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Abstract

For the object oriented (OO) world, developing formal semantics for theoretical study and practi-
cal use is still an important topic despite of a decade’s efforts. In this paper, for a sufficiently large
subset of sequential Java with a pure reference semantics model, we define a Weakest Precondi-
tion (WP) semantics, and prove its soundness and completeness. Based on this WP semantics,
we study specifications of methods and the refinement relationship between specifications, and
we propose new definitions for object invariants and behavioral subtyping notation for general
OO programs.

Keywords: Object Orientation, Weakest Precondition, Separation Logic, Specification,
Refinement, Behavioral Subtyping

1. Introduction

Object Orientation (OO) is widely used in the software development practice. Due to the even
higher demands on the reliability and correctness of software systems (or in general, computer-
based systems) in recent years, the powerful and useful frameworks for specifying and verifying
OO programs are more demanded. For such a framework to be useful, two mutually depen-
dent issues must be considered: a formal semantics for OO programs as the basis for verifica-
tion, which should be powerful enough to capture desired behaviors of a wide range of typical
programs; and a bundle of useful specification and verification techniques, which can support
modular verification, thus offering scalability to the OO program verification.

For the semantics, we believe that Weakest Precondition (WP) is among the best choices.
Edsger W. Dijkstra introduced WP semantics for procedural programs in his seminal paper [13].
A WP semantics can archive completeness, and define precisely the behavior of the programs.
As the result, a WP semantics can be used not only directly to verify programs, but also as a
solid foundation for defining important program concepts formally, or to validate verification
frameworks and tools. In addition, defining the semantics as the predicate transformers makes it
completely independent of implementations. Due to these reason, WP semantics is widely recog-
nized as a solid foundation for formal studies on programs and systems in the procedural world.
Many works about semantics, modeling, as well as programming and software development have
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been proposed based on the ideas and techniques of WP, e.g. [32, 1]. After the blooming of OO
in the years of 1980s, it is natural to think about the WP semantics for OO programs, and hope
that it can play the similar roles here as in the procedural world.

According to our knowledge, the striving for a WP semantics for OO programs began in
later 1990. As examples, [12] proposed one of the earliest WP calculus for OO programs, and
Cavalcanti and Naumann [10] gave also a WP semantics for an OO language. With more study
on OO, various forms of WP semantics for OO programs are proposed and used in various
frameworks targeting to specify and verify OO programs. Noticeable works falling into this
category include, for example, ESC/JAVA [14], LOOP [8], JML [20] and Spec# [4], which all use
WP techniques to generate verification conditions from programs. However, most of these works
take the value model for variables, thus do not support object reference and sharing. Many central
issues in OO languages and programs, especially those related to mutable object structures, have
not been sufficiently addressed. After the emergence of Separation Logic [41], things begin
to change. People used WP ideas or techniques in their work, explicitly or implicitly, to deal
with various problems for OO programs, e.g, [42, 36]. However, there is still not enough work
directly on a WP semantics to establish it as both covering most of the important features of OO
programs, and having the well-founded theoretical foundation.

For the second issue, it is well known that Behavioral Subtyping, or Liskov Substitutabil-
ity Principle, [25] plays a central role in the formal verification for OO programs. Almost all
works in this field adopt this principle as a part of their essential ingredient. Liskov [26] gave a
formal treatment for behavioral subtyping by a group of constraint rules, and considered object
invariants (or class invariants) in the rules. Some researchers offered various new definitions af-
terward, where the most influential one is given in the work [22], where Leavens and Naumann
proposed a natural refinement order on the specifications, and defined the behavioral subtyping
based on that order. More importantly, they proved that behavioral subtyping is equivalent to
modular reasoning for OO programs. The object invariants are also considered in their subse-
quent work [23]. However, we will point out in this paper that their treatment for object invariant
need not be improved from the practical view points.

In this paper we will present a deep investigation on a WP semantics for OO programs,
and study its applications in various aspects related to the verification of OO programs. We
use a language named µJava [40] in the work, which is a sufficiently large subset of sequential
Java covering most important OO features, and develop a WP semantics for µJava based on an
OO Separation Logic (OOSL) [29]. We present and prove some important properties of this
semantics for the WP semantics, especially, we have proved that this semantics to be both sound
and complete with respect to an operational semantics. However, because the proof is rather long,
we leave it in our report [30]. After the semantics, we use it as a theoretical tool to formalize
and study some essential concepts in specification, verification and formal development of OO
programs, and then use it to prove the soundness of a set of Hoare-style inference rules. to show
its power and usefulness.

The main contributions of this work are as follows:

• Firstly, we have answered a theoretical question: Can we have a sound and complete WP
semantics for a typical class-based OO language that takes the pure reference semantic
model for variables and fields? The work presented here tells us, the answer is yes.

• We present and prove some important properties of the WP semantics, especially the
frame-property on the line of Separation Logic which is very important in supporting local
reasoning for the mutable object structures.
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• We illustrate such a WP semantics is useful in the OO field by use it to define the specifica-
tions and their refinement relationship, to prove some refinement judgments. In addition,
we give a new definition for object invariant by this WP semantics, and discuss why this
definition is different from the existing ones and is more reasonable and useful.

• We give a new definition for the behavioral subtyping concept, which follows Liskov Sub-
stitutability Principle and Leavens’s natural refinement order. However, our formalism is
more natural and more practically useful than what defined in previous works.

• As an application of the WP semantics, we give a set of Hoare-style inference rules and
prove their soundness using the WP semantics. In some related work, we showed that the
rules a useful in proving correctness of OO programs.

The rest of the paper is organized as follows. We introduce briefly µJava in Section 2. The
WP semantics is defined in Section 3, and some properties are provided and proved, especially
the frame property. We present also the soundness and completeness result for the WP semantics
in this section. In Section 4, we study behavioral subtyping and other important issues in OO
verification, including specification, refinement, object invariant, and give their definitions using
the WP semantics. In Section 5 a set of Hoare-style inference rules for µJava is given and proved
sound. Then we discuss some related work and conclude the paper. To prevent the paper becomes
to long, we left some proofs, especially for the soundness and completeness of the WP semantics,
and some more applications of the semantics in our report [30].

2. µJava

For carrying on the study, we use a simple OO language µJava [40] in this work. µJava can
be seen as a sequential subset of Java. It takes the pure reference semantics for variables and
fields, and covers many important OO features related to the object sharing, updating, creation,
etc. thus reflects the essences of mainstream OO languages. The definition of µJava takes a
clear separation of store and heap operations. The language is simple for facilitating the theoret-
ical study, and large enough for covering important OO features, e.g., dynamic binding, object
sharing, aliasing, casting, etc. The syntax of the language is as follows:

v ::= this | x e ::= true | false | null | v
b ::= true | false | e = e | ¬b | b ∧ b | b ∨ b
c ::= skip | x := e | x := v.a | x := (C)v | v.a := e | x := v.m(e) |

x := new C(e) | return e | c; c | if b c else c | while b c
T ::= Bool | Object | C M ::= T m(T z){T y; c}
K ::= class C : C{T a; C(T z){T y; c}; M}
G ::= K | K G

Here x denotes a variable, C a class name, a and m field and method names respectively. We use
over-lined form to represent a sequence. Here:

• We assume a built-in type Object, which has no field, as the supertype of all classes, and
Null the subtype of any class. Null is the type for null which used only in the type
and semantics definitions. We assume only one primitive type Bool = {true, false} to
simplify the formal study, which is not a supertype or subtype of any type.
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• µJava offers only restricted expressions those values depend only on the store, and some
special forms of assignments, including plain x := e, mutation v.a := e, and lookup x :=
v.a. We take cast as a part of a special form of assignments, as well as x := new C(e) which
creates a new object, builds it with parameters e and assigns its reference to variable x. We
assume in commands all references to fields of current object in methods are decorated
with this, to make the field references uniformly of the form v.a.

• The special C(T z){T y; c} in each class C is the constructor, which has the same name
as the class. We assume return e only appears as the last statement in non-constructor
methods. For recording the return value in semantic definitions, we assume an internal-
variable res, which cannot be used in programs. We require that local variables and res
initialized to special nil values (represented as nil) according to their types, i.e., rfalse for
Bool and rnull for class types.

• We do not have access control here. A program is just a sequence of class declarations.
There might be a main method in last class as the execution entry. If there is a main
method in a program, we say that it is a closed program, otherwise it is an open program.

For simplify the formal study, we have some simplifications and restrictions on the language.
However, most of the general forms of expressions and commands encountered in practical OO
languages can be encoded by structures here with the help of auxiliary variables.

In paper [10] a static environment was defined, and then in the definition of the WP semantics,
only well-typed expressions and commands were considered. We follow this idea, and define a
static environment Γ = (∆,Θ) to support (and simplify) the WP definitions. Here component ∆
records all static structural information for typing, and Θ records the method declarations in each
class for method body lookup in the definition. Both ∆ and Θ can be established by scanning the
program text. In report [40] we give rules for the construction of ∆ and Θ, and rules for typing
µJava programs. Because the technique is standard, we omit the details here, but assume only
some notations relative to them with respect to the requirements of this paper.

Typing environment ∆G for program G (abbr. ∆) records static structural information of G.
We use super(C1,C2) to mean that C2 is the immediate superclass of C1, and T1 <: T2 as the
transitive closure of super, here we omit the context ∆ when it is clear. On the other hand, for
method body lookup, we will use notation Θ,C,m � λ(z){var y; c} to denote that m(z){var y; c}
is a method declared in class C with parameters z, local variables y and body c.

We will use dtype(v) or dtype(v.a) to denote the declaration type of variable v or field v.a.
We use fields(T ) to denote the set of field names of type T , and use fdtypes(T ) to denote the map
from the field names of T to their corresponding type names.

Type judgments for expressions takes the form Γ,C,m ` e : T to mean that e is of the type
T in the scope of method m of C under Γ; and Γ,C,m ` c : com means that c is a well-typed
command in the body of m in class C. For method m in C, we use Γ,C ` m : method to state that
it is well-typed. In the following, we consider only the well-formed commands and methods.

3. A WP Semantics for µJava

In this section, we define a Weakest Precondition (WP) semantics for µJava and investigate
its properties. Before the definition, we introduce our assertion language OOSL in the first.
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3.1. OOSL: An Object-Oriented Separation Logic

Separation Logic [41] is an extension of Hoare logic, aims to reason programs in C like
languages which manipulating mutable data structures. It and its variants have archive great
success in various fields. In our previous work [29], we proposed a variant of Separation Logic,
OO Separation Logic (OOSL), to describe OO programs’ states. We will use it as the assertion
language in this work. Here we give a short introduction to OOSL. And readers can refer to the
appendix or [29] to find more details for the logic.

We use a revised Stack-Heap storage model to represent the run-time states of OO programs.
A state s = (σ,O) ∈ State consists of a store and a heap (object pool):

Store =̂ Name ⇀fin Ref Heap =̂ Ref ⇀fin Name ⇀fin Ref State =̂ Store × Heap

Here Name is an infinite set of names, where special names true, false, null ∈ Name denote
boolean constants and null respectively. Type is an infinite set of types. Object, Null, Bool ∈
Type take the same meaning as in µJava. Ref is an infinite set of references as object identities. It
contains three constants: rtrue, rfalse refer to the two Bool objects respectively, and rnull refers
to nothing. For any σ ∈ Store, we assume σtrue = rtrue, σfalse = rfalse and σnull = rnull.
We will use r, r1, . . . to denote references, and a, a1, . . . for fields of objects.

The assertion language of OOSL is similar to that of Separation Logic, with some revisions
to fit the needs of OO programs:

ρ ::= true | false | r1 = r2 | r : T | r <: T | v = r
η ::= emp | r1.a 7→ r2 | obj(r,T )
ψ ::= ρ | η | ¬ψ | ψ ∨ ψ | ψ ∧ ψ | ψ⇒ ψ | ψ ∗ ψ | ψ—∗ψ | ∃r · ψ | ∀r · ψ

where T is a type, v a variable or constant, r1, r2 references. We use Ψ to denote the set of OOSL
assertions. Here are some explanations:

• ρ denotes assertions independent of heaps. References are atomic values here. For any
two references r1, r2, r1 = r2 holds iff r1 and r2 are identical. r : T indicates that r refers to
an object with exact type T . r <: T means that r refers to an object of T or subtype of T .
And v = r asserts that the value of variable or constant v is r.

• η denotes assertions involving heaps: emp asserts the heap is empty; and the singleton
assertion takes the form r1.a 7→ r2, as a cell in heap is a field-value binding of an object
(denoted by a reference). In addition, obj(r,T ) indicates that the heap contains exact an
entire object of type T , which r refers to. In Separation Logic, people use l 7→- or l ↪→ -
to denote that location l is allocated in current storage. Because the existence of empty
objects in OO, we cannot use r.a 7→ - or r.a ↪→ - to serve the similar purpose for an
object. To solve this problem, we introduce an assertion form obj(r,T ) here.

• Connectors ∗ and —∗ are from Separation Logic: ψ1 ∗ ψ2 means current heap can be split
into two parts, where ψ1 and ψ2 hold on each part respectively; ψ1 —∗ψ2 means that if we
add a heap satisfying ψ1 to current heap, the combined heap will satisfy ψ2.

In addition, we allow user-defined predicates to extend vocabulary of the assertion language.
A predicate definition takes the form p(x) .

= ψ, where p is a symbol (predicate name), r are the
formal parameters of the predicate, and ψ is the body, which is an assertion correlated with r.
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Recursive definitions are allowed. In fact, these predicates are indispensable to support specifi-
cation and verification programs involving recursive data structures, e.g., lists, trees, etc. Having
a definition for p, p(e) can be used as a basic assertion.

We use ψ[v/x] (or ψ[r/x], ψ[r1/r2]) to denote substitution of variable or constant v (or refer-
ence r2). We treat r = v the same as v = r, and define v.a 7→ r as ∃r′ · (v = r′ ∧ r′.a 7→ r). Some
abbreviations are borrowed from Separation Logic:

r.a 7→- = ∃r′ · r.a 7→ r′ r.a ↪→ r′ = r.a 7→ r′ ∗ true

We also need to consider type of the object which r refers in a state, which is denoted by otype(r).
We use (σ,O) |= ψ to mean that assertion ψ holds on state (σ,O), its definition is given

in Appendix A. When (σ,O) |= ψ, we say also that state (σ,O) satisfies assertion ψ. We have
proved that most axioms and inference rules for Separation Logic are also correct in OOSL.

We give some lemmas below that are useful in our study on the WP semantics. For the
proofs, please notice: (1), (σ,O) |= ψ1 ∗ ψ2 iff there exists O1 and O2 such that O = O1 ∗O2, and
(σ,O1) |= ψ1 and (σ,O2) |= ψ2. Note that O = O1 ∗ O2 implies O1 ⊥ O2. (2), (σ,O) |= ψ1 —∗ψ2
iff for any ψ′ such that ψ′ ⊥ ψ and (σ, ψ′) |= ψ1, then we have (σ, ψ′ ∗ ψ) |= ψ2.

