on h can be re-
placed by the assumption that there exists a nonnegative convex
function ψ on [0,∞) satisfying limr→∞ ψ(r)/r =∞ such that

sup
n

∫
[0,t]×S

ψ(|h(xn(s), y)|)µn(ds× dy) <∞ (4)

for each t > 0.
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Well-mixed reactions

Consider A+B
κ
⇀ C. The generator for the Markov chain model is

Af(m,n) = κmn(f(m− 1, n− 1)− f(m,n))

Spatial model

Ui state (location and configuration) of ith molecule of A

Vj state of jth molecule of B

Bf(u, v) =
m∑
i=1

rCA
ui
f(u, v) +

n∑
j=1

rCB
vj
f(u, v)

+
∑
i,j

ρ(ui, vj)(f(θiu, θjv)− f(u, v))

where rCA is a generator modeling the evolution of a molecule of A and
rCB models the evolution of a molecule of B.
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Independent evolution of molecules

If there was no reaction

rCf(u, v) =
m∑
i=1

rCA
ui
f(u, v) +

n∑
j=1

rCB
vj
f(u, v)

would model the independent evolution of m molecules of A and n
molecules of B.
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Averaging: Markov chain model

Assume that the state spaces EA, EB for molecules of A and B are
compact and let E = ∪m,nEm

A × En
B.

Let Γr be the occupation measure

Γr(C × [0, t]) =

∫ t

0
1C(U r(s), V r(s))ds,

so

f(U r(t), V r(t))−
∫
E×[0,t]

(rCf(u, v) + Df(u, v))Γr(du× dv × ds)

is a martingale. Then {(Γr, Xr
A, X

r
B)} is relatively compact, and assum-

ing all functions are continuous, any limit point (Γ, XA, XB) of Γr as
r →∞ satisfies ∫

E×[0,t]
Cf(u, v)Γ(du, dv, ds) = 0.

cf. Kurtz [4]
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Averaged generator

If f depends only on the numbers of molecules the martingale becomes

f(XA(t), XB(t))−
∫
E×[0,t]

∑
i,j

ρ(ui, vj)(f(XA(s)−1, XB(s)−1)−f(XA(s), XB(s)))Γ(du, dv, ds).

If CA and CB have unique stationary distributions µA, µB, then for
f(u, v) =

∏m
i=1 g(ui)

∏n
j=1 h(uj),∫

f(u, v)Γ(du, dv, t) =

∫ t

0
〈g, µA〉XA(s)〈h, µB〉XB(s)ds

and setting κ =
∫
ρ(u0, v0)µA(du0)µB(dv0),

f(XA(t), XB(t))−
∫ t

0

κXA(s)XB(s)(f(XA(s)− 1, XB(s)− 1)− f(XA(s), XB(s)))ds

is a martingale.
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Averaging: Michaelis-Menten kinetics

Consider the reaction system A + E 
 AE ⇀ B + E modeled as a
continuous time Markov chain satisfying

ZN
A (t) = ZN

A (0)−N−1Y1(N

∫ t

0

κ1Z
N
A (s)XN

E (s)ds+N−1Y2(N

∫ t

0

κ2X
N
AE(s)ds)

XN
E (t) = XN

E (0)− Y1(N

∫ t

0

κ1Z
N
A (s)XN

E (s)ds+ Y2(N

∫ t

0

κ2X
N
AE(s)ds)

+Y3(N

∫ t

0

κ3X
N
AE(s)ds

XN
B (t) = Y3(N

∫ t

0

κ3X
N
AE(s)ds

Note that M = XN
AE(t) +XN

E (t) is constant.
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Quasi-steady state

Then

f(XN
E (t))− f(XN

E (0))−
∫ t

0
Nκ1Z

N
A (s)XN

E (s)(f(XN
E (s)− 1)− f(XN

E (s)))ds

−
∫ t

0
N(κ2 + κ3)(M −XN

E (s))(f(XN
E (s) + 1)− f(XN

E (s)))ds

At least along a subsequence ZN
A = N−1XN

A → ZA, and by (1),

M∑
k=0

ηs(k)(κ1ZA(s)k(f(k−1)−f(k)+(κ2+κ3)(M−k)(f(k+1)−f(k)) = 0

so ηs is binomial(M, ps), where

ps =
κ2 + κ3

κ2 + κ3 + κ1ZA(s)
.
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Substrate dynamics

f(ZN
A (t))− f(ZN

A (0))−
∫ t

0

Nκ1Z
N
A (s)XN

E (s)(f(ZN
A (s)−N−1)− f(ZN

A (s)))ds

−
∫ t

0

Nκ2(M −XN
E (s))(f(ZN

A (s) +N−1)− f(ZN
A (s)))ds

Noting that
∑M

k=0 kηs(k) = Mps, so the averaged generator becoms

f(ZA(t))− f(ZA(0))−
∫ t

0
(κ2M(1− ps)− κ1MpsZA(s))f ′(ZA(s))dx

is a martingale (actually ≡ 0), so

ZA(t) = ZA(0) +

∫ t

0
(κ2M(1− ps)− κ1MpsZA(s))ds

= ZA(0) +

∫ t

0

Mκ1κ3ZA(s)

κ2 + κ3 + κ1ZA(s)
ds
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Another enzyme reaction model

A+ E 
 AE ⇀ B + E E 
 F +G ∅⇀ G→ ∅

ZN
A (t) = ZN

A (0)−N−1Y1(N

∫ t

0

κ1Z
N
A (s)XN

E (s)ds+N−1Y2(N

∫ t

0

κ2X
N
AE(s)ds)

XN
E (t) = XN

E (0)− Y1(N

∫ t

0

κ1Z
N
A (s)XN

E (s)ds+ Y2(N

∫ t

0

κ2X
N
AE(s)ds)

