Averaging fast subsystems

- Martingale problems
- General approaches to averaging
- Convergence of random measures
- Convergence of occupation measures
- Well-mixed reactions
- Michaelis-Menten equation
- Another enzyme reaction model
- Network reversibility
- Zero deficiency theorem
- Zero deficiency and product form
- References
- Abstract

Intensities for continuous-time Markov chains

Assume X is a continuous time Markov chain in \mathbb{Z}^{d}. Then

$$
P\{X(t+\Delta t)-X(t)=l \mid X(t)=k\} \approx \beta_{l}(k) \Delta t
$$

and hence

$$
\begin{aligned}
E\left[f(X(t+\Delta t))-f(X(t)) \mid \mathcal{F}_{t}^{X}\right] & \approx \sum_{l} \beta_{l}(X(t))(f(X(t)+l)-f(X(t)) \Delta t \\
& \equiv \mathbb{A} f(X(t)) \Delta t
\end{aligned}
$$

Then

$$
\mathbb{A} f(k)=\sum_{l} \beta_{l}(k)(f(k+l)-f(k))
$$

is the generator for the chain

Martingale problems

\approx is made precise by the requirement that

$$
f(X(t))-f(X(0))-\int_{0}^{t} \mathbb{A} f(X(s)) d s
$$

be a $\left\{\mathcal{F}_{t}^{X}\right\}$-martingale for f in an appropriate domain $\mathcal{D}(\mathbb{A})$.
X is called a solution of the martingale problem for \mathbb{A}.

Martingale problem

E state space (a complete, separable metric space)
\mathbb{A} generator (a linear operator with domain and range in $B(E)$
$\mu \in \mathcal{P}(E)$
X is a solution of the martingale problem for (\mathbb{A}, μ) if and only if $\mu=P X(0)^{-1}$ and there exists a filtration $\left\{\mathcal{F}_{t}\right\}$ such that

$$
f(X(t))-\int_{0}^{t} \mathbb{A} f(X(s)) d s
$$

is an $\left\{\mathcal{F}_{t}\right\}$-martingale for each $f \in \mathcal{D}(\mathbb{A})$

Examples

Standard Brownian motion $\left(E=\mathbb{R}^{d}\right)$

$$
\mathbb{A} f=\frac{1}{2} \Delta f, \quad \mathcal{D}(\mathbb{A})=C_{c}^{2}\left(\mathbb{R}^{d}\right)
$$

Poisson process $(E=\{0,1,2 \ldots\}, \mathcal{D}(\mathbb{A})=B(E))$

$$
\mathbb{A} f(k)=\lambda(f(k+1)-f(k))
$$

Pure jump process (E arbitrary)

$$
\mathbb{A} f(x)=\lambda(x) \int_{E}(f(y)-f(x)) \mu(x, d y)
$$

Diffusion $\left(E=\mathbb{R}^{d}\right)$
$\mathbb{A} f(x)=\frac{1}{2} \sum_{i, j} a_{i j}(x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x)+\sum_{i} b_{i}(x) \frac{\partial}{\partial x_{i}} f(x), \quad \mathcal{D}(\mathbb{A})=C_{c}^{2}\left(\mathbb{R}^{d}\right)$

Uniqueness and the Markov property

Theorem 1 If any two solutions of the martingale problem for \mathbb{A} satisfying $P X_{1}(0)^{-1}=P X_{2}(0)^{-1}$ also satisfy $P X_{1}(t)^{-1}=P X_{2}(t)^{-1}$ for all $t \geq 0$, then the f.d.d. of a solution X are uniquely determined by $P X(0)^{-1}$

If X is a solution of the MGP for \mathbb{A} and $X_{a}(t)=X(a+t)$, then X_{a} is a solution of the MGP for \mathbb{A}.

Theorem 2 If the conclusion of the above theorem holds, then any solution of the martingale problem for \mathbb{A} is a Markov process.