Lemma 1. (r.a 7→ r1 ∗ (r.a 7→ r2 —∗ψ1) ∗ ψ2)⇒ (r.a 7→ r1 ∗ (r.a 7→ r2 —∗(ψ1 ∗ ψ2)))

Proof. Suppose (σ,O) |= r.a 7→ r1 ∗ (r.a 7→ r2 —∗ψ1) ∗ ψ2, then there exists O1 ∗ O2 ∗ O3 = O
such that (σ,O1) |= r.a 7→ r1, (σ,O2) |= r.a 7→ r2 —∗ψ1, and (σ,O3) |= ψ2. Then, for any O4 such
that O4 ⊥ O2 and (σ,O4) |= r.a 7→ r2, we have (σ,O2 ∗ O4) |= ψ1. Because O1 and O4 have the
same domain r.a, thus O3 ⊥ O4, so we have (σ,O2 ∗ O3 ∗ O4) |= ψ1 ∗ ψ2, and then

(σ,O) |= r.a 7→ r1 ∗ (r.a 7→ r2 —∗(ψ1 ∗ ψ2)).

A similar law in Separation Logic takes the form (x 7→ e1 ∗ (x 7→ e2 —∗ψ1) ∗ ψ2) ⇒ (x 7→
e1 ∗ (x 7→ e2 —∗(ψ1 ∗ ψ2))).

Lemma 2. The following inference rules from [41] are sound in OOSL:

(1)
ψ1 ∗ ψ2 ⇒ ψ3

ψ1 ⇒ (ψ2 —∗ψ3)
(2)

ψ1 ⇒ (ψ2 —∗ψ3)
ψ1 ∗ ψ2 ⇒ ψ3

Lemma 3. We have the following inference rules, where ψ is an arbitrary assertion:

(1)
ψ1 ⇒ (ψ2 —∗ψ3)

(ψ1 ∗ ψ)⇒ (ψ2 —∗(ψ3 ∗ ψ))
(2)

ψ1 ∗ ψ2 ⇒ ψ3

(ψ1 ∗ ψ)⇒ (ψ2 —∗(ψ3 ∗ ψ))

Proof. We prove (1) here, while (2) can be obtained by (1) and Lemma 2 (1).
For any σ,O0 such that (σ,O0) |= ψ1 ∗ ψ, there exist O1,O satisfying O1 ⊥ O, O1 ∗ O = O0,

(σ,O1) |= ψ1 and (σ,O) |= ψ. Take any O2 such that O2 ⊥ O and (σ,O2) |= ψ2, we notice also
O2 ⊥ O1. From (σ,O1) |= ψ1 and the premise, we have (σ,O1) |= ψ2 —∗ψ3. From the choice
of O2, we have (σ,O2 ∗ O1) |= ψ3. From this we have (σ,O2 ∗ O1 ∗ O) |= ψ3 ∗ ψ, and then
(σ,O1 ∗ O) |= ψ2 —∗(ψ3 ∗ ψ), i.e. (σ,O0) |= ψ2 —∗(ψ3 ∗ ψ). Now we can conclude that

(ψ1 ∗ ψ)⇒ (ψ2 —∗(ψ3 ∗ ψ)).

We give some more details in Appendix A. The more complete treatments for OOSL can be
found in our previous paper [29] and related report [28].
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[WP-COND] [[Γ,C,m ` if b c1 else c2]] = λψ · (b⇒ [[c1]]ψ) ∧ (¬b⇒ [[c2]]ψ)
[WP-ITER] [[Γ,C,m ` while b c]] = λψ · µφ · (¬b⇒ ψ) ∧ (b⇒ [[c]]φ)

[WP-SEQ] [[Γ,C,m ` c1; c2]] = [[c1]] ◦ [[c2]] [WP-SKIP] [[Γ,C,m ` skip]] = λψ · ψ
[WP-ASN] [[Γ,C,m ` x := e]] = λψ · ψ[e/x] [WP-RET] [[Γ,C,m ` return e]] = λψ · ψ[e/res]

[WP-LKUP] [[Γ,C,m ` x := v.a]] = λψ · ∃r1, r2 · (v = r1 ∧ r1.a ↪→ r2 ∧ ψ[r2/x])
[WP-MUT] [[Γ,C,m ` v.a := e]] = λψ · ∃r1, r2 · (v = r1 ∧ e = r2 ∧ (r1.a 7→- ∗ (r1.a 7→ r2 —∗ψ)))

[WP-CAST] [[Γ,C,m ` x := (N)v]] = λψ · ∃r · (r <: N ∧ v = r ∧ ψ[v/x])

[WP-MTHD]

Θ,C,m� λ(z){var y; c},
[[Γ,C,m ` c]] = f

[[Γ,C ` m : method]]
= λ this, z · λψ · f (ψ)[nil/y]

[WP-INV]

Γ,C,m0 ` v : T, S 1, ..., S k are all subtypes of T,
[[Γ, S i ` m : method]] = Fi (i = 1, ..., k)

[[Γ,C,m0 ` x := v.m(e)]]
= λψ · ∃r · (v = r ∧

∨
i (r : S i ∧ Fi(r, e)(ψ[res/x])))

[WP-NEW] [[Γ,N ` N : method]] = F
[[Γ,C,m ` x := new N(e)]] = λψ · ∀r · (raw(r,N) —∗ F(r, e)(ψ[r/x]))

Figure 1: WP Semantics for µJava

3.2. The WP Semantics

As what common in the procedural world, we define the WP semantics of a command c
as a predicate transformer, which maps any given predicate ψ to the weakest precondition of c
with respect to ψ. Due to the type system, we define here the semantics only for well-typed
commands, that is, for any command c in the discussion, Γ,C,m ` c : com is supposed true. The
static necessities ensured by typing will not appear in the semantic rules.

Remember Ψ denotes the set of assertions in OOSL, thus the set of predicate transformers
is T = Ψ → Ψ. We use [[Γ,C,m ` c : com]] to denote the WP semantics of command c, and
sometimes [[c]] when Γ,C and m are clear from the context. In most cases, we use λ-notations
for the definition. We use f = g in the definition to mean that ∀ψ · f (ψ)⇔ g(ψ).

The WP semantics rules for µJava commands and methods are given in Figure 1. The seman-
tics of sequential composition, choice, and iteration are routine, given as three rules [WP-SEQ],
[WP-COND], and [WP-ITER]. For rule [WP-ITER], µφ · f denotes the least fix-point of λφ · f .
Below we give some explanations to each of the other groups of the rules.

Basic Commands. The semantics of skip is the identity transformer. The semantics of the
plain assignment x := e is ordinary, due to the restricted expression forms in µJava, and the
clear separation of assertion forms for the stores and heaps in OOSL. The semantics of return
command, described by rule [WP-RET] is the same as an assignment to special variable res.

If any ψ holds after mutation v.a := x, it is necessary that variable v points to an object that
has field a. The existence of field a is guaranteed by typing. After the assignment, v.a holds the
reference which is the value of x. This is defined by rule [WP-MUT]. The last part of the rule
takes the similar form as the corresponding rule in the Separation Logic. On the other hand, as
specified by rule [WP-LKUP], the lookup command x := v.a is similar to the plain assignment.
The only additional pre-requirement for executing this command is that variable v must point to
an object (which contains field a) but not nil at that time.

Type cast is treated by rule [WP-CAST]. Here we ask for that the variable v must refer to an
object with type N or N’s subtype. Remember that for any type T , null <: T .

7



Method and Invocation. Before discussing the WP semantics of method invocations, as well as
the new commands, we need to have some preparation.

A method can be thought as a parameterized command. Based on this idea, we define se-
mantics of a method as a parameterized predicate transformer with type PT n+1 =̂ Refn+1

→ T ,
where n is the number of the parameters of the method, and the extra parameter designates cur-
rent object of the invocation. For a parameterized predicate F : PT n+1, when we apply it to
a set of references r0, r1, . . . , rn, which stand for the objects referred by this and all the other
arguments, we obtain a predicate transformer F(r0, r1, . . . , rn). For convenience, we define an
abbreviation form that for any expression e,

F(r0, .., e, .., rn) =̂ λψ · ∃r · (e = r ∧ F(r0, .., r, .., rn)(ψ)).

We may also accept more than one expressions in this abbreviation. For example, we can see
F(r, e) in the last two rules in Figure 1.

We use the notation [[Γ,C ` m : method]], or shortly [[C.m]], to denote the WP semantics of a
method m defined in class C. Here m could be C to denote the constructor of the class. Now we
are ready to discuss the relative rules.

Rule [WP-MTHD] gives the semantics of methods and constructors. Here all local variables
are replaced with nil values. This means that, on one hand, all local variables are initialized with
the nil according to the requirements mentioned in Section 2. On the other hand, this also makes
all the local variables inaccessible from outside of the method. So, if a given ψ contains names
in y, we should rename such local variables to avoid the name captures.

If all methods are non-recursive, we can get their parameterized predicate transformers di-
rectly. Otherwise, by the rules, we can obtain a group of equations about parameterized predicate
transformers. [16] tells us there exists a least fix-point solution for such a set of equations, and
we define the solution as the WP semantics for these methods respectively. So the WP semantics
for methods is well-defined.

Based on the above definition, the semantics for invocations is given by rule [WP-INV] which
takes a similar form as the corresponding one in [10]. Here we collect methods (with the same
name m) of all the relative subclasses in the program (which are determined statically by the pro-
gram text), and define the weakest precondition as the disjunction of the predicates produced by
these subclass methods. Note that r : S i ensures r , rnull. When reasoning on a real invocation,
this disjunction will be resolved by the type of current object and then disappears. In building the
precondition, we replace x with res in ψ, because the invocation can be viewed as two “actions”:
the first one is the execution of the body of v.m(e) which stores the return value in res at the end,
and the second copies the value in res to x.

Clearly, this rule demands that the program been reasoned about is a closed program. In this
case, our definition can describe the behavior of a method invocation precisely. The closeness of
the program is one crucial condition, because only under this condition, the WP semantics can
achieve completeness, which we have proved in our report [30]. On the other hand, for an open
program, because we can not know how the possibly subclasses will be defined, we may only try
some looser definition which can be sound but not complete.

Object Creation. Informally, object creation can be thought as two “actions” sequentially: the
first one extends current heap by creating a new raw object (while all its fields take nil values) and
obtains its reference; the second initiates the object’s state. That is exactly the case for practical
OO languages, and specified by rule [WP-NEW]. The rule states that if we append any new
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object of class N to current heap, after the execution of the constructor, ψ will hold. In this rule,
the assertion raw(r,N) asserts that r refers to a raw object of N, with the definition as

raw(r,N) =̂
{

obj(r,N), N has no field
r : N ∧ (r.a1 7→ nil) ∗ .. ∗ (r.ak 7→ nil), {a1, .., ak} = fields(N)

We will use raw(r,−) if do not care the type. We can prove this assertion satisfies the following
proposition, which says that separated objects must be different:

Proposition 1. raw(r1, -) ∗ raw(r2, -)⇒ r1 , r2.

3.3. Properties and Examples

Now we prove that the WP semantics for µJava is well defined, i.e., it forms a well-defined
function on all well-typed commands. In addition, the predicate transformers defined by all the
well-typed commands are monotone functions. Then we give some examples to show how the
WP semantic can be used directly to verify programs.

In the first, we have the following theorems.

Theorem 1. Suppose we have built environment ΓP for a program P. For any well-typed com-
mand c with Γ,C,m ` c : com, its semantics [[Γ,C,m ` c : com]] is a total function on all for-
mulas. Additionally, if Γ,C ` m : method, the semantics [[Γ,C ` m : method]] is a well-defined
parameterized predicate transformer.

Proof. By induction on the structures of the commands. We will show that there is a semantic
definition for each typing derivation.

Skip, Assignment, Mutation, Lookup, Cast, and Return: Semantics for these commands are
direct, so the conclusion holds.

Sequential Composition, Condition, Iteration, Method: In each case, there is a direct seman-
tic definition and the conclusion holds by induction hypothesis.

Method Invocation: Because the command is well-typed, by the typing rules and hypothesis,
we have that for every class S i <: T , m is a valid method of S i, so there exists fi that
Fi = λthis, z · λψ · fi(ψ)[nil/y] is the parameterized predicate transformer for S i.m. The
conclusion holds.

Object Creation: Similar to Method Invocation, by the typing rule and hypothesis, we have that
there exists f that F = λthis, z ·λψ · f (ψ)[nil/y] is the parameterized predicate transformer
for N’s constructor. Then the conclusion holds.

Based on above proof, we can get the conclusion for methods immediately.

Theorem 2. Suppose f : T is a predicate transformer produced by WP rules given in Figure 1,
and ψ, ψ′ are any well-formed predicates. If ψ⇒ ψ′, then f (ψ)⇒ f (ψ′).

Proof. By induction on the structure of the commands.

Sequential Composition, Condition, Iteration: By induction hypothesis we can get the con-
clusion for each case.
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Skip: The proof is trivial.

Assignment, Cast, and Return: It is trivial that substitution of variables in predicate does not
change its value. So the conclusion holds.

Mutation: By the definition of the separation conjunction and separation implication, the con-
clusion holds.

Lookup: Since ψ⇒ ψ′, then ψ[r2/x]⇒ ψ′[r2/x], so we have:

(∃r1, r2 · (v = r1) ∧ (r1.a ↪→ r2) ∧ ψ[r2/x])
⇒ (∃r1, r2 · (v = r1) ∧ (r1.a ↪→ r2) ∧ ψ′[r2/x]).

Method Invocation: Suppose [[Γ,T ` m : method]] = F = λthis, z · λψ · f (ψ)[nil/y]. Because
ψ⇒ ψ′, by induction hypothesis, we have f (ψ)⇒ f (ψ′). Thus f (ψ)[nil/y]⇒ f (ψ′)[nil/y]
holds, then F(v, e)(ψ)⇒ F(v, e)(ψ′). By properties of ∗ and ∧, the conclusion holds.

Object Creation: Suppose [[Γ,C ` N : method]] = F = λthis, z · λψ · f (ψ)[nil/y], where
[[Γ,N,N ` c : com]] = f . Because ψ ⇒ ψ′, by induction hypothesis, we have f (ψ) ⇒
f (ψ′). Thus f (ψ)[nil/y]⇒ f (ψ′)[nil/y] holds, then F(v, e)(ψ)⇒ F(v, e)(ψ′). By properties
of —∗, the conclusion holds.

3.4. Examples
Now we give some simple examples to illustrate the semantics defined in this section. We

do not list all codes (such as constructors) in the example, because they are not necessary in our
discussion in the following.

Example 1 (Empty Object Creation). Now we show how to do verification with the WP se-
mantics. Because an instance of Object is an empty, we suppose the body of the constructor of
Object is skip, then by the WP semantics:

[[Γ, Object ` Object : method]] = λψ · ψ

Then we have the following calculation:

[[x := new Object(); y := new Object(); ]](x , y)
= [[x := new Object(); ]](∀r · raw(r, Object) —∗ x , r)
= ∀r1, r2 · raw(r1, Object) —∗ raw(r2, Object) —∗ r1 , r2
= true

This indicates that two newly created empty objects are different. It also shows our accurate
treatment for empty objects.

