
Verification of Lock-free Scalable Synchronous
Queue (Technical Report)

Lei Jinjiang and Qiu Zongyan

LMAM and Department of Informatics, School of Mathematics
Peking University, Beijing 100871, CHINA

Abstract. Lock-free algorithms are extremely hard to be built correct
due to their fine-grained concurrency natures. Formal frameworks for
verifying them are crucial. In this paper we present a framework for ver-
ification of CAS-based lock-free algorithms, based on RGSep [25]. As
an example, we prove a nontrivial lock-free algorithm that is practically
adopted in Java 6. The strength of our method lies on that it completely
rules out auxiliary variables/commands, thus is relatively easier to con-
duct and comprehend, comparing to the existing work.

Key words: Rely-guarantee, Separation Logic, Lock-Free Algorithms, Verifica-
tion, Scalable Synchronous Queue

1 Introduction

Implementations of concurrent programs usually rely on locks, semaphores, or
similar mechanisms. Although lock-based synchronization approaches are effec-
tive for supporting mutual exclusion and information sharing, they also incur
many defects, including deadlock, livelock, starvation, priority inversion, convoy
effect, etc.

Lock-free (as a class of non-blocking) algorithms are immune to deadlock
and achieve progress even if some threads are descheduled or fail. Various primi-
tives for these algorithms have been proposed and developed, e.g., CAS, DCAS,
LL/SC, etc. Take CAS as an example. A CAS instruction, with the form of
cas(loc, old ,new), takes three arguments: a location (memory address) loc, an
old value, and a new value. In execution of the cas, if the location holds value
old as expected, it will be replaced by new and returns true, otherwise the cas
returns false while nothing is changed. To develop a lock-free algorithm, design-
ers need to arrange in the algorithm these instructions, especially the CASs (or
other primitives), skillfully to achieve the goal.

Existing theoretical weapons for reasoning concurrent programs include Con-
current Separation Logic (CSL) [16, 2], Rely-guarantee Reasoning [14, 15], etc.
CSL adapts a form of local reasoning in which one needs only to focus on the
footprint of (the part of memory actually touched by) the thread. This facilitates
modular reasoning based on the resource invariant. Rely-guarantee reasoning is

1

super in tackling finer grained interferences among threads and effects of inter-
twined atomic commands. Every specification in rely-guarantee is accompanied
with a pair of rely (R) and guarantee (G) conditions. R is the thread’s expec-
tations for the state transitions made by its environment, and G denotes the
promise of the transitions made by the thread itself.

So far, based on either CSL or rely guarantee, most proofs of lock-free al-
gorithms heavily rely on auxiliary variables/commands, e.g. [20, 23]. However,
on one side, auxiliary variables/commands would usually obscure the proof; on
the other side, the layout of auxiliary variables/commands itself is also a tricky
work.

Our aim is also to develop useful foundation and techniques for proving lock-
free algorithms. We propose new methods for verifying lock-free algorithms. Most
importantly, by packaging CAS into control flow commands, the dependency of
auxiliary variables and commands is relieved, and make proofs more explicit.
The main contributions of our work are as follows:

– We propose new method for reasoning under garbage collection (GC). It
allow primitives touch the shared state of concurrent programs, and also
capture the semantics that is implicitly guaranteed by GC.

– We package CAS primitive into control flow commands. This choice is rea-
sonable for proving lock-free algorithms. A set of rules for packaged-CAS
commands are developed, and the soundness of rules are proved.

– We generalize rules for control flow commands; and the new rules are more
expressive due to the relaxed premise. This and above techniques are impor-
tant for practically proving concurrent programs, and also relatively intuitive
because they don’t require for any auxiliary variables and commands.

– We prove a synchronous queue algorithm that has been adopted by Java 6.
By the proving, we find some semantically equivalent variations of it. We
also have an investigation on its fairness and liveness properties.

The rest of the paper is organized as follows. In Section 2, we propose and
discuss reasoning with garbage collection, rules for packaged-CAS commands,
and generalized rules for control flow commands. The scalable synchronous queue
algorithm is introduced in Section 3; with its proof in Section 4. We discuss some
related work in Section 5 then conclude.

2 The Inference Rules

In this section we build our foundations for reasoning lock-free algorithms. Basic
concepts and definitions in RGSep are introduced first. Then we give rules for
assignments under garbage collection, and rules for packaged-CAS commands,
at last the improved rules for control flow commands.

2.1 Notations and Definitions

Now we introduce some notations and concepts in this paper, which are devel-
oped from RGSep. The techniques are general for most heap-stack models.

2

The assertion language is a variant of SL proposed by Vafeiadis [25], where
P stands for any SL assertion:

p, q, r ::= P Local assertion
| P Shared assertion
| p ∗ q Separating conjunction
| p ∧ q Conjunction
| p ∨ q Disjunction
| ∀x.p Universal quant.
| ∃x.p Existential quant.

In the model of the Logic, heap is partitioned into one part shared by all
threads in the program, and several disjunct local portions where each is pri-
vately owned by a thread. Local assertions specify states of private portions
(namely, private states), while the shared assertions specify the state of the
shared part (shared state). However, since there is only one shared state at a
time, comparing with standard Separation Logic, ∗ here takes the little differ-
ent meaning that ∗ splits only the local states, but not the shared state. In
this case, every shared assertion targets to the whole shared part, in particular,
P ∗ Q ⇔ P ∧Q .

By shared state, we mean all the resources that are accessible to all threads.
Variables in Separation Logic are viewed, originally, as shared resource. This is
not suitable for concurrent programs, thus comes the variables-as-resource [19,
1]. For simplicity, we don’t explicitly specify variables ownership, but still dis-
tinguish shared/private variables. Finally, we take “shared state = shared heap
+ shared variables”.

In rely-guarantee reasoning, a thread expresses its interaction with the envi-
ronment by a pair of rely/guarantee conditions. The rely condition R specifies
all possibly mutation on shared state caused by the environment, and the guar-
antee condition G specifies what caused by the thread itself. The thread ensures
that its atomic transitions abide by its guarantee condition as long as its envi-
ronment respects its rely condition. Here R/G specifies only the mutations of
shared state. It is a sanity requirement that they should not access the private
state of any thread. Rely/guarantee conditions are important for reasoning con-
current programs, because they can be viewed as a contract for the interferences
between a thread and its environment.

We use action, P Q, to depict changes performed on the shared state.
P Q means replacing a portion of the shared state satisfying P to a portion
satisfying Q. It’s worth noting that P and Q are not required to depict the
whole shared state. The semantics of an action, and a set of actions, are defined
as state transitions, i.e., a set of pre- and post-states pairs:

[[P Q]] =̂ {(σ, σ′)|(σ = σ1 ∗ σ0) ∧
(σ′ = σ2 ∗ σ0) ∧
σ1 |= P ∧ σ2 |= Q}

[[{Pi Qi | i ∈ 1..n}]] =̂ (∪n
i=1[[Pi Qi]])∗

3

Here σ denotes a state, σ |= P means P holds in state σ, and t∗ is the reflective
transitive closure of transition t.

Because we use SL to express rely/guarantee conditions, we require each
actions in R/G conditions to be precise [21]. Assertion P is precise, if for any
state there is at most one sub-state satisfying P . Action P Q is precise if both
P and Q are precise. Precise action is reasonable because it ensures a precise
state transition.

A predicate u is stable under an action if it is valid both before and after the
state transition based on the action:

Definition 1. (Stable) A predicate u is stable under P Q, if for any (σ, σ′) ∈
[[P Q]] and σ |= u, then σ′ |= u.

A predicate u is stable under a set of actions S, if it is stable under every element
of S.

Definition 2. (Compatible) Assume for a concurrent program we have n threads
and n pairs {(Ri,Gi)}i accordingly. We say that the system is compatible in
RGL, iff for any thread i ∈ 1 . . . n, [[Gi]] ⊆ [[Rj]] for each j 6= i.

That is, a compatible concurrent program requires that the guarantee of a thread
is what other threads rely on.

Hoare rules in rely-guarantee reasoning take the form of R,G |= {P}C {Q},
where both pre- and post-conditions are required to be stable under R, and
[[P Q]] ⊆ [[G]]. In addition, we introduce a function Fd such that Fd(x)
returns the set of fields according to the type of x, and then the rule takes the
form of R,G,Fd |= {P} C {Q}. For example, if x denotes a node of binary
trees, Fd(x) = {lchild, rchild}. Usage of Fd can be seen in Section 2.2. We
may write Fd |= •, or R,G |= •, when the other components are not important.

