
Specification Predicates:
Linking Abstract Specification to Implementation

Yijing Liu, Hong Ali, and Qiu Zongyan

LMAM and Department of Informatics, School of Mathematical Sciences, Peking University
Email: {liuyijing,hongali,qzy}@math.pku.edu.cn

Abstract. Specification and verification for object oriented (OO) programs re-
mains a great challenge despite of decades’ efforts. To address the problem, we
propose a novel specification and verification framework, which supports abstrac-
tion and offers modularity via a set of scope and inheritance rules, and a concept
called specification predicate. The framework covers the most important OO
features like encapsulation, information hiding, inheritance and polymorphism,
while only one specification per method is necessary. It can successfully deal
with inheritance, keep still modularity in verification, and avoid re-verification of
the implementation. We show how the framework can be integrated into an OO
language, and use examples to illustrate how the specification and verification
can be carried out in our framework following the structures of OO programs in
an abstract and modular way.

Keywords: Object Orientation, Abstraction, Modularity, Specification, Verification,
Separation Logic

1 Introduction

Object Orientation (OO) is a mainstream paradigm in software development practice.
Recently, more and more attentions have been paid on the reliability and correctness of
software systems (and in general, computer-based systems). In this circumstance, devel-
opment of powerful and useful frameworks for specifying and verifying OO programs
becomes even urgent. Core OO features, saying modularity, encapsulation, inheritance,
polymorphism, etc. enhance the scalability of software greatly. But these features bring
also great difficulties to program verification.

Generally, encapsulation and modularity imply information hiding and invisibil-
ity of implementation details; the polymorphism enables dynamic program behaviors.
Both dynamic behavior and information hiding cause difficulties to verification, because
verification is a static procedure, and detailed verification always needs knowledge of
implementation details. To overcome these challenges, people have made many efforts
to develop useful specification and verification techniques.

Inheritance and polymorphism play important roles in OO programming. As the
first formal concept to deal with the issues, behavioral subtyping [13, 14] made an im-
portant step. The concept has been thought a useful guide for good OO programming,
as well as for relevant specification and verification. An OO program with behavior sub-
typing feature gives more support to reason its behavior statically. Leavens [8] pointed

1

class Node : Object {
public Bool val ; Node nxt ;

Node(Bool b) {
this.val = b;

this.nxt = null;

}
}
class Queue : Object {

Node hd ;

Queue(){Node x;

x = new Node(false); this.hd = x;

}
void enqueue(Bool b) {

Node p, q, n; p = this.hd ; q = p.nxt ;

while (q!=null){ p = q; q = p.nxt ; }

n = new Node(b); p.nxt = n;

}
}
class EQueue : Queue {

Node tl ;

EQueue() {
Node x; x = new Node(false);

this.hd = x; this.tl = x;

}
void enqueue(Bool b) {

Node p, n;

p = this.tl ; n = new Node(b);

p.nxt = n; this.tl = n;

}
}

Fig. 1. Example OO code: Queue and EQueue

out that behavioral subtyping is equivalent to modular reasoning for OO. It has become
an indispensable part of many OO verification frameworks, e.g. [4, 9].

Abstraction has been thought as another key to modular verification in OO field.
Typical concept proposed in this direction include “Model Field/Abstract Field” in [6,
11, 15], “Data Group” in [12], “Abstract Predicate Family” in [16, 17], “Specification
Variable” in [19] and “Pure Methods” in [18]. Although named differently, they aim
all to provide some degree of abstraction. Data abstraction is a part of OO philosophy.
People think about abstraction in OO design and programming. This demands that we
have to think about and do specification and verification on some abstract levels.

To address these challenges, in this paper, we propose a framework to support spec-
ification and verification of OO programs modularly and abstractly. Our methodology
originates from some intuitive ideas: Firstly, the OO features, especially encapsulation,
information hiding, inheritance and polymorphism, should have their reflections in the
formal OO verification framework. Secondly, the design of specification language and
structures, as a high-level description for programs, should extract successful experi-
ences and methodologies in programming languages field, and integrate them into the
specification parts of the language and programs.

Now we illustrate our ideas on specification and verification for OO programs, with
a simple example in the first.

Fig. 1 gives a typical piece of OO code. Here a Node class represents nodes holding
boolean data. A Queue class implements a kind of simple queue, whose field hd holds
a linked list of Node objects with a head node, thus, the node denoted by hd .nxt holds
the first value in the queue. Method enqueue inserts a value into the queue. Another
class EQueue is a subclass of Queue which defines a kind of “faster queue”, where a

2

new field tl pointing to the last node of its list. A new definition for enqueue is given
to override the definition of enqueue in superclass Queue.

To specify and verify a program as this one, we need to consider some issues. Most
of them are general in specification and verification of OO programs:

– In OO practice, developers distinguish the interface from the implementation, to
prevent close dependence on implementation details and achieve high degree of
modularity. The case should be the same in formal specification and verification.
For better modularity in formal work, we need a level of abstract specification,
which can be written completely independent of the code. As an example, for
method enqueue, on the abstract level, we need to say only its effect on abstract
sequence of values stored in the queue, but nothing about the linked list.

– Having the abstract-level specification, we need a way to link it with the implemen-
tation code within the class. Clearly, the linkage may involve some implementation
details. However, as in programming practice, we do not want the details to leak
out. Thus we should have locality and visibility rules here. We introduce a concept
called specification predicate to serve as the link. These predicates are declared
within a class to connect the abstract specification with the code. They are atomic
outside of the class. For example, for Queue, we need a specification predicate to
link the mathematical concept of sequences to the linked list of Node .

– The two issues above are general to programs with data abstraction. For OO pro-
grams, we also have to consider inheritance and overriding. For example, when we
have Queue well-specified and verified, and introduce subclass EQueue, it is bet-
ter that we can reuse the existing specification and verification as much as possible.
Our idea is to introduce the inheritance and overriding into the specification and
verification framework. Here the abstract specification and specification predicates
play also importance roles. For example, we may let enqueue in EQueue inherit
abstract specification from Queue, and define another (local) specification predi-
cate to connect this specification to the new implementation of enqueue. We allow
also the overriding of abstract specifications, to support more complex cases. In the
inheritance case, the behavior subtyping holds implicitly, because the method in
subclass share the same specification as in the superclass. For overridden specifica-
tion, additional proofs for behavior subtyping must be done.

We develop our framework to embody these considerations. The main contributions
of this work are as follows:

– We develop a framework which supports abstract level specification for information
hiding and encapsulation. To support modular specification and verification, we
integrate the specification facilities with many OO features, and define rules for
inheritance, overriding, encapsulation, and visibility of specifications.

– We propose a concept called specification predicate. It serves as the link to connect
abstract specification with implementation details, and plays a key role in modular
verification of OO programs with information hiding and dynamic behavior.

– To present our ideas, a small OO language with specification features, VeriJ, is de-
fined. The specification language used in VeriJ is an object oriented separation logic

3

(OOSL) we developed before. By the language design and the embedded verifica-
tion framework, we show how the encapsulation, information hiding, inheritance,
polymorphism, etc. can enhance the formal verification ability of an OO language.
We define a set of Hoare-style rules for generating proof obligations.

– We use some examples to illustrate how specification and verification can be carried
for OO programs written in VeriJ modularly, and how our approach can bridge the
gaps between a verification logic and implementation details smoothly.

In the rest of the paper, we introduce briefly our assertion language, OOSL at first
(more details in Appendix A); then define a small OO language VeriJ with integrated
specification features in Section 3. Section 4 presents the verification framework em-
bodied in VeriJ. We illustrate our ideas for modular specification and verification by
examples in Section 5, then discuss some related work and conclude.

2 The Assertion Language: OOSL

Now we give a short introduction to our assertion language used in the work, the OO
Separation Logic (OOSL). Some details of the logic are given in Appendix A. A com-
plete treatment can be found in [20, 21].

To represent the states of OO programs, we use an extended classical Stack-Heap
storage model based upon three basic sets Name, Type and Ref, where: Name is an infi-
nite set of names. Special names true, false, null ∈ Name denote boolean constants
and null. We assume dtype(v) gets the static type (declaration type) of constant or vari-
able v. Type is an infinite set of types. Object, Null, Bool ∈ Type, where Object is
the supertype of all classes, Null is the subtype of all classes. Ref is an infinite set of
references denoting object identities. It contains three constants: rtrue, rfalse refer two
Bool objects respectively, and rnull refers to nothing.