Example 2 (Iteration). Suppose we have the code for classes Nd and Iter in Figure 2. By the
weakest precondition semantics, we have:

[[while (p! = null) p := p.a]]
= λψ · µφ · (p = rnull⇒ ψ) ∧ (p , rnull⇒ [[p = p.a]]φ)
= λψ · µφ · (p = rnull⇒ ψ) ∧ (p , rnull⇒

(∃r1, r2 · p = r1 ∧ r1.a ↪→ r2 ∧ φ[r2/p]))
10



Class Nd : Object { Nd a; }
Class Iter : Object {

Nd h;
Bool m(){

Nd p; p := this.h;
while (p ! = null) { p := p.a; }
return true;

}

}

Class Reft : Object {
Bool m(){

C1 a1, C2 a2, C3 a3;
a1 := new C1(); a3 := (C3)a1;
a2 := (C2)a3; return true;

}

}

Class A : Object {
T a, b;
T m(){ T t; t := this.a; return t; }
}

Class B : A {
T m(){ T t; t := this.b; return t; }
}

Class C {
A r; B s; T x; T1 y, z; Eu, v;
A n(){ x := s.m(); y. f := x;

x := r.m(); z. f := x;
u := new E(); v := new E();
return r; }

}

Figure 2: Some Simple Examples

Let

f (φ) = (p = rnull⇒ ψ) ∧ (p , rnull⇒ (∃r1, r2 · p = r1 ∧ r1.a ↪→ r2 ∧ φ[r2/p]))

By Tarski’s theorem about fix-point, we have

µφ · f (φ) =
∨

f i(false)

We expand some f i(false):

f (false) = p = rnull⇒ ψ
f 1(false) = (p = rnull⇒ ψ) ∧ (p , rnull⇒ (∃r · p = r ∧ r.a ↪→ rnull⇒ ψ))
. . .

So, for describing µφ · f (φ) , we define a predicate access(r1, a, r2), which assert that we can
reach r2 going forward along field a from reference r1:

access(r1, a, r2) =̂ r1 = r2 ∨ (∃r3 · r1.a ↪→ r3 ∧ access(r3, a, r2)). (1)

With this definition, we can obtain that the fix-point

µφ · f (φ) = ∃r · p = r ∧ access(r, a, rnull) ∧ ψ[rnull/p]

So we get the semantics of the while command in method m is:

[[while (p! = null) p := p.a]]
= ∃r · p = r ∧ access(r, a, rnull) ∧ ψ[rnull/p]

Example 3 (Reference Types). Suppose we have C1 <: C2 <: C3, and C1() is the constructor of
C1. Consider the code for class Reft in Figure 2. One can see that from Theorem 1, we have that
method m in class Reft has a well defined semantics. But in [10], due to the absence of object
sharing, the semantics of downcast assignment a2 := (C2)a3 is undefined.
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Example 4 (Method Invocation). Suppose we have the declarations of class A, B, C as shown
in Figure 2, and n is a method of class C. Additionally, suppose that class T1 has an attribute f
of type T . Using the definitions and the reasoning rules of OO Separation Logic, we can reach
the following results:

[[Γ,C, n ` x := s.m(); y. f := x : com]]
= λψ· ∃r , rnull · s = r ∧ r : B∧

(∃r1, r2 · s = r1 ∧ r1.b ↪→ r2∧

(∃r3, r4 · y = r3 ∧ r2 = r4 ∧ (r3. f 7→- ∗ (r3. f 7→ r4 —∗ψ[r4/x])))
= λψ· ∃r , rnull, r2, r3 · s = r ∧ y = r3 ∧ r : B∧

r.b ↪→ r2 ∧ (r3. f 7→- ∗ (r3. f 7→ r2 —∗ψ[r2/x])).
[[Γ,C, n ` x := r.m(); z. f := x : com]]
= λψ· ∃r , rnull, r2, r3 · s = r ∧ z = r3∧

((r : A ∧ r.a ↪→ r2 ∧ (r3. f 7→- ∗ (r3. f 7→ r2 —∗ψ[r2/x])))∨
(r : B ∧ r.b ↪→ r2 ∧ (r3. f 7→- ∗ (r3. f 7→ r2 —∗ψ[r2/x])))).

3.5. Frame Property of the WP Semantics
Frame rule [41] is very important in Separation Logic for local reasoning. We have the

similar property for the WP semantics.

Theorem 3. Given command c and assertions ψ1, ψ2, if FV(ψ2) ∩ md(c) = ∅, then

([[c]]ψ1) ∗ ψ2 ⇒ [[c]](ψ1 ∗ ψ2)

where FV(ψ2) is the set of all program variables (including internal variable res) in ψ2, md(c)
is the variable set modified by c, defined as:

md(c) =



{x}, c is x := . . .
{res}, c is return . . .
md(c1) ∪ md(c2), c is c1; c2
md(c1) ∪ md(c2), c is if b c1 else c2
md(c), c is while b c
∅, otherwise

Proof. The proof is conducted by induction on the structures of commands. In the deduction, we
need to use some equivalence or implication laws of OOSL. In the proof, we will use ψ to denote
[[c]]ψ1 in some of the cases.

Skip: The result is trivially true.

Assignment “x := e”: For the antecedent, we have [[x := e]]ψ1 ∗ ψ2 = ψ1[e/x] ∗ ψ2. Because
ψ2 does not contains x, then ψ1[e/x] ∗ψ2 ⇔ (ψ1 ∗ψ2)[e/x] = [[x := e]](ψ1 ∗ψ2). The case
for the Return statement is similar except the assigned variable is res.

Mutation “v.a := x”: Here ψ = ∃r1, r2 · (v = r1 ∧ x = r2 ∧ (r1.a 7→- ∗ (r1.a 7→ r2 —∗ψ1))). By
the properties of ∗, —∗ and Lemma 1, we have deduction

∃r1, r2 · (v = r1 ∧ x = r2 ∧ (r1.a 7→- ∗ (r1.a 7→ r2 —∗ψ1))) ∗ ψ2
⇒ ∃r1, r2 · ((v = r1 ∗ ψ2) ∧ (x = r2 ∗ ψ2) ∧ ((r1.a 7→- ∗ (r1.a 7→ r2 —∗ψ1)) ∗ ψ2))
⇒ ∃r1, r2 · (v = r1 ∧ x = r2 ∧ (r1.a 7→- ∗ (r1.a 7→ r2 —∗ (ψ1 ∗ ψ2)))).
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This is exactly [[v.a := x]](ψ1 ∗ ψ2).

Lookup “x := v.a”: Here ψ = ∃r1, r2 · (v = r1 ∧ r1.a ↪→ r2 ∧ ψ1[r2/x]). Because ψ2 does not
contain variable x, and by the properties of operator ∗ and ∧, we can easily obtain:

∃r1, r2 · (v = r1 ∧ r1.a ↪→ r2 ∧ ψ1[r2/x]) ∗ ψ2
⇒ ∃r1, r2 · ((v = r1 ∗ ψ2) ∧ (r1.a ↪→ r2 ∗ ψ2) ∧ (ψ1[r2/x] ∗ ψ2))
⇒ ∃r1, r2 · (v = r1 ∧ r1.a ↪→ r2 ∧ (ψ1 ∗ ψ2)[r2/x]).

Cast “x := (N)v”: Here ψ = (∃r · (r <: N)∧ψ1[r2/x]), because ψ2 does not contain variable x,
and with the properties of operator ∗ and ∧, the conclusion holds.

Sequential Composition “c1; c2”: By induction hypothesis and Theorem 2, we have:

(ψ ∗ ψ2)⇒ [[c1]]([[c2]]ψ1 ∗ ψ2)⇒ [[c1]]([[c2]](ψ1 ∗ ψ2)) = [[c1; c2]](ψ1 ∗ ψ2).

Condition “if b c1 else c2”: Here ψ = (b ⇒ [[c1]]ψ1) ∧ (¬b ⇒ [[c2]]ψ1). By the induction
hypotheses, and the relations among ∗, ∧, and ∨, we have deduction

(ψ ∗ ψ2) ⇒ ((b⇒ [[c1]]ψ1) ∗ ψ2) ∧ ((¬b⇒ [[c2]]ψ1) ∗ ψ2)
⇒ ((¬b ∗ ψ2) ∨ ([[c1]]ψ1 ∗ ψ2)) ∧ ((b ∗ ψ2) ∨ ([[c2]]ψ1 ∗ ψ2))
⇒ (b⇒ ([[c1]]ψ1 ∗ ψ2)) ∧ (¬b⇒ ([[c2]]ψ1 ∗ ψ2))
⇒ (b⇒ ([[c1]](ψ1 ∗ ψ2))) ∧ (¬b⇒ ([[c2]](ψ1 ∗ ψ2)))

Iteration “while b c”: Let ψ′ = µφ · (¬b⇒ ψ1)∧ (b⇒ [[c]]φ), then we have ψ = ψ′ = (¬b⇒
ψ1) ∧ (b ⇒ [[c]]ψ′). By induction hypothesis we have [[c]]ψ′ ∗ ψ2 ⇒ [[c]](ψ′ ∗ ψ2). By the
relations among ∗, ∧ and ∨, we have:

(ψ ∗ ψ2)⇒ (ψ′ ∗ ψ2) ⇒ ((¬b⇒ ψ1) ∗ ψ2) ∧ ((b⇒ [[c]]ψ′) ∗ ψ2)
⇒ ((b ∗ ψ2 ∨ ψ1 ∗ ψ2)) ∧ ((¬b ∗ ψ2 ∨ [[c]]ψ′ ∗ ψ2))
⇒ (¬b⇒ ψ1 ∗ ψ2) ∧ (b⇒ [[c]]ψ′ ∗ ψ2)
⇒ (¬b⇒ ψ1 ∗ ψ2) ∧ (b⇒ [[c]](ψ′ ∗ ψ2))

By Knaster-Tarski’s least fix-point theorem, we have

(ψ′ ∗ ψ2)⇒ µφ · ((¬b⇒ ψ1 ∗ ψ2) ∧ (b⇒ [[c]]φ))

So the conclusion holds.

Invocation “x := v.m(e)”: Here ψ = ∃r · (v = r ∧
∨

i (r : S i ∧ Fi(r, e)(ψ1[res/x]))). By the
relations among ∗, ∧ and ∨, we have

(∃r · v = r ∧ (
∨

i (r : S i ∧ Fi(r, e)(ψ1[res/x])))) ∗ ψ2
⇒ ∃r · (v = r ∗ ψ2) ∧ (

∨
(r : S i ∧ (Fi(r, e)(ψ1[res/x])) ∗ ψ2))

⇒ ∃r · (v = r) ∧ (
∨

(r : S i ∧ (Fi(r, e)(ψ1[res/x]) ∗ ψ2)))

Notice here ψ2 does not contain res, and by the induction hypothesis, Fi(r, e)(ψ1[res/
x]) ∗ ψ2 ⇒ Fi(r, e)((ψ1 ∗ ψ2)[res/x]), then we have the conclusion.
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Object Creation “x := new N(e)”: Here ψ∗ψ2 = (∀r · raw(r,N) —∗ F(r, e)(ψ1[r/x]))∗ψ2. Sup-
pose ψ ∗ ψ2 holds, we need to prove that (∀r · raw(r,N) —∗(F(r, e)((ψ1 ∗ ψ2)[r/x]))) holds
too. By the induction hypothesis and the properties of ∗ and —∗, we have deduction:

((∀r · raw(r,N) —∗(F(r, e)(ψ1[r/x]))) ∗ ψ2) ∗ raw(r′,N)
⇒ ((∀r · raw(r,N) —∗(F(r, e)(ψ1[r/x]))) ∗ raw(r′,N)) ∗ ψ2
⇒ (F(r, e)(ψ1[r/x])) ∗ ψ2
⇒ F(r, e)((ψ1 ∗ ψ2)[r/x])

By Lemma 3, the conclusion holds. NOT CLEAR ENOUGH! NEED more DETAILS!

Now, we finish the proof.

This theorem is used in proving the frame rules of inference systems below. It is very impor-
tant in studying the local reasoning for OO programs.

3.6. Soundness and Completeness

In this subsection we give the soundness and completeness theorems of the WP semantics
defined above. We leave their proofs in our report [30].

We take COM the space of legal commands, and use 〈c, (σ,O)〉  ∗ (σ′,O′) to denote con-
figuration transformation of µJava, that says when command c executes from current state (σ,O),
after its execution of the state will be (σ′,O′). A formal definition for the state transformation
(i.e., an operational semantics) is given also in our report [30].

In the following definitions, we see the WP as a generator which produces for each command
in COM a predicate transformer. Informally, a WP semantics is sound if the following statement
holds for any pair of a well-typed command c and a predicate ψ, if c executes from a state
satisfying the weakest precondition ψ′ of c with respect to ψ, and if c terminates, the final state
will satisfy ψ. It is formally defined as follows.

Definition 1 (Soundness). A given WP predicate transformer [[•]] : T is sound, if and only if
for any ψ, ψ′ ∈ Ψ and c ∈ COM satisfying [[Γ,C,m ` c : com]]ψ = ψ′, we have: For any pair of
states (σ,O) and (σ′,O′), if (σ,O) |= ψ′ and 〈c, (σ,O)〉 ∗ (σ′,O′), then (σ′,O′) |= ψ.

Theorem 4 (Soundness Theorem). The WP semantics for µJava given in Section 3.2 is sound.

Informally, a WP semantics is complete, if it really gives the weakest precondition. Equiv-
alently, for any well-typed command c, if from any state s, we can reach a state satisfying the
postcondition ψ by executing c, then ψ′ = [[c]]ψ holds on s. It is formally defined as follows.

Definition 2 (Completeness). A given WP predicate transformer [[•]] : T is complete, if and
only if for any ψ, ψ′ ∈ Ψ and c ∈ COM satisfying [[Γ,C ` c : com]]ψ = ψ′, we have: For any pair
of states (σ,O) and (σ′,O′), if (σ′,O′) |= ψ and 〈c, (σ,O)〉 ∗ (σ′,O′), then (σ,O) |= ψ′.

Theorem 5 (Completeness Theorem). The WP semantics for µJava given in Section 3.2 is com-
plete.

Having the sound and complete WP semantics for µJava defined, in the following, we will
use it as a tool to study various theoretical problems related to OO programs.
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4. Specification and Behavioral Subtyping

Because the WP semantics defined in is both sound and complete, we can use it as a foun-
dation to study various theoretical problems. In this section we study some important problems
related to OO program verification: code and method specification, refinement, object invariants,
and the behavioral subtyping concept.

4.1. Specification and Refinement

In literatures on program verification, people often use a pair of assertions, namely P and Q,
as the specification of a programs segment, e.g., a command, a piece of code, or a method. In the
following we will use {P}-{Q} to denote a specification where P and Q, as usually, are called the
precondition and postcondition, respectively.

A command c satisfies the specification {P}-{Q}, if c executes from a pre-state (σ,O) where
(σ,O) |= P, if c terminates and the resulting state is (σ′,O′), then (σ′,O′) |= Q. These can be
defined based on the WP semantics:

Definition 3 (Command Satisfies Specification). For a command c with [[c]] = f , and a pair of
predicates P and Q, if P ⇒ f (Q), we say that c is partial correct with respect to precondition P
and postcondition Q, written {P} c {Q}.

Please note here we have an implicit static environment and an execution context. We will use
this simplified notations in the discussion for conciseness.

Method C.m(z) satisfies {P(this, z)}-{Q(this, z)}, if C.m executes from a pre-state (σ,O)
where (σ,O) |= P(x, r) where x points to the calling object and r are the real arguments, if C.m
terminates on (σ′,O′), then (σ′,O′) |= Q(x, r). For the constructor, it is similar.

Definition 4 (Method/Constructor Satisfies Specification). For method m(z) of a class C and
a pair of parameterized predicates P(this, z) and Q(this, z), assume [[C.m(r′)]] = F(r0, r′). If
∀r0, r′ · P(r0, r′) ⇒ F(r0, r′)(Q(r0, r′)), then we say that m is partial correct with respect to the
pre/postconditions P(this, z) and Q(this, z), written as {P(this, z)}C.m(z) {Q(this, z)}.

