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Bilingual dictionary

Chemistry Probability

propensity intensity
master equation forward equation
nonlinear diffusion approximation
Langevin approximation diffusion approximation
Van Kampen approximation central limit theorem
quasi steady state/partial equilibrium averaging
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Reaction networks

Standard notation for chemical reactions

A+B
κ
⇀ C

is interpreted as “a molecule of A combines with a molecule of B to
give a molecule of C.”

A+B 
 C

means that the reaction can go in either direction, that is, a molecule
of C can dissociate into a molecule of A and a molecule of B.

We consider a network of reactions involvingm chemical species, A1, . . . , Am.

m∑
i=1

νikAi ⇀
m∑
i=1

ν ′ikAi

where the νik and ν ′ik are nonnegative integers.
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Markov chain models

X(t) number of molecules of each species in the system at time t.

νk number of molecules of each chemical species consumed in the kth
reaction.

ν ′k number of molecules of each species created by the kth reaction.

λk(x) rate at which the kth reaction occurs. (The propensity/intensity.)

If the kth reaction occurs at time t, the new state becomes

X(t) = X(t−) + ν ′k − νk.

The number of times that the kth reaction occurs by time t is given by
the counting process satisfying

Rk(t) = Yk(

∫ t

0
λk(X(s))ds),

where the Yk are independent unit Poisson processes.
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Equations for the system state

The state of the system satisfies

X(t) = X(0) +
∑
k

Rk(t)(ν
′
k − νk)

= X(0) +
∑
k

Yk(

∫ t

0
λk(X(s))ds)(ν ′k − νk) = (ν ′ − ν)R(t)

ν ′ is the matrix with columns given by the ν ′k.

ν is the matrix with columns given by the νk.

R(t) is the vector with components Rk(t).
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Rates for the law of mass action

For a binary reaction A1 + A2 ⇀ A3 or A1 + A2 ⇀ A3 + A4

λk(x) = κkx1x2

For A1 ⇀ A2 or A1 ⇀ A2 + A3, λk(x) = κkx1. For 2A1 ⇀ A2, λk(x) =
κkx1(x1 − 1).

For a binary reaction A1 +A2 ⇀ A3, the rate should vary inversely with
volume, so it would be better to write

λNk (x) = κkN
−1x1x2 = Nκkz1z2,

where classically, N is taken to be the volume of the system times
Avogadro’s number and zi = N−1xi is the concentration in moles per
unit volume. Note that unary reaction rates also satisfy

λk(x) = κkxi = Nκkzi.
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General form for classical scaling

All the rates naturally satisfy

λNk (x) ≈ Nκk
∏
i

zνik

i ≡ Nλ̃k(z).

For example, for 2A1 → A2 and z1 = N−1x1,

1

N
κkx1(x1 − 1) = Nκkz1(z1 −

1

N
) ≈ Nκkz

2
1.
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First scaling limit

Setting CN(t) = N−1X(t)

CN(t) = CN(0) +
∑
k

N−1Yk(

∫ t

0
λNk (X(s))ds)(ν ′k − νk)

≈ CN(0) +
∑
k

N−1Yk(N

∫ t

0
λ̃k(C

N(s))ds)(ν ′k − νk)

The law of large numbers for the Poisson process implies N−1Y (Nu) ≈
u,

CN(t) ≈ CN(0) +
∑
k

∫ t

0
κk
∏
i

CN
i (s)νik(ν ′k − νk)ds,

which in the large volume limit gives the classical deterministic law of
mass action

Ċ(t) =
∑
k

κk
∏
i

Ci(t)
νik(ν ′k − νk) ≡ F (C(t)).
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Multiple scales

Let N0 >> 1.

For each species i, define the normalized abundances (or simply, the
abundances) by

Zi(t) = N−αi
0 Xi(t),

where αi ≥ 0 should be selected so that Zi = O(1). Note that the abun-
dance may be the species number (αi = 0) or the species concentration
or something else.

The rate constants may also vary over several orders of magnitude
κ′k = κkN

βk

0 , so for a binary reaction

κ′kxixj = N
βk+αi+αj

0 κkzizj
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A parameterized family of models

Let

ZN
i (t) = Zi(0) +

∑
k

N−αiYk(

∫ t

0
Nβk+νk·αλk(Z

N(s))ds)(ν ′ik − νik).