A state s = (σ,O) ∈ State consists of a store and an object pool (Opool):

Store =̂ Name ⇀fin Ref Opool =̂ Ref ⇀fin Name ⇀fin Ref
State =̂ Store×Opool

For any σ ∈ Store, we assume σtrue = rtrue, σfalse = rfalse and σnull = rnull.
We will use r, r1, . . . to denote references, and a, a1, . . . for fields of objects. For the
program states, we can define their well-typedness (see Appendix A).

The assertion language of OOSL is similar to that of Separation Logic, with some
revisions and extensions, to fit the special situations of OO programs:

ρ ::= true | false | r1 = r2 | r : T | r <: T | v = r
η ::= emp | r1.a 7→ r2 | obj(r, T)
ψ ::= α | β | p(r) | ¬ψ | ψ ∨ ψ | ψ ∗ ψ | ψ —∗ψ | ∃r · ψ

where T is a type, v a variable or constant, r1, r2 references, p(r) a user-defined
assertion with arguments r. We use Ψ to denote the set of assertions. Here are some
explanations:

– ρ denotes assertions independent of Opools. References are atomic values here. For
any two references r1, r2, r1 = r2 holds iff r1 and r2 are identical.

4

– η denotes assertions involving Opools. Empty and singleton assertions take the
similar forms as in Separation Logic. As a cell in Opool is a field-value binding
of an object (denoted by a reference), the singleton takes the form r1.a 7→ r2. In
addition, obj(r, T) indicates that the Opool contains exact an entire object of type
T , which r refers to. We write obj(r,-) when do not care about the type.

– Connectors ∗ and —∗ are borrowed from Separation Logic. ψ1 ∗ ψ2 means that
current opool can be split into two parts, where ψ1 and ψ2 hold on two parts re-
spectively. ψ1 —∗ψ2 means that if we add an opool satisfying ψ1 to current opool,
then the new opool will satisfy ψ2.

A fixed-point semantics for assertions in OOSL is given in Appendix A.
We use ψ[v/x] (or ψ[r/x]) to denote the assertion built from ψ by substituting x

with variable or constant v (or reference r), and ψ[r1/r2] the assertion built from ψ by
substituting free r2 with r1. We treat r = v the same as v = r, and define v.a 7→ r as
∃r′ · (v = r′ ∧ r′.a 7→ r). For user-defined predicates p, we use p(..., v, ...) to denote
∃r · (v = r ∧ p(..., r, ...)). Here are some abbreviations from FOL or Separation Logic:

ψ1 ∧ ψ2 =̂ ¬(¬ψ1 ∨ ¬ψ2) ψ1 ⇒ ψ2 =̂ ¬ψ1 ∨ ψ2 ∀r · ψ =̂ ¬∃r · ¬ψ
r.a 7→- =̂ ∃r′ · r.a 7→ r′ r.a ↪→ r′ =̂ r.a 7→ r′ ∗ true

The core language for OOSL is simple, however, the user-defined predicates en-
hance notably its expressiveness. In practice, we often need to add some mathematical
concepts, such as quantitative relation, sequences, etc., to enhance the expressiveness
of OOSL. Such extensions are orthogonal with the core, and easy to conduct.

3 An OO language with specification: VeriJ

Now we define a small OO language VeriJ. It is an extension of µJava [22], a subset of
Java with essential OO features related to object sharing, updating, and creation. VeriJ
has integrated features for specification and verification:

v ::= this | x
e ::= true | false | null | v
b ::= true | false | e = e | ¬b | b ∨ b | b ∧ b
T ::= Bool | Object | C
S ::= require ψ; ensure ψ
N ::= public
P ::= def [N] p(this, a) : ψ
M ::= T m(T z) [S] {T y ; c; }
K ::= class C : C{[N]T a; P ; C(T z) [S] {T y ; c};M}
c ::= skip | x := e; | v.a := e; | x := v.a; | x := (C)v;

| x := v.m(e); | x := new C(e); | return e;
| c c | {c} | if b c else c | while b c

G ::= K | K G

Here x is a variable, C a class name, a and m field and method names, C a class, T
a type, and ψ an assertion.

5

– Built-in class Object is the superclass of all classes. The only primitive type Bool
is not a supertype or subtype of any other type.

– We have public and protected modifiers. For the fields, we take protected as
default. On the other hand, all methods and constructors are public.

– Declaration def p(this, a) : ψ introduces a user-defined predicate, specification
predicate, into current class, where parameter this (written explicitly) denotes cur-
rent object. A predicate can be public thus its definition can be used everywhere.
We demand that no public fields appear in non-public predicates, and only public
fields in public predicates. 1 A subclass inherits all predicates from its superclass,
and can override them. If a non-public p is defined in class C, its body is visible
only in C and subclasses of C. In other place, p, or C.p as a complete name, is
atomic.

– Clauses require P ; ensure Q provide specification for constructors and meth-
ods, where P and Q are the pre and post conditions respectively. Specification
predicates are used here. In specifications we can use old(e) to denote the value
of expression e in the pre-state, and use pseudo-variable res to denote the return
value. We have inheritance and override of method specifications. If an overridden
method is not explicitly specified, it takes the specification from the superclass. On
the other hand, if a non-overridden method is not explicitly specified, it takes the
default specification “require true; ensure true”.

– We assume return e appears only as the last statement of a non-constructor method.
In method specifications, we use a pseudo-variable res to denote the return value.
We require that all local variables are initialized to nil values (represented as nil)
according to their types, i.e., rfalse for Bool, and rnull for class types.

– C(T z)[S]{T y ; c} in class C is the constructor. We assume all references to fields
of current object in methods are decorated with this, to make field references
uniformly to the form v.a.

For type checking and verifying program G, we build a static environment ΓG =
(∆G, ΘG,ΠG), to record relevant information in G. We omit subscript G when it is
clear.

∆ records typing information. We write super(C, B) when B is the direct superclass
of C, and C <: B for C is a subtype of B. Further, Γ, C, m ³ λ(z){var y ; c} denotes
that m(z){var y ; c} is a method defined in class C. We use ∆,C, m ` e :T to denote
the judgment that e is of type T in method m of C under ∆. Judgments for commands
and methods are similar. In [22], we give rules for constructing ∆ and the typing system.

1 In fact, public predicates can be viewed as “macros” in C/C++, they only offer some con-
venience but no abstraction. Default predicates abstract non-public fields away, they can be
viewed as a new public “abstract field”. If we had more modifiers, we should define much
more syntax and visibility rules for specification predicates too. For example, when we had
modifiers public, protected and private, then we would allow specification predicates to
be public,default or protected; and only public fields can appear in public predicates;
only protected fields can appear in default specification predicates; only private fields can
appear in protected specification predicates. The underlying thinking for such arrangements
is that: If we have abstraction levels 1, 2, . . . , n, then we can pack some elements with level i
to an abstract element, which is with level i + 1.

6

class C{..def [public] p(a) : ψ; ..}
(p(a), [public] ψ) ∈ Θ(C)

(P-DEF)

p not defined in C super(C, B) (p(a), [public] ψ) ∈ Θ(B)

(p(a), [public] ψ) ∈ Θ(C)
(P-INH)

class C{..C(T z) require P ; ensure Q {T y ; c}..}
{P}C(z) {Q} ∈ Π

(S-CON)

class C{..T m(T z)requireP ; ensureQ{T y ; c}..}
{P}C.m(z) {Q} ∈ Π

(S-DEF)

class C:B{..T m(T z){T y ; c}..} {P}B.m(z) {Q} ∈ Π

{P}C.m(z) {Q} ∈ Π
(S-SINH)

m not defined in C super(C, B) {P}B.m(z) {Q} ∈ Π

{P}C.m(z) {Q} ∈ Π
(S-MINH)

Fig. 2. Constructing predicate and specification environments

We omit the details here, because it is rather routine. In the following, we will consider
only the well-typed programs.

Θ(C) records the set of specification predicates defined in C. Fig. 2 gives two rules
for constructing Θ: (P-DEF) says that if p is defined or overridden in C, its definition is
recorded for C; (P-INH) says if C inherits p from its superclass, then p is recorded for
C. We record public tag if existing. We demand the overriding predicate must have
same public status as what of the overridden one. We will write Θ(C.p(this, a)) =
[public]ψ if (p(this, a), [public]ψ) ∈ Θ(C).

Thanks to predicate specifications, we can have abstract assertions, whose local
meanings depend on specific class, in fact, depend on the local definitions of specifica-
tion predicates appeared in the assertion.