For a class C and two parameterized predicates P(z) and Q(this, z), assume [[C.C(r′)]] =
F(r′). If ∀r0, r · P(r) ⇒ (raw(r0,C) —∗ F(r)(Q(r0, r))), then we say that the constructor of C
is partial correct with respect to the pre/postconditions P(this, z) and Q(this, z), written as
{P(z)}C(z) {Q(this, z)}.

In the following, we may omit the parameters. Based on the WP semantics and above defini-
tions, now we give a formal definition for the specification refinements.

Definition 5 (Refinement of Specifications). We say a specification {P2}-{Q2} refines another
specification {P1}-{Q1}, written {P1}-{Q1} v {P2}-{Q2}, iff for any command c (or method),
{P2} c {Q2} implies {P1} c {Q1}.

This definition implies that, if {P2}-{Q2} refines {P1}-{Q1}, we can use former specification to
substitute the latter anywhere in programs. This definition for the refinement follows the natural
refinement order given by Leavens [22].

Proposition 2 (Hoare Refinement). If P1 ⇒ P2 and Q2 ⇒ Q1, then {P1}-{Q1} v {P2}-{Q2}.
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However, although the Definition 5 for refinement relation is simple and clear, it is not easy
for us to use in practice, because we can hardly have ways to investigate all commands. On the
other hand, condition Γ ` PC ⇒ PB ∧ QB ⇒ QC does not take the heap extention into account.
Here we provide a stronger sound condition for refinement judgement.

Theorem 6. Given specification {P1}-{Q1} and {P2}-{Q2}, we have {P1}-{Q1} v {P2}-{Q2} if
there exists an assertion R such that: (1). R does not contains program variables, and (2).
(P1 ⇒ P2 ∗ R) ∧ (Q2 ∗ R⇒ Q1).

Proof. For any command c, suppose {P2} c {Q2}, then by Definition 3 we have P2 ⇒ [[c]](Q2).
Because R do not contains program variables, by Theorem 3, we have

P2 ∗ R⇒ [[c]](Q2) ∗ R⇒ [[c]](Q2 ∗ R).

By (P1 ⇒ P2 ∗ R) ∧ (Q2 ∗ R ⇒ Q1) and Theorem 2, we have P1 ⇒ [[c]](Q2 ∗ R) ⇒ [[c]](Q1).
Then by Definition 3 and 5, we have the conclusion.

In fact, this theorem provides a useful way to check refinement relation in OO programs.
Please note that this theorem gives also only a sufficient, but not necessary condition for checking
the refinement relation. It is a combination of Proposition 2 (of Hoare Logic) and the Frame
Rule of Separation Logic, and takes the heap and heap extension into account. The condition
asks that the storage mentioned in the refining specification can be lesser than what mentioned
in the refined specification. This is reasonable.

4.2. Object Invariant

Object invariant is an important concept in both practice and research, because it describes a
set of consistent object states we can rely on. An object invariant is popularly thought as a part
of the postcondition of constructor and default pre/post conditions for every public methods of
the class for simplifying the specifications. This leads to the following verification conditions for
class C with object invariant I:

(1) the postcondition of C’s constructor implies I;

(2) for every public method C.m with specification {P}-{Q}, {P ∧ I}C.m {Q ∧ I} holds.

(2) means that the “real” specification of a method with written specification {P}-{Q} is {P ∧
I}-{Q ∧ I}. But we want to say that this treatment is not adequate for practice.

We use the code in Figure. 3 to illustrate our points, where three classes are declared: Base
has a field a and methods f , g, h. Its object invariant demand that a always holds true. Derive
inherits Base with a new field b, and strengthens the object invariant with that b should also hold
true. Client may use Base and Derive. Here the rep modifier denotes a representation field of
a class, that is inaccessible to the clients of the class. This notation comes from the study for
ownership types [34], and is adopted by many work on object invariants.

Firstly, a method may be invoked by methods of same class, including itself (recursive call).
In these circumstances, the object invariant can be ignored, that is, we may allow breaking the
invariant for a while within a method. For example, before invoking Base. f in Base.g, we do
assignment this.a = false, this breaks the invariant temporarily. Under the common idea for
invariants, invocation this. f () is invalid, although Base.g re-establishes the invariant before its
termination, although this temporary broken is harmless. This scenario shows that a method
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class Base : Object {
rep Bool a;
invariant this.a ↪→ true;
Base() { this.a = true; }
void f ()
requires this.a ↪→ -;
ensures this.a ↪→ true;
{ this.a = true ; }
void g()
requires this.a ↪→ -;
ensures true;
{ this.a = false; this. f (); }

void h(C c)
requires this.a ↪→ -;
ensures true;
{ this.a = false; c.fun(this);

this.a = true; }
}

class Derive : Base {
rep Bool b;
invariant this.a ↪→ true∗

this.b ↪→ true;
Derive()
{ this.a = true; this.b = true; }

}

class Client : Object {
void m(Base b)
requires b.a ↪→ -;
ensures true

{ b. f (); }
}

Figure 3: Sample Code with Specifications and Object Invariants

invocation may appear in two kinds of circumstances, either inside or outside the class where
it is declared. The safety requirements for these two circumstances are different. As far as our
knowledge, this problem is not well studied.

Secondly, the object invariant is often strengthened in the subclasses. If we treated the pre-
condition of a method as the conjunction of the object invariant and the declared precondition
in the method interface, then the preconditions of subclass’s methods would become stronger.
In the example of Figure 3, if we took (this.a ↪→ - ∧ this.a ↪→ true) as the precondition
for Base. f and (this.a ↪→ - ∧ this.a ↪→ true ∧ this.b ↪→ true) for Derive. f , we would
find that Derive. f is not a refinement of Base. f ! Because for the refinement relation, always we
demand that precondition may only be weakened in a subclass. The proposed solutions to this
problem are abstracting away the details of the objects [2, 17, 33]. For example, Barnett et al [2]
suggest to introduce a model field st in the specifications to indicate whether the object invariant
holds. For this example, as his suggestion, we need to write (this.a ↪→ - ∧ this.st = Valid)
as the precondition of Base. f , thus it can be validly inherited by Derive. Although this works, it
still taking the (abstract) object invariant into the method specifications. In addition, to introduce
model fields into the work, many model assignments should be carefully arranged.

At last, the object invariant should be transparent for clients. In fact, clients often care only
about the specification declared in a method’s interface, but have no obligation to establish the
object invariant before some invocation. Consider method Client.m in above example, the in-
vocation b. f () is valid according Base. f ’s specification. But if we took the idea that “the real
specification of Base. f is this.a ↪→ - ∧ this.a ↪→ true”, this invocation would become in-
valid. Barnett et al [2] also considered this problem, but because their methodology need also to
combine objects invariants with specifications, the validity of b. f () cannot be proved.

From the above examples and relative analysis, we conclude that it is not adequate to treat an
object invariants as a necessary part of method specifications. In fact, an object invariant has the
class scope, while a specification is only for a particular method, they are independent with each
other, and thus should be verified separately. Section 4 defines the verification conditions for a
method specification. Here we give a definition for the object invariant:
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Definition 6 (Object Invariant). Assertion I is an object invariant of class C, written C |= I, iff:

(1) ∀r, r′ · ([[C.C]](r, r′)true)⇒ ([[C.C]](r, r′)(I[r/this])); and

(2) for every client accessible method C.m, we have ∀r, r′ ·(([[C.m]](r, r′)true)∧I[r/this])⇒
([[C.m]](r, r′)I[r/this]).

We will write C |= I to state that I is an object invariant of C.

Here (1) requires that constructor establish the object invariant, and the second condition
ensures that every client accessible method preserves the invariant. Thus, the object invariant will
always hold for clients. Please note that, this definition for the invariant does not involve method
specifications, in addition, for a method, we need only verify that it satisfy its specification, and
then condition (2) additionally if it is client accessible.

With this definition, the object invariant becomes a self-contained concept. Any assertion
satisfying these two conditions is an object invariant of the class. The definition does not mention
method specifications at all. Comparing to existing treatments for object invariants, such as [23,
2] and so on, our definition is clearly more adequate. It captures the nature of object invariants,
in a sense that it is a complete definition for the concept of object invariant.

Back to our sample code, by definitions of method specification and object invariant, we can
conclude the code meets its specifications except of method Base.h. We point that, although
Base.h preserve the object invariant, its implementation is invalid because the object invariant
does not hold before calling c.fun(this). Barnett et al studied this problem in [2], and proposed
a pair of new primitives “pack/unpack” to explicitly establish or break the object invariant. By
the proposed techniques, they can prove that the method call is invalid. We will not discuss this
issue further, because it is out of this paper’s scope.

4.3. Behavioral Subtyping
The concept of behavior subtyping was introduced by Liskov in [25]. The concept is widely

recognized extremely important for the correct OO programming practice, as well as a key con-
cept in the formal verification of OO programs. Now we give our definition for behavioral
subtyping in our framework based on above discussion.

Definition 7 (Behavioral Subtype). Given class C and B, we say C is a behavioral subtype of
B, written C � B, iff, (1), for every assertion I, B |= I implies C |= I; and (2), for every client
accessible method B.m we have for any specification {P}-{Q}, {P} B.m {Q} implies {P}C.m {Q}.

The first condition requires that every object invariant of superclass is an object invariant of sub-
class; and the second requires that subclass obeys superclass’s behavior. Clearly, this definition
follows the thought of Liskov substitution principle.

Theorem 7. If D � C and C � B, then D � B.

Now we focus on practical verification procedures. We will develop the verification condi-
tions for a program with respect to the behavioral subtyping requirement.

At first, we introduce some notations. For a µJava program G with method specifications and
object invariants, we can build an environment ΠG to record all method specifications declared
in the classes under consideration, and an invariant environment ΛG to record object invariants
declared for the classes. We will omit subscript G from now on. More precisely, Π is a map from
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method/constructor names to their specifications. We think the specifications in Π is indexed by
C.m or C, respectively, and use {P}C.m {Q} ∈ Π (or {P}C.C {Q} ∈ Π for constructor) to state that
{P}-{Q} is the specification for method C.m (or the constructor of C). On the other hand, Λmaps
each class to its object invariant, and Λ(C) gives the object invariant declared for class C.

Definition 8 (Satisfaction of specification and invariant environment). We say a program G
satisfies specification environment Π and invariant environment Λ, written G |= (Π,Λ), iff, (1),
Π contains one specification for each method in G, and Λ contains one assertion for each class
in G; (2) for every {P}C.m {Q} ∈ Π, {P}C.m {Q} holds, here m could be the constructor; and (3),
for every class C in G, C |= Λ(C) holds.

This definition leads the following verification conditions for G |= (Π,Λ):

Theorem 8. Given a program G, a specification environment Π and an invariant environment
Λ satisfying condition (1) of Definition 8, we have G |= (Π,Λ), if (1), for every constructor
specification {P}C.C {Q} ∈ Π, {P}C.C {Q ∧Λ(C)} holds, and (2), for every method specification
{P}C.m {Q} ∈ Π, {P}C.m {Q} holds; and if C.m is client accessible, {P∧Λ(C)}C.m {Λ(C)} holds.

From this theorem, we can see that suppose Λ(C) = I, for the constructor of C with specifi-
cation {P}-{Q}, we should verify that {P}C.C {Q ∧ I}; and for a method C.m with specification
{P}-{Q}, we have two proof obligations: {P}C.m {Q} for its behavior, and {P ∧ I}C.m {I} for the
object invariant. This is very different from common treatment like [23, 2] in two aspects: First,
method invocations now only rely on declared specifications {P}-{Q}, but not {P∧ I}-{Q∧ I}with
object invariant considered. Second, the object invariant is hidden inside a class and transparent
to clients, but at any program point clients can assert the object invariant hold.

Although Definition 7 gives a sound definition for behavioral subtype, it is not practical for
real verification. As seen, we provide specifications and object invariants for classes with Π and
Λ, and usually use them to do verification so that we need not explore the class details. In this
sense, Π and Λ give the strongest specifications and object invariants. So we have the following
behavioral subtype definition for practice:

Definition 9. Given specification environment Π and invariant environment Λ for program G,
and two classes C and B in G, we say, in program G, C is a behavioral subtype of B under Π and
Λ, written (Π,Λ) ` C � B, iff, (1), Λ(C) ⇒ Λ(B), and (2), for every client accessible method
B.m we have Π(B.m) v Π(C.m).

In fact, this definition implies Definition 7 providing that Π and Λ give the strongest spec-
ifications and object invariants for all methods and classes in G. And clearly, this behavioral
subtyping relationship is transitive.

Definition 10. Given a program G with specification environment Π and invariant environment
Λ, we say G satisfies the behavioral subtyping requirement under Π and Λ, iff for any pair of
classes C <: B, we have (Π,Λ) ` C � B.

By Definition 9 and its transitiveness, we can deduce that we only need check the behav-
ioral subtype relationship for immediate super/sub classes. And, combining Definition 10 and
Theorem 8, we can obtain a kind of verification conditions for programs with behavioral subtyp-
ing requirements. These verification conditions have similar forms as Liskov’s [26] and Leav-
ens’s [23], but the meanings are very different according to above discussions.
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[H-SEQ] [H-COND] [H-ITER]

Γ ` {P} c1 {Q}, Γ ` {Q} c2 {R}
Γ ` {P} c1; c2 {R}

Γ ` {b ∧ P} c1 {Q}, Γ ` {¬b ∧ P} c2 {Q}
Γ ` {P} if b c1 else c2 {Q}

Γ ` {b ∧ I} c {I}
Γ ` {I} while b c {¬b ∧ I}

[H-SKIP] Γ ` {P} skip {P} [H-ASN] Γ ` {P[e/x]} x := e {P}
[H-MUT] Γ ` {v = r1 ∧ e = r2 ∧ r1.a 7→-} v.a := e {v = r1 ∧ e = r2 ∧ r1.a 7→ r2}

[H-LKUP] Γ ` {v = r1 ∧ r1.a 7→ r2} x := v.a {x = r2 ∧ v = r1 ∧ r1.a 7→ r2}

[H-CAST] Γ ` {v = r ∧ r <: N} x := (N)v {x = r} [H-RET] Γ ` {P[e/res]} return e {P}

[H-INV] Γ ` v <: C {P}C.m(z) {Q} ∈ Π
Γ ` {v = r ∧ e = r′ ∧ P[r, r′/this, z])} x := v.m(e) {Q[r, r′, x/this, z, res]}

[H-NEW] {P}C(z) {Q} ∈ Π
Γ ` {e = r′ ∧ P[r′/z]} x := new C(e) {∃r · x = r ∧ Q[r, r′/this, z]}

Figure 4: Inference Rules for Basic Commands and Compositions

5. Hoare Rules for µJava

In this section, as another application of the WP semantics, we define a set of Hoare style
inference rules for µJava, and prove their soundness using the WP semantics. We extend the
µJava language with specification features in the first:

S ::= requires P; ensures Q
M ::= T m(T z) S {T y; c; }
K ::= class C : C{T a; C(T z) S {T y; c}; M}

Here category S denotes the specifications for methods and constructors, where the OOSL as-
sertions P and Q are the pre and post conditions respectively. Both method and constructor
declarations are extended with specification structures. Based on this extension, we can investi-
gate the specification and verification problems in the OO field.

