
Sequential µJava: Formal Foundations?

Qiu Zongyan, Wang Shuling and Quan Long

LMAM and Department of Informatics,
School of Mathematical Sciences, Peking University
{qzy,joycy,longquan}@math.pku.edu.cn

Abstract. In recent years, many researchers in the programming language and
formal methods communities pay much attentions on various problems related
to object-oriented (OO) programs. We develop in this article a theoretical foun-
dation for a core sequential OO language, µJava. The language covers most im-
portant object-oriented features including reference types, subtypes, inheritance,
dynamic binding, and sharing based parameters for methods. The static environ-
ment, type system, and operational semantics are defined to capture the essential
features of object-orientation. We have proved Type Soundness theorem in the
sense that the successfully terminated execution of a well-formed command will
transform a state to another state, while both conform to the static environment.
The language and the formalization form a foundation for investigating various
aspects of OO languages and systems.

keywords: Object Orientation, Types, Semantics

1 Introduction

In both software development and programming languages fields, object-orientation
(OO) is and will remain a main-stream technology. The languages supporting OO con-
cepts give a level of abstraction that separates the view of what a software component
does from the details of how it does, and a high-level flexibility. OO languages and
development methods bring many important benefits for software developing, main-
taining, and component reusing. Certain features of object-orientation, say, inheritance,
object references, and dynamic binding are essential for these.

There have been extensive formal studies on OO languages and systems. For in-
stances, America and de Boer presented a logic for a parallel language POOL [2],
an imperative language with object sharing, but no subtyping and method overriding.
Abadi and Leino defined an axiomatic semantics for an imperative OO language with
object sharing [1], which lacks dynamic binding of method invocation. Cavalcanti and
Naumann adopted value model for variables and attributes in their work [4], thus could
not deal with phenomena related to object sharing. He et al. proposed a calculus for
an OO language [6], which covers most of important features of sequential Java using
Hoare and He’s Unifying Theories of Programming [7], but no clear division of the
static and dynamic features proposed. Furthermore, some authors (i.e., [4, 6]) adopt an
Ada-like parameter model for methods, which is not used commonly in the practical
OO languages.
? Supported by NNSF of China (No. 60573081).

1

In this article, we introduce a core language, sequential µJava, as a simplified model
of OO languages. It supports reference type, or object sharing, with other important
features including subtypes, inheritance, dynamic binding, and sharing parameters for
methods. The language is sufficiently close to the sequential part of Java. It is rich
enough for covering most of the important OO features in the imperative setting (with
state and state transition), thus can be used in meaningful case studies to capture central
challenges in modeling OO programs. On the other hand, it is also simple enough for
the deep theoretical work.

We define the syntax of the language, and a procedure to build the static environ-
ment for programs. We define a type system that can judge the well-formedness of
programs statically. To make a complete formal model, an operational semantics for the
core language is given. For defining the semantics, we use a storage model composed
of a pair of a store and an Object Pool, Opool for short. The basic unit in Opool is the
reference-attribute-reference tuple, while the references can be shared by not only vari-
ables in programs but also attributes of objects. In our model, every entity is an object
and every variable (and every attribute in an object) is a reference. So what we defined
is a language with a pure object model, and a pure reference semantics rather than the
value semantics as studied in many other articles, e.g. [12, 4], etc. This makes the study
more useful for the further understanding on practical OO languages and programs.

We prove that our type system for µJava is sound, in the sense that if the execution
of any command from a state conforming to the static environment terminates success-
fully, then it will reach a state conforming to the static environment. Type soundness
for object-oriented languages has been proved in other literatures, such as [5, 9, 4] and
so on. However, most of the works deal with a purely functional core of object-oriented
languages, or with a value semantics, or with a very limited language.

Other contributions of this work are as follows: We handle the dynamic binding
issue by fixing the code of a certain method to its class. According to our knowledge, the
existing work on the formal semantics of non-trivial OO languages either did not handle
it [1], or handled it by looking up the method body during execution [4, 6]. Furthermore,
different from many existing work, for instances [1, 4, 6], we have constructor here
which makes the language closer to the real languages. Thus many OO concepts and
techniques could be formalized more clearly.

The rest of this paper is organized as follows. We define the storage model used here
in Section 2, then the core language, sequential µJava in Section 3. The building of the
static environments and typing rules are given in Section 4. In Section 5, we define the
operational semantics for µJava, and prove the conformance properties between static
rules/environments and the semantics in Section 6. We give an example in Section 7
as an illustration. In the last section, the article is concluded and some future research
directions are discussed.

2 The Storage Model

For supporting important OO features, most practical OO languages adopts the refer-
ence model, in which the value of a variable is a reference to an object in the object

2

pool, and the value of every attribute of an object is also a reference to some object1. A
special case is that these references can be null to mean referring to no object. In this
storage model, there is more possibility of sharing: In addition to that different variables
can share the same reference in the object pool, different attributes of objects can share
the same reference, and can also have sharing with variables too.

Additionally, we need to find the type of an object in the execution for supporting
various activities based on Run-Time-Type-Identification, e.g., type-casting.

We define that a state of the OO programs includes a store and an object pool. For
the definition of the storage model, we have two basic sets:

– Name: An infinite set of names, which are used as the variable names or the at-
tribute names in programs, where there is a special name type /∈ Name.

– Ref: An infinite set of references which are used as the addresses of objects. There
is a special and distinguishable reference rnull which never refers to any object.

We define two sets (sets of mappings) as follows:

Store =̂ Name ⇀fin Ref
Opool =̂ Ref ⇀fin ((Name ⇀fin Ref) ∪ ({type} → Name))

We define Name+ =̂Name ∪ {type}.
We will use meta-variables σ and O, possibly with subscript, to denote elements

of Store or Opool (object pool), respectively. A store σ maps (variable) names to the
references they record, and an Opool O maps references to functions from (attribute)
names to references. We assume a special name null ∈ Name, with σnull = rnull holds
for every σ.

An element of O is a triple 〈r, n, r′〉, where r is a reference to some object o, n ∈
Name+ is the name of an attribute of o or type, and r′ is the reference recorded in
attribute n of o, or a name of a type (class) when n is type. We will sometimes use o,
possibly with subscripts, to indicate an object.

