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Poisson processes

A Poisson process is a model for a series of random observations occur-
ring in time.

x x x x x x x x

t

Let Y (t) denote the number of observations by time t. In the figure
above, Y (t) = 6. Note that for t < s, Y (s) − Y (t) is the number of
observations in the time interval (t, s]. We make the following assump-
tions about the model.

1) Observations occur one at a time.

2) Numbers of observations in disjoint time intervals are independent
random variables, i.e., if t0 < t1 < · · · < tm, then Y (tk)− Y (tk−1),
k = 1, . . . ,m are independent random variables.

3) The distribution of Y (t+ a)− Y (t) does not depend on t.
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Characterization of a Poisson process

Theorem 1 Under assumptions 1), 2), and 3), there is a constant
λ > 0 such that, for t < s, Y (s) − Y (t) is Poisson distributed with
parameter λ(s− t), that is,

P{Y (s)− Y (t) = k} =
(λ(s− t))k

k!
e−λ(s−t).

If λ = 1, then Y is a unit (or rate one) Poisson process. If Y is a unit
Poisson process and Yλ(t) ≡ Y (λt), then Yλ is a Poisson process with
parameter λ.
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Formulating Markov models

Suppose Yλ(t) = Y (λt) and Ft represents the information obtained by
observing Yλ(s), for s ≤ t.

P{Yλ(t+∆t)−Yλ(t) = 1|Ft} = P{Yλ(t+∆t)−Yλ(t) = 1} = 1−e−λ∆t ≈ λ∆t

A continuous time Markov chain X taking values in Zd is specified by
giving its transition intensities that determine

P{X(t+ ∆t)−X(t) = l|FX
t } ≈ βl(X(t))∆t, l ∈ Zd.
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Counting process representation

If we write
X(t) = X(0) +

∑
l

lNl(t)

where Nl(t) is the number of jumps of l at or before time t, then

P{Nl(t+ ∆t)−Nl(t) = 1|FX
t } ≈ βl(X(t))∆t, l ∈ Zd.

Nl is a counting process with intensity (propensity in the chemical lit-
erature) βl(X(t))
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Conditional intensities for counting processes

N is a counting process if N(0) = 0 and N is constant except for jumps
of +1.

Assume N is adapted to {Ft}.

λ ≥ 0 is the {Ft}-conditional intensity if (intuitively)

P{N(t+ ∆t) > N(t)|Ft} ≈ λ(t)∆t

or (precisely)

M(t) ≡ N(t)−
∫ t

0
λ(s)ds

is an {Ft}-local martingale, that is, if τk is the kth jump time of N ,

E[M((t+ s) ∧ τk)|Ft] = M(t ∧ τk)

for all s, t ≥ 0 and all k.
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Lemma 2 If N has {Ft}-intensity λ, then there exists a unit Poisson
process (may need to enlarge the sample space) such that

N(t) = Y (

∫ t

0
λ(s)ds)
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Modeling with counting processes

Specify λ(t) = γ(t, N), where γ is nonanticipating in the sense that
γ(t, N) = γ(t, N(· ∧ t)).

Martingale problem. Require

N(t)−
∫ t

0
γ(s,N)ds

to be a local martingale.

Time change equation. Require

N(t) = Y (

∫ t

0
γ(s,N)ds).

These formulations are equivalent in the sense that the solutions have
the same distribution.
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Systems of counting processes

Lemma 3 (Meyer [9], Kurtz [8] ) Assume N = (N1, . . . , Nm) is a
vector of counting processes with no common jumps and λk is the {Ft}-
intensity for Nk. Then there exist independent unit Poisson processes
Y1, . . . , Ym (may need to enlarge the sample space) such that

Nk(t) = Yk(

∫ t

0
λk(s)ds)

Specifying nonanticipating intensities λk(t) = γk(t, N):

Nk(t) = Yk(

∫ t

0
γk(s,N)ds)
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Representing continuous time Markov chains

If
P{X(t+ ∆t)−X(t) = l|FX

t } ≈ βl(X(t))∆t, l ∈ Zd.

then we can write

Nl(t) = Yl(

∫ t

0
βl(X(s))ds),

where the Yl are independent, unit Poisson processes. Consequently,

X(t) = X(0) +
∑
l

lNl(t)

= X(0) +
∑
l

lYl(

∫ t

0
βl(X(s))ds).
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Random jump equation

Alternatively, setting β̄(k) =
∑

l βl(k),

N(t) = Y (

∫ t

0
β̄(X(s))ds)

and

X(t) = X(0) +

∫ t

0
F (X(s−), ξN(s−))dN(s)

where Y is a unit Poisson process, {ξi} are iid uniform [0, 1], and

P{F (k, ξ) = l} =
βl(k)

β̄(k)
.
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Connections to simulation schemes

Simulating the random-jump equation gives Gillespie’s [4, 5] direct
method (the stochastic simulation algorithm SSA).

Simulating the time-change equation gives the next reaction (next
jump) method as defined by Gibson and Bruck [3].