For reasoning OO programs with specifications, we must record method specifications. As
in the last section, we extend the statical environment Γ with a specification environment Π to
record all method specifications of the classes, which takes the form as:

π ::= {P(this, z)}C.m(z) {Q(this, z)} | {P(z)}C(z) {Q(this, z)}
Π ::= ε | Π, π

Here ε denotes the empty environment, m is a method of class C. The pre and post conditions
of methods are recorded as parameterized assertions. Here {P(z)}C(z) {Q(this, z)} denotes the
specification for the constructor of class C, where the precondition does not mention this. We
may omit arguments this and z of parameterized predicates in discussion if they are not impor-
tant. Clearly, Π can be built statically by simply scanning the program text. We will use notation
{P}C.m {Q} ∈ Π (or {P}C {Q} ∈ Π, for constructor) as in the last section.

5.1. Inference Rules

A statement in our inference systems takes the form of Γ ` {P} c {Q} (or Γ ` {P}C.m {Q}) to
state that {P} c {Q} (or {P}C.m {Q} where m is a method in class C) is formally provable under
Π by the system. When Γ ` {P} c {Q} (or Γ ` {P}C.m {Q}) can be derived using the inference
system, we say that the triple {P} c {Q} (or {P}C.m {Q}) is Hoare provable.
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[H-CONSTR] [H-INTRO]

Γ,C,C � λ(z){var y; c}
Γ ` {z = r ∧ y = nil ∧ raw(this,C) ∗ P[r/z]} c {Q[r/z]}

Γ ` {P}C(z) {Q}

m is introduced in C, Γ,C,m� λ(z){var y; c}
Γ ` {z = r ∧ y = nil ∧ P[r/z]} c {Q[r/z]}

Γ ` {P}C.m(z) {Q}
[H-INH] [H-OVR]

C inherits m
Γ ` super(C, B)
Γ ` {P} B.m(z) {Q}
Γ ` {P}C.m(z) {Q}

m is overridden in C, Γ,C,m� λ(z){var y; c}, Γ ` super(C, B)
{PC}C.m(z) {QC} ∈ Π, {PB} B.m(z) {QB} ∈ Π

Γ ` {PB}-{QB} v {PC}-{QC}, Γ ` {z = r ∧ y = nil ∧ PC[r/z} c {QC[r/z]}
Γ ` {PC}C.m(z) {QC}

Side condition for the rules: local variables y are not free in P,Q

Figure 5: Rules for Method and Constructor Declarations

[H-THIS] Γ,C,m ` this : C [H-OLD] {P}C.m(z) {Q} ∈ Π, Γ,C,m ` z = r ∧ P[r/z]⇒ e = r′
Γ,C,m ` old(e) = r′

[H-CONSQ] [H-EX] [H-FRAME]

P⇒ P′, Π ` {P′} c {Q′}, Q′ ⇒ Q
Γ ` {P} c {Q}

Γ ` {P} c {Q}, r is free in P,Q
Γ ` {∃r · P} c {∃r · Q}

{P} c {Q}, FV(R) ∩MD(c) = ∅
{P ∗ R} c {Q ∗ R}

Figure 6: Additional Inference Rules

Figure 4 lists the rules for basic commands and composition structures. The first three rules
for compositions are exact the same as the rules in Hoare logic. Rules [H-SKIP] and [H-ASN] are
simple. Rules [H-LKUP] and [H-MUT] have the similar forms as their counterparts in Separation
Logic. Rule [H-CAST] is special in the OO world for the type casting, and rule [H-RET] for the
return statement which states that it behaves exactly as an assignment to res.

The last two rules in Figure 4 are for the method invocation and object creation, respectively.
Notice that we demand that the specification of the overriding method in a subclass satisfies some
additional relation with the counterpart of the same method in the direct superclass (see rules in
Figure 5), so in rule [H-INV], we requires only the verification by the declare type of variable v.
On the other hand, rule [H-NEW] is clear.

The second group contains rules for verifying method and constructor declarations, which
are listed in Figure 5. These rules tell us how to check if a specification in Π is consistent with
its code, thus is valid in Π. Here is a side condition that in using the rules, we require that the
local variables y do not occur free in the specification. The condition can be resolved by suitable
renaming local variables to some fresh names. The recursive method definitions is allowed here,
because body command c may contain invocations to the same method, or invocations which
will lead to mutual recursions. In Rule [H-CONSTR], this = r ∧ raw(r,C) specifies that this
refers to a newly created raw object. Then, the command c has its effects on the state of the new
object. We have three different rules for the introduction, overriding and inheritance of methods
in a class, respectively. Rule [H-INTRO] is simple, which asks for the verification of the body
command c in a suitable context. Rule [H-INH] is trivial. For the overriding, rule [H-OVR] asks
for additional the verification of Γ ` {PB}-{QB} v {PC}-{QC}.

We have some additional inference rules, as shown in Figure 6. Rules [H-THIS] and [H-OLD]
are given for typing this and evaluation expression e is the pre-state. Rules [H-CONSQ] and
[H-EX] are the same as in Hoare Logic. At last, we have the Frame Rule which has the exact the
same form as in Separation Logic, where FV(R) is the set of all variables (with res taken into
account) in assertion R, and md(c) denotes the variables modified by c.

Before considering the soundness of these rules, we show their usage by an example.
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Example 5. Now, we consider the Example ?? again using our rules. By an assumption that
Object has an empty constructor, we have first that

{emp} Object {∃r · this = r ∧ raw(r, Object)}

is a valid specification for the constructor of Object. By [H-NEW] and [H-FRAME], as well as
rules for emp and ∗, we have the following deduction:

{true}

{emp ∗ true}
x := new Object();
{∃r · x = r ∧ raw(r, Object) ∗ true}
y := new Object();
{∃r1, r2 · x = r1 ∧ y = r2 ∧ raw(r1, Object) ∗ raw(r2, Object) ∗ true}
{x , y}

5.2. Soundness of Hoare Triples
Because the WP semantics defined in Section 3.2 is both sound and complete, we define

and prove the soundness of our inference rules based on the WP semantics. In Section 4.3, we
define the concepts that a command satisfies a specification consisting of a precondition P and
a postcondition Q, as a logic statement P ⇒ [[c]]Q. We have similar definition for the methods
and constructors. Although we also use Hoare-triples in that section, to avoid confusion, in this
section we use the triple notation, i.e., {P} c {Q}, only for the Hoare provable triples.

Definition 11 (Soundness of Hoare Rules). For any given set of Hoare style inference rules,
we say it is sound, if and only if, for any program G with environment Γ:

• For any command c in G, if Γ ` {P} c {Q}, then Γ ` P⇒ [[c]]Q;

• For any method C.m in G, if Γ ` {P}C.m(z) {Q}, then Γ ` ∀r0, r · (P[r0, r/this, z] ⇒
[[C.m]](r)(Q[r0, r/this, z])).

• For the constructor of any C in G, if Γ ` {P}C(z) {Q}, then Γ ` ∀r0, r · (P[r/z] ⇒
(raw(this,N) —∗[[C.C]](r)(Q[r0, r/this, z]))).

Here we write Γ explicitly for the OOSL assertions, i.e., in Γ ` P ⇒ [[c]]Q. Recall that
[[C.m]] is a parameterized predicate transformer, thus the notation [[C.m]](r) denotes a predicate
transformer. The situation is similar for the constructors.

We now prove that the rules given in Section 5.1 is sound by our WP semantics.

Theorem 9. The inference rules given in Figure 4, 5, and 6 are sound.

Proof. We prove the soundness result by induction, because recursive defined methods are al-
lowed here. We first prove inference rules for commands, and then the others.

[H-SEQ]: Suppose for Γ ` {P} c1 {Q} and Γ ` {Q} c2 {R}, we have P ⇒ [[c1]]Q and Q ⇒ [[c2]]R
respectively, then P⇒ [[c1]][[c2]]R = [[c1; c2]]R.

[H-COND], [H-ITER], [H-SKIP], [H-ASN], [H-RET], [H-EX], [H-CONSQ]: The proofs are sim-
ilar to what for Hoare rules in procedural language, and monotonicity of WP semantics.
We omit them here.
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[H-MUT]: By the WP semantics

[[v.a := e]](v = r1 ∧ e = r2 ∧ r1.a 7→ r2)
= ∃r3, r4 · v = r3 ∧ e = r4 ∧ (r3.a 7→- ∗ (r3.a 7→ r4 —∗(v = r1 ∧ e = r2 ∧ r1.a 7→ r2)))
= v = r1 ∧ e = r2 ∧ (r1.a 7→- ∗ (r1.a 7→ r2 —∗ r1.a 7→ r2)
= v = r1 ∧ e = r2 ∧ r1.a 7→-.

[H-LKUP]: By the WP semantics

[[x := v.a]](x = r2 ∧ v = r1 ∧ r1.a 7→ r2)
= ∃r3, r4 · v = r3 ∧ r3.a ↪→ r4 ∧ (x = r2 ∧ v = r1 ∧ r1.a 7→ r2) = v = r1 ∧ r1.a 7→ r2

[H-CAST]: By the WP semantics, [[x := (N)v]](x = r) = ∃r ·r <: N∧v = r, this can be deduced
by v = r ∧ r <: N, so the conclusion holds.

[H-INV]: By WP semantics, we have

[[x := v.m(e)]](Q(r, r′)[x/res])
= ∃r · (v = r) ∧ (

∨
(r : S i ∧ [[S i.m]](r, e)((Q(r, r′)[x/res])[res/x])))

= ∃r · (v = r) ∧ (
∨

(r : S i ∧ [[S i.m]](r, e)(Q(r, r′))))

By the hypothesis, and the specifications are well-specified, so for all i = 1...k, we have
P(this, z)⇒ ([[S i.m]](this, z))(Q(this, z)). Then

v = r ∧ e = r′ ∧ P(r, r′) ⇒ v = r ∧ e = r′ ∧ (
∨

r : S i) ∧ (
∧

([[S i.m]]Q(r, r′)))
⇒ v = r ∧ e = r′ ∧ (

∨
(r : S i ∧ [[S i.m]]Q(r, r′)))

= [[x := v.m(e)]](Q(r, r′)[x/res]).

[H-NEW]: By the WP semantics we have

[[x := new N(e)]](∃r · x = r ∧ Q(r, r′))
= ∀r · raw(r,N) —∗([[N]](r, e))((∃r′ · x = r′ ∧ Q(r, r′))[r/x])
= ∀r · raw(r,N) —∗([[N]](r, e))Q(r, r′)
= ∀r · raw(r,N) —∗([[c]]Q(r, r′)[nil/y]

By the hypothesis and rule [H-CONSTR], we have

(y = nil ∧ this = r ∧ raw(r,N) ∗ P(z))⇒ [[c]](Q(r, z))

By the definition of —∗, we have

(this = r ∧ P(z)) ⇒ (raw(r,N) —∗[[c]](Q(r, z)))[nil/y]
⇒ (raw(r,N) —∗([[c]](Q(r, z)))[nil/y])

At last, because r is an arbitrary reference, we have the conclusion.

[H-CONSTR]: By the premise, induction hypothesis, and above proofs, we have raw(r,C) ∗
P[r/z]⇒ [[c]](Q[r/z]). By rule [WP-MTHD], we have

raw(r,C) ∗ P[r/z]⇒ ([[C.C]](this, r))(Q[r/z]).

By Lemma 2, and because r is an arbitrary reference, we can obtain that

∀r · (P[r/z]⇒ (raw(r,C) —∗([[C.C]](this, r))(Q[r/z]))).
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[H-INTRO]: Here m is introduced into the inheritance hierarchy of C, thus we can consider it
locally. Similar to the proof for [H-CONSTR], by the premise we have

z = r ∧ y = nil ∧ P[r/z]⇒ [[c]](Q[r/z]).

This is P[r/z] ⇒ ([[c]](Q(r/z))[nil/y]). Now by the rule [WP-MTHD], we have P[r/z] ⇒
([[c]]Q(this, z))[nil/y]. Then by the arbitrary of r we have the conclusion.

[H-OVR]: The proof is similar to [H-INTRO], where the additional premise Γ ` {PB}-{QB} v

{PC}-{QC} ensures that C.m satisfies {P}-{Q}, thus ensures the soundness of [H-INV].

[H-INH]: An inherited method can be viewed as an overriding method which has exact the same
specification and implementation as what in the superclass. We can prove [H-INH] follow-
ing the line for [H-OVR] and this idea.

[H-FRAME]: The conclusion comes directly from Theorem 3.

Now we can conclude that the inference rules given in Section 5.1 are sound.

6. Related Work

In this paper, we investigate various important concepts and techniques in OO program
verification: WP semantics, specification refinement, object invariant and behavioral subtyping,
inference rules for OO programs, etc. Here we discuss some related work.

6.1. WP Semantics
WP semantics [13] is one of the most powerful tools in theoretical study on procedural pro-

grams and related research areas. Researchers apply WP technique to reasoning programs, define
and validate semantics and formal frameworks, generate verification conditions, validate refine-
ment rules, and so on. However, after many years of striving in the OO world, WP has not yet
showed its potentials as in the procedural world. After all, a satisfactory and well-studied WP
semantics does still not emerge yet. This is the motivation of the work presented here.

To our limited knowledge, efforts towards a WP semantics for OO programs since 1999,
while in [12] a WP calculus was given for OO programs aiming to support some object sharing.
The definition of the semantics is restricted to the forms of syntactic substitution. For example,
the semantics for assignments is defined as:

l.x[e/x] =̂ if (l[e/x]) = self then e else (l[e/x]).x fi

where l = self stands for that l refers to current object. The authors made many restrictions to
the programs and assertions, and paid high prices on various special cases in the work. However,
because even l = self cannot be checked statically, and the complicated special cases are hard to
make accurately and completely1, these facts make the effort questionable. Based on above work,
the same and relative researchers tried to give a pure syntax-based Hoare Logic for OO programs
in some later papers [38, 39]. However, the progress is not very much. It seems that the key

1We found an example obeying the restrictions but failed to be included in the definition. Although it is easy to
remedy, it shows that managing the semantics in such a way is troublesome.
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problems caused by OO programming, e.g. objects sharing and mutable object structures, are
very hard to handle correctly and concisely in the classical Hoare Logic style with the syntactic
substitution fashion.

A. Cavalcanti and D. Naumann made a significant contribution in the definition of a WP
semantics for OO languages. In [9, 10], a simple OO language with subtyping, dynamic binding,
but not sharing was studied. Supported by a statical typing environment, each command was
associated with semantics as a predicate transformer. The notion of OO refinement is defined too.
Based on the work, some inference rules for a model OO language ROOL were proved in [5];
a set of refactoring laws taken from [15] were presented formally in [11]. Further, paper [7]
proposed a refinement algebra for OO programming. An extended paper [6] summarized these
works. However, the semantics model for variables and fields of objects taken in these works is
not based on the reference model. This start point departs from the essential features of the main
stream OO languages, as well as the basic OO concepts, fundamentally. This departure makes the
object sharing and updating hard to treat, if not impossible. A noticeable example can be found
in [10], where only WP semantics of assignment with upcast can be defined. This shortage is due
to value model and the absence of object references. Additionally, in [7] and [11], no refinement
law related to references can be given. Further, in [11], some mistakes were made in attempting
to encode the sharing-related refactoring in a non-reference semantic model. In summary, based
on a value-based semantic model, it seems very hard, if not impossible, to formalize and verify
many OO concerns interested in the practice.

On other directions, various specification and verification frameworks developed for OO pro-
grams, such as in ESC/JAVA [14], LOOP [8], JML [20, 18] and Spec# [4, 3], also utilize WP
techniques as their basic tools. One common-seen usage is using some form of WP rules to
generate verification conditions. However, these works focus mainly on useful, yet succinct no-
tations for specifications of OO programs to support the verification requirements. As a result,
none of the works focuses on the fundamental study of WP semantics. In addition, none puts
the important mutable object structures as its basic consideration, as concluded in a survey [21]
co-authored by developers of some of the frameworks.