In order to prove algorithms involving mutable data structures (as the one in
Section 3), we propose some new rules for assignments in the environment with
garbage collection (GC). The existence of GC and no explicit memory release
guarantee, as long as some thread holds a reference to a dynamic node, the node
will not be reclaimed.

For most algorithms under GC, we need to specify the reachable part from
an object in heap. For convenient, we use rset(x, s) to represent reachable set of
nodes from x wrt. a given set s of field names. When a node is in rset(x, s), we
say it is reachable from x via s:

rset(x, s)
def
=


emp x is non-pointer or null
cell(x) ∗ (∗©

∀n∈s
rset(x.n, s)) s ⊆ Fd(x)

false otherwise

Here ∗© is the iterative version of “∗”, and we use cell(x) to denote the object x
points to, where cell is some object type. For example, if x is node which has a
link field next, then rset(x, {next}) represents node(x)∗rset(x.next, {next}); if x
is a tnode for binary trees and let s = {lchild, rchild}, rset(x, s) is tnode(x)∗

4

rset(x.lchild, s) ∗ rset(x.rchild, s). We allow s contain some (but not all) fields
of object x. If x refers to a tnode, rset(x, {lchild}) is fine but only depicts part
of reachable set from x.

Two aspects of rset need to be declared. First, the definition of rset is valid
when the reference relation is Directed Acyclic Diagram (DAG), while for general
diagram, rset can be trivially defined as the fixpoint of the expansion from a node.
Second, rset can also defined without its second argument, and rset(x) simply
means the full expansion from cell x. However, a full expansion usually is not
needed in really proof, and the second argument will make proofs concise.

2.2 Reasoning under Garbage Collection

The algorithm we will prove in section 4 in running under the effect of garbage
collection. There are two levels when reasoning with GC. One is low-level, where
the behavior and effects of GC is taken into account. For example, in the low-
level, GC can be viewed as a thread that is concurrently running with other
threads, and GC would affect the state of a system. The other is high-level,
the effect of GC is not explicitly depict this level. In high level, all assertions
are required to be GC-insensitive. Intuitively, assertion P is GC-insensitive if
{P} gc() {P}.

Hur et al. [12] discussed separation logic in the presence of GC. They formally
constructed the relation between low- and high-levels. In this paper, we only
reason programs in the high-level, where all assertions are GC-insensitive. As
in [12], in order to guarantee the soundness, both the heap and all program
variables only store GC-safe values, that is either non-pointer values or pointers
to heads of allocated blocks.

The idea for reasoning under GC is simple: because GC will not reclaim the
nodes that is accessible to any thread, rset(x, s) is a GC-insensitive assertion. We
can add rset(x, s) in the pre- and post-conditions to extend the expressiveness
of a specification.

Taken as a example, we define a rule for assignments under GC in SL as
follows, where s is any given set, x and y are program variables:

Fd `SL {rset(y, s)} x := y {x = y ∧ rset(x, s)}

This rule is valid for any given type of x. It says if all nodes reachable from y
via s are in the heap before the assignment, then afterward, x = y and all those
nodes from x via s are still in the heap.

In concurrent programs, the situation becomes more complicated: rset(x, s)
is volatile if x is a shared variable, because it may be modified by other threads.
Thus, if x or y is in shared state, x = y will not be stable under rely condition.
It seems some restrictions are necessary. To solve the problem, we require that
all assignments to shared variables are implemented by cas commands, then we
only need to consider assignment to private variables. When x is private variable
and Y is shared, we define:

R,G,Fd ` { rset(Y, s)} x := Y

{ rset(x, s) ∗ true ∗ rset(Y, s) ∗ true}
(ASS-GC)

5

It says if Y is in shared state and nodes in rset(Y, s) are all in shared state, after
the assignment, x points to some node in shared state and the rset(x, s) are all
in shared state. Note, since Y is a shared variable, x = Y is not guaranteed, so
the post-assertion is stable under R.

Besides, (ASS-GC) is intuitively sound for any R,G and Fd under GC. The
validity of its pre- and post-conditions are guaranteed by GC. Since reading
a shared variable into a private variable does not change the shared state, it
satisfies any G. In addition, this rule is also sound when x and Y are both
private variables; the explanation is similar.

2.3 Rules for Packaged-CAS Commands

One crux of this work is to formalize the cas primitive. A cas gives a boolean
value, thus is often used as guards in if or while statements. However, a cas
may also change the state as a side effect. If we formalized it as an expression,
that would force us to introduce side-effect feature into all expressions, and make
the approach more complicated. Some previous work treats cas as a command.
However, hardly can a method found to capture the boolean result at the same
time, various auxiliary variables/commands are introduced to remember the ex-
tra semantic information.

Based on an analysis of various lock-free algorithms, we decide to package
cas primitive into control statements, that is, always considering if cas(l, o, n)
then C1 else C2 or do C while cas(l, o, n) as whole structures, and define in-
ference rules directly for them. Consequently, we can code a single cas into a
semantically equivalent form if cas(l, o, n) then skip else skip. Comparing
with RGSep, although packaging of cas command don’t extend its capability,
it helps to rule out auxiliary variables and commands completely from our ap-
proach.

Rule for packaged-CAS if commands is:

∅,G,Fd ` {p ∗ l 7→ o ∗ true} [l] := n {r1}
R,G,Fd ` {r1} C1 {q} p ∗ l 7→ o′ ∗ true ∧ o′ 6= o ⇒ r2

R,G,Fd ` {r2} C2 {q} p ⇒ l 7→ − ∗ true ∗ true
stable({p, q, r1, r2},R)

R,G,Fd ` {p} if cas(l, o, n) then C1 else C2 {q}
(IF-CAS)

Note that [l] := n means the assignment of value n to location l, which is called
mutation in Separation Logic.

Because the location accessed by cas(l, o, n) must be in the shared state
(which may be modified by other threads), any CAS-based command must rely
on the nondeterministic value at location l. In another word, R should ensure
the invariability of [l] by the environment if the pre-condition of a packaged-CAS
command specifies the value of [l]. Specifically, in rule (IF-CAS), we require R
to be ∅ to ensure the stability of p ∗ l 7→ o ∗ true . Another difference between
ordinary if B then C1 else C2 and if cas(l, o, n) then C1 else C2 is that, the

6

guard of the latter one will access the heap location l, while in ordinary if-then-
else, guard B is usually pure, without any effect to/from the heap. Therefore,
here premise p ⇒ l 7→ − ∗ true ∗ true is necessary.

Similarly, there is a symmetrical rule:

∅,G,Fd ` {p ∗ l 7→ o ∗ true} [l] := n {r2}
R,G,Fd ` {r2} C2 {q} p ∗ l 7→ o′ ∗ true ∧ o′ 6= o ⇒ r1

R,G,Fd ` {r1} C1 {q} p ⇒ l 7→ − ∗ true ∗ true
stable({p, q, r1, r2},R)

R,G,Fd ` {p} if !cas(l, o,n) then C1 else C2 {q}
(IF-N-CAS)

We also define the packaged cas command with do-while statement that are
commonly used in lock-free algorithms. Taking here do-while but not while-
do, since the former is used more frequently in lock-free algorithms. We can
define rules for while-do without any problem.