General approaches to averaging

Models with two time scales: $(X, V), V$ is "fast"
Occupation measure: $\Gamma^{V}(C \times[0, t])=\int_{0}^{t} \mathbf{1}_{C}(V(s)) d s$
Replace integrals involving V by integrals against Γ^{V}

$$
\begin{aligned}
\int_{0}^{t} f(X(s), V(s)) d s & =\int_{E^{V} \times[0, t]} f(X(s), v) \Gamma^{V}(d v \times d s) \\
& \approx \int_{0}^{t} \int_{E^{V}} f(X(s), v) \eta_{s}(d v) d s
\end{aligned}
$$

How do we identify η_{s} ?

Generator approach

Suppose $\mathbb{B}_{r} f(x, v)=r \mathbb{C} f(x, v)+\mathbb{D} f(x, v)$ where \mathbb{C} operates on f as a function of v alone.

$$
\begin{aligned}
f\left(X_{r}(t), V_{r}(t)\right)-r & \int_{E^{V} \times[0, t]} \mathbb{C} f\left(X_{r}(s), v\right) \Gamma_{r}^{V}(d v \times d s) \\
& \quad-\int_{E^{V} \times[0, t]} \mathbb{D} f\left(X_{r}(s), v\right) \Gamma_{r}^{V}(d v \times d s)
\end{aligned}
$$

Assuming $\left(X_{r}, \Gamma_{r}^{V}\right) \Rightarrow\left(X, \Gamma^{V}\right)$, dividing by r, we should

$$
\begin{equation*}
\int_{E^{V} \times[0, t]} \mathbb{C} f(X(s), v) \Gamma^{V}(d v \times d s)=\int_{E^{V} \times[0, t]} \mathbb{C} f(X(s), v) \eta_{s}(d v) d s=0 \tag{1}
\end{equation*}
$$

Suppose that for each x, the solution $\mu_{x} \in \mathcal{P}\left(E^{V}\right)$ of $\int_{E^{V}} \mathbb{C} f(x, v) \mu_{x}(d v)=$ $0, f \in \mathcal{D}$, is unique. Then $\eta_{s}(d v)=\mu_{X(s)}(d v)$

Prohorov metric

The Prohorov metric on $\mathcal{M}_{f}(S)$, the space of finite measures on a complete, separable metric space S, is
$\rho(\mu, \nu)=\inf \left\{\epsilon>0: \mu(B) \leq \nu\left(B^{\epsilon}\right)+\epsilon, \nu(B) \leq \mu\left(B^{\epsilon}\right)+\epsilon, B \in \mathcal{B}(S)\right\}$,
where $B^{\epsilon}=\left\{x \in S: \inf _{y \in B} d(x, y)<\epsilon\right\}$.
Lemma $3\left(\mathcal{M}_{f}(S), \rho\right)$ is a complete, separable metric space.
Lemma 4 Convergence in the Prohorov metric is equivalent to weak convergence, that is, $\rho\left(\mu_{n}, \mu\right) \rightarrow 0$ if and only if

$$
\int f d \mu_{n} \rightarrow \int f d \mu, \quad f \in \bar{C}(S)
$$

Convergence of random measures

Lemma 5 Let $\left\{\Gamma_{n}\right\}$ be a sequence of $\mathcal{M}_{f}(S)$-valued random variables. Then Γ_{n} is relatively compact if and only if $\left\{\Gamma_{n}(S)\right\}$ is relatively compact as a family of \mathbb{R}-valued random variables and for each $\epsilon>0$, there exists a compact $K \subset S$ such that $\sup _{n} P\left\{\Gamma_{n}\left(K^{c}\right)>\epsilon\right\}<\epsilon$.

Corollary 6 Let $\left\{\Gamma_{n}\right\}$ be a sequence of $\mathcal{M}_{f}(S)$-valued random variables. Suppose that $\sup _{n} E\left[\Gamma_{n}(S)\right]<\infty$ and that for each $\epsilon>0$, there exists a compact $K \subset S$ such that

$$
\limsup _{n \rightarrow \infty} E\left[\Gamma_{n}\left(K^{c}\right)\right] \leq \epsilon
$$

Then $\left\{\Gamma_{n}\right\}$ is relatively compact.