With the rising and success of Separation Logic (SL), the main stream of the research on
pointer-related and OO related programming has shifted to this line, and many problems related
to OO programs have been reexamined. Some papers mentioned or used WP semantics based on
some form of Separation Logic to attach problems in OO programming. For example, the work
presented in [36] use a WP semantics to prove the soundness of their framework on Separation
Logic and Implicit Dynamic Frames [42]. However, the WP semantics of command is defined
as state transformers, but not predicate transformers, that is not abstract enough, thus is not very
useful practically. There is no work on the fundamental research on the WP semantics yet.

The work presented here could also be thought as one attempt following the tide raised by
Separation Logic. Compared to the existing works on WP semantics of OO programs, our se-
mantics seems closer the realities of OO practice, and reflects the important OO features better.
The facts come from that we adopt the underlying pure reference storage model, and design
a logic with the help of the separation concept. The concepts and inference rules defined and
proved in this paper can be seen as the additional evidences for this conclusion.

6.2. Concepts in OO Program Verifications
Behavioral subtyping is an important concept for OO program verification, and it always

involves other crucial concepts like method specifications and object invariants. One earliest
study on this topic is [25, 26], where a group of constraint rules are proposed to require that
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methods in a subtype preserve the behavior of corresponding methods in the supertype, and the
invariant of the subtype implies the invariant of the supertype. However, as pointed by Leavens
and Naumann in [22, 23], these constraints are too strong, so they offered a new definition based
on the nature specification refinement, and proposed some general notations for specification
and refinement. However, their concepts are defined based on the state transitions, thus are not
high-level enough for supporting practical verification frameworks. Besides, in these works, the
object invariant is treat as an always holding precondition of the methods. As we discussed in
Section 4.3, this kind of requirements is not very adequate.

Specification refinement has also been investigated by many other researchers. For example,
rCOS [19] defines refinement relationship by graph transformation, and Parkinson [37] defines
refinement by a proof between specifications. In fact, all these definition follows the nature
refinement order [22]. It seems that researchers have reached some consensus on specification
refinement concept. We define the concept based on our WP semantics, and give also some
sufficient conditions to support practical verifications. In addition, we take the field extension of
subclasses into considerations in the definition and verification conditions.

In our knowledge, the most notable works on object invariants (and data invariants) are pre-
sented by Hoare [17], Barnett [2], Leino [24] and Müller [33]. The related techniques have been
applied to various verification tools, such as ESC/JAVA [14], JML [20] and Spec# [4]. How-
ever, the definitions for object invariant in these works did not be given in some complete formal
style. More important, the object invariant was treated all as a part of method specification. As
discussed in Section 4.2, to define object invariant in this way has some inherent weakness. We
give a different and better definition for the concept based on our WP semantics, which makes
the invariant independent from any method specifications.

Verification frameworks for OO programs have induced much attentions, such as the works
mentioned above. Because this is not the main topic of this paper, we will not discuss them in
details here. As said in Section 5, the set of Hoare style inference rules and their soundness proof
are given here as only an example for illustrating the usefulness of our WP semantics. Here we
list only a set of basic rules. As a more useful set of rules, readers can consult paper [27]. In fact,
we have proved also the soundness of this enriched set of rules.

7. Conclusion

Based on an OO version of Separation Logic, here we develop a WP semantics for a typical
OO language with a large set of fundamental OO features, and prove that the semantics is both
sound and complete. As far as we know, this is the first work on the completeness of such a
semantics for OO languages with pure reference semantic model. In addition, some properties
of the WP semantics are proposed and proved, especially the frame property of the logic with a
detailed proof that is very important for local reasoning.

Based on the WP semantics, we investigate the behavioral subtyping and some other impor-
tant concepts which are central for OO program verification. We introduction method specifi-
cation and define the refinement relation on method specifications. We propose a new formal
definitions for object invariants, and discuss why it is new and more adequate. We define also
behavioral subtying relation based on the WP semantics, and provide some sufficient verification
conditions for checking the relation for OO programs. As another application, we define (partial)
correctness of OO programs with respect to their specification, and give a set of basic inference
rules for reasoning OO programs with their soundness proofs.
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Conducting a detailed comparison to existing works, e.g., [10, 12, 39, 25, 26, 22, 23], we
might conclude that our WP semantics captures more essentials of object-orientation in an more
adequate and useful way. And in addition, our formal treatments for the object invariant and
behavioral subtyping is more natural and closer to the practice.

As for the future work, first, we will try to use the WP semantics and other concepts de-
fined here to OO program verification area. We are working on a specification and verification
framework for Java-like languages, with polymorphism, encapsulation and modular verification
in mind. Second, we want to extend our specification refinement concept to data and program
refinements, then study the relationship between programs/specifications at different abstract lev-
els, that provides the possibility of programming from specifications or/and code generation.

Appendix A. OOSL: Some Details and Its Semantics

Here we give some details about OOSL. A complete treatment can be found in [29], including
some properties of OOSL, and a careful comparison with some related works.

To represent the states of OO programs, we use three basic sets Name, Type and Ref. Be-
cause references in Ref are atomic, we assume two primitive functions:2

• eqref : Ref → Ref → bool, justifies whether two references are the same, i.e. for any
r1, r2 ∈ Ref, eqref(r1, r2) iff r1 is same to r2.

• otype : Ref → Type decides the type of the object referred by some reference. We define
otype(rtrue) = otype(rfalse) = Bool, and otype(rnull) = Null.

A program state s = (σ,O) ∈ State consists of a store and a heap. An element of O is a
pair (r, f ), where f is an abstraction of some object o pointed by r, a function from fields of o to
values.3 For domain of O, we refer to either a subset of Ref associated with objects, or a subset
of Ref × Name associated with values. We use dom O to denote the domain of O, and define
dom2 O =̂ {(r, a) | r ∈ dom O, a ∈ dom O(r)} for the second case.

For the program states, we define the well-typedness as follows.

Definition 12 (Well-Typed States). State s = (σ,O) is well-typed if both its store σ and heap O
are well-typed, where store σ is well-typed if ∀v ∈ domσ · otype(σ(v)) <: dtype(v); and heap
O is well-typed if the following two conditions hold:

• ∀(r, a) ∈ dom2 O · a ∈ fields(otype(r)) ∧ otype(O(r)(a)) <: fdtypes(otype(r))(a), and

• ∀r ∈ dom O · fields(otype(r)) = ∅ ∨ (fields(otype(r)) ∩ dom O(r) , ∅).

Clearly, a well-typed store has all its variables taking values of the valid types. On the other
hand, a well-typed heap requires that: 1) all fields in O are valid according to their objects, and
hold values of valid types; and 2) for a non-empty object (according to its type), only when at

2One possible implementation, for example, is to define a reference as a pair (t, id) where t ∈ Type and id ∈ N, and
define eqref as the pair equality, and otype(r) = r. f irst.

3Please pay attention that Ref ⇀fin Name ⇀fin Ref is very different from Ref×Name ⇀fin Ref. Informally speaking,
the former is a map from references to objects, while the latter is a map from object fields to field values. So objects have
no direct presentations in the latter, especially empty objects.
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[I-FALSE] MJ (false) = ∅ [I-TRUE] MJ (true) = State
[I-LOOKUP] MJ (v = r) = {(σ,O) | σ(v) = r} [I-REF-EQ] M(r1 = r2) = State if eqref(r1, r2), ∅ else

[I-REF-TP] M(r : T ) = State if otype(r) = T, ∅ else [I-REF-STP] M(r <: T ) = State if otype(r) <: T, ∅ else
[I-EMPTY] MJ (emp) = {(σ, ∅)} [I-SINGLE] MJ (r1.a 7→ r2) = {(σ, {(r1, a, r2)})}

[I-OBJ] MJ (obj(r,T )) = {(σ,O) | dom O = {r} ∧ dom (O(r)) = fields(otype(r))}
[I-APP] MJ (p(r)) = J(p)(r)

[I-NEG] MJ (¬ψ) = State \MJ (ψ) [I-OR] MJ (ψ1 ∨ ψ2) = MJ (ψ1) ∪MJ (ψ2)
[I-S-CONJ] MJ (ψ1 ∗ ψ2) = {(σ,O) | ∃O1,O2 · O1 ∗ O2 = O ∧ (σ,O1) ∈ MJ (ψ1) ∧ (σ,O2) ∈ MJ (ψ2)}

[I-S-IMPLY] MJ (ψ1 —∗ψ2) = {(σ,O) | ∀O1 · O1⊥O ∧ (σ,O1) ∈ MJ (ψ1) implies (σ,O1 ∗ O) ∈ MJ (ψ2)}
[I-EX] MJ (∃r · ψ) = {(σ,O) | ∃r ∈ Ref · (σ,O) ∈ MJ (ψ)}

Figure A.7: Semantic for OOSL wrt. the least fixed point model J of the given logic environment

least one of its fields is in O, we can say the object is in O. Thus we can identify empty objects
in any heap. We will only consider well-typed states in our study.

We define a special overriding operator ⊕ on Heap:

(O1 ⊕ O2)(r) =̂
{

O1(r) ⊕ O2(r) if r ∈ dom O2

O1(r) otherwise

The ⊕ operator on the right hand side is the standard function overriding. Thus, for heap O1,
O1 ⊕ {(r, a, r′)} gives a new heap, where the value for only one field (the value for a) of the object
pointed by r is modified (to the value denoted by r′).

We use O1 ⊥ O2 to indicate that O1 and O2 are separated from each other:

O1 ⊥ O2 =̂ ∀r ∈ dom O1 ∩ dom O2 · (O1(r) , ∅ ∧O2(r) , ∅ ∧ dom (O1(r))∩ dom (O2(r)) = ∅).

If a reference, to some object o, is in both domains of two heaps O1 and O2, then each of O1
and O2 must contain a non-empty subset o’s fields (the well-typedness guarantees this), and the
two subsets must be disjoint. This means that we can separate fields of a non-empty object into
different heaps, but not an empty object. With this definition, we have O ⊥ ∅ for any O, as well
as ∅ ⊥ ∅. When O1 ⊥ O2, we will use O1 ∗ O2 for the union O1 ∪ O2.

The storage model defined above, with the definition for the separation concept, gives us both
an object view and a field view for the heaps. With this model, we can correctly handle the whole
objects and their fields.

To define the semantics for OOSL, we need to have a careful treatment about the user-defined
assertions. Because we allow recursive definitions (either self-recursion or mutual recursion),
any reasonable definition for their semantics must involve some fixed point. We record all the
definitions in a Logic Environment Λ:

Λ ::= ε | p(r) .= ψ,Λ

Here ε denotes the empty environment.
As the well-formedness, body ψ of any definition in Λ cannot use symbols without defined in

Λ. Further, we require that Λ is finite and any body predicate ψ in it is syntactically monotone4.

4For definition p(r) .= ψ, every symbol occurred in ψ must lie under even number of negations.
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Under these conditions, the least fix-point model for a given Λ exists by Tarski’s theorem, then
we name it as J . Based on this model, we define semantics of assertions by a semantic function
MΛ : Ψ→ P(State) by rules listed in Fig. A.7, where subscript Λ is omitted as default.

With this semantics, we define that an assertion holds on a given state as:

(σ,O) |= ψ iff (σ,O) ∈ M(ψ).

Appendix A.1. Properties and Inference Rules
The semantics defined above have many good properties. We give some of them in this

subsection.

Lemma 4. New predicate can be safely appended toΛ, without changing the meaning of existing
symbols in Λ. Formally, if Λ′ = (Λ, p(r) .= ψ) is a well-formed logic environment, where p is not
defined in Λ, we have for every symbol q defined in Λ:

JΛ(q) = JΛ′ (q).

Proof. By the definition of standard model J .

By this lemma, we can easily get:

Lemma 5 (Extending and Shrinking). Given a logic environment Λ:

1. We can safely append some new definitions to it, without changing semantics of symbols
defined in Λ, providing the extension is a well-formed logic environment;

2. if symbols p defined in Λ are not mentioned in other definitions in Λ, then we can safely
remove them, without changing the meaning of the rest symbols in Λ.

We have following results for store extension and shrinking:

Lemma 6 (Stack Extending and Shrinking). Suppose (σ,O) |= ψ, we have:

1. if domσ′ ∩ domσ = ∅, then (σ ∪ σ′,O) |= ψ;
2. if ψ does not contain variables in σ′, then (σ − σ′,O) |= ψ. Here σ − σ′ denotes the state
{(x, r) ∈ σ | x < domσ′}

Lemma 7 (Variable Substitution). (σ,O) |= ψ[e/x], if and only if (σ ⊕ {x 7→ σe},O) |= ψ.

Lemma 8. Suppose a1, a2, ..., ak are all fields of type T , then we have:

obj(r,T )⇔ r.a1 7→- ∗ r.a2 7→- ∗ ... ∗ r.ak 7→-

This law denotes the transformation (correspondence) between the object based viewpoint
and fields based viewpoint.

Lemma 9. obj(r1, -) ∗ obj(r2, -)⇒ r1 , r2.

Lemma 10. We can prove many laws, such as:

emp ∗ ψ⇔ ψ ψ1 —∗(ψ2 ∧ ψ3)⇔ (ψ1 —∗ψ2) ∧ (ψ1 —∗ψ3)
ψ1 ∗ (ψ1 —∗ψ2)⇔ ψ2 ψ1 —∗ψ2 —∗ψ3 ⇔ (ψ1 ∗ ψ2) —∗ψ3

Proof. We prove the last statement here. Note that ψ1 —∗ψ2 —∗ψ3 is ψ1 —∗(ψ2 —∗ψ3).
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⇒: Assume (σ,O) |= ψ1 —∗(ψ2 —∗ψ3). Take any O′ such that O′ ⊥ O and (σ,O′) |= ψ1 ∗ ψ2,
by the definition of ∗, there exist O1 and O2 such that O′ = O1 ∗ O2, and (σ,O1) |= ψ1,
and (σ,O2) |= ψ2. Because O1 ⊥ O2 ∗ O and the assumption, we know that (σ,O1 ∗ O) |=
ψ2 —∗ψ3. From this fact, and (σ,O2) |= ψ2 and O2 ⊥ O1∗O, we have (σ,O1∗O2∗O) |= ψ3.
This is exactly (σ,O′ ∗ O) |= ψ3, thus we have the “⇒” proved.

⇐: Suppose (σ,O) |= (ψ1 ∗ ψ2) —∗ψ3. Take any O1 such that O1 ⊥ O and (σ,O1) |= ψ1,
then take any O2 such that O2 ⊥ O1 ∗ O and (σ,O2) |= ψ2, now we need to prove that
(σ,O1 ∗O2 ∗O) |= ψ3. Because O1 ∗O2 ⊥ O and (σ,O1 ∗O2) |= ψ1 ∗ψ2, we have the result
immediately.

Many propositions in Separation Logic also hold in OOSL. For example, laws (i.e., axiom
schemata) given in Section 3 of [41] are all valid in OOSL. Some more laws can be proved which
are also valid in Separation Logic, such as (ref. [43]):

(p ∗ q) ∗ r ⇔ p ∗ (q ∗ r) p ∗ q ⇔ p ∗ (p —∗(p ∗ q))
emp ⇒ p —∗ p p —∗ q ⇔ p —∗(p ∗ (p —∗ q))

Intuitively, there are close connection between OOSL defined here and the Separation Logic.
If we treat every tuple (r, a) as an address of memory cell, and define a suitable address trans-
formation for the memory layout, then we may map the storage model of our logic to the stor-
age model of Separation Logic. So, we conjecture that every proposition holding in Separation
Logic, when it does not involve in address arithmetic, will hold in OO Separation Logic. We will
investigate the relation between Separation Logic and OOSL in future.