R,G,Fd ` {p} C {r} stable({p, q, r},R)
∅,G,Fd ` {r ∗ l 7→ o ∗ true} [l] := n {q}

r ∗ l 7→ o′ ∗ true ∧ o′ 6= o ⇒ p p ⇒ l 7→ − ∗ true ∗ true
R,G,Fd ` {p} do C while !cas(l, o, n) {q}

(WHILE-N-CAS)

R,G,Fd ` {p} C {r} stable({p, q, r},R)
∅,G,Fd ` {r ∗ l 7→ o ∗ true} [l] := n {p}

r ∗ l 7→ o′ ∗ true ∧ o′ 6= o ⇒ q p ⇒ l 7→ − ∗ true ∗ true
R,G,Fd ` {p} do C while cas(l, o, n) {q}

(WHILE-CAS)

2.4 Improved Rules for Control Flow Commands

Besides rules for packaged-CAS commands, we also propose improved rules of
control statements. The naive rules given below are not useful in many practical
cases:

p ⇒ (B = B) ∗ true
R,G ` {p ∧B} C1 {q} R,G ` {p ∧ ¬B} C2 {q}

R,G ` {p} if B then C1 else C2 {q}
(N-IF)

p ⇒ (B = B) ∗ true R,G ` {p ∧B} C {q}
R,G ` {p} while B do C {p ∧ ¬B}

(N-WHILE)

These rules are sound, but not usable when value of B relies on shared
variables. Take (N-IF) for example, RGL requires the pre-condition of the spec-
ification to be stable under R. However, if B accesses shared variables which
may be modified by other threads, {p ∧B} is not stable under R, thus the rule
cannot be used. Consider a possible scenario in executing if B then C1 else C2:
B holds initially and branch C1 is chosen, but before executing C1, the thread
is preempted by another one, and B may not hold still when C1 begins to run;
for another branch, situation is the same.

7

To cope with the scenarios like above, we propose the following improved
rules of control flow commands.

p ∧B ⇒ r1 p ∧ ¬B ⇒ r2 stable({r1, r2, p},R)
R,G,Fd ` {r1} C1 {q} R,G,Fd ` {r2} C2 {q}

R,G,Fd ` {p} if B then C1 else C2 {q}
(IF)

p ∧B ⇒ r p ∧ ¬B ⇒ q
R,G,Fd ` {r} C {p} stable({p, q},R)
R,G,Fd ` {p} while B do C {q}

(WHILE)

These rules still keep the information of guard B, but do not require B to be
stable under R. Besides, (N-IF) and (N-WHILE) can be seen as special cases of
(IF) and (WHILE).

For the soundness of the inference rules, we have the following theorem. Some
of their proofs are given in Appendix A.

Theorem 1. (IF-CAS), (IF-N-CAS), (WHILE-CAS), (WHILE-N-CAS), (IF),
(WHILE) are sound.

3 Scalable Synchronous Queue

The algorithm we are going to prove implements a CAS-based scalable syn-
chronous queues (SSQ) [13]. It has been adopted by Java 6 concurency libraries
because it remarkably outperforms Java SE 5.0 SynchronousQueue class. How-
ever, interferences among threads in SSQ are complicated, so hardly can one
have an intuition about its correctness.

Paper [13] gives two modes of the implementation: the (LIFO) stack and the
(FIFO) queue. As mentioned in [13], enqueue for queue mode and push for stack
mode are symmetric with dequeue and pop respectively, except for the direction
of data transfer, so we only prove enqueue and push in this paper. We copy the
codes from [13] and list them in Table 1 and Table 2.

The data structure used in the queue mode is a single linked list held by
global variables Head and Tail (Figure 1). The first node in the list is dummy;
and the list is empty if there is only a dummy node (state S1). A node contains
three fields: data, state (for storing tag DATA or REQ), next. In Figure 1, we use
N to denote a null field, and !N for not null. We use D to denote that the state
field is DATA, while R says it is REQ. A matched data node is a node where state
field is DATA but its data field is null in the same time. A matched request node
is a node whose state is REQ and its data field is not null. We say a data node
x is matched, when another thread “withdraw” the value stored at x.data and
set x.data null; for a request node, vice versa.

Now we look at the code at Table 1 . The first step is to read shared variables
Head and Tail into local variables h and t (line 04-05). Then there are two
branches: if the list is empty or has at least one data node, it tries to attach the
newly created data node pointed by local variable offer, to the end of the list

8

01 void enqueue(e) {
02 offer = new Node(e);

03 while true {
04 t = Tail;

05 h = Head;

06 if (h == t || t.state == DATA) {
07 n = t.next;

08 if (t == Tail){
09 if (n != null) {
10 casTail(t, n);

11 }
12 else

13 if(t.casNext(n, offer)) {
14 casTail(t, offer);
15 while (offer.data != null));
16 /* spin */;
17 h = Head;
18 if (offer == h.next)

19 casHead(h, offer);
20 return;

21 }
22 } else{
23 n = h.next;

24 if(t != Tail || h != Head || n == null)

25 continue;

26 if(n.casData(null, e)) {
27 casHead(h, n);

28 return;

29 }else casHead(h, n);

30 }
31 }
32 }

Table 1. Scalable Dual Queue — Enqueue

(line 06-21); otherwise, when the list has at least one request node, it tries to
match the data to the unmatched request node that behinds Head (line 22-30).
In addition, the call to enqueue will not return until the offer is matched (line
15-16) or a request node is matched (line 26-28).

Algorithm for the stack mode is listed in Table 2. Unlike the queue mode,
there is only one shared variable Head that refers to the top of the stack and no
dummy node. The first step of push is also to read Head into local variable h
(line 04). Based on the state of h, there are three branches: if the stack is empty
or its top is a data node, it tries to attach the newly created data node to the
top of the stack (line 06-14); if h refers to an request node, it tries to match it
with the value that intended to be pushed (line 16-23); otherwise, the stack is
fulfilling, it helps to match the top two nodes in the stack (line 25-28).

9

01 void push(e) {
02 d = new Node(e, DATA);

03 while true {
04 h = Head;

05 if (h == null || h.state == DATA) {
06 d.next = h;

07 if (!casHead(h, d))

08 continue;

09 while (d.match == null)

10 /* spin */;

11 h = Head;

12 if(h != null && h.next = d)

13 casHead(h, d.next);
14 return;

15 } else if (h.state = REQ){
16 f = new Node(e, DATA F, h);
17 if (!casHead(h, f))

18 continue;
19 h = f.next;

20 n = h.next;

21 h.casMatch(null, f);

22 casHead(f, n);

23 return;

24 } else {
25 n = h.next;

26 nn = n.next;

27 n.casMatch(null, h)

28 casHead(h, nn);

29 }
30 }
31 }

Table 2. Scalable Dual Queue — Push

Can these algorithms work in every circumstance, no matter how interleaving
of the invitations come from different threads? It is really not easy to conclude.

4 Proof for Synchronous Queue

Now we prove the SSQ algorithm. We give here the fundamental work, and put
proof listing in Appendix B.

4.1 Adapted Rules for casHead, casTail, n.casData, and n.casNext

Primitives casHead, casTail, n.casData and n.casNext are used in SSQ. Their
semantics is a bit different from plain cas discussed before: casHead(o, n) (alt.,
casTail(o, n)) compares the value of Head (or Tail) with o, and probably assigns

10

N--

TailHead

S1

--

S2

D!N ... ND!N

--

S4

DN D!N ND!N...

--

S5

DN D!N D!N... ND!N

Head Tail

Head Tail

TailHead

--

S6

RN ... NRN

Head Tail

--

S9

R!N RN RN... NRN

TailHead

--

S8

R!N RN NRN...

Head Tail

--

S3

D!N ... D!N ND!N

Head Tail

--

S7

RN ... RN NRN

Head Tail

Fig. 1. The Link List’s States

the new value n to it. On the other hand, v.casData(o, n) (alt., v.casNext(o, n))
compares (and probably assigns) the value stored in the data (next) field of v
with o. However, the essence of these CAS-based primitives is identical, and the
adapted rules are similar with rules introduced in Section 2.3:

∅,G ` {p ∗ Head = o ∗ true} Head := n {r1}
R,G ` {r1} C1 {q} R,G ` {r2} C2 {q}

p ∗ Head = o′ ∗ true ∧ o′ 6= o ⇒ r2 stable({p, q, r1, r2},R)
R,G ` {p} if casHead(o, n) then C1 else C2 {q}

(IF-casHead)

∅,G ` {p ∗ v.data 7→ o ∗ true} v.data := n {r1}
R,G ` {r1} C1 {q} R,G ` {r2} C2 {q}

p ∗ v.data 7→ o′ ∗ true ∧ o′ 6= o ⇒ r2

p ⇒ v.data 7→ − ∗ true ∗ true stable({p, q, r1, r2},R)
R,G ` {p} if v.casData(o, n) then C1 else C2 {q}

(IF-casData)

Rules for casTail, v.casMatch(o, n) and v.casNext(o, n) are similar with
rules for casHead and v.casData(o, n).

4.2 Proof of the Queue Mode

We give the proof and discuss properties of enqueue in this section. Proof of
stack mode is given in section 4.3.