For any r ∈ dom O, O(r) is a finite function which can be represented as a finite
set of pairs:

O(r) = {〈n, r1〉 |〈r, n, r1〉 ∈ O}

where each pair associates an attribute name and a reference, or type with a type name.
In fact, the set (of pairs) O(r) represents the object referred by r. For benefiting the
discussion, we introduced a notation {n1 . r1, . . . , nk . rk} to represent the object with
attributes n1, . . . , nk and corresponding values r1, . . . , rk respectively. We define two
projects:

O(r)1 =̂ {n |〈n, r′〉 ∈ O(r) for some r′}
O(r)2 =̂ {r′ |〈n, r′〉 ∈ O(r) for some n}

where O(r)1 is the set of the first element of the pairs in O(r), and O(r)2 is the set of
the second elements. In our interpretation, O(r)1 is the set of attribute names of object
O(r), and O(r)2 the corresponding references (their “values”).

1 One exception might be the variable or attribute of primitive type. Many OO languages use the
value model for them under the consideration of efficiency.

3

For the relation between Ref ⇀ (Name ⇀ Ref) and Ref × Name ⇀ Ref , when
we say the domain of O, we might sometimes want to mean a subset of Ref which is
associated with a set of objects, or sometimes a subset of Ref×Name associated with a
set of values (references). We will use dom O for the first case, and dom2 O especially
for the second, where an element in dom2 O is a pair of the form 〈r, a〉.

We assume that from an object in O, its type (its class) can be determine directly
in the run-time. For this becoming possible, we can take the way used in practice, to
include a special attribute in each object to record its type. Because this feature does not
have critical effect on our discussion, we will omit the treatment, and simply assume a
function type(r) to get the type of the object referred by r.

The store is modified by assignments to variables. Assume the current store is σ.
Assignment x := y will make a new store σ′ with all values of variables the same as
σ, except that σ′x = σy. Assignments to attributes change the Opool. If x refers to an
object o in current Opool O, i.e., O(σx) = o. After the assignment x.a := y, we will
have o(a) = σy, that is, O′(σx)(a) = σy, where O′ is the updated Opool.

Most commands keep the domain of O unchanged, except object creations. If we
want to create an object o and let variable x refer to it, the system will take a fresh
reference r, and let O′ = O ⊕ {r 7→ o} and σ′x = r. Here we use ⊕ to denote
the standard set overriding. We do not have release operation, and assume a garbage
collector to take case the unreachable object and reduce the Opool. Formal treatment
of garbage collection is also an interesting topic. In [8], the authors defined a semantics
for an object-oriented language that models garbage collection explicitly.

To state the properties locally, we borrow some notations from Separation Logic,
and use O1⊥O2 to indicate that two Opools O1 and O2 have disjoint domains, i.e.,

O1 ⊥ O2
def= dom2 O1 ∩ dom2 O2 = ∅

We use O1 ∗O2 to indicate the union of O1 and O2 when O1⊥O2.
A state is a pair of a store and an Opool, i.e., of the form (σ,O), thus we have

State = {(σ,O) |σ ∈ Store ∧O ∈ Opool}

3 Syntax of the Sequential µJava

The language investigated in this article, µJava, can be seen as a sequential subset of
Java. What we consider mainly is the essential OO features relating to object sharing,
updating, and creation. The syntax of expressions and commands is as follows:

v ::= this |x
e ::= true | false |null | v
b ::= true | false | e = e | ¬b | b ∧ b | b ∨ b
c ::= skip |x := e | v.a := x |x := v.a |x := (C)v

|x := v.m(e) |x := new C(e) | return e
| c; c | if b c else c |while b do c

Here x denotes a variable name, C denotes a class name, while a and m an attribute
name and a method name respectively.

Here are some explanations about the language:

4

– Similar to [1], to keep the semantics simple and clear, we have boolean the only
primitive type, while true and false the only primitive values. For making a pure
reference model, we assume two implicit objects representing the truth-values with
references rtrue and rfalse respectively, and σtrue = rtrue and σfalse = rfalse for
any store σ. Other primitive types can be added without substantial difficulties.

– We adopt the restricted forms of expressions, with values depending only on the
store. The expressions do not touch inside the Opool. The more complex expres-
sions can be encoded with the help of assignments and auxiliary variables. For
instance, one can let x = y.a and then refer to x.a′ as a replacement of y.a.a′. The
form of assignments is also restricted to a number of special forms, that are also
enough to encode other general cases. These simplifications are not substantial.

– We consider the cast as a part of commands rather than expressions. This is also
a non-essential restriction. And further, we can give the semantics of cast related
assignments in the operational rules.

– Command of the form x := new C(e) creates a new object initiated with parameter
e and assigns its reference to x.

Similar to Java, we consider main() (if existing) a special method where the pro-
gram starts. So we do not have special type program (as what introduced in [4]) in
typing. The syntax for classes and programs is as follows.

T ::= Bool |Object |C
md ::= T m(T x){T x; c}
cd ::= class C : C{T a;C(T x){this.a := x};md}
cds ::= cd | cd; cds
prog ::= cds

where m denotes a method name, C denotes a class name. We don’t include complex
access control mechanism in the language, because this mechanism is not essential, and
it is not hard to modify the framework to include it.

A program is a sequence of class declarations where each offers a group of methods
as services to other code. Here are some explanations about the definition:

– We assume a pre-defined class Object as the super class of all user-defined classes.
Thus, each user-defined class has a direct super class. The (only) primitive type
Bool have two literals true and false. It is not a supertype or subtype of any other
types. We assume an internal type Null as the type of null, which is the subtype of
any classes. Null is not a feature of the language, thus cannot be used in programs.
It is used only in the definitions for the type system and the semantics.

– A special method C(T x){this.a := x} in each class C services as the constructor,
which must have the same name with the class. It takes exactly as many parameters
as its attributes (including inherited ones), and its body is a sequence of assignments
from the parameters to all the attributes. To extend the language by taking a more
general form for constructors will introduce no substantial difficulties, but only
some redundancy into the formalization, we will not do it here.

– We assume that all references to attributes in the methods are decorated with this,
to make the attribute references uniformly with the form v.a. We can get rid of this

5

restriction without any real problem, but thus, some more rules and more conditions
of the rules should be added.

– We do not have structures for visibility rules in our model, because these rules
are vary from language to language. We use predicate visible(C,m, C ′.a) to mean
that attribute a of class C ′ is visible in the body of method m in class C. The
visibility cannot be determined locally in C. It depends on other class declarations
of the program. Anyway, this relation can be determined statically in any practical
language. We use visible to hide language details in this formal study.