Similar to Separation Logic, we can define the pure, intuitionistic, strictly-exact and domain-
exact assertions. We find another important concept as follows.

Definition 13 (Separated Assertions). Two assertions ψ and ψ′ are separated from each other,
iff for all stores σ and Opools O,O′, (σ,O) |= ψ and (σ,O′) |= ψ′ implies O ⊥ O′.

Clearly, the separation for assertions is symmetric.

Lemma 11. r1.a 7→- and r2.b 7→- are separated, provided that r1 , r2, or a and b are different
field names.

Note that “r1 , r2” can not be determined statically, but “a and b are different field names”
can. Suppose we have a Node class with fields value and next. For a reference r : Node, we
know r.value 7→- and r.next 7→- are separated. This concept can also be defined in Separation
Logic. However, due to the absence of named fields, the fact that two assertions are separated
on the syntactic level is not common, except some special cases, such as x 7→ - and x + 1 7→ -
(however, for x + n when n is a variable we can say nothing).

Lemma 12 (Separated Assertions and Heaps). Suppose ψ1 and ψ2 are separated.

(1). If (σ,O1) |= ψ1 and (σ,O2) |= ψ2, then (σ,O1 ∗ O2) |= ψ1 ∗ ψ2.
(2). If (σ,O) |= ψ1 ∗ ψ2, there exists an unique partition of O = O1 ∗O2 such that (σ,O1) |= ψ1

and (σ,O2) |= ψ2.

Proof. Result (1) is trivially true by the separation of ψ1 and ψ2. We prove here only (2).
Suppose (σ,O) |= ψ1 ∗ ψ2 and we have two different partitions O = O1 ∗O2 and O = O′1 ∗O′2

such that (σ,O1) |= ψ1 and (σ,O2) |= ψ2, also (σ,O′1) |= ψ1 and (σ,O′2) |= ψ2. Because O1 ,
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O′1, without lose the generality, we can suppose (dom 2 O1 \ dom 2 O′1) , ∅. Then we have
(dom 2 O1 \ dom 2 O′1) ⊆ dom 2 O1 and (dom 2 O1 \ dom 2 O′1) ⊆ dom 2 O′2, thus O1 6⊥ O′2. This
is not possible because (σ,O1) |= ψ1, (σ,O′2) |= ψ2 and ψ1 and ψ2 are separated assertions.

Lemma 13. Suppose ψ2 and ψ3 are two assertions separated from each other, ψ1 is separated
from both of ψ2 and ψ3 iff ψ1 is separated from ψ2 ∗ ψ3.

Proof. The proof is as follows:

⇒: Take any σ, O1 and O such that (σ,O1) |= ψ1 and (σ,O) |= ψ2 ∗ ψ3, and take any partition
O = O2 ∗ O3 such that (σ,O2) |= ψ2 and (σ,O3) |= ψ3. Because ψ1 is separated from both
ψ2 and ψ3, then O1 ⊥ O2 and O1 ⊥ O3. Thus O1 ⊥ (O2 ∗ O3) = O, which tells us ψ1 is
separated from ψ2 ∗ ψ3.

⇐: Suppose (σ,O1) |= ψ1 and (σ,O2) |= ψ2. For any O3 such that (σ,O3) |= ψ3, because ψ2
and ψ3 are separated, then O2 ⊥ O3 and (σ,O2 ∗ O3) |= ψ2 ∗ ψ3. Because ψ1 is separated
from ψ2 ∗ ψ3, then O1 ⊥ (O2 ∗O3), and then O1 ⊥ O2. For the arbitrary choices of O1 and
O2 , we conclude that ψ1 is separated from ψ2. For ψ1 and ψ3, the proof is similar.

Theorem 10. For any assertions ψ1, ψ2, ψ3, if ψ1 and ψ2 are separated from each other, then
ψ1 ∗ (ψ2 —∗ψ3)⇔ ψ2 —∗(ψ1 ∗ ψ3).

Proof. The proof is as follows:

⇒: For any σ and O such that (σ,O) |= ψ1 ∗ (ψ2 —∗ψ3), there exist O1,O2, such that O1 ∗O2 =

O, (σ,O1) |= ψ1, and (σ,O2) |= ψ2 —∗ψ3. By the definition of—∗, for any O3 satisfying
O2 ⊥ O3, we have

(σ,O3) |= ψ2 implies (σ,O2 ∗ O3) |= ψ3.

Because ψ1 and ψ2 are separated, then by Lemma 12,

(σ,O3) |= ψ2 implies (σ,O1 ∗ O2 ∗ O3) |= ψ1 ∗ ψ3.

This is (σ,O) |= ψ2 —∗(ψ1 ∗ ψ3).

⇐: For any σ and O that (σ,O) |= ψ2 —∗(ψ1 ∗ ψ3), for any O1 that O1 ⊥ O, if (σ,O1) |= ψ2,
then (σ,O1 ∗O) |= ψ1 ∗ψ3. Now we fix this O1. From (σ,O1 ∗O) |= ψ1 ∗ψ3 we know there
exist O2 and O′3 such that O2 ⊥ O′3, O2 ∗ O′3 = O1 ∗ O, (σ,O2) |= ψ1 and (σ,O′3) |= ψ3.
Because ψ1, ψ2 are separated, then O2 ⊥ O1. Thus O′3 = O1 ∗ O3 for some O3. Now we
have

(σ,O2) |= ψ1, (σ,O1) |= ψ2, and (σ,O1 ∗ O3) |= ψ3.

Then we have (σ,O3) |= ψ2 —∗ψ3, because the choice of O1 needs no extra restriction.
Thus (σ,O) |= ψ1 ∗ (ψ2 —∗ψ3), because O = O2 ∗ O3.

The concept of separated assertions is very useful in reasoning OO programs. Taking the
Node class above as an example, it allows us to combine relative fields of a Node object together:

r1.value 7→- ∗ (r2.value 7→-—∗ r1.next 7→-)
⇔ r2.value 7→-—∗(r1.value 7→- ∗ r1.next 7→-)

Now we discuss some expressiveness and extension issues about OOSL.
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[O-BASIC-EXP] {|true|}(σ,O) = rtrue, {|false|}(σ,O) = rfalse, {|null|}(σ,O) = rnull, {|v|}(σ,O) = σv

[O-BOOL-EXP] {|e1 = e2|}(σ,O) =

{
rtrue, if {|e1|}(σ,O) = {|e2|}(σ,O)

rfalse, else
{|b|}(σ,O) = rtrue
{|¬b|}(σ,O) = rfalse

{|b|}(σ,O) = rfalse
{|¬b|}(σ,O) = rtrue

Figure B.8: Expression Evaluation

As presented above, we define a power assertion language for OOSL, especially the user-
defined predicates are treated formally in the framework, which notably enhance the expressive-
ness of OOSL. With OOSL, We can specify and infer recursive data structures, e.g., lists, trees,
etc., and some important properties between objects, such as accessibility, dangling and so on.
Since our logic adopts the classical semantics, it is more expressive than its intuitionistic cousin,
e.g., what defined and used in [35]. We can use OOSL to describe the program state precisely,
especially the Opool, i.e., what is in or is not in an Opool.

On the other hand, the primitive assertions of OOSL are very simple and limited, especially
we have only Boolean type here. Due to the limited mathematical basics, we cannot describe
quantitative relation or more complicated mathematical concepts with OOSL. But it is not dif-
ficult to extend OOSL to support these concepts. For example, if we want to support integer
arithmetic in OOSL, we should

• add some primitive assertions about integer,

• expand user-defined predicates with integer arguments,

• expand quantifiers ∃ and ∀ to support integer,

• define semantics for new adding assertions.

After these modifications, we can describe and infer properties involving integers with OOSL.
In fact, we can combine OOSL and other mathematical theories freely, such as theories about
sequences and trees, since they are orthogonal.

Appendix B. Soundness and Completeness of the WP Semantics

In this Appendix we prove the soundness and completeness theorems given in Section 3.6
with respect to an operational semantics of µJava defined below.

Appendix B.1. Operational Semantics of µJava

To prove the sound and complete theorems for the WP semantics defined in Section 3.2, we
give first an operational semantics for µJava, which will be used as a base for the proofs.

As said before, µJava takes a pure reference semantics for variables and fields of objects, thus,
here a primitive type is also thought as an object type. The semantics of generic and Boolean
expressions e and b in current state (σ,O) are represented as {|e|}(σ,O) or {|b|}(σ,O), respectively.
The evaluation rules for expressions are given in Figure B.8. For a well-typed program, the
evaluation of v always makes sense. For the Boolean connectors, we give here only semantics to
¬. The semantics for operators ∨, ∧, etc. is standard. Because the restricted form of expressions,
semantics of expressions depend only on the store but not the heap, thus we will use σe or σb as
the abbreviations for {|e|}(σ,O) or {|b|}(σ,O) sometimes below.
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[O-SEQ] 〈c1, (σ,O)〉 ∗ (σ′,O′), 〈c2, (σ′,O′)〉 ∗ θ
〈c1; c2, (σ,O)〉 ∗ θ

〈c1, (σ,O)〉 ∗ abort
〈c1; c2, (σ,O)〉 ∗ abort

[O-ITER] σb = rtrue, 〈c; while b c, (σ,O)〉 ∗ θ
〈while b c, (σ,O)〉 ∗ θ

σb = rfalse
〈while b c, (σ,O)〉 (σ,O)

[O-COND] σb = rtrue, 〈c1, (σ,O)〉 ∗ θ
〈if b c1 else c2, (σ,O)〉 ∗ θ

σb = rfalse, 〈c2, (σ,O)〉 ∗ θ
〈if b c1 else c2, (σ,O)〉 ∗ θ

[O-SKIP]
〈skip, (σ,O)〉 (σ,O)

[O-ASN]
〈x := e, (σ,O)〉 (σ ⊕ {x 7→ σe},O)

[O-RET]
〈return e, (σ,O)〉 (σ ⊕ {res 7→ σe},O)

[O-MUT] (σv, a) ∈ dom2 O
〈v.a := e, (σ,O)〉 (σ,O ⊕ {(σv, a, σe)})

(σv, a) < dom2 O
〈v.a := e, (σ,O)〉 abort

[O-LOOKUP] (σv, a) ∈ dom2 O
〈x := v.a, (σ,O)〉 (σ ⊕ {x 7→ O(σv)(a)},O)

(σv, a) < dom2 O
〈x := v.a, (σ,O)〉 abort

[O-CAST] otype(σv) <: N
〈x := (N)v, (σ,O)〉 (σ ⊕ {x 7→ σv},O)

otype(σv) 6<: N
〈x := (N)v, (σ,O)〉 abort

[O-INV]

otype(σv) = C, Θ,C,m� λ(z){var y; c}
〈c, ({this 7→ σv, z 7→ σe, y 7→ nil, res 7→ nil},O)〉 ∗ (σ′,O′)

〈x := v.m(e), (σ,O)〉 ∗ (σ ⊕ {x 7→ σ′res},O′)

[O-NEW]

fdtypes(C) = {a : T }, Θ,C,C � λ(z){var y; c}
〈c, ({this 7→ r, z 7→ σe, y 7→ nil},O ⊕ {(r, {(a, nil)})})〉 ∗ (σ′,O′)

〈x := new C(e), (σ,O)〉 (σ ⊕ {x 7→ r},O′) r < dom O

Figure B.9: Operational Semantics for µJava

For describing the return value transferring, we assume that every store contains an internal-
variable res for recording the return value of recently invoked method. Because µJava is sequen-
tial, we just need one res to specify the return value at any time. We assume that a res always
takes the correct type with its method.

The operational semantics is defined as a mapping from configurations to configurations. A
configuration is either a tuple 〈c, s〉 consisting of a program text and a state, or a terminated state
s = (σ,O), represents that the execution of a (piece of) program has completed successfully. The
semantics is defined as a transition relation :

Configuration =̂ (Command × State) ∪ State
 ∈ Configuration ⇀ Configuration ∪ {abort}

Here Command is the set of valid program texts, and abort is a special symbol to represent that
the program goes wrong in execution, because of memory faults, wrong type casts, etc. We
define ∗ the finite transition closure of . The operational semantics rules for commands are
given in Fig. B.9, where we take the big-step style. With the help of Γ, here we can get rid of
many side conditions that can be guaranteed by the typing.

Rules [O-SEQ], [O-COND], and [O-ITER] for structural commands are simple where we use
θ to represent either a terminal state or the abort. One can see that abort stops the execution, and
it propagates further until the whole program stops.

Command skip changes nothing. The plain assignment x := e is independent of Opool,
thus affects only the store, as described by rule [O-ASN]. Both lookup and mutation look into
the Opool. They go abort when dereferencing a field out of current Opool, that covers the cases
where variable v has a rnull value, because then (σv, a) is out of any Opool. Rules [O-MUT] and
[O-LOOKUP] capture the behaviors of these two commands.
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Rule [O-CAST] shows that command x := (N)v needs to check whether (N)v is valid at run
time. If it is not the case, the execution fails and reveals a wrong downcasting. The upcasting in
the well-typed program is always allowed by the rule.

Rule [O-INV] defines the semantics for method invocations. It captures the dynamic binding
feature of OO programs. As seen, the method invoked is determined by the type of the object
pointed by variable v at run time. Body command c of method m executes from a new store
created locally, with parameters initialized by real arguments, and local variables initialized to
the special nil values (represented as nil in the rule) according to their types, where we assume
rfalse for Bool and rnull for all the class types. We bind this to the object referred by v before
the execution of c, and this binding keeps unchanged all the course. The internal variable res is
initialized also to nil value. As said before, we assume all field references for the current object
are decorated with this. Rule [O-RET] assigns the return value to res. When m returns, x is
updated by value of res taken from the final state of the local store. We should have another rule
for the case that the execution of method body is stuck resulting an abort. It takes the similar
form as [O-INV] but propagates abort, thus we omit it omitted here.

Command x := new C(e) creates a new object of class C, initiates its fields (including inher-
ited ones) with command c, and lets x refer to the object. [O-NEW] asks r to be a fresh reference,
whose selection is non-deterministic. {(r, {(a, nil)})} stands for every field value of r is nil.

Obviously, a program might fail to terminate for falling into an infinite iteration, or infinite
method call chain. In these cases, the deduction defined by these rules cannot terminate either.

We have the following lemmas for store extension and shrink.

Lemma 14. (1) Suppose 〈c, (σ1,O1)〉  ∗ (σ2,O2), and domσ ∩ domσ1 = ∅, then 〈c, (σ1 ∪

σ,O1)〉 ∗ (σ2∪σ,O2). (2) Suppose 〈c, (σ1,O1)〉 ∗ (σ2,O2), and c does not contain variables
in domσ, then 〈c, (σ1−σ,O1)〉 ∗ (σ2−σ,O2). Here σ1−σ denotes the function by restricting
σ1 to the domain domσ1 − domσ.

Now we are ready to prove the soundness and completeness theorems.

Appendix B.2. Soundness Theorem

We prove first the soundness theorem (Theorem 4 in Section 3.6). Remember Ψ is the
space of legal predicates and COM the space of legal commands. We will write [[c]] instead of
[[Γ,C,m ` c : com]] when it makes no confusion.