Specification environment Π records all methods specifications. Rules for con-
structing Π are given in Fig. 2 too (the S-rules). We use {P}C.m(z) {Q} ∈ Π (or
{P}C(z) {Q} ∈ Π , for constructor) to denote that {P}C.m(z) {Q} (or {P}C(z) {Q})
is the specification for method m (constructor C). As seen, we have also specification
inheritance. For convenience, we sometimes write {P}C.m {Q} and {P}C {Q} in-
stead of {P}C.m(z) {Q} and {P}C(z) {Q}.

From these rules, we can see all of the specification predicates, method definitions
and their specifications can be inherited, or overridden in our framework.

4 Verification Framework for VeriJ Programs

Based on the environment Γ , in this section, we define a verification framework for
VeriJ programs. Before going into the details, at first, we introduce some notations.

We will use Γ, C, m ` ψ to denote that assertion ψ holds in method m of class C
under Γ ; use Γ, C, m ` {P} c {Q} to denote that, command c in method m satisfies
the specification consisting of precondition P and postcondition Q.

7

If we do not care C and m, or saying they are arbitrary, we omit them usually.
For any method specification {P}C.m {Q} ∈ Π , we write Γ ` {P}C.m {Q} (or
Γ ` {P}C {Q}), to denote that the method (or constructor) is correct wrt. its specifi-
cation under Γ . We sometimes use {P}-{Q} to denote a specification with pre and post
condition P and Q.

As discussed before, behavioral subtyping is very important in modular verification.
To introduce behavioral subtyping into our framework, we first define the refinement
relationship between specifications.

Definition 1 (Refinement of Specifications). Given specifications {P1}-{Q1} and
{P2}-{Q2}, we say that the latter one refines the former, denoted by {P1}-{Q1} v
{P2}-{Q2}, iff there exists an assertion R such that R does not contain program vari-
ables, and (P1 ⇒ P2 ∗R) ∧ (Q2 ∗R ⇒ Q1). ut

This refinement definition is an extension of the formulism in Liskov [14], where
the condition for specification refinement is P1 ⇒ P2 ∧Q2 ⇒ Q1. We take the storage
extension into account here. In fact, our definition follows the nature refinement order
defined in Leavens [8].

Now we define correct program, which demands us to verify that every method in
the program meets its specification.

Definition 2 (Correct Program). Given a program and its static environment Γ =
(∆,Θ, Π), we say the program is correct, iff for each specification {P}C.m(z) {Q} ∈
Π , we have that Γ ` {P}C.m(z) {Q} holds. ut

In Fig. 3, we list the inference rules for basic commands and composition structures,
as well as three additional rules.

Rules for skip and assignment are simple. Rules (H-MUT) and (H-LKUP) are for
mutation and heap lookup. They have the similar basic forms as their counterparts in
Separation Logic, except the singleton assertion form in them is different. Rule (H-
CAST) is special in OO world for the type casting. Here the precondition proposes a
type requirement. Rule (H-RET) is for the return statement, and it states that the return
value will be assigned to res. The next three are the rules for composition, which take
the same form as the rules in Hoare logic.

(H-CONS) and (H-EX) are rules for consequence and existence. The last one is the
frame rule (H-FRAME), which takes directly from Separation Logic. This rule shows
that we have also the local reasoning, as in Separation Logic. In the rule, FV (R) de-
notes the set of all program variables (including internal variable res) in assertion R,
and md(c) denotes the variables modified by command c.

In addition to rules in Fig 3, the rest and more interesting rules in our verification
framework are given in Fig. 4, that deal with various higher-level language features.

Rule (H-THIS) is simple. Rule (H-OLD) says that if expression e evaluates to r′ in
pre-state, then old(e) records r′ even the value of e is modified. There is a correspond-
ing rule for constructors, which takes the same form.

(H-DPRE) and (H-SPRE) define the scope, or visibility, of (non-public) specifica-
tion predicates. They say if a predicate is visible in a class, then it can be unfolded there.
However, they have some dissimilarities. (H-DPRE) says if r is of a class D, then in any

8

Γ ` {P} skip {P} (H-SKIP)

Γ ` {P [e/x]}x := e {P} (H-ASN)

Γ ` {v = r1 ∧ e = r2 ∧ r1.a 7→-} v.a := e {v = r1 ∧ e = r2 ∧ r1.a 7→ r2} (H-MUT)

Γ ` {v = r1 ∧ r1.a 7→ r2}x := v.a {x = r2 ∧ v = r1 ∧ r1.a 7→ r2} (H-LKUP)

Γ ` {v = r ∧ r <: N}x := (N)v {x = r} (H-CAST)

Γ ` {P [e/res]} return e {P} (H-RET)

Γ ` {P} c1 {Q} Π ` {Q} c2 {R}
Γ ` {P} c1; c2 {R} ((H-SEQ))

Γ ` {b ∧ I} c {I}
Γ ` {I} while b c {¬b ∧ I} (H-ITER)

Γ ` {b ∧ P} c1 {Q} Γ ` {¬b ∧ P} c2 {Q}
Γ ` {P} if b c1 else c2 {Q} (H-COND)

Γ, C, m ` P ⇒ P ′ Γ, C, m ` {P ′} c {Q′} Γ, C ` Q′ ⇒ Q

Γ, C, m ` {P} c {Q} (H-CONS)

Γ, C, m ` {P} c {Q} r is free in P, Q

Γ, C, m ` {∃r · P} c {∃r ·Q} (H-EX)

Γ, C, m ` {P} c {Q} FV (R) ∩md(c) = ∅
Γ, C, m ` {P ∗R} c {Q ∗R} (H-FRAME)

Fig. 3. Inference rules for basic commands and compositions

subclass of D we can unfold p(r, r′) to its definition. (H-SPRE) tells that D.p(r, r′) is
equivalent to its definition in D. Here fix(D, ψ) is the instantiated assertion for D.p(. . .)
by the definition of fix as

fix(D, ψ) =





¬fix(D, ψ′), if ψ is ¬ψ′

fix(D, ψ1)⊗ fix(D, ψ2), if ψ is ψ1 ⊗ ψ2

∃r · fix(D, ψ′), if ψ is ∃r · ψ′
D.p(this, r), if ψ is p(this, r) ∧

D.p(this, a) ∈ dom Θ
ψ, otherwise.

where ⊗ can be ∨, ∗, or —∗. Intuitively, fix replaces names of predicates defined
in D to their complete names, and unfold, so it can fix the meaning of an assertion
in a class. In other words, this function provides a static and fixed explanation for ψ,
according to a given class D.

Notice in (H-SPRE), when unfolding D.p(r, r′), we have to use fix(D, ψ) to fix
body of p at first, then do the substitution. In fact, (H-DPRE) is for dynamic binding
of specification predicate, while (H-SPRE) for static binding. These two rules allow
us to hide implementation details of a class, even they are described in specification
predicates.

Rules (H-PDPRE) and (H-PSPRE) are similar to (H-DPRE) and (H-SPRE), but deal
with the public predicates. Comparing to the corresponding rules, they do not restrict
the scope.

9

We have some rules for verifying methods and constructors. Their side conditions
ask that local variables y do not occur freely in the pre and post conditions. These side
conditions can be provided by necessary variable renaming.

Rule (H-MTHD) is for defined methods. It demands to verify that the body com-
mand meets the specification. Due to the premise ask only {P}C.m(z) {Q} ∈ Π ,
recursive method definitions are supported.

Γ, C, m ` this : C (H-THIS)

{P}C.m(z) {Q} ∈ Π Γ, C, m ` z = r ∧ P [r/z] ⇒ e = r′

Γ, C, m ` old(e) = r′
(H-OLD)

r : D C <: D Θ(D.p(this, a)) = ψ

Γ, C, m ` p(r, r′) ⇔ ψ[r, r′/this, a]
(H-DPRE)

C <: D Θ(D.p(this, a)) = ψ

Γ, C, m ` D.p(r, r′) ⇔ fix(D, ψ)[r, r′/this, a]
(H-SPRE)

r : D Θ(D.p(this, a′)) = public ψ

Γ, C, m ` p(r, r′) ⇔ ψ[r, r′/this, a′]
(H-PDPRE)

Θ(D.p(this, a)) = publicψ

Γ, C, m ` D.p(r, r′) ⇔ fix(D, ψ)[r, r′/this, a]
(H-PSPRE)

No D such that C <: D and m defined in D Γ, C, m ³ λ(z){var y ; c}
{P}C.m(z) {Q} ∈ Π Γ, C, m ` {z = r ∧ y = nil ∧ P [r/z]} c {Q[r/z]}

Γ ` {P}C.m(z) {Q} (H-MTHD)

Γ, C, m ³ λ(z){var y ; c} super(C, D) Γ ` {P ′}D.m(z) {Q′}
{P}C.m(z) {Q} ∈ Π Γ, C, m ` {P ′}-{Q′} v {P}-{Q}