+Y3(N

∫ t

0

κ3X
N
AE(s)ds+ Y4(N

∫ t

0

κ4X
N
F (s)XN

G (s))ds− Y5(N

∫ t

0

κ5X
N
E (s)ds)

XN
F (t) = XN

F (0) + Y5(N

∫ t

0

κ5X
N
E (s)ds)− Y4(N

∫ t

0

κ4X
N
F (s)XN

G (s))ds)

XN
G (t) = XN

G (0) + Y6(Nκ6t) + Y5(N

∫ t

0

κ5X
N
E (s)ds)− Y4(N

∫ t

0

κ4X
N
F (s)XN

G (s))ds)

−Y7(N

∫ t

0

κ7XG(s)ds)
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Stationary expectations for fast process

Need the stationary expectations for the fast subsystem

−(κ1z + κ5)E[XE] + (κ2 + κ3)E[XAE] + κ4E[XFXG] = 0

κ5E[XE]− κ4E[XFXG] = 0

κ6 + κ5E[XE]− κ4E[XFXG]− κ7E[XG] = 0

E[XE] + E[XAE] + E[XF ] = M

Claim:
E[XFXG] = E[XF ]E[XG]

and hence

E[XE] =
κ4κ6M

κ5κ7 + κ4κ6 + κ1κ4κ6z
κ2+κ3

.
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Network reversibility conditions

S = {Ai : i = 1, . . . ,m} chemical species

C = {νk, ν ′k : k = 1, . . . , n} complexes

R = {νk → ν ′k : k = 1, . . . , n} reactions

determine a chemical reaction network.

Definition 11 A chemical reaction network, {S, C,R}, is called weakly
reversible if for any reaction νk → ν ′k, there is a sequence of directed
reactions beginning with ν ′k as a source complex and ending with νk as
a product complex. That is, there exist complexes ν1, . . . , νr such that
ν ′k → ν1, ν1 → ν2, . . . , νr → νk ∈ R. A network is called reversible if
ν ′k → νk ∈ R whenever νk → ν ′k ∈ R.
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Linkage classes

Let G be the directed graph with nodes given by the complexes C and
directed edges given by the reactions R = {νk → ν ′k}, and let G1, . . . ,G`
denote the connected components of G. {Gj} are the linkage classes of
the reaction network.

Intuition for probabilists: If the network is weakly reversible, then,
thinking of the complexes as states of a Markov chain, the linkage
classes are the irreducible communicating equivalence classes of classical
Markov chain theory. BUT, these equivalence classes do not correspond
to the communicating equivalence classes of the Markov chain model
of the reaction network.
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Stoichiometric subspace

Definition 12 S = span{νk→ν′
k∈<}{ν

′
k − νk} is the stoichiometric sub-

space of the network. For c ∈ Rm we say c + S and (c + S) ∩ Rm
>0

are the stoichiometric compatibility classes and positive stoichiometric
compatibility classes of the network, respectively. Denote dim(S) = s.

If the network is weakly reversible, then the communicating equivalence
classes for the Markov chain model are of the form

{z +
∑
k

ak(ν
′
k − νk) : a = (a1, . . . , an) ∈ Zn

≥0}

for some z ∈ Zm
≥0.
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Deficiency of a network

Definition 13 The deficiency of a a chemical reaction network, {S, C,R},
is δ = |C|− `−s, where |C| is the number of complexes, ` is the number
of linkage classes, and s is the dimension of the stoichiometric subspace.

Lemma 14 (Feinberg [2]) The deficiency of a network is nonnega-
tive.

Proof. Let Ci be the complexes in the ith linkage class and let Si be
the span of the reaction vectors giving the edges in the ith linkage class.
Then dim(Si) ≤ |Ci| − 1 and

dim(S) ≤
∑
i

dim(Si) ≤
∑̀
i=1

|Ci| − ` = |C| − `.

�
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Deficiency zero theorem

Theorem 15 (The Deficiency Zero Theorem, Feinberg [2]) Let
{S, C,R} be a weakly reversible, deficiency zero chemical reaction net-
work with mass action kinetics. Then, for any choice of rate constants
κk, within each positive stoichiometric compatibility class there is pre-
cisely one equilibrium value c,

∑
k κkc

νk(ν ′k − νk) = 0, and that equilib-
rium value is locally asymptotically stable relative to its compatibility
class. More precisely, for each η ∈ C,∑

k:νk=η

κkc
νk =

∑
k:ν′

k=η

κkc
νk. (5)
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Zero deficiency theorem for stochastic models

For x ∈ Zm
≥0, c

x =
∏m

i=1 c
xi

i and x! =
∏m

i=1 xi!. If c ∈ Rm
>0 satisfies∑

k:νk=η

κkc
νk =

∑
k:ν′

k=η

κkc
νk, η ∈ C, (6)

then the network is complex balanced.

Theorem 16 (Kelly [3],Anderson, Craciun, and Kurtz [1]) Let
{S, C,R} be a chemical reaction network with rate constants κk. Sup-
pose that the system is complex balanced with equilibrium c̄ ∈ Rm

>0.
Then, for any irreducible communicating equivalence class, Γ, the stochas-
tic system has a product form stationary measure

π(x) = M
c̄x

x!
, x ∈ Γ, (7)

where M is a normalizing constant.
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Abstract

Averaging fast subsystems

Reducing the complexity of system models by averaging fast subsystems
has a long history in applied mathematics in general and for stochastic
models in particular. The previous lectures exploited ad hoc, stochastic
analytic relationships to derive the desired averages. This lecture will
focus on more systematic methods based on the martingale properties
of the underlying Markov processes.