For 0 = τ0 < τ1 < · · ·,

X̂(τn) = X(0) +
∑
l

lYl

(
n−1∑
k=0

βl(X̂(τk))(τk+1 − τk)

)
gives Gillespie’s [6] τ -leap method
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Application of the LLN and CLT to Poisson pro-
cesses

Theorem 4 If Y is a unit Poisson process, then for each u0 > 0,

lim
K→∞

sup
u≤u0

|Y (Ku)

K
− u| = 0 a.s.

The central limit theorem suggests that for large K

Y (Ku)−Ku√
K

≈ W (u),
Y (Ku)

K
≈ u+

1√
K
W (u)

where W is standard Brownian motion. More precisely, W can be
constructed so that

|Y (Ku)

K
− (u+

1

K
W (Ku))| ≤ Γ

log(Ku+ 2)

K

for a random variable Γ independent of u and K.
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Example: SIR epidemic model

S → I at rate λ
N si = Nλ s

N
i
N

I → R at rate µi = N i
N

where s is the number of susceptible individuals, i the number of in-
fectives, and N some measure of the size of the region in which the
population lives. Then

S(t) = S(0)− Y1(Nλ

∫ t

0

S(s)

N

I(s)

N
ds)

I(t) = I(0) + Y1(Nλ

∫ t

0

S(s)

N

I(s)

N
ds)− Y2(Nµ

∫ t

0

I(s)

N
ds)

The normalized population sizes become

CN
S (t) = CN

S (0)−N−1Y1(Nλ

∫ t

0

CN
S (s)CN

I (s)ds)

CN
I (t) = CN

I (0) +N−1Y1(Nλ

∫ t

0

CN
S (s)CN

I (s)ds)−N−1Y2(Nµ

∫ t

0

CN
I (s)ds)
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First scaling limit

Assume βNl (XN(t)) ≈ Nλl(N
−1XN(t))

Setting CN(t) = N−1XN(t)

CN(t) = CN(0) +
∑
l

lN−1Yk(

∫ t

0
βNl (XN(s))ds)

≈ CN(0) +
∑
l

lN−1Yk(N

∫ t

0
λl(C

N(s))ds)

The law of large numbers for the Poisson process implies N−1Y (Nu) ≈
u,

CN(t) ≈ CN(0) +
∑
l

∫ t

0
lλl(C

N(s))ds,

which gives CN → C satisfying

Ċ(t) =
∑
l

lλl(C(s))ds ≡ F (C(t)).



•First •Prev •Next •Go To •Go Back •Full Screen •Close •Quit 16

Central limit theorem/Van Kampen Approximation

V N(t) ≡
√
N(CN(t)− C(t))

≈ V N(0) +
√
N(
∑
k

lN−1Yl(N

∫ t

0
λl(C

N(s))ds)−
∫ t

0
F (C(s))ds)

= V N(0) +
∑
l

l
1√
N
Ỹl(N

∫ t

0
λ̃l(C

N(s))ds)

+

∫ t

0

√
N(FN(CN(s))− F (C(s)))ds

≈ V N(0) +
∑
l

Wk(

∫ t

0
λl(C(s))ds) +

∫ t

0
∇F (C(s)))V N(s)ds
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Gaussian limit

V N converges to the solution of

V (t) = V (0) +
∑
k

lWl(

∫ t

0
λl(C(s))ds) +

∫ t

0
∇F (C(s)))V (s)ds

CN(t) ≈ C(t) +
1√
N
V (t)
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Diffusion approximation

Since Y (Ku)−Ku√
K

≈ W (u)

CN(t) = CN(0) +
∑
k

lN−1Yl(N

∫ t

0
λl(X

N(s))ds)

≈ CN(0) +
∑
k

lN−1/2Wl(

∫ t

0
λl(C

N(s))ds)

+

∫ t

0
F (CN(s))ds,

where
F (c) =

∑
k

lλl(c).

The diffusion approximation is given by the equation

C̃N(t) = C̃N(0) +
∑
k

lN−1/2Wl(

∫ t

0
λl(C̃

N(s))ds) +

∫ t

0
F (C̃N(s))ds.
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Itô formulation

The time-change formulation is equivalent to the Itô equation

C̃N(t) = C̃N(0) +
∑
k

lN−1/2
∫ t

0

√
λl(C̃N(s))dW̃l(s)

+

∫ t

0
F (C̃N(s))ds

= C̃N(0) +N−1/2
∫ t

0
σ(C̃N(s))dW̃ (s) +

∫ t

0
F (C̃N(s))ds,

where σ(c) is the matrix with columns
√
λ̃l(c)l.

See Kurtz [7], Ethier and Kurtz [1], Chapter 10, Gardiner [2], Chapter
7, and Van Kampen, [10].
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Abstract

Stochastic equations for counting processes

A counting process is usually specified by its conditional intensity. The
conditional intensity then determines the martingale properties of the
process and uniquely determines its distribution. The connection be-
tween the specified intensity and the process can also be established by
formulating an appropriate stochastic equation. Two natural forms for
the stochastic equation will be described. The relationship between the
stochastic equations and simulation methods will be given, and ways
of exploiting the stochastic equations to obtain limit theorems will be
described.