– We will use sometimes para , local to denote the parameter and local variable dec-
larations of a method, respectively, when the details are not important. We use
function dtype to get the declared type of a parameter or a local variable, and pro-
mote it to the parameter and variable lists. We use function FV to extract the set of
free variables from a piece of code, that is easy to defined recursively.

– There can be at most one class containing a method named main in a program
as the start point of execution. The class with main method should not have any
attribute or other method, and no constructor. The main method should have no
parameter and return Bool to report the finishing status. A program without main
serves as a class library. It has no independent execution, but all other aspects of
our definitions are applicable to it.

– We do not permit redefinition of attributes with the same name in subclasses. We
permit method overriding but not method overloading in class declarations. This
problem can be solved with a more sophisticated static analysis and an enhanced
static environment, which have not many thing to do with our focus here.

4 Static Environments and Typing

The authors of [4] developed a static environment to localize and simplify the definition
of semantics. What we do here is similar. Our static environment consists of two com-
ponents: Γ and Θ, where Γ stands for the typing environment, recording information
about the structure of the class declarations, and Θ is a method lookup environment.
These environments are established by scanning the program before execution.

4.1 Typing Environment Γ

The typing environment Γcds records the static structural information of class declara-
tions cds with which the types of expressions or predicates are derived, and the well-
formedness of commands can be checked. We will abbreviate it as Γ when there is no
confusion. Formally, Γcds is a tuple of the form:

〈cname, super,method, attr, locvar〉

where all the elements are relations over the classes, methods, and attributes, except for
cname which is a simple set:

– cname: The set of all the class names appearing in the class declarations cds , with
the predefined types Object, Null and Bool.

6

– super: A relation mapping a class to its immediate superclass, thus super(C1, C2)
means C2 is the immediate superclass of C1.

– method: A relation connecting each class to its method signatures, where method(C,m(para) :T)
stands for the fact that m(para) : T is a method with this signature declared in C or
inherited from the superclass of C. We include also all the constructors in method,
which takes a special form C(para) without the return type.

– attr: A relation from classes to their attributes and the corresponding type, where
attr(C, a :T) means that the attribute named a of type T is defined in C. We will
use Γ.attr(C) to denote the set of all attributes of class C.

– locvar: A relation over classes, methods and variables. locvar(C,m, x :T) means
that x of type T is a parameter or local variable in method m of class C, thus is
visible in the body of m.

4.2 Construction of Γ

We present the rules for the construction of Γ in this subsection. Because Γ is a tu-
ple with components cname, super, method, attr, and locvar, its construction is the
construction of each of these components on the way to scan the program text.

Initially we have Γ0 = 〈{Object, Bool, Null}, ∅, ∅, ∅, ∅〉. Following the scanning,
Γ is built step-wisely. The construction rules are defined below, where the primed Γ ′ is
used to denote the typing environment after the modification. When a component of Γ
is not modified in a step, we well not show it in the rule.

Class name and super class:

class C1 : C2{...} C2 ∈ Γ.cname

Γ ′.cname = Γ.cname ∪ {C1} Γ ′.super = Γ.super ∪ {(C1, C2)}

Attribute:
class C1 : C2{...T a...}

Γ ′.attr = Γ.attr ∪ {(C1, a :T)}

Attribute Inheritance:

class C1 : C2{...} {(C2, a :T)} ∈ Γ.attr

Γ ′.attr = Γ.attr ∪ {(C1, a :T)}

Constructor:
class C1 : C2{...C1(para)...}

Γ ′.method = Γ.method ∪ {(C1, C1(para))}

Method:
class C1 : C2{...T m(para)...}

Γ ′.method = Γ.method ∪ {(C1,m(para) :T)}

Method Inheritance:

class C1 : C2{...} (C2,m(para) : T) ∈ Γ.method

Γ ′.method = Γ.method ∪ {(C1,m(para) :T)}

7

Parameter and Local Variable:

class C . . . {. . . C(T x){. . .} . . .}
Γ ′.locvar = Γ.locvar ∪ local(C,C, {(T, x)}) ∪ {(C,C, this :C)}

class C . . . {. . . T m(T1 x){T2 y; . . .} . . .}
Γ ′.locvar = Γ.locvar ∪ local(C,m, {(T1 x)}) ∪ local(C,m, {(T2 y)})

∪ {(C,m, this :C), (C,m, res :T)}

where local(C,m, S) def= {(C,m, x :T) |(T x) ∈ S}, which expands the definitions to
a set of the correct form. The local variable this is introduced with the type C, and res
is an internal variable with correct type for recording the return value of the method.

Please notice that we do not permit method overload, hence there is no problem of
processing order of rule “Method” and “Method Inheritance”, because if both of them
exist, their signature will be the same.

We define an extended subclass relation Γ ` T1 � T2 as the transitive closure of
relation super under environment Γ :

C ∈ Γ.cname
Γ ` C � C

Γ.super(C1, D) Γ ` D � C2

Γ ` C1 � C2

C ∈ Γ.cname C 6= Bool
Γ ` Null � C

Please note that, the only relation with boolean type is Bool � Bool. In the following,
we will often omit Γ and write T1 � T2 directly when it makes no confusion.

4.3 Type Judgement of Expressions

We use typing statement Γ,C, m ` e :T to mean that expression e is of the type T in
method m of class C under the typing environment Γ . Typing rules for expressions are
given below. If there is no premise, we will omit the line above the consequence:

true and false:

Γ,C, m ` true : Bool Γ,C, m ` false : Bool

this and null:
Γ,C, m ` this :C Γ, C, m ` null : Null

Parameter or Local Variable x in a Method:

Γ.locvar(C,m, x :T)
Γ,C, m ` x :T

Boolean:

Γ,C, m ` e1 :C1 Γ,C, m ` e2 :C2 C1 � C2 ∨ C2 � C1
Γ,C, m ` e1 = e2 : Bool

Γ, C, m ` b : Bool
Γ,C, m ` ¬b : Bool

Premise C1 � C2 or C2 � C1 covers the case when both of these types are Bool. The
rules for b1 ∧ b2, b1 ∨ b2 are similar to the rule for negation, and omitted here.

8

4.4 Well-Formedness of Commands

We use statements of the form Γ,C, m ` c : com to mean that command c is well-
formed in the scope of m in C under typing environment Γ .

Skip: A skip is always well-formed.

Γ,C, m ` skip : com

Assignment: A simple assignment is well-formed if its variable and expression are
well-typed, and the right hand side is a subtype of the left hand side.