Γ, C, m ` {z = r ∧ y = nil ∧ P [r/z]} c {Q[r/z]}
Γ ` {P}C.m(z) {Q} (H-OVR)

m is not defined in C super(C, D) Γ ` {P}D.m(z) {Q}
Γ, C, m ` {P}-{Q} v {fix(D, P)}-{fix(D, Q)}

Γ ` {P}C.m(z) {Q} (H-INH)

Γ, C, C ³ λ(z){var y ; c} {P}C(z) {Q} ∈ Π

Γ, C, C ` {z = r ∧ y = nil ∧ raw(this, C) ∗ P [r/z]} c {Q[r/z]}
Γ ` {P}C(z) {Q} (H-CONSTR)

Γ, C, m ` v : T {P}T.n(z) {Q} ∈ Π

Γ, C, m ` {v = r ∧ e = r′ ∧ P [r, r′/this, z]}
x := v.n(e); {Q[r, r′, x/this, z , res]}

(H-INV)

{P}T (z) {Q} ∈ Π

Γ, C, m ` {e = r′ ∧ P [r′/z]}x := new T (e); {∃r · x = r ∧Q[r, r′/this, z]} (H-NEW)

For all rules involving method, we assume y are not free in P, Q

Fig. 4. Inference rules for invocation, object creation, etc.
(H-OVR) is for overridden methods. The additional premise Γ ` {P ′}-{Q′} v

{P}-{Q} ensures behavioral subtyping. Notice we should prove the relationship inde-

10

pendent of class and method, this indicates that for any client code, the subclass objects
can replace superclass’s. Rule (H-INH) is for inherited methods. It checks specifically
whether the specification of the method in the subclass is compatible with its counter-
part in superclass, denoted by {P}-{Q} v {fix(D, P)}-{fix(D, Q)} in the premise.
This rule involves only the method specifications, but not the method body, so the im-
plementations of inherited methods need not to be re-verified.

Rule (H-CONSTR) is for constructors. It is similar to (H-MTHD). Here raw(this, C)
specifies that this refers to a newly created raw object of the type C, and command c
will have effects on its state. The definition of raw(r,N) is

raw(r,N) =̂





obj(r,N), N has no field
r :N ∧ (r.a1 7→ nil) ∗ · · · ∗ (r.ak 7→ nil),

a1, · · · , ak are all fields of N

Finally, we have rules for method invocation and object creation. Because behavior
subtyping is ensured by rule (H-OVR) and (H-INV), so it is enough that we do the
verification by the declare type of variable v.

Clearly, our verification framework is modular, beside the points mentioned above
in various places, when we add a new class to the existed program, we just need to verify
the new class but need not to re-consider the code in the existed part in the verification
procedure.

5 Verification Examples

Now we show by examples how the modular specification and verification can be car-
ried out in our framework.

5.1 Queue and EQueue

Fig. 5 is an extension of the code given in Fig. 1 with complete code for methods. We
add some more methods in class Queue for more illustration, and add specification
annotations into the code according to our consideration. We omit return in enqueue
and write return type as void only for convenience, because enqueue does not need
return value. For the specification to be possible, we extend the assertion language by
adding mathematical concept of sequences with boolean elements, here α, β and γ de-
note sequences:

α, β, γ ::= [] | [b] | α :: α

where [] is the empty sequence; [b] is a singleton; and :: denotes sequence concatenation.
In Node we define a public predicate node(this, v, n), that is accessible in any

client of Node .
In Queue, we define a specification predicate queue, which gives the implementa-

tion detail of Queue objects: field hd refers to a linked list holding sequence [rfalse] ::
α, i.e., a list with a head node recording rfalse, and the rest nodes hold values in α
sequentially. We can see how this predicate is used to specify methods of Queue.

11

class Node : Object {
public Bool val ; public Node nxt ;

def public node(this, v, n) :

this.val 7→ v ∗ this.nxt 7→ n;

Node(Bool b)

require emp;

ensure node(this,old(b), rnull)

{ this.val = b; this.nxt = null; }
}
class Queue : Object {

Node hd ;

def queue(this, α):∃rh · this.hd 7→ rh∗
list(this, rh, rnull, [rfalse] :: α)

def list(this, r1, r2, α) :

(α = [] ∧ r1 = r2 ∧ emp) ∨
(∃r3, b, β · (α = [b] :: β)∧
(node(r1, b, r3) ∗ list(this, r3, r2, β)));

Queue()

require emp; ensure queue(this, [])

{ Node x; x = new Node(false);

this.hd = x; }
void enqueue(Bool b)

require queue(this, α);

ensure queue(this, α :: [old(b)])

{ Node p, q, n;

p = this.hd ; q = p.nxt ;

while (q!=null){p = q; q = p.nxt ; }
n = new Node(b); p.nxt = n;

}
Bool dequeue()

require queue(this, [b] :: α);

ensure res = b ∧ queue(this, α) ∗ true
{ Bool x; Node h, p;

h = this.head; p = h.next;

x = p.value; p = p.next;

h.next = p; return x;

}
Bool empty()

require queue(this, α);

ensure queue(this, α)∧
((α = [] ∧ res = true)∨
(α 6= [] ∧ res = false))

{ Node p; Bool b;

p = this.head; p = p.next;

if (p==null) b = true;

else b = false;

return b;

}
}
class EQueue : Queue {

Node tl ;

def queue(this, α) : ∃r, r′, β, b·
([rfalse] :: α = β :: [b])∧
(this.hd 7→ r ∗ this.tl 7→ r′∗
list(this, r, r′, β) ∗ node(r′, b, rnull));

EQueue()

require emp; ensure queue(this, [])

{ Node x; x = new Node(false);

this.hd = x; this.tl = x;

}
void enqueue(Bool b) {

Node p, n;

p = this.tl ; n = new Node(b);

p.nxt = n; this.tl = n;

}
}

Fig. 5. VeriJ code for Queue and EQueue

Here we write an auxiliary predicate list(this, r1, r2, α) for asserting a single
linked list segment between r1 and r2 which holds α. Note that although this (a Queue

12

object) is not really used in list , it makes a link to the class where the predicate defines,
thus can be used. We may extend the language with static predicates to mimic static
methods in OO languages to make the specification more nature.

The specification of Queue.enqueue says if a Queue object q holds values α, after
q.enqueue(b) it will hold α :: [old(b)]; specification of Queue.dequeue says if q holds
[b] :: α, after q.dequeue() it will hold α, and the return value is b. The ∗ true part in
ensure of dequeue means that after execution, some objects covered by the precondi-
tion are thrown. To dequeue, that is the node formerly recording the first value of the
queue, but has been taken away now. Specification for empty is simple. Please note, no
specification here mentions anything in the implementation, thus they are abstract.

In EQueue, which is a subclass of Queue, according to the modified implementa-
tion, we override predicate queue to reflect the structures of this class. And we redefine
code of enqueue but inherit its specification. By rules, now queue in the specification
refers to the new definition, although the specification is inherited from Queue. Please
note that, here list is not redefined, thus is inherited. If we used different implementa-
tion, we might also override auxiliary predicates.

Now, we can prove correctness of all the methods in these classes by rules in Sec-
tion 4 locally. We list all the proofs below.