Predicates for State Assertions (Queue Mode)
We specify the states using Separation Logic assertions for the queue mode.

To facilitate the specification, we define some predicates in the first. According
to our analysis of the possible shared states depicted in Figure 1, we need some
predicates for specifying nodes and lists.

11

S1 = QNd(Head,−,−, null) ∧ Head = Tail

S2 = QNd(Head,−,−, Head.next) ∗ Dls(Head.next, Tail.next)
∧ Tail.next = null

S3 = ∃x.QNd(Head,−,−,−) ∗ Dls(Head.next, Tail.next)
∗ QNd(x, !null, DATA, null) ∧ Tail.next = x

S4 = ∃x, y.QNd(Head,−,−, x) ∗ QNd(x, null, DATA, y)
∗ Dls(y, Tail.next) ∧ Tail.next = null

S5 = ∃x, y.QNd(Head,−,−, x) ∗ QNd(x, null, DATA,−)
∗ Dls(x.next, Tail.next) ∗ QNd(y, !null, DATA, null)
∧ Tail.next = y

S6 = QNd(Head,−,−, Head.next) ∗ Rls(Head.next, Tail.next)
∧ Tail.next = null

S7 = ∃x.QNd(Head,−,−,−) ∗ Rls(Head.next, Tail.next)
∗ QNd(x, null, REQ, null) ∧ Tail.next = x

S8 = ∃x, y.QNd(Head,−,−, x) ∗ QNd(x, !null, REQ, y)
∗ Rls(y, Tail.next) ∧ Tail.next = null

S9 = ∃x, y.QNd(Head,−,−, x) ∗ QNd(x, !null, REQ,−)
∗ Rls(x.next, Tail.next) ∗ QNd(y, null, REQ, null)
∧ Tail.next = y

Fig. 2. Share States of the Queue Mode

Predicate QNd asserts a node with specific contents:

QNd(x, v, s, y) =̂ x 7→ {data 7→ v, state 7→ s, next 7→ y}

where state could be DATA, or REQ.
We define some predicates for asserting list segments, or special types of list

segments:

ls(x, y) =̂ (emp ∧ x = y) ∨ (QNd(x,−,−,−) ∗ ls(x.next, y))
Dls(x, y) =̂ (emp ∧ x = y) ∨ (QNd(x, !null, DATA,−) ∗ Dls(x.next, y))
Rls(x, y) =̂ (emp ∧ x = y) ∨ (QNd(x, null, REQ,−) ∗ Rls(x.next, y))

Here ls(x, y) asserts a list segment that begins with x and ends with a node
whose next field is y. Dls(x, y) asserts additional that each node in the list is
unmatched data node, i.e., whose state field is DATA and data field is not null;
Rls(x, y) asserts that each node in the list is unmatched request node, whose
state field is REQ and data field is null.

With these predicates, we specify the possible states of the linked list in the
queue, totally nine sets of them as given in Figure 1. We list the specifications in
Figure 2. Two properties are worth to mention: S1 = S2∩S6; and there is at most
one matched node in each of the states. These states are crucial for our proof,
because they cover and partition all possible shared states of the algorithm.

12

S4

S9

S7

S5

S3

S8

S2S6

S1

Fig. 3. Transition Graph of Shared States – Queue Mode

The Rely/Guarantee Conditions (Queue Mode)
The essence of rely-guarantee logic is using rely/guarantee conditions, R and G,

to describe the interferences between a thread and its environment. We construct
these conditions for the algorithm in this subsection.

1. The Rely Condition (Queue Mode)
After a careful analysis, we dig out the relationship between all the possible
shared states. Figure 3 depicts all possible transitions among them, it shows
out a very beautiful graph: regular, and symmetric. The regularity should
be the real foundation of the correctness of the algorithm. It seems that no
one knows this graph before, even for the designers of the algorithm.
Please note that we do not depict state set S1 as other sets in the graph,
because S1 consists of states belonging to both S2 and S6. The transition
between S2 and S6 takes the different manner from the other transitions, via
some common regression state of both sets.
We specify the state transitions of Figure 3 by a set of actions, as given
in Figure 4. In order to distinguish values of shared variables in pre- and
post-states of an action, we use the hat form to denote the pre-values. We
substitute all shared variables in the pre-state with their hat form, and use
additional boolean expressions to depict the relation.
Take the 7th action in Figure 4 as an example, which makes a transition from
S4 to S2. After substitution, the left hand side becomes ∃x, y.QNd(Ĥead,−,

−, x) ∗ QNd(x, null, DATA, y) ∗ Dls(y, T̂ail.next) ∧ T̂ail.next = null, de-
picting that the head of the queue is followed by a matched data node
and then some unmatched data nodes. The right hand side says the head
node is followed by some unmatched data node and there exists a node, say
QNd(z0,−, DATA, Head) (we use z0 instead of z to remove the ∃), which is
the pre-node of Head. In order to precisely confine the state transition to an
atomic action, Ĥead = z0 and T̂ail = Tail are indispensable, which confine
the footprint transition caused by the action: Ĥead = z0 and QNd(z0,−, DATA,

Head) implies Head moves one step ahead; T̂ail = Tail implies Tail does
not move.
The state transitions among S6, S7, S8, S9 are not given, because they are
symmetric with the ones listed in Figure 4. We define our rely condition, R,
as the reflexive transitive closure of all the actions above.

13

S2[Ĥead/Head, T̂ail/Tail] S3 ∧ Ĥead = Head ∧ T̂ail = Tail

Attach a data node to the tail of a list when the list is in S2

S3[Ĥead/Head, T̂ail/Tail]
S2 ∧ Ĥead = Head ∧ T̂ail.next = Tail

Move Tail to its next node when the list is in S3

S3[Ĥead/Head, T̂ail/Tail] S5 ∧ Ĥead = Head ∧ T̂ail = Tail

Match the first unmatched data node when the list is in S3

S5[Ĥead/Head, T̂ail/Tail]
∃z.QNd(z,−, D, Head) ∗ S3 ∧ Ĥead = z ∧ T̂ail = Tail

Move Head to its next node when the list is in S5

S5[Ĥead/Head, T̂ail/Tail]
S4 ∧ Ĥead = Head ∧ T̂ail.next = Tail

Move Tail to its next node when the list is in S5

S4[Ĥead/Head, T̂ail/Tail] S5 ∧ Ĥead = Head ∧ T̂ail = Tail

Attach a data node to the tail of a list when the list is in S4

S4[Ĥead/Head, T̂ail/Tail]
∃z.QNd(z,−, D, Head) ∗ S2 ∧ Ĥead = z ∧ T̂ail = Tail

Move Head to its next node when the list is in S4

S2[Ĥead/Head, T̂ail/Tail]
S4 ∧ Ĥead.next = Head ∧ T̂ail = Tail

Match the first unmatched data node when the list is in S3

Fig. 4. State Transitions Rules for the Queue Mode

In addition, all the actions in R/G defined in Figure 2 are precise. The
portion of state that remain unchanged is not depicted in the actions, which
satisfy our requirement at Section 2.1. We use an invariant I to describe the
whole shared state: I = S2 ∪ S3 . . . ∪ S9 ∗ true .
In fact, the detailed state of the shared memory may be affected by GC,
because GC may periodically (or by other manners) reclaim nodes that are
not accessible to any thread. However, this makes no trouble, since we do
not introduce any auxiliary variable, GC will not affect the validity of our
assertions. In fact, GC may shrink some part of the heap originally covered by
the true part in invariant I, but this makes no effect to our R condition. For
this algorithm, GC may only reclaim nodes that previously in the queue but
not still. This discussion tells us, no thread will notice the state modification
caused by GC, and the definition of R is thus reasonable for SSQ.

2. Deduced Properties (Queue Mode)
Since the rely condition depicts all actions in the shared state (except for
node reclaimed by GC), the rest of the shared state will remain the same on
the assertion level. The following facts are trivially true:

Property 1. Under GC and the rely condition R defined in section 4.2, in
the SSQ, the state field of a node will not change until it is reclaimed by
GC.

14

Property 2. Under GC and the rely condition R defined in section 4.2, in
the SSQ, if the next field of a node is not null, it will not change until it is
reclaimed by GC .

Property 3. Under GC and the rely condition R defined in section 4.2, in
the SSQ, the value field of a matched data or request node will not change
until it is reclaimed by GC.