Then the “true” model is Z = ZN0.
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Example: Michaelis-Menten kinetics

Consider the reaction system A+ E 
 AE ⇀ B + E

modeled as a continuous time Markov chain satisfying

XA(t) = XA(0)− Y1(

∫ t

0
κ′1XA(s)XE(s)ds) + Y2(

∫ t

0
κ′2XAE(s)ds)

XE(t) = XE(0)− Y1(

∫ t

0
κ′1XA(s)XE(s)ds) + Y2(

∫ t

0
κ′2XAE(s)ds)

+Y3(

∫ t

0
κ′3XAE(s)ds)

XB(t) = Y3(

∫ t

0
κ′3XAE(s)ds)

κ′2, κ
′
3 >> κ′1
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Scaling

Note that M = XAE(t) +XE(t) is constant. Let

N0 = O(XA) >> M.

Setting β2 = β3 = 1, αA = 1, αE = αAE = 0,

κ1 = κ′1, κ2 = κ′2N
−1
0 , κ3 = κ′3N

−1
0

VE(t) =

∫ t

0
M−1XE(s)ds, ZA(t) = N−1XA(t)

ZA(t) = ZA(0)−N−1Y1(N

∫ t

0

κ1MZA(s)M−1XE(s)ds) +N−1Y2(Nκ2

∫ t

0

XAE(s)ds)

= ZA(0)−N−1Y1(N

∫ t

0

κ1MZA(s)dVE(s)) +N−1Y2(Nκ2M(t− VE(t)))
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Analysis

Similarly,

XE(t) = XE(0)− Y1(N

∫ t

0
κ1MZA(s)dVE(s)) + Y2(Nκ2M(t− VE(t)))

+Y3(Nκ3M(t− VE(t)))

and dividing by N and letting N →∞,

lim
N→∞

(
(κ2 + κ3)M(t− VE(t)))−

∫ t

0
κ1MZA(s)dVE(s)

)
= 0.

Also

lim
N→∞

(
ZA(t)− ZA(0) +

∫ t

0
κ1MZA(s)dVE(s)− κ2M(t− VE(t))

)
= 0



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 14

Derivation of Michaelis-Menten equation

Theorem 1 (Darden [2, 3]) Assume that N →∞ and ZN
A (0) = XA(0)/N →

xA(0). Then (ZN
A , V

N
E ) converges to (xA(t), vE(t)) satisfying

xA(t) = xA(0)−
∫ t

0
κ1MxA(s)v̇E(s)ds+

∫ t

0
κ2M(1− v̇E(s))ds

0 = −
∫ t

0
κ1xA(s)v̇E(s)ds+

∫ t

0
(κ2 + κ3)(1− v̇E(s))ds,

and hence v̇E(s) = κ2+κ3

κ2+κ3+κ1xA(s) and

ẋA(t) = − Mκ1κ3xA(t)

κ2 + κ3 + κ1xA(t)
.
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Example: Model of a viral infection

Srivastava, You, Summers, and Yin [5], Haseltine and Rawlings [4],
Ball, Kurtz, Popovic, and Rampala [1]

Three time-varying species, the viral template, the viral genome, and
the viral structural protein (indexed, 1, 2, 3 respectively).

The model involves six reactions,

T + stuff
κ′

1⇀ T +G

G
κ′

2⇀ T

T + stuff
κ′

3⇀ T + S

T
κ′

4⇀ ∅
S

κ′
5⇀ ∅

G+ S
κ′

6⇀ V
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Stochastic system

X1(t) = X1(0) + Yb(

∫ t

0
κ′2X2(s)ds)− Yd(

∫ t

0
κ′4X1(s)ds)

X2(t) = X2(0) + Ya(

∫ t

0
κ′1X1(s)ds)− Yb(

∫ t

0
κ′2X2(s)ds)

−Yf(
∫ t

0
κ′6X2(s)X3(s)ds)

X3(t) = X3(0) + Yc(

∫ t

0
κ′3X1(s)ds)− Ye(

∫ t

0
κ′5X3(s)ds)

−Yf(
∫ t

0
κ′6X2(s)X3(s)ds)



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 17

Figure 1: Simulation (Haseltine and Rawlings 2002)
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Scaling parameters

Each Xi is scaled according to its abundance in the system.