Node.Node meets its specification:

{emp}
Node (Bool b) {
{b = rb ∧ raw(this,Node)}
this.val = b; this.nxt = null;
{b = rb ∧ this.val 7→ rb ∗ this.nxt 7→ rnull}

}
{this.val 7→ old(b) ∗ this.nxt 7→ rnull}

Queue.Queue meets its specification:

{emp}
Queue() {

Node x;
{x = rnull ∧ raw(this,Queue)}
x = new Node(false);
{∃rh · x = rh ∧ raw(this,Queue) ∗ node(rh, rfalse, rnull)}
this.hd = x;
{∃rh · x = rh ∧ this.hd 7→ rh ∗ list(rh, rnull, [rfalse])}

}

13

{queue(this, [])}

Queue.empty meets its specification:

{queue(this, α)}
Bool empty() {

Node p; Bool b;
{p = rnull ∧ b = rfalse ∧ queue(this, α)}
p = this.hd ;
{∃r1 · p = r1 ∧ b = rfalse ∧ this.hd 7→ r1 ∗ list(r1, rnull, [rfalse] :: α)}
p = p.nxt ;
{∃r1, r2 · p = r2 ∧ b = rfalse ∧ this.hd 7→ r1 ∗ node(r1, rfalse, r2)∗

list(r2, rnull, α)}
if (p == null)
{∃r1 · p = rnull ∧ b = rfalse∧
this.hd 7→ r1 ∗ node(r1, rfalse, rnull) ∗ list(rnull, rnull, [])}

b = true;
{∃r1 · p = rnull ∧ b = rtrue∧
this.hd 7→ r1 ∗ node(r1, rfalse, rnull)}

{p = rnull ∧ b = rtrue ∧ queue(this, [])}
else

{∃r1, r2 · p = r2 ∧ r2 6= rnull ∧ b = rfalse∧
this.hd 7→ r1 ∗ node(r1, rfalse, r2) ∗ list(r2, rnull, α)}

b = false;
{∃r1, r2 · p = r2 ∧ r2 6= rnull ∧ b = rfalse∧
this.hd 7→ r1 ∗ node(r1, rfalse, r2) ∗ list(r2, rnull, α)}

{∃r2 · p = r2 ∧ r2 6= rnull ∧ b = rtrue ∧ queue(this, α)}
return b;

}
{queue(this, α) ∧ ((α = [] ∧ res = rtrue) ∨ (α 6= [] ∧ res = rfalse))}

Queue.enqueue meets its specification:

{queue(this, α)}
void enqueue(Bool b) { // enqueue in class Queue

Node p, q, n;

14

{b = rb ∧ p = rnull ∧ q = rnull ∧ n = rnull ∧ queue(this, α)}
p = this.hd ; q = p.nxt ;
{∃r1, r2 · b = rb ∧ p = r1 ∧ q = r2 ∧ n = rnull ∧
this.hd 7→ r1 ∗ node(r1, rfalse, r2) ∗ list(r2, rnull, α)}

while (q != null) {
{∃rp, rq, c, β, γ · p = rp ∧ q = rq ∧ ([rfalse] :: α = β :: [c] :: γ) ∧

list(r1, rp, β) ∗ node(rp, c, rq) ∗ list(rq, rnull, γ)}
p = q; q = p.nxt ;

}
{∃r1, r2, rp, β, c · b = rb ∧ p = rp ∧ q = rnull ∧ n = rnull ∧

([rfalse] :: α = β :: [c]) ∧ this.hd 7→ r1 ∗ list(r1, rp, β) ∗ node(rp, c, rnull)}
n = new Node(b); p.nxt = n;
{∃r1, r2, rp, rn, β, c · b = rb ∧ p = rp ∧ q = rnull ∧ n = rn ∧ ([rfalse] :: α = β :: [c])∧
this.hd 7→ r1 ∗ list(r1, rp, β) ∗ node(rp, c, rn) ∗ node(rn, rb, rnull)}

{∃r1 · b = rb ∧ this.hd 7→ r1 ∗ list(r1, rnull, [rfalse] :: α :: [rb])}
}
{queue(this, α :: [old(b)])}

Queue.dequeue meets its specification:

{queue(this, [b] :: α)}
Bool dequeue() {
Bool x; Node h, p;
{b = rfalse ∧ h = rnull ∧ p = rnull ∧ queue(this, [b] :: α)}
h = this.hd ; p = h.nxt ;
{∃rh, rp · x = rfalse ∧ h = rh ∧ p = rp∧
this.hd 7→ rh ∗ node(rh, rfalse, rp) ∗ list(rp, rnull, [b] :: α)}

x = p.val ;
{∃rh, rp · x = b ∧ h = rh ∧ p = rp∧
this.hd 7→ rh ∗ node(rh, rfalse, rp) ∗ list(rp, rnull, [b] :: α)}

p = p.nxt ;
{∃rh, rp, r1 · x = b ∧ h = rh ∧ p = rp∧
this.hd 7→ rh ∗ node(rh, rfalse, r1) ∗ node(r1, b, rp) ∗ list(rp, rnull, α)}

h.nxt = p;
{∃rh, rp, r1 · x = b ∧ h = rh ∧ p = rp∧
this.hd 7→ rh ∗ node(rh, rfalse, rp) ∗ list(rp, rnull, α) ∗ node(r1, b, rnull)}

{∃rh, r1 · x = b ∧ h = rh ∧ this.hd 7→ rh∗
list(rh, rnull, [rfalse] :: α) ∗ node(r1, b, rnull)}

15

{∃r1 · x = b ∧ queue(this, α) ∗ node(r1, b, rnull)}
return x;

}
{res = b ∧ queue(this, α) ∗ true}

EQueue.EQueue meets its specification:

{emp}
EQueue(){ Node x;
{x = rnull ∧ raw(this,EQueue)}
x = new Node(false);
{∃r1 · x = r1 ∧ raw(this,EQueue) ∗ node(r1, rfalse, rnull)}
this.hd = x; this.tl = x;
{∃r1 · x = r1 ∧ this.hd 7→ r1 ∗ this.tl 7→ r1 ∗ list(r1, r1, []) ∗

node(r1, rfalse, rnull)}
}
{queue(this, [])}

EQueue.enqueue meets its specification:

{queue(this, α)}
void enqueue(Bool b) { // enqueue in class EQueue

Node p, n;
{b = rb ∧ p = rnull ∧ n = rnull ∧ queue(this, α)}
p = this.tl ; n = new Node(b);
{∃rh, rt, rn, β, c · b = rb ∧ p = rt ∧ n = rn ∧ ([rfalse] :: α = β :: [c])∧

node(rn, rb, rnull) ∗ (this.hd 7→ rh ∗ this.tl 7→ rt ∗
list(rh, rt, β) ∗ node(rt, c, rnull))}

p.nxt = n; this.tl = n;
{∃rh, rt, rn, β, c · b = rb ∧ p = rt ∧ n = rn ∧ ([rfalse] :: α = β :: [c])∧

(this.hd 7→ rh ∗ this.tl 7→ rn ∗ list(rh, rt, β) ∗
node(rt, c, rn) ∗ node(rn, rb, rnull))}

{∃rh, rt, rn · b = rb∧
(this.hd 7→ rh ∗ this.tl 7→ rn ∗ list(rh, rn, [rfalse] :: α) ∗ node(rn, rb, rnull))}

}
{queue(this, α :: [old(b)])}

16

Rule (H-OVR) asks also for verifying Γ ` {P ′}-{Q′} v {P}-{Q}. Because here
P ′ and P , Q′ and Q are the same, nothing needs to do here.

EQueue.dequeue meets its specification: Because EQueue inherits dequeue from
Queue, we should use Rule (H-INH), where only the last premise should be proved.
By Definition 1, we need to prove that there exists an assertion R that

Γ,EQueue, dequeue ` (P ⇒ fix(Queue, P) ∗R) ∧ (fix(Queue, Q) ∗R ⇒ Q)

where

P = queue(this, [b] :: α), Q = res = b ∧ queue(this, α) ∗ true

By definition of fix, we have

Γ,EQueue, dequeue ` (P ⇒ fix(Queue, P) ∗R)
⇔ (queue(this, [b] : α) ⇒ Queue.queue(this, [b] :: α) ∗R)

and
Γ,EQueue, dequeue ` (fix(Queue, Q) ∗R ⇒ Q)

⇔ (Queue.queue(this, α) ∗R ⇒ queue(this, α))

So, the key point is to prove

Γ,EQueue, dequeue ` Queue.queue(r, α) ∗R ⇔ queue(r, α)

Let R = ∃rt · r.tl 7→ rt, we have

Γ, EQueue, dequeue `
Queue.queue(r, α) ∗R

⇔ ∃rh · r.hd 7→ rh ∗ list(rh, rnull, [rfalse] :: α) ∗ (∃rt · r.tl 7→ rt)
⇔ ∃rh, rt · r.hd 7→ rh ∗ r.tl 7→ rt ∗ list(rh, rnull, [rfalse] :: α)
⇔ queue(r, α)

So, we have that EQueue.dequeue meets its specification.

EQueue.empty meets its specification: We could prove this following the same
way as the proof for EQueue.dequeue.

In these proofs, we use only the specifications locally, especially the specification
predicates, thus we have information hiding.

5.2 A Client of Queue and EQueue

Now we show how the client code can be specified and verified on the abstract level,
where we do not refer to any implementation details.