There are many interesting properties that can deduced from R, but we do
not want to mention the others here. We only list the properties used in our
proof. For example, as mentioned in Section 2.2, rset(x, s) is volatile when x
refers to some shared variable; however, because of Property 2, the next field
will not redirect to other node in this algorithm. Two rules for assignment
in the algorithm are proposed based on that consideration.

Theorem 2 (Assignment Rules for SSQ). Under GC and the rely con-
dition R defined in Section 4.2, the following tuples hold for SSQ algorithm:

R,G,Fd ` { ls(Head, Tail) ∗ true ∗ true} h := Head
{ ls(h, Head) ∗ true ∗ ls(Head, Tail) ∗ true ∗ true}

R,G,Fd ` { ls(Head, Tail) ∗ true ∗ true} t := Tail
{ ls(t, Tail) ∗ true ∗ ls(Head, Tail) ∗ true ∗ true}

Proof. This theorem is sound based on the assignment rule under GC in
Section 2.2 and property 2.

3. The Guarantee Condition (Queue Mode)
The guarantee condition specifies the shared state transitions caused by cur-
rent thread. As introduced in Section 2.1, the rely and guarantee conditions
should be compatible for a concurrent system.
The behavior of the enqueue method includes: attaching a data node to Tail
when Tail.next = null; moving Tail to its next node when Tail.next 6=
null; matching an unmatched request node that referred by Head.next;
More importantly, each of these actions caused by enqueue is also an action
included in R defined in Section 4.2. Based on this recognition, we define
G = R, which are sure compatible.

Thread’s Shared and Private States (Queue Mode)
In RGL, each thread in a system has a private state and can access the shared

state. As discussed in Section 4.2, now the shared state is the list of nodes in
queue, which is depicted by invariant I. Particularly, the state is composed with
three parts: list segment ls(Head, Tail); the node that is about to be taken into
the queue when Tail.next refers to it; the nodes that once in the queue but do
not in the segment ls(Head, Tail) as Head and Tail move and not reclaimed by
GC yet. The first two parts are depicted by S2 ∪ S3 . . . ∪ S9 in I, and the third
part is depicted by true in I.

15

Head = NULL

S1

DN

S2

DN ... NDN

Head

RN

S5

RN ... NRN

Head

S6S3

DN DN ... NDN RN RN ... RNRFN

Head

S7S4

D!N DN ... NDN R!N RN ... RNRFN

Head

DFN

Head

S

S

S2

S4

D!N D!N ... ND!N

Head

D!N RN RN ... NRN

Head

RN

D!N D!N ... ND!N

Head

RFN RN RN ... NRN

Head

DF!N

Head

DFN

Head

Fig. 5. The Stack’s States

The private part of the thread is the node that referred by offer before it
is attached to the queue in the shared part. Note the 1st and 6th actions in
Figure 4, the post assertion’s footprint of them is one node larger than their pre
counterpart. This is because the node that originally belongs to the private part,
is attached to the queue and belongs to the shared part after these transitions.

4.3 Proof of the Stack Mode

Predicates for State Assertions (Stack Mode)
As proof of the queue mode, predicates for states of the stack mode are de-

fined first. Node for the stack mode has an additional match field to indicate
which node is matched. A matched node is a node whose match filed is not null.
Therefore, we define assertion for a stack node as follows:

SNd(x, n, s, y) =̂ x 7→ {match 7→ n, state 7→ s, next 7→ y}

where state could be DATA, REQ, DATA F, or REQ F. Note that we omit data field
because it will not affect our proof.

There are totally seven states of the shared stack, all of which are illustrated
in figure 5. Note that in that figure, DF or RF additionally represent the state
of a node is DATA F or REQ F, which means that a data/request node is trying
to match with a request/data node, while F means fulfilling for short. Unlike
figure 1, the fist field of a node is match, but not data.

We define some predicates that depict stack segments, or special types of
stack segments:

sk(x) =̂ (emp ∧ x = null) ∨ (SNd(x,−,−, x.next) ∗ sk(x.next))
Dsk(x) =̂ (emp ∧ x = null) ∨ (SNd(x, null, DATA, x.next) ∗ Dsk(x.next))
Rsk(x) =̂ (emp ∧ x = null) ∨ (SNd(x, null, REQ, x.next) ∗ Rsk(x.next))

Where sk(x) asserts an empty stack or a stack with its top node pointed by
x; Dsk(x) additionally asserts that each node in the stack is unmatched data
node; Rsk(x) asserts that each node in the stack is unmatched request node.
Specifications of the seven states are given in Figure 6.

16

S1 = emp ∧ Head = null

S2 = Dsk(Head)

S3 = ∃p.SNd(Head, null, REQ F, p) ∗ Dsk(p)

S4 = ∃p, pn.SNd(Head, null, REQ F, p) ∗ SNd(p, !null, DATA, pn) ∗ Dsk(pn)

S5 = Rsk(Head)

S6 = ∃p.SNd(Head, null, DATA F, p) ∗ Rsk(p)

S7 = ∃p, pn.SNd(Head, null, DATA F, p) ∗ SNd(p, !null, REQ, p) ∗ Rsk(pn)

Fig. 6. Share States the Stack Mode

S2S5

S4

S3

S1

S6

S7

Fig. 7. Transition Graph of Shared States – Stack Mode

S2[Ĥead/Head, T̂ail/Tail] S2 ∧ Ĥead = Head.next
Attach a data node to the top of a stack when the list is in S2

S2[Ĥead/Head, T̂ail/Tail] S3 ∧ Ĥead = Head.next
Attach a request node to the top of a stack when the list is in S2

S3[Ĥead/Head, T̂ail/Tail] S4 ∧ Ĥead = Head

Match the top two nodes in a stack when the list is in S3

S4[Ĥead/Head, T̂ail/Tail]
S2 ∧ ∃p.Ĥead.next = p ∧ p.next = Head

Pop the top two nodes in a stack when the list is in S5

Fig. 8. State Transitions Rules for the Stack Mode

The Rely/Guarantee Conditions (Stack Mode)
As proof of the queue mode, we dig out the rely/guarantee conditions for the

stack mode in this section. In the stack mode, the shared state of this system is
the stack which can only be accessed by the shared variable Head. The shared
state transitions are shown in Figure 7.

Figure 8 shows actions that depict the state transitions between S2, S3, and
S4 in figure 7, while state transitions between S5, S6, and S7 are symmetric.
We define the rely condition for the stack mode, R, as the reflexive transitive
closure of all the actions above. Moreover, we define the guarantee condition,
G = R.

It is worth to mention that the shared state can be depicted by the invariant,
I = S2 ∪ S3 ∪ . . . S7 ∗ true . In a possible scenario, many threads are contending
to attach new nodes on the top of a stack, and the next fields of the new nodes

17

all point to the Head of the stack. However, only the thread who first set Head
to its new node can win the contention, others will retry the attachment again.
The linearisation point that a node transform from a thread’s private state to
the stack shared state, is only at the moment when Head is set to point to that
node.

4.4 The Proof, and What We Find

Now we are ready to carry on the proof. We list it in Appendix B. In the proof,
we need to use Hoare rules for restricted forms of jumps. Specifically, for a loop
with invariant I and exit condition q, the pre-condition and postcondition for
break are q and false respectively; and for continue, they are I and false,
respectively.

Semantically equivalent variance. It seems that many formal verifications
become, at the end, a work to re-ensure a recognized fact: the program is correct.
As a work targeting an industry-respected algorithm, could we expect more?
However, after this work, we can not only say the algorithm is correct, but also
report some interesting features of it that are hardly detected without a formal
work.

In the proof, we find that the pre/post conditions of lines 8 and 17 in Table 1,
i.e., lines marked by (†) (††) in Appendix B, are the same. These mean that, if we
deleted either or both of these lines, we would have an semantically equivalent
algorithm. More specifically, we take line 17 in Table 1 as example. This is the
second read for the shared variable Head. Clearly, Head may be modified between
line 5 and line 17 by other threads, but it may also be modified after line 17 and
before line 18. As a result, semantically, the read primitive in line 17 provides no
useful information, neither for our proof, nor for real execution. It is the same
case for line 20 in table 2.