Space-time measures

Let $\mathcal{L}(S)$ be the space of measures on $[0, \infty) \times S$ such that $\mu([0, t] \times S)<$ ∞ for each $t>0$, and let $\mathcal{L}_{m}(S) \subset \mathcal{L}(S)$ be the subspace on which $\mu([0, t] \times S)=t$. For $\mu \in \mathcal{L}(S)$, let μ^{t} denote the restriction of μ to $[0, t] \times S$. Let ρ_{t} denote the Prohorov metric on $\mathcal{M}([0, t] \times S)$, and define $\hat{\rho}$ on $\mathcal{L}(S)$ by

$$
\hat{\rho}(\mu, \nu)=\int_{0}^{\infty} e^{-t} 1 \wedge \rho_{t}\left(\mu^{t}, \nu^{t}\right) d t
$$

that is, $\left\{\mu_{n}\right\}$ converges in $\hat{\rho}$ if and only if $\left\{\mu_{n}^{t}\right\}$ converges weakly for almost every t. In particular, if $\hat{\rho}\left(\mu_{n}, \mu\right) \rightarrow 0$, then $\rho_{t}\left(\mu_{n}^{t}, \mu^{t}\right) \rightarrow 0$ if and only if $\mu_{n}([0, t] \times S) \rightarrow \mu([0, t] \times S)$.

Relative compactness in $\mathcal{L}_{m}(S)$

Lemma 7 A sequence of $\left(\mathcal{L}_{m}(S), \hat{\rho}\right)$-valued random variables $\left\{\Gamma_{n}\right\}$ is relatively compact if and only if for each $\epsilon>0$ and each $t>0$, there exists a compact $K \subset S$ such that $\inf _{n} E\left[\Gamma_{n}([0, t] \times K)\right] \geq(1-\epsilon) t$.

Lemma 8 If V_{r} takes values in a locally compact space $E^{V}, \psi \geq 1$ and $\left\{v \in E^{V}: \psi(v) \leq c\right\}$ is compact for each $c>1$, and

$$
\sup _{r} E\left[\int_{0}^{t} \psi\left(V_{r}(s)\right) d s\right]=\sup _{r} \int_{0}^{t} E\left[\psi\left(V_{r}(s)\right)\right] d s<\infty
$$

then the family of occupation measures $\left\{\Gamma_{r}\right\}$ is relatively compact in $\mathcal{L}_{m}\left(E^{V}\right)$.

Disintegration of measues

Lemma 9 Let Γ be an $(\mathcal{L}(S), \hat{\rho})$-valued random variable adapted to a complete filtration $\left\{\mathcal{F}_{t}\right\}$ in the sense that for each $t \geq 0$ and $H \in \mathcal{B}(S)$, $\Gamma([0, t] \times H))$ is \mathcal{F}_{t}-measurable. Let $\lambda(G)=\Gamma(G \times S)$. Then there exists an $\left\{\mathcal{F}_{t}\right\}$-optional, $\mathcal{P}(S)$-valued process γ such that

$$
\begin{equation*}
\int_{[0, t] \times S} h(s, y) \Gamma(d s \times d y)=\int_{0}^{t} \int_{S} h(s, y) \gamma_{s}(d y) \lambda(d s) . \tag{3}
\end{equation*}
$$

for all $h \in B([0, \infty) \times S)$ with probability one. If $\lambda([0, t])$ is continuous, then γ can be taken to be $\left\{\mathcal{F}_{t}\right\}$-predictable.