Γ,C, m ` x :C1 Γ,C, m ` e :C2 C2 � C1

Γ,C, m ` x := e : com

The attribute mutation and looking up are similar to the simple assignments, thus their
typing rules are similar, except with more complicated premises:

Γ,C, m ` v :N (N, a :T) ∈ Γ.attr
visible(C,m, N.a) Γ,C, m ` x :C2 C2 � T

Γ,C, m ` v.a := x : com

Γ,C, m ` x :C1 Γ, C, m ` v :N
(N, a :T) ∈ Γ.attr visible(C,m, N.a) T � C1

Γ,C, m ` x := v.a : com

Assignment by Cast: An assignment by cast is well-formed if (1) The casing type is a
subtype of the type of the assigned variable, and (2) The type of the casted variable is a
subtype or supertype of the casting type.

Γ,C, m ` x :C1 Γ,C, m ` v :C2

N ∈ Γ.cname N � C1 N � C2 ∨ C2 � N

Γ,C, m ` x := (N)v : com

Please note that, because our definition of relation C1 � C2, all the rules for assign-
ments are applicable to the Boolean cases. The same is true for the rules about method
invocations and object creations.

Method Invocation: A method invocation is well-formed if the corresponding method
does exist, and the actual parameters are of the subtypes of formal parameters, and the
return type of the method is subtype of the type of the assigned variable.

Γ,N, m0 ` v :C (C,m(para) :T) ∈ Γ.method
Γ,N, m0 ` e :D D � dtype(para) Γ,N, m0 ` x :T1 T � T1

Γ,N, m0 ` x := v.m(e) : com

The premises imply that the invocation should be consistent with definition of the cor-
responding method in both number and types of the parameters.

9

Object Creation: An object creation is well-formed if the actual parameters are well-
typed, and their types are subtypes of the formal parameters of the constructor, and the
variable assigned has the same type as the created object.

C ∈ Γ.cname (C,C(para)) ∈ Γ.method
Γ,N, m ` x :C Γ, N,m ` e :D D � dtype(para)

Γ,N, m ` x := new C(e) : com

Return: The type of the expression in a return statement must be compatible with the
return type of the method:

(C,m(para) :T) ∈ Γ.method Γ,C, m ` e :T1 T1 � T

Γ,C, m ` return e : com

Sequential Composition: A sequential composition is well-formed if all its components
are well-formed.

Γ,C, m ` ci : com (i = 1, 2)
Γ,C, m ` c1; c2 : com

Choice:
Γ,C, m ` ci : com (i = 1, 2) Γ,C, m ` b : Bool

Γ,C, m ` if b c1 else c2 : com

While Loop:
Γ,C, m ` c : com Γ,C, m ` b : Bool

Γ, C, m ` while b do c : com
Now we define the well-formedness for the higher level structures, including con-

structors, method declarations and class declarations. A method declaration is well-
formed with respect to Γ and its class C, if all types for its parameters, local variables
and return are defined in Γ , and its body is well-formed. The body of a constructor must
be a sequence of well-formed assignments from parameters to all the attributes (includ-
ing inherited ones). The class declaration is well-formed in Γ if all types occurring in it
are defined in Γ , and, the constructor and all methods declared in it are well-formed.

Method Declaration:

T, T1, T2 ∈ Γ.cname Γ,C, m ` c : com x, y are diff. names
Γ, C ` T m(T1 x){T2 y; c} : ok

Constructor:

T2 ∈ Γ.cname Γ.attr(C) = {a :T} T2 � T x are diff. names
Γ,C ` C(T2 x){this.a := x} : ok

Method Declaration Sequence:

m1, . . . ,mk are diff. names Γ,C ` Ti mi(Ti1 xi){Ti2 yi; ci} : ok i ∈ 1..k

Γ,C ` T1 m1(T11 x1){T12 y1; c1} . . . Tk mk(Tk1 xk){Tk2 yk; ck} : ok

10

Class Declaration:

C,D, T1 ∈ Γ.cname a are diff. names
Γ,C ` md : ok Γ,C ` C(T2 x){this.a := x} : ok

Γ ` class C : D{T1 a;C(T2 x){this.a := x};md} : ok

Based on these definitions, we can also define the well-formedness of a class decla-
ration sequence, and thus of a program. It is routine and omitted here.

4.5 Method Body Lookup

Now we introduce our approach of method body lookup. The system will fix the method
body code to the corresponding class before the execution of the main method.

We use Θ to denote the environment for method body lookup, which is composed
of triples with the form (C,m, λ(x){var y; c}), where C is a class name in cname, m
is a method name of C, and c is the body of m, which is a well-formed command.
The informal meaning of (C,m, λ(x){var y; c}) is that the invocation of m from an
object of type C is equivalent to the execution of c after initializing the parameters x by
the real arguments, with the local variables y. Because we deal with only the dynamic
behavior of well-typed programs without the consideration of the overriding, we do not
need to record the type information in the method lookup environment.

For intuitional concern, we use Θ,C ` m � λ(x){var y; c} to represent the fact
that (C,m, λ(x){var y; c}) ∈ Θ. In fact, our approach mirrors the vtable technique
used in the OO practice, that is, each class copies all the inherited method bodies from
its direct superclass (either a reference or the code. For simplicity of the discussion, we
copy the code here). This idea is embodied by the following two rules:
The method is defined immediately2:

class C : N {. . .m(T x){T y; c} . . .} Γ,C, m ` c : com
Θ,C ` m� λ(x){var y; c}

Copy from immediate superclass:

class C : N {...} undefined(Θ, C,m) Θ,N ` m� λ(x){var y; c}
Θ,C ` m� λ(x){var y; c}

where predicate undefined(Θ, C,m) expresses that there is not a method named m in
C in current state of Θ.

One might argue that, to ensure that a particular super class is done before its sub-
classes, a linear order of classes for applying above rules should be given. The answer
is “yes”. Commonly, the written order of the class declarations satisfies this require-
ment, because a subclass can be defined only when its direct superclass is already there.
Furthermore, we can also consider the typing as a fixed point calculating procedure, to
relax the forced order on the class declarations.

2 In fact, we need another law for constructors. But it is almost the same as this. Thus, we
consider this law covers the cases for constructors. The same assumption will be adopted in
the rest of this paper.

11

4.6 Properties

In this subsection, we show that an expression or a command typing does determine a
derivation-uniqueness of typing derivation.