Via emails, one of the algorithm’s designer, Doug Lea, agrees with us that the
algorithm is still correct if the two lines are deleted, but he thinks the deletions
will sacrifice performance. However, in our mind, this fact can only be confirmed
by extensive test running on benchmarks, and may depend on the circumstance.
Anyway, Lea’s feedback demonstrates the power of our techniques from another
side.

Now we discuss some issues related to the algorithms.
Fairness. For SSQ, fairness can be defined as, every call to enqueue/dequeue

and push/pop will eventually return when there exist corresponding calls. Un-
fortunately, SSQ is sure not fair. Suppose a thread calls enqueue, but each time
before it executes line 8 in Table 1, it is preempted by other one with a success
enqueue call. When the thread is rescheduled the guard of line 8 is not true.
In this scenario, the thread will loop forever, and its call to enqueue will never
return.

Liveness. Since SSQ is not fair, we cannot discuss its liveness from a sin-
gle thread’s view. Take enqueue as an example, for the whole system, we de-
fine a liveness condition as: if ls(Head, Tail) has at least one unmatched data
node, there will be one call to dequeue will return; for calls to enqueue, we

18

can have a similar definition. Note, since SSQ implements a synchronous queue,
for any return from dequeue/enqueue, its corresponding enqueue/dequeue re-
turns too. Based on our rely/guarantee conditions, this property holds for SSQ.
However, strict proof may need temporal logic, and a transition model of the
rely/guarantee conditions [3].

Modularity. Our proof is modular in the sense that it has no restriction on the
number of threads. The shared state can only be accessed by enqueue/dequeue.
All calls to these procedures share the same pair of rely/guarantee conditions.
The compatibility thus remains and is independent of the number of threads.

5 Related Work

People have worked on reasoning concurrent systems for decades. [17] is a pioneer
paper in this area, and many work follows. [18] defined semantics of concurrent
programs as a set of execution sequences, and a version of temporal logic for
reasoning properties; Hailpern [11] proposed a way for modular verification of
concurrent programs, and viewed a program as a set of modules that interact
via procedure calls.

A new story in this area began around the turn of the century, after the
seminal work of John C. Reynolds et al. on the Separation Logic (SL) [21]. Many
variants of SL and relating theories were blossomed since then. One remarkable
work is a model of Concurrent SL (CSL) proposed by S. Brookes [2], in which
many crucial concepts related to concurrency – resource, states, semantics, etc. –
were treated deeply and formally. The view of variables-as-resource was proposed
by Bornat et al. [1] and Parkinson et al. [19], where the ownership of variables
in every predicate is identified.

As a most important tool for reasoning concurrent programs, the rely-guarantee
method [14] has a longer history. It is one of the best studied techniques for com-
positional concurrent program verification. Rely guarantee has been combined
with SL by X. Feng et al. [8] and V. Vafeiadis et al. [25]. Recent theories intend
to improve rely guarantee reasoning in aspects of modularity and expressiveness,
as concurrent abstract predicate [6] and theories of refinement [22].

There are other works on proving lock-free algorithms. Doherty et al. [7]
proposed verification of lock-free queue algorithms using automata model. Colvin
et al. [4] found and fixed bugs of a lock-free algorithm with formal methods.

One character of our work is that it requires one to possess a deep understand-
ing about how the algorithm operates, as “explore the algorithm thoroughly, and
then construct a proof correspondingly”. Some recent works take the similar way,
e.g., Colvin [5], Parkinson [20]. There are also some works on automate verifi-
cation of lock-free algorithms, e.g., Yahav [26] and Vafeiadis [24]. We would like
to think about the combination of both approaches in the future.

On the another side, here we strictly proved the safety properties, and dis-
cussed its fairness and liveness. Strict proof of them seems need new techniques.
A. Gotsman et al. [10] and M. Fu et al. [9] incorporated rely guarantee logic

19

with temporal logic and facilitate reasoning of liveness property to some extend.
It is possible to incorporate their ideas with our approach too.

6 Conclusion and Future Work

In this paper, we developed an approach based on reply-guarantee reasoning, for
verifying CAS-based lock-free algorithms. The contributions of the work lie in
some aspects.

First, we illustrate an approach for verifying with garbage collection (GC).
Second, by packaging CAS commands into control commands, we ruled out use
of auxiliaries, and made the inference based on our rules more direct and clear.
The soundness of our inference rules were all proved. Third, new rules for control
flow commands are proposed to adapt to more scenarios. Finally, We verified
an important nontrivial industry-respected algorithm which has been adopted
in java.util.concurrent. We found some semantical equivalent variations of the
algorithm in the proof, which shows further the value of this work.

As the future work, we plan to enhance our approach in the first and for
reasoning CAS-based lock-free algorithms, plan to exercise our framework by
proving more lock-free algorithms, and compare further it with other works. We
also plan an implementation of the framework on some existing proof-assistant
systems, to support further the development of CAS-based lock-free algorithms.

References

1. Richard Bornat, Cristiano Calcagno, and Hongseok Yang. Variables as resource in
separation logic. Electr. Notes Theor. Comput. Sci., 155:247–276, 2006.

2. Stephen D. Brookes. A semantics for concurrent separation logic. In CONCUR,
pages 16–34, 2004.

3. Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic verification
of finite state concurrent systems using temporal logic specifications: A practical
approach. In POPL, pages 117–126, 1983.

4. Robert Colvin and Lindsay Groves. Formal verification of an array-based non-
blocking queue. In ICECCS, pages 507–516, 2005.

5. Robert Colvin and Lindsay Groves. A scalable lock-free stack algorithm and its
verification. In SEFM, pages 339–348, 2007.

6. Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson,
and Viktor Vafeiadis. Concurrent abstract predicates. In ECOOP, pages 504–528,
2010.

7. Simon Doherty, Lindsay Groves, Victor Luchangco, and Mark Moir. Formal veri-
fication of a practical lock-free queue algorithm. In FORTE, pages 97–114, 2004.

8. Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. On the relationship between con-
current separation logic and assume-guarantee reasoning. In ESOP, pages 173–188,
2007.

9. Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. Reasoning about
optimistic concurrency using a program logic for history. In CONCUR, pages
388–402, 2010.

20

10. Alexey Gotsman, Byron Cook, Matthew J. Parkinson, and Viktor Vafeiadis. Prov-
ing that non-blocking algorithms don’t block. In POPL, pages 16–28, 2009.

11. Brent Hailpern and Susan S. Owicki. Modular verification of concurrent programs.
In POPL, pages 322–336, 1982.

12. Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. Separation logic in the pres-
ence of garbage collection. In LICS, 2011.

13. William N. Scherer III, Doug Lea, and Michael L. Scott. Scalable synchronous
queues. Commun. ACM, 52(5):100–111, 2009.

14. Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress,
pages 321–332, 1983.

15. Cliff B. Jones. Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983.

16. Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput.
Sci., 375(1-3):271–307, 2007.

17. Susan S. Owicki and Divid Gries. Verifying properties of parallel programs: an
axiomatic approach. Commun. ACM, 19(5):279–285, 1976.

18. Susan S. Owicki and Leslie Lamport. Proving liveness properties of concurrent
programs. ACM Trans. Program. Lang. Syst., 4(3):455–495, 1982.

19. Matthew J. Parkinson, Richard Bornat, and Cristiano Calcagno. Variables as
resource in hoare logics. In LICS, pages 137–146, 2006.

20. Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. Modular verifica-
tion of a non-blocking stack. In POPL, pages 297–302, 2007.

21. John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS, pages 55–74, 2002.

22. Aaron Joseph Turon and Mitchell Wand. A separation logic for refining concurrent
objects. In POPL, pages 247–258, 2011.

23. Viktor Vafeiadis. Modular fine-grained concurrency verification. Technical Report
UCAM-CL-TR-726, University of Cambridge, Computer Laboratory, July 2008.

24. Viktor Vafeiadis. Automatically proving linearizability. In CAV, pages 450–464,
2010.

25. Viktor Vafeiadis and Matthew J. Parkinson. A marriage of rely/guarantee and
separation logic. In CONCUR, pages 256–271, 2007.

26. Eran Yahav and Shmuel Sagiv. Automatically verifying concurrent queue algo-
rithms. Electr. Notes Theor. Comput. Sci., 89(3), 2003.