Convergence of integrals

Lemma 10 Let $\left\{\left(x_{n}, \mu_{n}\right)\right\} \subset D_{E}[0, \infty) \times \mathcal{L}(S)$, and $\left(x_{n}, \mu_{n}\right) \rightarrow(x, \mu)$. Let $h \in \bar{C}(E \times S)$. Define
$u_{n}(t)=\int_{[0, t] \times S} h\left(x_{n}(s), y\right) \mu_{n}(d s \times d y), \quad u(t)=\int_{[0, t] \times S} h(x(s), y) \mu(d s \times d y)$
$z_{n}(t)=\mu_{n}([0, t] \times S)$, and $z(t)=\mu([0, t] \times S)$.
a) If x is continuous on $[0, t]$ and $\lim _{n \rightarrow \infty} z_{n}(t)=z(t)$, then $\lim _{n \rightarrow \infty} u_{n}(t)=$ $u(t)$.
b) If $\left(x_{n}, z_{n}, \mu_{n}\right) \rightarrow(x, z, \mu)$ in $D_{E \times \mathbb{R}}[0, \infty) \times \mathcal{L}(S)$, then $\left(x_{n}, z_{n}, u_{n}, \mu_{n}\right) \rightarrow$ (x, z, u, μ) in $D_{E \times \mathbb{R} \times \mathbb{R}}[0, \infty) \times \mathcal{L}(S)$. In particular, $\lim _{n \rightarrow \infty} u_{n}(t)=$ $u(t)$ at all points of continuity of z.
c) The continuity assumption on h can be replaced by the assumption that h is continuous a.e. ν_{t} for each t, where $\nu_{t} \in \mathcal{M}(E \times S)$ is the measure determined by $\nu_{t}(A \times B)=\mu\{(s, y): x(s) \in A, s \leq t, y \in$ $B\}$.
d) In both (a) and (b), the boundedness assumption on h can be replaced by the assumption that there exists a nonnegative convex function ψ on $[0, \infty)$ satisfying $\lim _{r \rightarrow \infty} \psi(r) / r=\infty$ such that

$$
\begin{equation*}
\sup _{n} \int_{[0, t] \times S} \psi\left(\left|h\left(x_{n}(s), y\right)\right|\right) \mu_{n}(d s \times d y)<\infty \tag{4}
\end{equation*}
$$

for each $t>0$.

Well-mixed reactions

Consider $A+B \stackrel{\kappa}{-} C$. The generator for the Markov chain model is

$$
\mathbb{A} f(m, n)=\kappa m n(f(m-1, n-1)-f(m, n))
$$

Spatial model

$U_{i} \quad$ state (location and configuration) of i th molecule of A
$V_{j} \quad$ state of j th molecule of B

$$
\begin{array}{rl}
\mathbb{B} f(u, v)=\sum_{i=1}^{m} & r \mathbb{C}_{u_{i}}^{A} f(u, v)+\sum_{j=1}^{n} r \mathbb{C}_{v_{j}}^{B} f(u, v) \\
& +\sum_{i, j} \rho\left(u_{i}, v_{j}\right)\left(f\left(\theta_{i} u, \theta_{j} v\right)-f(u, v)\right)
\end{array}
$$

where $r \mathbb{C}^{A}$ is a generator modeling the evolution of a molecule of A and $r \mathbb{C}^{B}$ models the evolution of a molecule of B.

Independent evolution of molecules

If there was no reaction

$$
r \mathbb{C} f(u, v)=\sum_{i=1}^{m} r \mathbb{C}_{u_{i}}^{A} f(u, v)+\sum_{j=1}^{n} r \mathbb{C}_{v_{j}}^{B} f(u, v)
$$

would model the independent evolution of m molecules of A and n molecules of B.

Averaging: Markov chain model

Assume that the state spaces E_{A}, E_{B} for molecules of A and B are compact and let $\mathcal{E}=\cup_{m, n} E_{A}^{m} \times E_{B}^{n}$.
Let Γ^{r} be the occupation measure

$$
\Gamma^{r}(C \times[0, t])=\int_{0}^{t} \mathbf{1}_{C}\left(U^{r}(s), V^{r}(s)\right) d s
$$

so

$$
f\left(U^{r}(t), V^{r}(t)\right)-\int_{\mathcal{E} \times[0, t]}(r \mathbb{C} f(u, v)+\mathbb{D} f(u, v)) \Gamma^{r}(d u \times d v \times d s)
$$

is a martingale. Then $\left\{\left(\Gamma^{r}, X_{A}^{r}, X_{B}^{r}\right)\right\}$ is relatively compact, and assuming all functions are continuous, any limit point $\left(\Gamma, X_{A}, X_{B}\right)$ of Γ^{r} as $r \rightarrow \infty$ satisfies

$$
\int_{\mathcal{E} \times[0, t]} \mathbb{C} f(u, v) \Gamma(d u, d v, d s)=0
$$

Averaged generator

If f depends only on the numbers of molecules the martingale becomes $f\left(X_{A}(t), X_{B}(t)\right)-\int_{\mathcal{E} \times[0, t]} \sum_{i, j} \rho\left(u_{i}, v_{j}\right)\left(f\left(X_{A}(s)-1, X_{B}(s)-1\right)-f\left(X_{A}(s), X_{B}(s)\right)\right) \Gamma(d u, d v, d s)$,