Theorem 1. For a typing of the form Γ,C, (m) ` e :T or Γ, C, (m) ` b : Bool, there
is at most one derivation.

Proof. By induction on the structure of the expressions. Instead we can prove that, for
each syntactic construct there is exactly one typing rule.

– Case this, null, true, false. The proof is trivial.
– Case v. We know that v can only be this or a local variable, or a parameter of some

method m of a class C. If we have Γ,C, m ` v :T , then it must be derived by the
exact rule for local variable or parameter in a method, or from the rule for this,
thus, we can get the conclusion.

– Case e. Immediately from all of the cases of e.
– Case b. By induction on the structures of b. ut

Theorem 2. For each typing Γ,C, m ` c : com, there is at most one derivation.

Proof. By Theorem 1, and induction on typing derivations for commands, the result is
easy to prove. ut

5 Operational Semantics

The operational semantics of µJava programs is defined as a mapping from configura-
tions to configurations. We consider here only the well-formed programs, for getting
rid of many well-formedness conditions which are guaranteed by rules in Section 4. A
configuration is either a tuple 〈c, s〉 consisting of a command and a state, or a terminated
state s = (σ,O). The semantics is defined as a transition relation :

Configuration =̂ 〈Command, State〉 ∪ State

 =̂ Configuration ⇀fin Configuration ∪ {abort}

Here Command is the set of program texts. A configuration consisting of only a state is
a terminal state, which represents that the execution of a (piece of) program has com-
pleted successfully, while abort represents that the program goes wrong in execution,
because of memory faults, wrong type casts, and so on. We define ∗ as a finite tran-
sition closure of . The semantics for commands in µJava is defined by the following
inference rules, with the help of static environments Γ and Θ.

5.1 Semantic Rules

Now we give the semantics by a set of deduction rules. We omit here the rules for the
evaluation of expressions, because they are routine, and the definitions will not have any

12

effect on our discussion below. The rule for skip is trivial which keeps the configuration
unchanged. We do not list it here either.

The first group includes rules for various assignments. The plain form x := e is
independent of Opool. It updates x in σ to current value of e. Both Update and Lookup
operations look into the Opool. They will go abort when they dereference an attribute
of an object out of the Opool, that includes the cases where v or x has a rnull value.

Assignment:

〈x := e, (σ,O)〉 (σ ⊕ {x 7→ σe}, O)

Mutation:
〈σv, a〉 ∈ dom2 O

〈v.a := x, (σ,O)〉 (σ,O ⊕ {〈σv, a〉 7→ σx}})
〈σv, a〉 6∈ dom2 O

〈v.a := x, (σ,O)〉 abort

Lookup:
〈σv, a〉 ∈ dom2 O

〈x := v.a, (σ,O)〉 (σ ⊕ {x 7→ O(σv)(a)}, O)
〈σv, a〉 6∈ dom2 O

〈x := v.a, (σ,O)〉 abort

Assignment by Cast: The assignment by cast x := (N)v needs to check whether (N)v
is a correct cast in the run-time, to ensure the type of the object referred by v to be a
subclass to N . If this condition does not hold, the execution fails, which reveals a wrong
downcast. The upcast in the well-typed program is always allowed by the rule.

type(σv) � N
〈x := (N)v, (σ,O)〉 (σ ⊕ {x 7→ σv}, O)

type(σv) 6� N
〈x := (N)v, (σ,O)〉 abort

Method Invocation: The rule for method invocation captures the dynamic binding fea-
ture. As seen, the method body to execute is determined by the type of the object re-
ferred by v in the run time. Because the method lookup environment Θ corresponding
to the whole program is created statically, it is always usable.

In the rule, the body command c of method m executes from a new store created
locally, with all parameters initialized using the real arguments of the invocation, and
the local variables initialized by nil values (represented as nil in the rule) according to
their types, that is, rfalse for Bool type and rnull for the class types. According to our
assumption, all attribute references in method body are decorated with this. We bind
this to the object referred by v during the execution of c. The internal variable res is
initialized by the nil value. The rule for return statement will assign it the return value.
With this variable, the case with multiple return statements can be dealt with naturally.

13

When the method returns, x is updated by value of res taken from the final local store.

type(σv) = C Θ,C ` m� λ(y){var z; c}
〈c, ({y 7→ σe, z 7→ nil , this 7→ σv, res 7→ nil}, O)〉 ∗ (σ′, O′)

〈x := v.m(e), (σ,O)〉 ∗ (σ ⊕ {x 7→ σ′res}, O′)

We should have another rule for the case that the execution of method body is stuck
resulting an abort. It is similar to this one and simpler, thus is omitted here.

Object Creation: The object creation command x := new C(e) creates a new object
of class C, and then initiates its attributes (including inherited ones) with e and let x
refer to it. Here r is a fresh reference not contained in the domain of O. We assume
infinite available references, thus a fresh one can always be found. The selection of r is
non-deterministic.

Γ.attr(C) = {a :T}
〈x := new C(e), (σ,O)〉 (σ ⊕ {x 7→ r}, O ⊕ {r 7→ {a . σe}})

r 6∈ dom O

Here a are the attribute sequence of class C including the inherited ones.

Return: The return e statement records the value of e in res. As said, res is introduced
for recording the return value, and it is assumed to have always the suitable type.

〈return e, (σ,O)〉 (σ ⊕ {res 7→ σe}, O)

The operational rules for structural commands are defined inductively. The abort
during the execution will stop the execution, and reach the abort termination directly.
In these rules, θ represents a terminal state or abort.

Sequential:
〈c1, (σ,O)〉 ∗ (σ′, O′), 〈c2, (σ′, O′)〉 ∗ θ

〈c1; c2, (σ,O)〉 ∗ θ

〈c1, (σ,O)〉 ∗ abort
〈c1; c2, (σ,O)〉 ∗ abort

Choice:
σb = rtrue, 〈c1, (σ,O)〉 ∗ θ
〈if b c1 else c2, (σ,O)〉 ∗ θ

σb = rfalse, 〈c2, (σ,O)〉 ∗ θ
〈if b c1 else c2, (σ,O)〉 ∗ θ

While:
σb = rfalse

〈while b do c, (σ,O)〉 (σ,O)
σb = rtrue, 〈c; while b do c, (σ,O)〉 ∗ θ

〈while b do c, (σ,O)〉 ∗ θ

Obviously, a program might fail to terminate for falling into an infinite iteration, or
infinite recursive calls. In this case, the deduction cannot terminate too.