A Proving Packaged-CAS Rules

We prove soundness of packaged-CAS commands by translating them into Generic
Parallel Programming Language [23] (GPPL) and using GPPL’s rules. The syntax and
inference rules of GPPL are given in Figure 9. GPPL is suitable for describing parallel
programs built from basic atomic actions. Command assume(B) checks whether B
holds, and reduces to skip if B holds, otherwise loops forever. Now we give detailed
proofs for some rules.

Theorem 3 (IF-CAS Sound). Rule (IF-CAS) is sound based on the semantics of
GPPL.

21

C ::= skip Skip | c Basic
| C1; C2 Sequential | C1 + C2 Choice
| C∗ Looping | 〈C〉 Atomic
| C1 ‖ C2 Parallel

c ::= assume(B) Assumption | x := e Assignment
| x := [e] Lookup | [e] := e Mutation
| x := new() Allocation | dispose(e) Deallocation

(WEAKEN) (FRAME)

R′,G′ ` {p′}C {q′} R ⊆ R′

p ⇒ p′ G′ ⊆ G q′ ⇒ q
R,G ` {p}C {q}

R,G ` {p}C {q}
stable(r,R∪ G),

R,G ` {p ∗ r}C {q ∗ r}

(DISJ) (EX)

R,G ` {p1}C {q}
R,G ` {p2}C {q}

R,G ` {p1 ∨ p2}C {q}

x /∈ fv(q, C,R,G)
R,G ` {p}C {q}
R,G ` {∃x.p}C {q}

(CONJ) (ALL)

R,G ` {p}C {q1}
R,G ` {p}C {q2}

R,G ` {p}C {q1 ∧ q2}

x /∈ fv(p, C,R,G)
R,G ` {p}C {q}
R,G ` {p}C {∀x.q}

(SKIP) (LOOP)
stable(p,R)

R,G ` {p} skip {q}
R,G ` {p}C {p}
R,G ` {p}C∗ {p}

(SEQ) (CHOICE)

R,G ` {p}C1 {r}
R,G ` {r}C2 {q}

R,G ` {p}C1; C2 {q}

R,G ` {p}C1 {q}
R,G ` {p}C2 {q}

R,G ` {p}C1 + C2 {q}

(PRIM) (ATOMR)

`SL {p}C {q}
R,G ` {p}C {q}

∅,G ` {p} 〈C〉 {q}
stable(p, q,R)
R,G ` {p} 〈C〉 {q}

(ATOM)

precise(P, Q) R,G ` {P ∗ P ′}C {Q ∗Q′} P Q ⊆ G
∅,G ` {P ∗ F ∗ P ′} 〈C〉 {Q ∗ F ∗Q′}

Fig. 9. Syntax/Inference Rules of GPPL [23]

Proof. Firstly, we translate the packaged-CAS command into a piece of GPPL code
which preserves the semantics:

if cas(l, o, n) then C1 else C2

≡ 〈assume([l] = o); [l] := n〉; C1 + assume([l] 6= o); C2

22

1. p ⇒ l 7→ − ∗ true ∗ true premise
2. `SL {p}assume([l] = o) {p ∗ l 7→ o ∗ true }

1, Separation logic
3. ∅,G ` {p}assume([l] = o) {p ∗ l 7→ o ∗ true } 2, PRIM
4. ∅,G ` {p ∗ l 7→ o ∗ true } [l] := n {r1} premise
5. ∅,G ` {p}assume([l] = o); [l] := n {r1} 3,4, SEQ
6. ∅,G ` {p} 〈assume([l] = o); [l] := n〉 {r1} 5, ATOM
7. stable({p, r1, r2},R) premise
8. R,G ` {p} 〈assume([l] = o); [l] := n〉 {r1} 6,7, ATOMR
9. R,G ` {r1}C1 {q} premise
10. R,G ` {p} 〈assume([l] = o); [l] := n〉; C1 {q} 8,9, SEQ

11. `SL {p}assume([l] 6= o) {p ∗ l 7→ o′ ∗ true ∧ o 6= o′ }
1, Separation logic

12. p ∗ l 7→ o′ ∗ true ∧ o 6= o′ ⇒ r2 premise
13. `SL {p}assume([l] 6= o) {r2} 11,12, SL-WEAKEN
14. ∅,G ` {p}assume([l] 6= o) {r2} 13, PRIM
15. R,G ` {p}assume([l] 6= o) {r2} 7,14, ATOMR
16. R,G ` {r2}C2 {q} premise
17. R,G ` {p}assume([l] 6= o); C2 {q} 15,16, SEQ
18. R,G ` {p} 〈assume([l] = o); [l] := n〉;

C1 + assume([l] 6= o); C2 {q} 10,17, CHOICE

Fig. 10. Proof of Rule (IF-CAS)

The packaged-IF-CAS can be viewed as syntactic sugared form of the GPPL codes.
Now we need to prove the soundness of following rule:

∅,G ` {p ∗ l 7→ o ∗ true } [l] := n {r1}
p ∗ l 7→ o′ ∗ true ∧ o′ 6= o ⇒ r2

R,G ` {r1} C1 {q} R,G ` {r2} C2 {q}
p ⇒ l 7→ − ∗ true ∗ true stable({p, q, r1, r2},R)

R,G ` {p} 〈assume([l] = o); [l] := n〉; C1

+ assume([l] 6= o); C2 {q}

To begin with, we know that if l is a shared location in the footprint of p, {p}assume([l] =
o) {p ∗ l 7→ o ∗ true } gives the axiomatic semantics of assume in Separation Logic.
It is intuitively sound based on the operational semantics of assume: if the initial
state, say σ 2 l 7→ o ∗ true ∗ true, the assume primitive loops forever, and the
triple holds trivially; otherwise, the assume terminates without changes the state,
σ |= p ∗ l 7→ o ∗ true holds because σ |= p and σ |= l 7→ o ∗ true ∗ true. Symmetri-

cally, {p}assume([l] 6= o) {p ∗ l 7→ o′ ∗ true ∧ o 6= o′ }.
We list the proof in Figure 10. For the rule PRIM used in line 3 and 14, we give

some explanation in footnote1.

Theorem 4 (WHILE-N-CAS Sound). Rule (WHILE-N-CAS) is sound based on
the semantics of GPPL.

1 The PRIM rule in [23] requires primitive commands do not access the shared state,
which is not suitable in many occasions. To preserve soundness, we restrict R to be
∅ when the primitive command access the shared state.

23

1. `SL {p} assume(B) {p ∧B} Separation Logic
2. p ∧B ⇒ r1 premise
3. `SL {p} assume(B) {r1} 1,2, Separation Logic
4. ∅,G ` {p} assume(B) {r1} 3, PRIM
5. stable({p, r1, r2},R) premise
6. R,G ` {p} assume(B) {r1} 4,5, ATOMR
7. R,G ` {r1}C1 {q} premise
8. R,G ` {p} assume(B); C1 {q} 6,7, SEQ
9. R,G ` {p} assume(¬B); C2 {q} similarly proved as 8
10. R,G ` {p} assume(B); C1 + assume(¬B); C2 {q}

8,9, CHOICE

Fig. 11. Proof of Rule (IF)

Proof. (Sketch) The proof of (WHILE-N-CAS) is the same as proof for (IF-CAS) in
general. The packaged command is translated as follows:

do C while !cas(l, o, n)

≡ (C;assume([l] 6= o))∗; C; 〈assume([l] = o); [l] := n〉

Here we need to prove:

∀n ≥ 0.

R,G ` {p}C {r} p ⇒ l 7→ − ∗ true ∗ true
∅,G ` {r ∗ l 7→ o ∗ true } [l] := n {q}

r ∗ l 7→ o′ ∗ true ∧ o′ 6= o ⇒ p
stable({p, q, r},R)

R,G ` {p} (C;assume([l] 6= o))n; C;
〈assume([l] = o); [l] := n〉 {q}

This can be proved by induction.

Theorem 5 (IF Soundness). Rule (IF) is sound based on the semantics of GPPL.

Proof. The packaged command is translated as follows:

if B then C1 else C2

≡ assume(B); C1 + assume(¬B); C2

The task is to prove:

p ∧B ⇒ r1 p ∧ ¬B ⇒ r2 stable({r1, r2, p},R)
R,G ` {r1} C1 {q} R,G ` {r2} C2 {q}
R,G ` {p} assume(B); C1 + assume(¬B); C2 {q}

As previous proofs, we assume `SL {p} assume(B) {p ∧ B} defines the axiomatic
semantics of the primitive assume in separation logic.