For N0 = 1000, X1 = O(N 0
0 ), X2 = O(N

2/3
0 ), and X3 = O(N0) and we

take Z1 = X1, Z2 = X2N
−2/3
0 , and Z3 = X3N

−1
0 .

Expressing the rate constants in terms of N0 = 1000

κ′1 1 1

κ′2 0.025 2.5N
−2/3
0

κ′3 1000 N0

κ′4 0.25 .25
κ′5 2 2

κ′6 7.5× 10−6 .75N
−5/3
0



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 19

Normalized system

With the scaled rate constants, we have

ZN
1 (t) = ZN

1 (0) + Yb(

∫ t

0
2.5ZN

2 (s)ds)− Yd(
∫ t

0
.25ZN

1 (s)ds)

ZN
2 (t) = ZN

2 (0) +N−2/3Ya(

∫ t

0
ZN

1 (s)ds)−N−2/3Yb(

∫ t

0
2.5ZN

2 (s)ds)

−N−2/3Yf(

∫ t

0
.75ZN

2 (s)ZN
3 (s)ds)

ZN
3 (t) = ZN

3 (0) +N−1Yc(

∫ t

0
NZN

1 (s)ds)−N−1Ye(

∫ t

0
2NZN

3 (s)ds)

−N−1Yf(

∫ t

0
.75ZN

2 (s)ZN
3 (s)ds),
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Limiting system

With the scaled rate constants, we have

Z1(t) = Z1(0) + Yb(

∫ t

0
2.5Z2(s)ds)− Yd(

∫ t

0
.25Z1(s)ds)

Z2(t) = Z2(0)

Z3(t) = Z3(0) +

∫ t

0
Z1(s)ds−

∫ t

0
2Z3(s)ds
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Fast time scale

Define V N
i (t) = Zi(N

2/3t).

V N
1 (t) = V N

1 (0) + Yb(

∫ t

0
2.5N 2/3V N

2 (s)ds)− Yd(
∫ t

0
.25N 2/3V N

1 (s)ds)

V N
2 (t) = V N

2 (0) +N−2/3Ya(

∫ t

0
N 2/3V N

1 (s)ds)

−N−2/3Yb(

∫ t

0
2.5N 2/3V N

2 (s)ds)

−N−2/3Yf(N
2/3
∫ t

0
.75V N

2 (s)V N
3 (s)ds)

V N
3 (t) = V N

3 (0) +N−1Yc(

∫ t

0
N 5/3V N

1 (s)ds)−N−1Ye(

∫ t

0
2N 5/3V N

3 (s)ds)

−N−1Yf(

∫ t

0
.75N 2/3V N

2 (s)V N
3 (s)ds)
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Averaging

As N →∞, dividing the equations for V N
1 and V N

3 by N 2/3 shows that∫ t

0
V N

1 (s)ds− 10

∫ t

0
V N

2 (s)ds→ 0∫ t

0
V N

3 (s)ds− 5

∫ t

0
V N

2 (s)ds→ 0.

The assertion for V N
3 and the fact that V N

2 is asymptotically regular
imply ∫ t

0
V N

2 (s)V N
3 (s)ds− 5

∫ t

0
V N

2 (s)2ds→ 0.

It follows that V N
2 converges to the solution of (1).
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Law of large numbers

Theorem 2 For each δ > 0 and t > 0,

lim
N→∞

P{ sup
0≤s≤t

|V N
2 (s)− V2(s)| ≥ δ} = 0,

where V2 is the solution of

V2(t) = V2(0) +

∫ t

0
7.5V2(s)ds)−

∫ t

0
3.75V2(s)

2ds. (1)
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Abstract

Stochastic models for chemical reactions

Attempts to model chemical reactions within biological cells have led to
renewed interest in stochastic models for these systems. The classical
stochastic models for chemical reaction networks will be reviewed, and
multiscale methods for model reduction will be described. The methods
will be illustrated with derivation of the Michaelis-Menten model for
enzyme reactions and a simple model of viral infection of a cell.