If \mathbb{C}^{A} and \mathbb{C}^{B} have unique stationary distributions μ_{A}, μ_{B}, then for $f(u, v)=\prod_{i=1}^{m} g\left(u_{i}\right) \prod_{j=1}^{n} h\left(u_{j}\right)$,

$$
\int f(u, v) \Gamma(d u, d v, t)=\int_{0}^{t}\left\langle g, \mu_{A}\right\rangle^{X_{A}(s)}\left\langle h, \mu_{B}\right\rangle^{X_{B}(s)} d s
$$

and setting $\kappa=\int \rho\left(u_{0}, v_{0}\right) \mu_{A}\left(d u_{0}\right) \mu_{B}\left(d v_{0}\right)$,

$$
f\left(X_{A}(t), X_{B}(t)\right)-\int_{0}^{t} \kappa X_{A}(s) X_{B}(s)\left(f\left(X_{A}(s)-1, X_{B}(s)-1\right)-f\left(X_{A}(s), X_{B}(s)\right)\right) d s
$$

is a martingale.

Averaging: Michaelis-Menten kinetics

Consider the reaction system $A+E \rightleftharpoons A E \rightharpoonup B+E$ modeled as a continuous time Markov chain satisfying

$$
\begin{aligned}
Z_{A}^{N}(t)= & Z_{A}^{N}(0)-N^{-1} Y_{1}\left(N \int_{0}^{t} \kappa_{1} Z_{A}^{N}(s) X_{E}^{N}(s) d s+N^{-1} Y_{2}\left(N \int_{0}^{t} \kappa_{2} X_{A E}^{N}(s) d s\right)\right. \\
X_{E}^{N}(t)= & X_{E}^{N}(0)-Y_{1}\left(N \int_{0}^{t} \kappa_{1} Z_{A}^{N}(s) X_{E}^{N}(s) d s+Y_{2}\left(N \int_{0}^{t} \kappa_{2} X_{A E}^{N}(s) d s\right)\right. \\
& \quad+Y_{3}\left(N \int_{0}^{t} \kappa_{3} X_{A E}^{N}(s) d s\right. \\
& \\
X_{B}^{N}(t)= & Y_{3}\left(N \int_{0}^{t} \kappa_{3} X_{A E}^{N}(s) d s\right.
\end{aligned}
$$

Note that $M=X_{A E}^{N}(t)+X_{E}^{N}(t)$ is constant.

Quasi-steady state

Then

$$
\begin{array}{r}
f\left(X_{E}^{N}(t)\right)-f\left(X_{E}^{N}(0)\right)-\int_{0}^{t} N \kappa_{1} Z_{A}^{N}(s) X_{E}^{N}(s)\left(f\left(X_{E}^{N}(s)-1\right)-f\left(X_{E}^{N}(s)\right)\right) d s \\
-\int_{0}^{t} N\left(\kappa_{2}+\kappa_{3}\right)\left(M-X_{E}^{N}(s)\right)\left(f\left(X_{E}^{N}(s)+1\right)-f\left(X_{E}^{N}(s)\right)\right) d s
\end{array}
$$

At least along a subsequence $Z_{A}^{N}=N^{-1} X_{A}^{N} \rightarrow Z_{A}$, and by (1),
$\sum_{k=0}^{M} \eta_{s}(k)\left(\kappa_{1} Z_{A}(s) k\left(f(k-1)-f(k)+\left(\kappa_{2}+\kappa_{3}\right)(M-k)(f(k+1)-f(k))=0\right.\right.$
so η_{s} is $\operatorname{binomial}\left(M, p_{s}\right)$, where

$$
p_{s}=\frac{\kappa_{2}+\kappa_{3}}{\kappa_{2}+\kappa_{3}+\kappa_{1} Z_{A}(s)}
$$