14

5.2 Properties

Theorem 3 (Uniqueness of Deduction). In the environment Γ , Θ, given a well-formed
command c and a state (σ,O), then there is one and at most one derivation route for
〈c, (σ,O)〉 with respect to our operational rules.

Proof. Based on the structure of the command c, we can prove the conclusion induc-
tively according to the transition rules. A special case to be noted here is that, the choice
of the fresh reference value for the new object in the object creation operation is non-
deterministic. The only condition is that the value is not active in the current object pool.
However, the different choices of the reference have no influence on the deduction us-
ing the operational rules (thus, on the semantics of programs), because no language
structure can distinguish the different choices. So the conclusion holds. �

Having given the operational semantic rules for all commands, we introduce the
following definitions that will be employed later.

Definition 1. In the environments Γ and Θ, for any command c, store σ and Opool O:

– c gets stuck from (σ,O), if 〈c, (σ,O)〉 ∗ abort;
– c is safe from (σ,O), if there exists a terminated configuration (σ′, O′) such that
〈c, (σ,O)〉 ∗ (σ′, O′).

– c is divergent from (σ,O), if there is an infinite transition sequence beginning from
〈c, (σ,O)〉. �

A well-typed program determines its environments Γ and Θ. Sometimes we will
use them implicitly in the discussion, but not mention them in the text.

Proposition 1. For a command c, a store σ and an Opool O, 〈c, (σ,O)〉 will either get
stuck, or be safe, or be divergent. �

From the rules and Theorem 3, this proposition is obviously true.
The operational rules for commands given above take a global view for the Opool.

We can restrict it to the footprints (as called by O’Hearn [10, 11]) of the command under
consideration, that is, the object pool actually used by the command. For any command
c, if c starts execution from a state with an object pool including its footprint, then it
will never get memory faults. This brings us a kind of locality.

Definition 2 (Footprint of Command). Footprint of command c, denoted by fp(c), de-
fines the object pool that is actually used by c in execution. The definition is by induction
on the structure of command c:

– fp(skip) = fp(x := e) = fp(x := (C)v) = fp(x := new C(e)) = ∅;
– fp(v.a := x) = fp(x := v.a) = {〈σv, a, -〉};
– fp(x := v.m(e)) = fp(c[v/this, e/y]), when type(σv) = C, and Θ,C ` m �

λ(y){var z; c};
– fp(c1; c2) = fp(if b c1 else c2) = fp(c1) ∪ fp(c2);
– fp(while b do c) = fp(c). �

15

If we extend the object pool, any command c which has successful execution will
behavior the same, in the sense that the extra part of the object pool keeps unchanged.
Additionally, the divergence of commands will keep on extending the object pool. We
have the following properties.

Proposition 2. Suppose O = O1 ∗ O2, where O,O1, O2 are object pools, and Oc is
the footprint of the command c under consideration, we have

– If c gets stuck from state (σ,Oc), then c will get stuck from any (σ,O) where Oc ⊆
O. In this case, c meets null dereference or fault downcast in its execution.

– If c is safe (is divergent) from (σ,Oc), then c is safe (is divergent) from any (σ,O)
where Oc ⊆ O.

– If c gets stuck from (σ,O), then c gets stuck from (σ,O1).
– If c is safe from (σ,O1), i.e., 〈c, (σ,O1)〉 ∗ (σ′, O′

1) for some store σ′ and object
pool O′

1, then c is safe from (σ,O), and 〈c, (σ,O)〉 ∗ (σ′, O′
1 ∗O2).

– If c is safe from (σ,O), i.e., 〈c, (σ,O)〉 ∗ (σ′, O′) for some store σ′ and ob-
ject pool O′, then either c gets stuck from (σ,O1), or c is safe from (σ,O1) with
〈c, (σ,O1)〉 ∗ (σ′, O′

1) and in this case, we must have O′ = O′
1 ∗O2. �

6 Consistency between Static and Dynamic Semantics

In this section, we investigate the relation between the semantics and the type system.
We will prove the main theorem about the well-behavior property of programs - Typing
Soundness Theorem, which says that if a well-formed program successfully terminates,
then it must produce a state conforming to the static environment.

6.1 Conforming Environments and States

For the discussion on the relation between typing system and the operational semantics,
we need a concept about the conformance of the state to the typing environment. In the
first, we define the concept that a value (reference) conforms to a type:

Definition 3 (Conforming Value). A reference (value) r in a state (σ,O) conforms to
type T with respect to an environment Γ , if and only if

– r = rnull, and T is Object or a user-defined class type;
– r ∈ {rfalse, rtrue} and T is Bool;
– r /∈ {rnull, rfalse, rtrue} and Γ ` type(r) � T . �

Please note that type(r) gives the type of the object referred by r, thus it depends on
the state implicitly. Additionally, type(r) � T implies that r ∈ O, because only then
type(r) has a valid value.

For a state conforming to Γ , we require that variables in the store contain values of
appropriate types, and objects in the object pool have the correct layout according to
their classes, and each of their attributes records a reference value with suitable type.
We define this locally with respect to a specific method in a specific class.

16

Definition 4 (Conforming State). A state (σ,O) conforms to an environment Γ in a
method m of class C, if and only if dom σ = {x |(C,m, x :T) ∈ Γ.locvar}, and

– for each variable x ∈ dom σ, σx conforms to T with respect to Γ ;
– for each r ∈ dom O, r 6∈ {rtrue, rfalse, rnull}, suppose O(r) = {fi . ri}n

i=1, we
must have Γ.attr(type(r)) = {fi :Ti}n

i=1, and for each i ∈ {1, · · · , n}, we must
have also that ri conforms to Ti in Γ . �

When the typing environment are clear from the context, we often omit to mention
it explicitly, and say, e.g., r conforms to T , etc.

6.2 Well-Behavior of Programs

Now we state the main theorem that, if the execution of a well-formed command from
a state conforming to its environment terminates successfully, then it will produce a
state also conforming to the environment in the end. This theorem tells us that the type
system and the operational semantics defined here are consistent with each other. It is
sometimes thought also as the soundness theorem of the type system.

Every command here executes in a specific method m of a specific class C. For
the simplicity, in the following discussion, we might not mention the context m and C
explicitly when this will not cause confusion.

Theorem 4 (Typing Soundness). Take an environment Γ produced by a well-formed
program, a well-formed command c with Γ,C, m ` c : com, and a state (σ,O) conform-
ing to Γ in method m of class C. Then if there exists (σ′, O′) such that 〈c, (σ,O)〉 ∗

(σ′, O′), then (σ′, O′) conforms to Γ in method m of C.