In Fig. 6, we define a method trans , which takes a Queue parameter, transfers all
its elements to a new EQueue, and returns the new EQueue. The proof of this method
is as follows:

17

EQueue trans(Queue q)

require queue(q, α);

ensure queue(old(q), []) ∗ queue(res, α) ∗ true;
{
Bool f, t; EQueue eq;

eq = new EQueue(); f = q.empty();

while (¬f){ t = q.dequeue(); eq.enqueue(t); f = q.empty(); }
return eq;

}

Fig. 6. A client method using Queue and EQueue and its specification

EQueue trans(Queue q) {
{q = rq ∧ queue(rq, α)}
Bool f, t; EQueue eq;
eq = new EQueue();
{∃r · q = rq ∧ eq = r ∧ queue(rq, α) ∗ queue(r, [])}
f = q.empty();
{queue(rq, α) ∧ ((α = [] ∧ f = true) ∨ (α 6= [] ∧ f = false))}
while (¬f){
{∃r, β, γ · q = rq ∧ eq = r ∧ γ 6= [] ∧ α = β :: γ ∧ queue(rq, γ) ∗ queue(r, β) ∗ true}
{∃r, b, β, γ, γ′ · q = rq ∧ eq = r ∧ γ 6= [] ∧ α = β :: γ ∧ γ = [b] :: γ′∧

queue(rq, γ) ∗ queue(r, β) ∗ true}
t = q.dequeue();
{∃r, b, β, γ, γ′ · q = rq ∧ eq = r ∧ γ 6= [] ∧ α = β :: γ ∧ γ = [b] :: γ′∧

t = b ∧ queue(rq, γ
′) ∗ queue(r, β) ∗ true}

eq.enqueue(t);
{∃r, b, β, γ, γ′ · q = rq ∧ eq = r ∧ γ 6= [] ∧ α = β :: γ ∧ γ = [b] :: γ′∧

queue(rq, γ
′) ∗ queue(r, β :: [b]) ∗ true}

f = q.empty();
{∃r, b, β, γ, γ′ · q = rq ∧ eq = r ∧ γ 6= [] ∧ α = β :: γ ∧ γ = [b] :: γ′∧

((γ′ = [] ∧ f = true) ∨ (γ′ 6= [] ∧ f = false)) ∧ queue(rq, γ
′) ∗ queue(r, β :: [b]) ∗ true}

}
{∃r · q = rq ∧ eq = r ∧ queue(rq, []) ∗ queue(r, α) ∗ true}
return eq;

18

{queue(old(q), []) ∗ queue(res, α) ∗ true}
}

In this example, our verification is carried out only with the interface of method
Queue.enqueue and EQueue.queue. This shows that our framework is both abstract
and modular.

5.3 Retrospection

Now we have a look back to the code and specifications in Fig. 5, and focus on the
abstract specifications components of the VeriJ program. We can see that:

– For class CNode, because we do not intend to encapsulate anything within it, its
“abstract specification” is in fact rather concrete. In the specification of its only
method, its constructor, we explore all details of the object to the out world. This
specification decision is a natural consequence of the design decision for the code,
where we take all fields as public.

– On the other hand, for classes Queue, and consequently, EQueue, we want to have
a full encapsulation. In the code, we protect all fields from accessing outside the
class. Accordingly, the specification for methods is fully abstract. No information
of the implementation is explored out. What we tell for the client is only, you can
put values in, get values out in a determined order. Under this specification, we
allow any reasonable implementation.

– This tells us, how abstract a specification is, is at the hand of the specifier, just the
same case as the code. As program designers, we should, not only decide how to
write code modularly, but also how to specify the program modularly, to make the
program best for maintainable, modifiable, upgradable, extendable, and verifiable.

Our framework is one important step to provide the designers ability to do OO program-
ming with specification in an intentional way. By the way, the framework is easy to be
immigrated to the data abstraction programming world, because where the situation is
simpler.

6 Related Work and Conclusion

In recent years, specification and verification of OO programs extracts much at-
tentions, and many techniques related to abstraction and modularity here are devel-
oped. [10] is a comprehensive survey for the achievements and challenges in this field.

Abstract fields (or other names like model field, specification variable) and pure
methods are widely used in writing abstraction specifications. However, these concepts
are not expressive enough to specify methods behavior. Leino [6,11] considers abstract
specification and modular verification, but many OO features are omitted, especially
the mutable object structures. Müller [15] develops a modular verification framework

19

via abstract fields, but where inherited methods need be reverified. Smans [18, 19] use
similar techniques in implicit dynamic frames to specify and verify frame properties.
These abstraction techniques are also used in tools like Spec# [3, 4] and JML [9].

Parkinson [17] develops a modular verification framework where many OO features
are considered. In the work, abstract predicate families are defined for data abstraction.
Each method is specified by a pair of “static/dynamic specifications”. A dynamic spec-
ification describes a method behavior, and a static one describes its implementation.
For a method, its static specification must refine its dynamic specification. Further, the
dynamic specification of an overridden or inherited method must obey behavioral sub-
typing principle. In the approach, a problem is that the static specification may break in-
formation hiding, because a static specification has to involve implementation details so
that verification could be carried out. Chin [7] does a similar work with “static/dynamic
specifications”, but they do not support enough abstraction. They introduce “partial/full
view” of objects for writing extensible dynamic specification. However, the specifica-
tions need to involve many implementation details.

In this paper, we develop a framework for specification and verification of OO pro-
grams, which supports abstraction and modularity for both specification and verifica-
tion. We use specification predicates defined in class to separate and link the abstract
level specification and the implementation details. We propose syntactic rules for visi-
bility, inheritance and overriding of specification predicates and method specifications,
similar to the corresponding rules for methods in classes.

Specification predicates are different from abstract predicate families in several as-
pects: Predicates in an abstraction predicate family do not have structure property, nor
clear interrelations, but only link to some class by the type of their first parameter and a
tag. The families do not have clear connection with the class hierarchy of the program.
This means that abstract predicate families are aliens from the program. Oppositely, we
integrate specification predicates with suitable structural characters. In addition, we al-
low recursive defined predicates, and define rules for them. This is necessary in support
complex class such as Queue in Section 5, as well as more complex classes in practice.

Different to “static/dynamic method specifications” approach, we adopt single spec-
ification approach, and only allow dynamic specifications in the method interface. By
single specification, we can get rid of repeated expressions for implementation details,
and then can express the semantic design decision for a class only in the local defined
predicates. This feature makes it possible to support, in specifications of programs, the
single point rule, i.e., every important design decision should be expressed in exact one
point, which is extremely important in programming practice. Our approach offers full
encapsulation ability for the implementation details. By a localize function fix, we also
avoid to reverify inherited methods. We define a small language VeriJ with these speci-
fication features to illustrate how the framework can be integrated into an OO language.
In the language, we take the pure reference semantic model, and use OOSL [20] as
the assertion language which can precisely describe OO programs’ states. We define
the inference rules for deriving proof obligations from programs with specifications for
verifying VeriJ programs statically. Comparing to existing work, our approach captures
core OO features, and supports both abstraction and modularity in specification and
verification more naturally.

20

As the future work, we will focus on some problems. We will think about some
more concepts in existing work in OO and others, such as JML, ACSL [5], CASL [1].
And we will extend the specification language of VeriJ to support such concepts. In fact,
we think concepts like axiom in ACSL and structural specifications in CASL are very
useful in specifying programs. We will integrate more formal features, such as class
invariant, frame properties and so on, into our framework.

References

1. Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brükner, Peter D. Mosses,
Donald Sannella, and Andrzej Tarlecki. Casl: the common algebraic specification language.
Theoretical Computer Science, 286(2):153 – 196, 2002.

2. Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider. The Description Logic Handbook. Cambridge University Press, New York, NY,
USA, 2007.

3. M. Barnett, R. DeLine, M. Fähndrich, K.R.M. Leino, W. Schulte, K. Rustan, and M. Leino.
Verification of object-oriented programs with invariants. Journal of Object Technology,
3:2004, 2003.

4. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview.
In CASSIS 2004, LNCS 3362, pages 49–69. Springer, 2005.

5. Patrick Baudin, Jean C. Filliâtre, Thierry Hubert, Claude Marché, Benjamin Monate, Yan-
nick Moy, and Virgile Prevosto. ACSL: ANSI C Specification Language (pre. V1.2), May
2008.

6. Yoonsik Cheon, Gary Leavens, Murali Sitaraman, and Stephen Edwards. Model variables:
cleanly supporting abstraction in design by contract. Software: Practice and Experience,
35(6):583–599, 2005.

7. Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Enhancing modular
OO verification with Separation Logic. In POPL’08. ACM, 2008.

8. Gary T. Leavens and David A. Naumann. Behavioral subtyping is equivalent to modular
reasoning for object-oriented programs. Technical report, 2006.

9. G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. SIGSOFT Software Engineering Notes, 31(3):1–38, 2006.

10. G.T. Leavens, K.R.M. Leino, and P. Müller. Specification and verification challenges for
sequential object-oriented programs. Formal Asp. Comput., 19(2):159–189, 2007.