Substrate dynamics

$$
\begin{aligned}
f\left(Z_{A}^{N}(t)\right)-f\left(Z_{A}^{N}(0)\right) & -\int_{0}^{t} N \kappa_{1} Z_{A}^{N}(s) X_{E}^{N}(s)\left(f\left(Z_{A}^{N}(s)-N^{-1}\right)-f\left(Z_{A}^{N}(s)\right)\right) d s \\
& -\int_{0}^{t} N \kappa_{2}\left(M-X_{E}^{N}(s)\right)\left(f\left(Z_{A}^{N}(s)+N^{-1}\right)-f\left(Z_{A}^{N}(s)\right)\right) d s
\end{aligned}
$$

Noting that $\sum_{k=0}^{M} k \eta_{s}(k)=M p_{s}$, so the averaged generator becoms

$$
f\left(Z_{A}(t)\right)-f\left(Z_{A}(0)\right)-\int_{0}^{t}\left(\kappa_{2} M\left(1-p_{s}\right)-\kappa_{1} M p_{s} Z_{A}(s)\right) f^{\prime}\left(Z_{A}(s)\right) d x
$$

is a martingale (actually $\equiv 0$), so

$$
\begin{aligned}
Z_{A}(t) & =Z_{A}(0)+\int_{0}^{t}\left(\kappa_{2} M\left(1-p_{s}\right)-\kappa_{1} M p_{s} Z_{A}(s)\right) d s \\
& =Z_{A}(0)+\int_{0}^{t} \frac{M \kappa_{1} \kappa_{3} Z_{A}(s)}{\kappa_{2}+\kappa_{3}+\kappa_{1} Z_{A}(s)} d s
\end{aligned}
$$

Another enzyme reaction model

$$
\begin{aligned}
& A+E \rightleftharpoons A E \rightharpoonup B+E \quad E \rightleftharpoons F+G \quad \emptyset \rightharpoonup G \rightarrow \emptyset \\
Z_{A}^{N}(t)= & Z_{A}^{N}(0)-N^{-1} Y_{1}\left(N \int_{0}^{t} \kappa_{1} Z_{A}^{N}(s) X_{E}^{N}(s) d s+N^{-1} Y_{2}\left(N \int_{0}^{t} \kappa_{2} X_{A E}^{N}(s) d s\right)\right. \\
X_{E}^{N}(t)= & X_{E}^{N}(0)-Y_{1}\left(N \int_{0}^{t} \kappa_{1} Z_{A}^{N}(s) X_{E}^{N}(s) d s+Y_{2}\left(N \int_{0}^{t} \kappa_{2} X_{A E}^{N}(s) d s\right)\right. \\
& +Y_{3}\left(N \int_{0}^{t} \kappa_{3} X_{A E}^{N}(s) d s+Y_{4}\left(N \int_{0}^{t} \kappa_{4} X_{F}^{N}(s) X_{G}^{N}(s)\right) d s-Y_{5}\left(N \int_{0}^{t} \kappa_{5} X_{E}^{N}(s) d s\right)\right. \\
X_{F}^{N}(t)= & \left.X_{F}^{N}(0)+Y_{5}\left(N \int_{0}^{t} \kappa_{5} X_{E}^{N}(s) d s\right)-Y_{4}\left(N \int_{0}^{t} \kappa_{4} X_{F}^{N}(s) X_{G}^{N}(s)\right) d s\right) \\
X_{G}^{N}(t)= & \left.X_{G}^{N}(0)+Y_{6}\left(N \kappa_{6} t\right)+Y_{5}\left(N \int_{0}^{t} \kappa_{5} X_{E}^{N}(s) d s\right)-Y_{4}\left(N \int_{0}^{t} \kappa_{4} X_{F}^{N}(s) X_{G}^{N}(s)\right) d s\right) \\
& \quad-Y_{7}\left(N \int_{0}^{t} \kappa_{7} X_{G}(s) d s\right)
\end{aligned}
$$