Proof. Firstly, the condition that dom σ = {x |(C,m, x :T) ∈ Γ.locvar} in the end
state holds, providing it is true before execution of each command, because no com-
mand changes the domain of σ. We need only mention this condition in the proof for
Method Invocation, in which a local store is created.

By induction on the structure of command c. We assume 〈c, (σ,O)〉 ∗ (σ′, O′)
for each command in the following proof.

– Case skip: skip do nothing. The conclusion holds trivially.
– Case x := e: From the operational rule for x := e, we have σ′ = σ ⊕ {x 7→ σe}

and O′ = O in the terminal configuration. Suppose we have Γ,C, m ` x :T1 and
e :T2, the well-formedness of the command guarantees that T2 � T1. We need only
to prove that σ′(x) conforms to T1 in Γ , because the other parts of (σ′, O′) are the
same as (σ,O). If type(σ′x) = Bool, then T2 = Bool, the only possibility is that
T1 = T2 = Bool, the conclusion holds trivially. Otherwise, we have type(σ′x) =
type(σe) � T2 � T1. The conclusion holds too.

– Case v.a := x: From the operational rule for v.a := x, we have σ′ = σ and
O′ = O ⊕ {〈σv, a〉 7→ σx}}. Suppose Γ,C, m ` v :N and (N, a :T1) ∈ Γ
and Γ,C, m ` x :T2, the well-formedness tell us that T2 � T1. We need only to
check that O′(σv)(a) conforms to T1 in Γ , because the other part of (σ′, O′) is
unchanged. If type(O′(σv)(a)) = Bool, then type(σx) = Bool, so T2 must be
Bool, which leads to that T1 is Bool and the conclusion holds. Otherwise, we have
type(O′(σv)(a)) = type(σy) � T2 � T1. The conclusion holds too.

17

– Case x := v.a: From the operational rule for x := v.a, we have σ′ = σ ⊕
{x 7→ O(σv)(a)} and O′ = O. Suppose Γ,C, m ` v :N and (N, a :T1) ∈ Γ and
Γ,C, m ` x :T2, then we have T1 � T2. We need only to check that σ′x conforms
to T2 in Γ . If type(σ′x) = Bool, then type(O(σv)(a)) = Bool to, so T1 must be
Bool, which leads to T2 is Bool and the conclusion holds. If type(σ′x) 6= Bool, we
have type(σ′x) = type(O(σv)(a)) � T1 � T2. The conclusion holds.

– Case x := (N)v: The argument is similar to that for x := e.
– Case x := v.m1(e): Suppose we have

type(σv) = C1 Θ,C1 ` m1 � λ(y){var z; c}
〈c, ({y 7→ σe, z 7→ nil , this 7→ σv, res 7→ nil}, O)〉 ∗ (σ′, O′)

〈x := v.m1(e), (σ,O)〉 ∗ (σ ⊕ {x 7→ σ′res}, O′)

where nil represents the nil value according to the type of the local variables and
res. Now we need to prove that (σ ⊕ {x′ 7→ σres}, O′) conforms to Γ .
Firstly, we can see that {y 7→ σe, z 7→ nil , this 7→ σv, res 7→ nil} conforms to Γ
in method m1 of class C1, because: (1) Its domain contains exactly the parameters,
local variables of method m1, plus this and res; (2) the well-formedness of the
invocation statement ensures that arguments e are suitable for parameters y, that
makes each value of the parameters y conforms to Γ ; (3) this denotes the object
referred by v, thus has the same type, thus conforms to Γ ; and (4) z and res conform
to Γ trivially because they have the suitable nil value.
By induction, the execution of c ends in a state conforming to Γ , i.e., (σ′, O′)
conforms to Γ in method m1 of class C1. Suppose we have Γ,C, m ` x :T1, and
the return type of m1 is T2, then the well-formedness tells us that T2 � T1 and
σ′res � T2 (because the well-formedness of return statement), so σ′res � T1. In
store σ ⊕ {x 7→ σ′res}, we have type(x) = type(σ′res) � T1. Thus, (σ ⊕ {x 7→
σ′res}, O′) conforms to Γ in method m of class C.

– Case x := new C1(e): From the operational rule for this case, we have σ′ =
σ⊕{x 7→ r} and O′ = O⊕{r 7→ {f . e}}, where r is a fresh reference. Suppose
Γ,C, m ` x :T ′, we need to prove that r conforms to T ′, and e conforms to T1 in
Γ , where T1 are types of attributes of C1. The type checking guarantees type(r) =
C1 � T ′, thus the first condition holds. Suppose Γ,C, m ` e :T2, from the well-
formedness rule, we know T2 � T1, thus we have the conclusion.

– Case return e: The operational rule for return e gives σ′ = σ⊕{res 7→ σe} and
O′ = O. Suppose the return type of m is T1, and Γ,C, m ` e :T2, then the well-
formedness condition guarantees that T2 � T1. It is easy to see that σres conforms
to T1 in Γ , and thus (σ ⊕ {res 7→ σe}, O) is fine. The conclusion holds.

The proof for the structural commands is trivial by the induction on the basic ones given
above. Here we will not list them in details. �

Theorem 5 (Well-Behavior of Programs). Suppose P is a well-formed program in
µJava with a main method. If the execution of the command of the main method, begin-
ning from the initial state consisted of the local context of main with all nil values to
the local variables and the empty object pool, terminates successfully, it will go though
a series of states with each of these states conforms to the typing environment ΓP . �

18

Class A extends Object{
Bool a; Bool b;
A(Bool c, Bool d) {. . .}
Bool m(){

Bool x;
x := this.a; return x;

}
}

Class B extends A{
B(Bool c, Bool d) {. . .}
Bool m(){

Bool y;
y := this.b;
return y;

}
}

Class C extends Object{
Bool main (){

B z1, A z2, Bool z3;
z1 := new B(false, true);
z2 := (A)z1; z3 := z2.m();
return z3;

}
}

Table 1. An Example in µJava

7 An Example in µJava

We consider a sample program in µJava, as listed in Table 1. We use it to demonstrate
some interesting features of the language such as reference types, inheritance, method
dynamic binding, and type system, semantics, and so on. With the definitions above,
first we are going to build the environment Γ for the program and consider the type
checking, then show the states produced by the operational semantics. We check the
soundness property in the last.