11. K. Rustan Leino. Toward reliable modular programs. PhD thesis, Pasadena, CA, USA,
1995. UMI Order No. GAX95-26835.

12. K. Rustan M. Leino. Data groups: specifying the modification of extended state. SIGPLAN
Not., 33:144–153, October 1998.

13. Barbara Liskov. Keynote address - data abstraction and hierarchy. In Addendum to the
proceedings on Object-oriented programming systems, languages and applications (Adden-
dum), OOPSLA ’87, pages 17–34, New York, NY, USA, 1987. ACM.

14. Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans.
Program. Lang. Syst., 16(6):1811–1841, 1994.

15. P. Müller. Modular specification and verification of object-oriented programs. Springer-
Verlag, LNCS 2262, 2002.

16. M.J. Parkinson and G. Bierman. Separation logic and abstraction. In POPL’05. ACM, 2005.
17. M.J. Parkinson and G.M. Bierman. Separation logic, abstraction and inheritance. In Princi-

ples of Programming Languages (POPL’08). ACM, 2008.

21

18. Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames: Combining dynamic
frames and separation logic. In Proceedings ECOOP 2009, Genoa. Springer-Verlag, 2009.

19. Jan Smans, Bart Jacobs, Frank Piessens, and Wolfram Schulte. An automatic verifier for
java-like programs based on dynamic frames. In Proceedings of FASE, volume 4961 of
LNCS. Springer, 2008.

20. Liu Yijing and Qiu Zongyan. A separation logic for OO programs. In Formal Aspects of
Computer Software (FACS 2010), 2010.

21. Liu Yijing, Qiu Zongyan, and Long Quan. A weakest precondition semantics for Java.
Technical Report 2010-46, School of Math., Peking University, 2010. Avaliable at
http://www.mathinst.pku.edu.cn/, priprint.

22. Qiu Zongyan, Wang Shuling, and Long Quan. Sequential µJava: Formal foundations.
Technical Report 2007-35, School of Math., Peking University, 2007. Avaliable at
http://www.mathinst.pku.edu.cn/, priprint.

A OOSL: Some Details and Semantics

Here we give a short introduction to OOSL (Object Oriented Separation Logic), which
is used in this work. A more complete treatment of the logic can be found in [21].

A.1 The Storage Model

To deal with OO programs, we extend the classical Stack-Heap storage model. The
model used here is defined upon three basic sets Name, Type and Ref.

– Name: an infinite set of names, used for naming various entities, e.g., constants,
variables, fields, etc. Three special names, true, false, null ∈ Name, denote
boolean and null constants. We assume a function dtype : Name → Type, where
dtype(v) is the declaration type of constant, variable, or field v.

– Type: an infinite set of types, including predefined types and user-defined types (or
classes). Subtype relation is represented by symbol <:, where T1 <: T2 states that
T1 is a subtype of T2. We assume three predefined types Object, Null and Bool,
where Object is the super type of all classes, Null is the subtype of all classes,
and Bool is the type of boolean objects. Given a type T , we can obtain its fields
by function fields : Type → Name → Type; and we define fields(Object) =
fields(Null) = fields(Bool) = ∅. We consider only boolean type in this paper.
Other predefined types, such as Integer, can be added easily.

– Ref: an infinite set of references representing the identities of objects. Correspond-
ing to the Name constants, Ref contains three basic references rtrue, rfalse and
rnull, where rtrue, rfalse refer two Bool objects respectively, while rnull never
refers to any object. We assume two primitive functions on Ref:2

• eqref : Ref → Ref → bool, justifies whether two references are same, i.e. for
any r1, r2 ∈ Ref, eqref(r1, r2) = true iff r1 is same to r2.

• type : Ref → Type decides the runtime type of object referred by reference.
We define type(rtrue) = type(rfalse) = Bool, type(rnull) = Null.

2 One possible implementation, for example, is to define a reference as a pair (t, id) where
t ∈ Type and id ∈ N, and define eqref as the pair equality, and type(r) = r.first.

22

The storage model is defined based on above concepts:

Store =̂ Name ⇀fin Ref Opool =̂ Ref ⇀fin Name ⇀fin Ref

State =̂ Store×Opool

In the program, all variables and object fields take references as their values. We will use
σ and O, possibly with subscript, to denote elements of Store and Opool respectively.
A store σ ∈ Store maps variables and constants to references, and an object pool
O ∈ Opool maps references to field-reference pairs. A runtime state s is a pair, s =
(σ,O) ∈ State, consisting of a store and an object pool. For every σ ∈ Store, we
assume that σtrue = rtrue, σfalse = rfalse and σnull = rnull.

We will use r, r1, . . . to denote references, and a, a1, . . . to denote fields of objects.
An element of O is a pair (r, f), where r is a reference to some object o, f is a function
from fields of o to their corresponding values (also references). When we refer to the
domain of O, we are referring to either a subset of Ref associated with a set of objects
as discussed above, or a subset of Ref × Name associated with a set of values (refer-
ences). We use dom O for the former, and define dom2 O =̂ {(r, a) | r ∈ dom O, a ∈
dom O(r)} for the later, that is, dom2 O represents all the reference and field pairs of
non-empty objects in O.

When considering the program states, we demand some regularities, that is, the
well-typedness as follows.

Definition 3 (Well-typed Store). A store σ is well-typed iff

∀v ∈ dom σ · type(σ(v)) <: dtype(v). ut

Definition 4 (Well-typed Opool). An Opool O is well-typed iff

– ∀(r, a) ∈ dom2 O · a ∈ fld(r) ∧ type(O(r)(a)) <: fields(r)(a), and
– ∀r ∈ dom O · fld(r) = ∅ ∨ (fld(r) ∩ dom O(r) 6= ∅).

Here fld(r) = domfields(r) is the field set of the type of r. ut
The first condition requires all fields in O to be valid according to types of their objects,
and hold values of correct types. The second condition requires that if a non-empty
object (according to its type) is in O, then at least one field of the object should be in
O. Thus we can identify empty objects in any Opool.

As an example, suppose domfields(C) = {a1, a2, a3}, and type(r1) = Object,
type(r2) = C, then O1 = {r1 7→ ∅, r2 7→ {a1 7→ rnull, a2 7→ rnull}} is a well-typed
Opool, but O2 = {r1 7→ ∅, r2 7→ ∅} is not, because type(r2) = C has fields. Further,
we can calculate that dom O1 = {r1, r2}, and dom2 O1 = {(r2, a1), (r2, a2)}.

Definition 5 (Well-typed State). A state s = (σ,O) is well-typed iff both σ and O are
well-typed. ut

We will only consider well-typed states in our discussion. This requirement makes
sense because the well-typedness can be checked statically based on the type system of
program languages, and a well-typed program always runs under well-typed states.

23

We define a special overriding operator ⊕ on Opool:

(O1 ⊕O2)(r) =̂
{

O1(r)⊕O2(r) if r ∈ dom O2

O1(r) otherwise

where ⊕ on the right hand side is the standard function overriding operator. Thus, for
Opool O1, O1 ⊕ {(r, a, r′)} gives a new Opool, where only one field value (the value
for a) of the object pointed by r is modified (denoted by r′).

We borrow some concepts and notations from Separation Logic. O1 ⊥ O2 indicates
that two Opools O1 and O2 are separated from each other. The formal definition for ⊥
is new for separating object pools,

O1 ⊥ O2 =̂ ∀r ∈ dom O1 ∩ dom O2·
O1(r) 6= ∅ ∧O2(r) 6= ∅ ∧ dom (O1(r)) ∩ dom (O2(r)) = ∅.

That is, if a reference, referring to some object o, is in both dom O1 and dom O2, then
both O1 and O2 must contain non-empty subsets of o’s fields, respectively (the well-
typedness also guarantees this); and these two subsets must be disjoint. This means that
we can separate fields of an object in the Opool (providing that the object is not empty).
Additionally, an empty object cannot be in two separated Opools at the same time. We
will use O1 ∗O2 to indicate the union of O1 and O2, when O1 ⊥ O2.

This OO storage model is simple and intuitive. It gives us both object view and field
view for a program state. With this model, we can correctly handle objects and their
fields, especially empty objects.

A.2 The Logic

The assertion language of OOSL is similar to that of Separation Logic, with some revi-
sions and extensions, to fit the special needs of OO programs:

α ::= true | false | r1 = r2 | r : T | r <: T | v = r
β ::= emp | r1.a 7→ r2 | obj(r, T)
ψ ::= α | β | p(r) | ¬ψ | ψ ∨ ψ | ψ ∗ ψ | ψ —∗ψ | ∃r · ψ

where T is type names, v is a variable or constant name, r1, r2 are references. p(r)
denotes user-defined assertions with real arguments r. We will use Ψ to denote the set
of all predicates.