Stationary expectations for fast process

Need the stationary expectations for the fast subsystem

$$
\begin{aligned}
-\left(\kappa_{1} z+\kappa_{5}\right) E\left[X_{E}\right]+\left(\kappa_{2}+\kappa_{3}\right) E\left[X_{A E}\right]+\kappa_{4} E\left[X_{F} X_{G}\right] & =0 \\
\kappa_{5} E\left[X_{E}\right]-\kappa_{4} E\left[X_{F} X_{G}\right] & =0 \\
\kappa_{6}+\kappa_{5} E\left[X_{E}\right]-\kappa_{4} E\left[X_{F} X_{G}\right]-\kappa_{7} E\left[X_{G}\right] & =0 \\
E\left[X_{E}\right]+E\left[X_{A E}\right]+E\left[X_{F}\right] & =M
\end{aligned}
$$

Claim:

$$
E\left[X_{F} X_{G}\right]=E\left[X_{F}\right] E\left[X_{G}\right]
$$

and hence

$$
E\left[X_{E}\right]=\frac{\kappa_{4} \kappa_{6} M}{\kappa_{5} \kappa_{7}+\kappa_{4} \kappa_{6}+\frac{\kappa_{1} \kappa_{4} \kappa_{6} z}{\kappa_{2}+\kappa_{3}}} .
$$

Network reversibility conditions

$\mathcal{S}=\left\{A_{i}: i=1, \ldots, m\right\}$ chemical species
$\mathcal{C}=\left\{\nu_{k}, \nu_{k}^{\prime}: k=1, \ldots, n\right\}$ complexes
$\mathcal{R}=\left\{\nu_{k} \rightarrow \nu_{k}^{\prime}: k=1, \ldots, n\right\}$ reactions
determine a chemical reaction network.

Definition 11 A chemical reaction network, $\{\mathcal{S}, \mathcal{C}, \mathcal{R}\}$, is called weakly reversible if for any reaction $\nu_{k} \rightarrow \nu_{k}^{\prime}$, there is a sequence of directed reactions beginning with ν_{k}^{\prime} as a source complex and ending with ν_{k} as a product complex. That is, there exist complexes ν_{1}, \ldots, ν_{r} such that $\nu_{k}^{\prime} \rightarrow \nu_{1}, \nu_{1} \rightarrow \nu_{2}, \ldots, \nu_{r} \rightarrow \nu_{k} \in \mathcal{R}$. A network is called reversible if $\nu_{k}^{\prime} \rightarrow \nu_{k} \in \mathcal{R}$ whenever $\nu_{k} \rightarrow \nu_{k}^{\prime} \in \mathcal{R}$.

Linkage classes

Let \mathcal{G} be the directed graph with nodes given by the complexes \mathcal{C} and directed edges given by the reactions $\mathcal{R}=\left\{\nu_{k} \rightarrow \nu_{k}^{\prime}\right\}$, and let $\mathcal{G}_{1}, \ldots, \mathcal{G}_{\ell}$ denote the connected components of $\mathcal{G} .\left\{\mathcal{G}_{j}\right\}$ are the linkage classes of the reaction network.

Intuition for probabilists: If the network is weakly reversible, then, thinking of the complexes as states of a Markov chain, the linkage classes are the irreducible communicating equivalence classes of classical Markov chain theory. BUT, these equivalence classes do not correspond to the communicating equivalence classes of the Markov chain model of the reaction network.

Stoichiometric subspace

Definition $12 S=\operatorname{span}_{\left\{\nu_{k} \rightarrow \nu_{k}^{\prime} \in \mathcal{M}\right\}}\left\{\nu_{k}^{\prime}-\nu_{k}\right\}$ is the stoichiometric subspace of the network. For $c \in \mathbb{R}^{m}$ we say $c+S$ and $(c+S) \cap \mathbb{R}_{>0}^{m}$ are the stoichiometric compatibility classes and positive stoichiometric compatibility classes of the network, respectively. Denote $\operatorname{dim}(S)=s$.

If the network is weakly reversible, then the communicating equivalence classes for the Markov chain model are of the form

$$
\left\{z+\sum_{k} a_{k}\left(\nu_{k}^{\prime}-\nu_{k}\right): a=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}\right\}
$$

for some $z \in \mathbb{Z}_{\geq 0}^{m}$.

Deficiency of a network

Definition 13 The deficiency of a a chemical reaction network, $\{\mathcal{S}, \mathcal{C}, \mathcal{R}\}$, is $\delta=|\mathcal{C}|-\ell-s$, where $|\mathcal{C}|$ is the number of complexes, ℓ is the number of linkage classes, and s is the dimension of the stoichiometric subspace.