Proof. We prove that, for any ψ, ψ′ ∈ Ψ and c ∈ COM satisfying [[Γ,C,m ` c : com]]ψ = ψ′,
then for any pair of states (σ,O) and (σ′,O′), if (σ,O) |= ψ′ and 〈c, (σ,O)〉  ∗ (σ′,O′), then
(σ′,O′) |= ψ. We prove it by induction on the structure of commands. We adopt some notations
used in defining the WP semantics, and assume always ψ the postcondition.

Sequential Composition, “c1; c2”: Suppose (σ,O) satisfy [[c1; c2]]ψ, [[c1]] = f1, and [[c2]] = f2,
thus we have (σ,O) |= f1( f2(ψ)). Assume that 〈c1, (σ,O)〉 ∗ (σ′,O′), and 〈c2, (σ′,O′)〉 ∗

(σ′′,O′′). By induction hypothesis, (σ′,O′) |= f2(ψ), and also (σ′′,O′′) |= ψ.

Condition, “if b c1 else c2”: Suppose (σ,O) satisfy the precondition, that is, (σ,O) |= (b ⇒
f1(ψ)) ∧ (¬b ⇒ f2(ψ)). Further, suppose 〈c1, (σ,O)〉  ∗ (σ′,O′), and 〈c2, (σ,O)〉  ∗

(σ′′,O′′). Then, if {|b|}(σ,O) = rtrue, we have (σ,O) |= f1(ψ). By induction hypothesis, we
have (σ′,O′) |= ψ, so the conclusion holds. The case when {|b|}(σ,O) = rfalse is similar.
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Iteration, “while b c”: Because while b c is equivalence to if b (c; while b c)else skip,
by the definition of [[while b c]] and proof for Condition, the conclusion holds.

Skip: The proof is trivial.

Assignment, “x := e”: Suppose (σ,O) satisfy the precondition, i.e., (σ,O) |= ψ[e/x]. By op-
erational semantics rule [O-ASN], we have (σ′,O′) = (σ ⊕ {x 7→ σe},O). By Lemma 7,
we have (σ′,O′) |= ψ.

Mutation, “v.a := x”: Suppose (σ,O) satisfy the precondition, i.e., (σ,O) |= (∃r1, r2 · (v =
r1) ∧ (x = r2) ∧ (r1.a 7→- ∗ (r1.a 7→ r2 —∗ψ))), then we know that there exists r1, r2 such
that σv = r1 and σx = r2. From the precondition we have (σv, a) ∈ dom2 O, otherwise
r1.a 7→ - will be false. So the command does not get stuck. Then by the operational
semantics we have (σ′,O′) = (σ,O ⊕ {(r1, a) 7→ r2}). By the definitions of ∗ and —∗, we
can deduce that (σ′,O′) |= ψ.

Lookup, “x := v.a”: Suppose (σ,O) satisfy the precondition, that is, (σ,O) |= (∃r1, r2 · (v =
r1) ∧ (r1.a ↪→ r2) ∧ ψ[r2/x]). Then we know that that there exists r1, r2 satisfying σv = r1
and O(r1, a) = r2. From the precondition we have (σv, a) ∈ dom2 O , otherwise r1.a ↪→ r2
will be false. So the command does not get stuck. Then by the operational semantics we
have (σ′,O′) = (σ ⊕ {x 7→ r2},O). Then by Lemma 7, we have (σ′,O′) |= ψ.

Cast, “x := (N)v”: Suppose (σ,O) |= ∃r ·otype(r) <: N∧v = r∧ψ[v/x]. From ∃r ·otype(r) <:
N ∧ v = r, we have otype(σv) <: N, so by the operational semantic, we have (σ′,O′) =
(σ ⊕ {x 7→ σv},O). By Lemma 7, the conclusion holds.

Return, “return e”: The proof is similar to the plain assignment.

Method Invocation, “x := v.m(e)”: Suppose [[T.m]] = F and (σ,O) |= ∃r·v = r∧F(v, e)(ψ[res/
x])). Since the command is well-typed, there exists r : S , S <: T and v = r. By operational
semantics, method m in class S is invoked. Suppose [[S .m]] = G and

〈c, ({this 7→ σv, z 7→ σe, y 7→ nil, res 7→ nil},O)〉 ∗ (σ′,O′),

where c is the body command of method m in S , we need to show:

(σ,O) |= F(v, e)(ψ[res/x])) implies (σ ⊕ {x 7→ σ′res},O′) |= ψ.

Assume σ does not contain variables z and y. This can be achieved by renaming local
variables involved in c, and renaming this as this0, res as res0. Let

σ0 = {this0 7→ σv, z 7→ σe, y 7→ nil, res0 7→ nil},

then domσ0 ∩ domσ = ∅, and σ0 does not contain variables in F(v, e)(ψ[res/x]). By
(σ,O) |= F(v, e)(ψ[res/x]) and Lemma 6, we have:

(σ ∪ σ0,O) |= F(v, e)(ψ[res/x]).

Because F = λthis, z · λψ · f (ψ)[nil/y], where F(v, e)(ψ[res/x]) can be viewed as an
assertion that replace this, z and y in f (ψ) to v, e and nil, and we already have σ0this =

σv, σ0z = σe, and σ0y = nil, so by Lemma 7 we have:

(σ ∪ σ0,O) |= f (ψ[res/x]).
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By inductive hypothesis we have 〈c, (σ0,O)〉  ∗ (σ′0,O
′). Because c does not contain

variables in σ, then by Lemma 14, we have 〈c, (σ ∪ σ0,O)〉  ∗ (σ ∪ σ′0,O
′). Since

[[Γ, S ,m ` c : com]] = f , by induction hypothesis, (σ ∪ σ′0,O
′) |= ψ[res/x], where res is

the return value. Note that by the operational semantics, the return value is stored in res0,
then

(σ ⊕ {x 7→ σ′0res0} ∪ σ
′
0,O

′) |= ψ.

Because ψ does not contain variables in σ′0, by Lemma 6,

(σ ⊕ {x 7→ σ′0res0},O′) |= ψ.

Now we rename variables in σ′0 back and have (σ⊕{x 7→ σ′res},O′) |= ψ. The conclusion
holds.

Object Creation: Suppose (σ,O) |= ∀r · raw(r,N) —∗ F(r, e)(ψ[r/x]), then for any r < O,

(σ,O ⊕ {r 7→ {a 7→ nil}}) |= F(r, e)(ψ[r/x]).

Similar to Method Invocation, assume σ does not contain variables z and y, and let

σ0 = {this0 7→ r, z 7→ σe, y 7→ nil},

then domσ0 ∩ domσ = ∅, and σ0 does not contain variables in F(v, e)(ψ[r/x]). By
Lemma 6, we have:

(σ ∪ σ0,O ⊕ {r 7→ {a 7→ nil}}) |= F(v, e)(ψ[r/x]),

Unfolding F and noting that σ0this = r, σ0z = σe, and σ0y = nil, we have

(σ ∪ σ0,O ⊕ {r 7→ {a 7→ nil}}) |= f (ψ[r/x]),

By operational semantics and induction hypothesis, we have

(σ ∪ σ′0,O
′) |= ψ[r/x],

where σ0 and O′ is defined by the operational semantics rule (O-NEW). Then because
ψ[r/x] does not contains variables in σ0, by Lemma 6, we have (σ,O′) |= ψ[r/x], then we
have (σ ⊕ {x 7→ r},O′) |= ψ. The conclusion holds.

Until now we have finished the proof for the soundness.

Appendix B.3. Completeness
Now we prove the completeness theorem of the WP semantics (Theorem 5).

Proof. We prove that, for any ψ, ψ′ ∈ Ψ and c ∈ COM satisfying [[Γ,C ` c : com]]ψ = ψ′,
then for any pair of states (σ,O) and (σ′,O′), if (σ′,O′) |= ψ and 〈c, (σ,O)〉  ∗ (σ′,O′), then
(σ,O) |= ψ′. We prove it by induction on the structure of commands. We adopt some notations
used in defining the WP semantics, and always assume ψ the postcondition.

Sequential Composition, “c1; c2”: Suppose 〈c1, (σ,O)〉  ∗ (σ′,O′), and 〈c2, (σ′,O′)〉  ∗

(σ′′,O′′), and (σ′′,O′′) |= ψ. Then by induction hypothesis, we have (σ′,O′) |= f2(ψ)
and (σ,O) |= f1( f2(ψ)). So the conclusion holds.
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Condition, “if b c1 else c2”: Assume {|b|}(σ,O) = rtrue, and suppose 〈c1, (σ,O)〉  ∗ (σ′,O′)
and (σ′,O′) |= ψ. By induction hypothesis we have (σ,O) |= f1(ψ), then (σ,O) |= (b ⇒
f1(ψ)) ∧ (¬b ⇒ f2(ψ)), that is (σ,O) |= ψ′. The case when {|b|}(σ,O) = rfalse can be proved
similarly, so, the conclusion holds.

Iteration, “while b c”: We treat while b c as if b c; while b c else skip, by the definition
of G and induction hypothesis, the conclusion holds.

Skip: The proof is trivial.

Assignment, “x := e”: Suppose 〈x := e, (σ,O)〉  ∗ (σ ⊕ {x 7→ σe},O), and (σ ⊕ {x 7→
σe},O) |= ψ. By Lemma 7, (σ,O) |= ψ[e/x]. The conclusion holds.

Mutation, “v.a := x”: Suppose 〈v.a := x, (σ,O)〉 (σ,O⊕ {(σv, a) 7→ σx}), and (σ,O′) |= ψ,
where O′ = O ⊕ {(σv, a) 7→ σx}}. We need to show (σ,O) |= ψ′, where

ψ′ = ∃r1, r2 · (v = r1) ∧ (x = r2) ∧ (r1.a 7→- ∗ (r1.a 7→ r2 —∗ψ))

By the premise of Mutation, let r1 = σv, r2 = σx, then we have

(σ,O) |= ∃r1, r2 · (v = r1) ∧ (x = r2) and O′ = O ⊕ {(r1, a) 7→ r2}.

Since (σ,O′) |= ψ, we have

(σ,O′ − {(r1, a) 7→ r2}) |= (r1.a 7→ r2) —∗ψ.

Then by the definition of ∗ and −∗, we have

(σ,O) |= r1.a 7→- ∗ (r1.a 7→ r2 —∗ψ).

So the conclusion holds.

Lookup, “x := v.a” : Suppose 〈x := v.a, (σ,O)〉  ∗ (σ ⊕ {x 7→ O(σv)(a)},O), and (σ ⊕ {x 7→
O(σv)(a)},O) |= ψ. Then we know there exists r1, r2 that σv = r1,O(r1, a) = r2, so

(σ ⊕ {x 7→ r2},O) |= ∃r1, r2 · (v = r1) ∧ (r1.a ↪→ r2).

Then, by Lemma 7, we have

(σ,O) |= ∃r1, r2 · (v = r1) ∧ (r1.a ↪→ r2) ∧ ψ[r2/x].

So the conclusion holds.

Cast, “x := (N)v”: Similar to Assignment, just pay attention that when the command executes
successfully and otype(σv) <: N. These imply (σ,O) |= ∃r · otype(r) <: N ∧ v = r. So the
conclusion holds.

Return, “return e”: Suppose 〈return e, (σ,O)〉  ∗ (σ ⊕ {res 7→ σe},O), and (σ ⊕ {res 7→
σe},O) |= ψ. Then (σ,O) |= ψ[res/e]. The conclusion holds.
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Method Invocation, “x := v.m(e)”: Suppose

〈x := v.m(e), (σ,O)〉 ∗ (σ ⊕ {x 7→ σ′res},O′) and (σ ⊕ {x 7→ σ′res},O′) |= ψ,

where σ′ and O′ are defined by the operational semantics. By the type system and opera-
tional semantics, the value of v must be a reference r and i with otype(r) = S i <: T , and
S i contains a definition for method m. So, we suppose ci the body command of method m
in class S i, and that [[Γ, S i,m ` c : com]] = fi.

Now, similar to the proof of Theorem 4 (the Soundness Theorem), we rename variables
in σ′ such that domσ′ ∩ domσ = ∅, and let

σ0 = {this0 7→ σv, z 7→ σe, y 7→ nil, res0 7→ nil}.

Here σ0 does not contain variables in σ, nor in ψ, and let σ′0 be a store satisfying

〈ci, (σ0,O)〉 ∗ (σ′0,O
′).

By hypothesis for Assignment and Lemma 6 we have (σ ∪ σ′0,O
′) |= ψ[res0/x]. By

Lemma 14 we also have 〈ci, (σ ∪ σ0,O)〉 ∗ (σ ∪ σ′0,O
′). Then by induction hypothesis

we have (σ ∪ σ0,O) |= fi(ψ[res0/x]). Since σ0this0 = σv, σ0z = e, and σ0y = nil, we
can do substitution that:

(σ ∪ σ0,O) |= fi(ψ[res0/x])[v, e, nil/this0, z, y],

This is equivalent to
(σ ∪ σ0,O) |= Fi(v, e)(ψ[res0/x]),

Because Fi(ψ) does not contains variable in σ0, so by Lemma 6, and by substituting x
with res0, then we get:

(σ,O) |= Fi(v, e)(ψ[res0/x]),

Recall that we just need one particular name res to denote the return value of a method,
we can obtain:

(σ,O) |= Fi(v, e)(ψ[res/x]),

According to the proof above, we have:

(σ,O) |= ∃r , rnull · v = r ∧ (r : S i ∧ Fi(v, e)(ψ[res/x]))

At last, by the property of
∨

, we have

(σ,O) |= ∃r , rnull · v = r ∧ (
∨

(r : S i ∧ Fi(v, e)(ψ[res/x])))

The conclusion holds.

Object Creation, “x := new N(e)”: Suppose

〈x := new N(e), (σ,O)〉 ∗ (σ ⊕ {x 7→ r},O′) and (σ ⊕ {x 7→ r},O′) |= ψ,

where O′ is defined by the operational semantics. Similar to Method Invocation, let

σ0 = {this0 7→ r, z 7→ σe, y 7→ nil},
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Here we can assume that σ0 does not contain variables in σ and ψ. Let σ′0 be the store sat-
isfying 〈c, (σ0,O)〉 ∗ (σ′0,O

′), where c is the body of N’s constructor. By hypothesis for
Assignment and Lemma 6 we have (σ ∪ σ′0,O

′) |= ψ[r/x]. Then by induction hypothesis

(σ ∪ σ0,O ⊕ {r 7→ {a 7→ nil}}) |= f (ψ[r/x]).

Since σ0this = r, σz = e, σy = nil, we can do substitution that:

(σ ∪ σ0,O ⊕ {r 7→ {a 7→ nil}}) |= f (ψ[r/x])[r, e, nil/this, z, y],

This is in fact (σ ∪ σ0,O ⊕ {r 7→ {a 7→ nil}}) |= F(r, e)(ψ[r/x]). And now, F(r, e)(ψ[r/x])
does not contains variables in σ0, so by Lemma 6 we have:

(σ,O ⊕ {r 7→ {a 7→ nil}}) |= F(r, e)(ψ[r/x]),

Then by the properties of —∗,

(σ,O) |= raw(r,N) —∗ F(r, e)(ψ[r/x]).

then by the operational semantics, r can be any reference that r < O, so

(σ,O) |= ∀r · raw(r,N) —∗ F(r, e)(ψ[r/x]).

This concludes the proof for the completeness of the WP semantics.

The proofs of soundness and completeness justify the WP semantics defined in Section 3.2.
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