Basic assertions are of two kinds, namely primitive assertions and user-defined as-
sertions. Primitive assertions fall into two categories, where

– α denotes assertions that are independent of Opools. References are atomic values
in our logic. For any two references r1, r2, r1 = r2 holds iff r1 and r2 are identical,
i.e., eqref(r1, r2). We treat r = v the same as v = r.

– β denotes assertions involving Opools. Empty and singleton assertions take the
similar forms as in Separation Logic. As previously stated, a cell in Opool is an
field-value binding of an object (denoted by a reference), thus the singleton asser-
tion takes the form r1.a 7→ r2. To make OOSL clear and simple, we do not define
v.a 7→ . . . as a primitive assertion, because it is not really primitive. Certainly, we
can define v.a 7→ r as ∃r′ · v = r′ ∧ r′.a 7→ r.

24

– In addition, we have a special assertion form obj(r, T) to indicate that r refers to a
complete object of type T , and the Opool contains only this object. In Separation
Logic, people use l 7→- or l ↪→7→- to denote that location l is allocated in current
heap. On our side, because the existence of empty object, we cannot use r.a 7→ -
or r.a ↪→7→- to express that the object referred by r is allocated in current Opool.
To solve this problem, we introduce the assertion form obj(r, T) in OOSL. In the
follows, we will use obj(r,-) when we do not care about r’s type.

We allow user-defined predicates in OOSL to support user-defined assertions. In
fact, user-defined recursive predicates are always necessary to support specification and
verification of OO programs involving recursive data structures, e.g., lists, trees, etc.
We record these definitions in a Logic Environment Λ:

Λ ::= ε | Λ, p(r) .= ψ

Here ε denotes the empty environment, p is a symbol (a predicate name), r are (a list of)
formal parameters of the predicate, and ψ is the body, which is an assertion correlated
with r. Recursive definitions are allowed.

As a well-formed logic environment, we ask for that Λ must be self-contained,
that is: the body assertion ψ of any definition in Λ cannot use symbols not defined
in Λ. Further, we require that Λ must be finite and syntactically monotone3. Under
these conditions, a fix-point semantics for Λ exists (this technique is standard, like in
Description Logic [2]).

For every symbol p defined in Λ, we use argcΛ(p) to denotes its arguments number,
where subscript Λ may be omitted when there is no ambiguity.

Now, we provide a least fix-point semantics for OOSL. We will define a semantic
function which maps every assertion ψ ∈ Ψ to a subset of State. To achieve this goal,
we need to define a formal semantics for Λ in the first.

As a start, we introduce a family of predicate functions. For any n ≥ 0, we define
Pn =̂ Refn → P(State), the set of functions from n references to subsets of State.
Here n is the arity of the functions in Pn. We define P =̂

⋃
n

(Refn → P(State)),

which is the set of all possible predicate functions with any possible arities. We intro-
duce a function arity : P → N to extract the arity of given predicate function: for any
p ∈ P , arity(p) = n iff p ∈ Pn.

We will use p, q, possibly with subscripts, for the typical elements of P . Given
p(r), q(r′) ∈ Pn, we define p ≤ q iff ∀r1, ..., rn · p(r1, ..., rn) ⊆ q(r1, ..., rn). Clearly,
(P(State),⊆) forms a complete lattice, with ∅ and State as its bottom and top elements.
So for any n, (Pn,≤) is a complete lattice, with ⊥Pn

= {(r1, ...rn) 7→ ∅}, and >Pn
=

{(r1, ...rn) 7→ State} as its bottom and top elements.
With Predicate Functions, we define interpretations of Λ as follows.

Definition 6 (Interpretation of Logic Environment). Given a logic environment Λ,
we say a function I : S → P is an interpretation of Λ iff for every symbol p defined in
Λ, p ∈ dom I and arity(I(p)) = argcΛ(p). ut

3 For every definition p(r)
.
= ψ, we require that every symbol occurs in ψ must lie under an

even number of negations. This property is named syntactically monotone.

25

MI(true) = State (I-TRUE)

MI(false) = ∅ (I-FALSE)

MI(r1 = r2) = State if eqref(r1, r2), ∅ otherwise (I-REF-EQ)

MI(r : T) = State if type(r) = T, ∅ otherwise (I-TYPE)

MI(r <: T) = State if type(r) <: T, ∅ otherwise (I-SUBTYPE)

MI(v = r) = {(σ, O) | σ(v) = r} (I-LOOKUP)

MI(emp) = {(σ, ∅)} (I-EMPTY)

MI(r1.a 7→ r2) = {(σ, {(r1, a, r2)})} (I-SINGLE)

MI(obj(r, T)) = {(σ, O) | type(r) = T ∧ dom O = {r}∧
dom (O(r)) = dom (fields(T))}

(I-OBJ)

MI(p(r)) = I(p)(r) (I-APP)

MI(¬ψ) = State \MI(ψ) (I-NEG)

MI(ψ1 ∨ ψ2) =MI(ψ1) ∪MI(ψ2) (I-OR)

MI(ψ1 ∗ ψ2) = {(σ, O) | ∃O1, O2 · O1 ∗O2 = O ∧ (σ, O1) ∈MI(ψ1)
∧(σ, O2) ∈MI(ψ2)}

(I-S-CONJ)

MI(ψ1 —∗ψ2) = {(σ, O) | ∀O1 · O1⊥O ∧ (σ, O1) ∈MI(ψ1)
implies (σ, O1 ∗O) ∈MI(ψ2)

(I-S-IMPLY)

MI(∃r · ψ) = {(σ, O) | ∃r ∈ Ref · (σ, O) ∈MI(ψ)} (I-EX)

Fig. 7. Semantic function with interpretation I

We use IΛ to denote all interpretations of Λ. For any I1, I2 ∈ IΛ, we define:

I1 ≤ I2 iff ∀p ∈ dom Λ · I1(p) ≤ I2(p).

Obviously, (IΛ,≤) is a complete lattice, with ⊥Λ = {(p,⊥PargcΛ(p))|p ∈ dom Λ} the
bottom element, and >Λ = {(p,>PargcΛ(p))|p ∈ dom Λ} the top element.

We define a semantic function M : I → Ψ → P(State) for OOSL, the definition
is presented in Fig.7, where MI means M(I) in the definitions.

Clearly, a logic environment Λ can have many interpretations, but not every inter-
pretation makes sense. This leads the following definition.

Definition 7 (Model of Logic Environment). Suppose I is an interpretation of Λ, we
say I is a model of Λ iff for every definition p(r) .= ψ in Λ, we have:

∀r′ · MI(p(r′)) = MI(ψ[r′/r]). ut
In fact, a model of Λ is a fix-point of function NΛ : (S → P) → (S → P), which

is defined as follows:

NΛ(I)(p) = {(r′,MI(ψ[r′/r])}, for any definition p(r) .= ψ in Λ

The fix-point of NΛ exists, because the self-containedness of Λ, and the syntactically
monotonic requirement for each definition of symbols in Λ.

26

A given Λ may have many models. We choose the least one as its standard model,
which is the least fix-point ofN . By Tarski’s fix-point theorem, this standard model can
be expressed as:

JΛ =
∞⋃

n=0

Nn
Λ (⊥Λ),

Example 1. We give here a simple example to illustrate the idea. Suppose Λ contains
only one definition

list(r) .= (r = null ∧ emp) ∨ ∃r′ · (r.a 7→ r′) ∗ list(r′)

which describes lists linked on a. In order to get the standard model of Λ, we have:

N 0
Λ = ⊥Λ

N 1
Λ = {(list, {(null, emp)})}

N 2
Λ = {(list, {(null, emp), (r, r.a 7→ null)})}

N 3
Λ = {(list, {(null, emp), (r, r.a 7→ null)}), (r, r.a 7→ r′ ∗ r′.a 7→ null)})}

. . .

Taking its limit, we get the standard model that describes all possible lists of a. ut
With the standard model JΛ, we define the formal semantics for our assertion lan-

guage. We will use σ,O |=Λ ψ to mean that ψ holds on state (σ,O) with respect to
logic environment Λ. We have the following definition:

Definition 8 (Semantics of Assertions).

σ,O |=Λ ψ iff (σ,O) ∈MJΛ
(ψ). ut

The OOSL has many interesting features. More details of it can be found in our
report [21].

27