– Build the typing environment Γ . Each of its components is defined step by step
following the rules, and the final result is as follows:

Γ.cname = {Object, Bool, Null, A, B,C}
Γ.super = {(A, Object), (B,A), (C, Object)}
Γ.method = {(A,A(Bool c, Bool d)), (A,m() : Bool), (B,B(Bool c, Bool d)),

(B,m() : Bool), (C,main() : Bool)}
Γ.attr = {(A, a : Bool), (A, b : Bool), (B, a : Bool), (B, b : Bool)}
Γ.locvar = {(A,m, this :A), (A,m, res : Bool), (A,A, c : Bool),

(A,A, d : Bool), (A,m, x : Bool), (B,m, this :B),
(B,m, res : Bool), (B,B, c : Bool), (B,B, d : Bool),
(B,m, y : Bool), (C,main, res : Bool), (C,main, z1 :B),
(C,main, z2 :A), (C,main, z3 : Bool)}

Because class C has no local state, we omit this in main here and below.
– Typing in Γ . Here we list only the type judgement for a part of commands in the

program. We use the extended � relation for Γ here.
For command x := this.a in method m in class A, by the typing rule:

Γ,A, m ` x : Bool Γ,A, m ` this :A (A, a : Bool) ∈ Γ.attr
visible(A,m, A.a) Bool � Bool

Γ,A, m ` x := this.a : com

For method m in class A, we have:

(A,m() : Bool) ∈ Γ.method Γ,A, m ` x : Bool Bool � Bool
Γ,A, m ` return x : com

19

Bool ∈ Γ.cname Γ,A, m ` x := this.a : com, return x : com
Γ,A ` Bool m() {· · · } : ok

With the typing rules, we can get the result that all commands, method declarations,
constructors, class declarations in this program are well-formed.

– Operational Semantics for commands in main method. The main method starts
at the initial state. According to the operational semantics, we have the following
results, in which method dynamic binding has been well dealt with.

({〈z1, rnull〉, 〈z2, rnull〉, 〈z3, rfalse〉, 〈res, rfalse〉}, ∅)
z1 := new B(true, false);

({〈z1, r1〉, 〈z2, rnull〉, 〈z3, rfalse〉, 〈res, rfalse〉}, {〈r1, a, rfalse〉, 〈r1, b, rtrue〉})
z2 := (A)z1;

({〈z1, r1〉, 〈z2, r1〉, 〈z3, rfalse〉, 〈res, rfalse〉}, {〈r1, a, rfalse〉, 〈r1, b, rtrue〉})
z3 := z2.m();

({〈z1, r1〉, 〈z2, r1〉, 〈z3, rtrue〉, 〈res, rfalse〉}, {〈r1, a, rfalse〉, 〈r1, b, rtrue〉})
return z3;

({〈z1, r1〉, 〈z2, r1〉, 〈z3, rtrue〉, 〈res, rtrue〉}, {〈r1, a, rfalse〉, 〈r1, b, rtrue〉})
– Well behavior. As the statement of Theorem 5, all the states through the execution

above conform to the environment Γ in method main of class C.

8 Conclusion

In this paper, we defined a storage model for OO program, and studied a simple OO
language, sequential µJava. We presented the building of the static environment by
scanning the program text. Then we defined a type system to judge the well-formedness
of programs in µJava, which is enlightened by, and similar to, but more powerful than
the one proposed in [4]. On the other hand, we adopt the reference model (other than
value model in [4], etc.), that is commonly adopted by the practical OO languages. We
defined an operational semantics for the well-formed programs. The notable features
of the semantics include that the minimal store is adopted, and the context switching is
dealt with accurately in the rules for the semantics.

We presented and proved some important properties of typing system and the se-
mantics. We proved the type soundness theorem that the successful execution of the
well-formed programs in µJava will go through a series of states conforming to the
static environment. At last, we presented the building of static environment, typing pro-
cedure and the semantics by an example.

Although simple, µJava captures enough crucial features of general OO program-
ming language, including reference types, subtypes, inheritance, dynamic binding, and
sharing based parameters passing for methods, constructor, etc. Many more general
structures in sequential OO programs can be encoding in this language with the help
of some auxiliary variables etc. Thus, it can be used to model and study problems re-
lated to practical OO programs. We are working on a weakest-precondition semantics
for µJava, thus we can give the notion of refinement that can be used to support OO
based development. Also we have an on-going work on the confinement problems of
OO programs based on this language. Other possible working direction is to extend our
model with other features such as static method, exception handling and multi-threads.

20

References

1. M. Abadi and R. Leino. A logic of object-oriented programs. In TAPSOFT ’97, LNCS 1214,
pages 682–696. Springer, 1997.

2. P. America and F. de Boer. Reasoning about dynamically evolving process structures. Formal
Aspects of Computing, 6(3):269–316, 1994.

3. A.L.C. Cavalcanti and D. Naumann. A weakest precondition semantics for an object-oriented
language of refinement. In FME’99, LNCS 1709, pages 1439–1459. Springer, 1999.

4. A.L.C. Cavalcanti and D. Naumann. A weakest precondition semantics for refinement of
object-oriented programs. IEEE Trans. on Software Engineering, 26(8):713–728, 2000.

5. Sophia Drossopoulou and Susan Eisenbach. Towards an Operational Semantics and Proof
of Type Soundness for Java. In Formal Syntax and Semantics of Java, LNCS 1523. Springer,
1999.

6. J. He, Z. Liu, X. Li, and S. Qin. A relational model for object-oriented designs. In APLAS’04,
LNCS 3302. Springer, 2004.

7. C.A.R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.
8. Rob Hunter and Shriram Krishnamurthi. The semantics of garbage collection in OO lan-

guages. In Foundations of Object-Oriented Languages, 2003.
9. Atsushi Igarashi, Benjamin C.Pierce, and Philip Wadler. Featherweight java: A minimal core

calculus for Java and GJ. In Proceedings of OOPSLA’99, pages 132–146. ACM, 1999.
10. P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of Symbolic Logic,

5(2):215C244, 1999.
11. P. W. O’Hearn, J. C. Reynolds, and H. Yang. Local reasoning about programs that alter data

structures. In Computer Science Logic, volume 2142 of Lecture Notes in Computer Science,
pages 1–19, 2001.

12. Cees Pierik and Frank S. de Boer. A syntax-directed hoare logic for object-oriented pro-
gramming concepts. In Formal Methods for Open Object-Based Distributed Systems, 2003.

21