Lemma 14 (Feinberg [2]) The deficiency of a network is nonnegative.

Proof. Let \mathcal{C}_{i} be the complexes in the i th linkage class and let S_{i} be the span of the reaction vectors giving the edges in the i th linkage class. Then $\operatorname{dim}\left(S_{i}\right) \leq\left|\mathcal{C}_{i}\right|-1$ and

$$
\operatorname{dim}(S) \leq \sum_{i} \operatorname{dim}\left(S_{i}\right) \leq \sum_{i=1}^{\ell}\left|\mathcal{C}_{i}\right|-\ell=|\mathcal{C}|-\ell
$$

Deficiency zero theorem

Theorem 15 (The Deficiency Zero Theorem, Feinberg [2]) Let $\{\mathcal{S}, \mathcal{C}, \mathcal{R}\}$ be a weakly reversible, deficiency zero chemical reaction network with mass action kinetics. Then, for any choice of rate constants κ_{k}, within each positive stoichiometric compatibility class there is precisely one equilibrium value $c, \sum_{k} \kappa_{k} c^{\nu_{k}}\left(\nu_{k}^{\prime}-\nu_{k}\right)=0$, and that equilibrium value is locally asymptotically stable relative to its compatibility class. More precisely, for each $\eta \in \mathcal{C}$,

$$
\begin{equation*}
\sum_{k: \nu_{k}=\eta} \kappa_{k} c^{\nu_{k}}=\sum_{k: \nu_{k}^{\prime}=\eta} \kappa_{k} c^{\nu_{k}} \tag{5}
\end{equation*}
$$

Zero deficiency theorem for stochastic models

For $x \in \mathbb{Z}_{\geq 0}^{m}, c^{x}=\prod_{i=1}^{m} c_{i}^{x_{i}}$ and $x!=\prod_{i=1}^{m} x_{i}!$. If $c \in \mathbb{R}_{>0}^{m}$ satisfies

$$
\begin{equation*}
\sum_{k: \nu_{k}=\eta} \kappa_{k} c^{\nu_{k}}=\sum_{k: \nu_{k}^{\prime}=\eta} \kappa_{k} c^{\nu_{k}}, \quad \eta \in \mathcal{C}, \tag{6}
\end{equation*}
$$

then the network is complex balanced.
Theorem 16 (Kelly [3],Anderson, Craciun, and Kurtz [1]) Let $\{\mathcal{S}, \mathcal{C}, \mathcal{R}\}$ be a chemical reaction network with rate constants κ_{k}. Suppose that the system is complex balanced with equilibrium $\bar{c} \in \mathbb{R}_{>0}^{m}$. Then, for any irreducible communicating equivalence class, Γ, the stochastic system has a product form stationary measure

$$
\begin{equation*}
\pi(x)=M \frac{\bar{c}^{x}}{x!}, \quad x \in \Gamma \tag{7}
\end{equation*}
$$

where M is a normalizing constant.

References

[1] David F. Anderson, Gheorghe Craciun, and Thomas G. Kurtz. Product-form stationary distributions for deficiency zero chemical reaction networks.
[2] Martin Feinberg. Chemical reaction network structure and the stability of complex isothermal reactors i. the deficiency zero and deficiency one theorems. Chem. Engr. Sci., 42(10):2229-2268, 1987.
[3] Frank P. Kelly. Reversibility and stochastic networks. John Wiley \& Sons Ltd., Chichester, 1979. Wiley Series in Probability and Mathematical Statistics.
[4] Thomas G. Kurtz. Averaging for martingale problems and stochastic approximation. In Applied stochastic analysis (New Brunswick, NJ, 1991), volume 177 of Lecture Notes in Control and Inform. Sci., pages 186-209. Springer, Berlin, 1992.

Abstract

Averaging fast subsystems

Reducing the complexity of system models by averaging fast subsystems has a long history in applied mathematics in general and for stochastic models in particular. The previous lectures exploited ad hoc, stochastic analytic relationships to derive the desired averages. This lecture will focus on more systematic methods based on the martingale properties of the underlying Markov processes.