Proof are listed in Figure 11.

Theorem 6 (WHILE Soundness). Rule (WHILE) is sound based on the semantics
of GPPL.

24

Base Case: n = 0, trivially holds
Inductive Step:
1. {p} (assume(B); C)n {p} Inductive Assumption
2. `SL {p} assume(B) {p ∧B} Separation Logic
3. p ∧B ⇒ r premise
4. `SL {p} assume(B) {r} 2,3, Separation Logic
5. ∅,G ` {p} assume(B) {r} 4, PRIM
6. stable({p, r},R) premise
7. R,G ` {p} assume(B) {r} 5,6, ATOMR
8. R,G ` {r} C {p} premise
9. R,G ` {p} assume(B); C {p} 7,8, SEQ
10. R,G ` {p} (assume(B); C)n+1 {p} 1,9, SEQ

Fig. 12. Proof of (?)

Proof. The packaged command is translated as follows:

while B do C

≡ (assume(B); C)∗;assume(¬B)

The task is to prove:

p ∧B ⇒ r p ∧ ¬B ⇒ q
R,G ` {r} C {p} stable({p, q},R)

R,G ` {p} (assume(B); C)∗;assume(¬B) {q}

Further, the task is decomposed as:

∀n.
. . .

R,G ` {p} (assume(B); C)n {p} (?)

. . .

R,G ` {p} assume(¬B) {q} (??)

Proof of (??) is trivial, and inductive proof of (?) is listed in Figure 12.

B Proof Listing

Proof of the Queue Mode (Enqueue)
Based on R and G defined in Section 4.2, and rules for packaged-CAS-command

and assignment under GC, we list the whole proof for synchronous queue of queue
mode, where the invariant is I = S2 ∪ S3 . . . ∪ S9 ∗ true .

{I}
offer = new Node(e, DATA);

{I ∗ Nd(offer, e, DATA, null)}
while true {

{I ∗ Nd(offer, e, DATA, null)}
t = Tail;

h = Head;

{I ∗ Nd(offer, e, DATA, null)

25

∗ ls(t, Tail) ∗ true ∗ ls(h, Head) ∗ true } ≡ G
if (h == t || t.state == DATA) {

{G ∧ (h = t ∨ t.state = DATA)} ≡ H
n = t.next;

{H ∗ (n = null ∨ Nd(t,−,−, n) ∗ Nd(n,−,−, null) ∗ true)}
(1)

if (t == Tail){ (†)
if (n != null) {

{H ∗ Nd(t,−,−, n) ∗ Nd(n,−,−, null) ∗ true }
casTail(t, n); (2)
{I ∗ Nd(offer, e, DATA, null)}

}
else

{H ∧ n = null}
if(t.casNext(n, offer)) {

{I ∗ ls(h, Head) ∗ true

∗ Nd(t,−,−, offer)∗
Nd(offer,−, DATA,−) ∗ true

} (3)

casTail(t, offer);

{I ∗ Nd(offer,−, DATA,−) ∗ true

∗ ls(h, Head) ∗ true }
while (offer.date != null));

/* spin */;
{I ∗ Nd(offer, null, DATA,−) ∗ true

∗ Nd(h, Head) ∗ true } (4)
h = head; (††)
{I ∗ Nd(offer, null, DATA,−) ∗ true

∗ ls(h, Head) ∗ true }
if (offer == h.next)

{I ∗ Nd(Head,−,−, offer) ∗
Nd(offer, null, DATA,−) ∗ true

}

casHead(h, offer);
{I}
return;

}
}

} else{
{G ∧ h! = t ∧ t.state = REQ} ≡ J
n = h.next;

{J ∗ (n = null ∨ Nd(h,−,−, n) ∗ Nd(n,−,−,−) ∗ true)}
if(t != Tail || h != Head || n == null) (5)

continue;

{J ∗ Nd(h,−,−, n) ∗ Nd(n,−, REQ, null) ∗ true } (6)
if(n.casData(null, e)) {

{J ∗ Nd(h,−,−, n) ∗ Nd(n, e, REQ, null) ∗ true } (7)
casHead(h, n);

{I}
return;

}else

26

{J ∗ Nd(t,−,−, n) ∗ Nd(n, !null, REQ, null) ∗ true }
casHead(h, n);

{I ∗ Nd(offer, e, DATA, null)}
}

}
Discussions are given to lines marked with numbers:

(1) t.next = n is stable under R (Property 2).
(2) casTail(t, n) is translated to if(casTail(t,n)) then skip; else skip;

and rule IF-casTail is applied. Note:
{H ∗ Nd(t,−,−, n) ∗ Nd(n,−,−, null) ∗ true∧
Tail = t}

Tail:= n;
{I ∗ Nd(offer, e, DATA, null)}

(3) Here, the node referred by offer was transformed from private state to
shared state. Note that:
{H ∧ n = null ∧ t.next = n}
{H ∧ t = Tail ∧ Tail.next = null}
t.next= offer;

{I ∗ ls(h, Head) ∗ true ∗ Nd(t,−,−, offer)∗
Nd(offer,−, DATA,−) ∗ true }

offer.state = DATA is stable under R (Property 1); t.next = offer is
stable under R (Property 2).

(4) The offer.data = null is stable under R (Property 3).
(5) Only n = null is stable under R because n is private. While the other

t! = Tail and h! = Head are not stable under R because Head and Tail are
shared.

(6) This assertion is deduced from one branch of the upper if-clause other than
continue. For continue branch, note that post-condition of continue is
false.

(7) The n.data = e is stable under R (Property 3).

Besides, the algorithm is semantically equivalent if we delete the two lines
that marked (†) (with corresponding close-brace) and (††). We find this fact
because the pre- and post-conditions of these lines are the same. The fact has
been confirmed with the algorithm’s designer.

Proof of the Stack Mode (Push)
Based on the rely/guarantee conditions that defined in section 4.3, we list

proof of synchronous queue for the stack mode in here, where the invariant
I = S2 ∪ S3 ∪ . . . S7 ∗ true .
{I}
d = new Node(e, DATA);

{I ∗ SNd(d, null, DATA, null)}
while true {

{I ∗ SNd(d, null, DATA,−)}
h = Head;

27

{I ∗ SNd(d, null, DATA,−) ∗ (h = null ∨ SNd(h,−,−,−) ∗ true)}
if (h == null || h.state == DATA) {

{I ∗ SNd(d, null, DATA,−) ∗ (h = null ∨ SNd(h,−, DATA,−) ∗ true)}
d.next = h;

{I ∗ SNd(d, null, DATA, h) ∗ (h = null ∨ SNd(h,−, DATA,−) ∗ true)}
if (!casHead(h, d))

{I ∗ SNd(d, null, DATA,−)}
continue;

{I ∗ SNd(d, null, DATA, h) ∗ true }
while (d.match == null)

/* spin */;

{I ∗ SNd(d, !null, DATA, h) ∗ true }
h = Head;

{I ∗ SNd(d, null, DATA,−) ∗ true ∗ (h = null ∨ SNd(h,−, DATA,−) ∗ true)}
if(h != null && h.next = d)

{I ∗ SNd(h,−, DATA, d) ∗ SNd(d, null, DATA,−) ∗ true)}
casHead(h, d.next);
{I}

{I}
return;

} else if (h.state = REQ){
{I ∗ SNd(d, null, DATA,−) ∗ SNd(h,−, REQ,−) ∗ true }
f = new Node(e, DATA F, h);
{I ∗ SNd(d, null, DATA,−) ∗ SNd(f, null, DATA F, h) ∗ SNd(h,−, REQ,−) ∗ true }
if (!casHead(h, f))

continue;
{I ∗ SNd(d, null, DATA,−) ∗ SNd(f, null, DATA F, h) ∗ SNd(h,−, REQ,−) ∗ true }
h = f.next; (†††)
n = h.next;

{I ∗ SNd(d, null, DATA,−) ∗ SNd(f, null, DATA F, h) ∗ SNd(h,−, REQ, n) ∗ true }
h.casMatch(null, f);

{I∗SNd(d, null, DATA,−)∗SNd(f, null, DATA F, h) ∗ SNd(h, !null, REQ, n) ∗ true }
casHead(f, n);

{I ∗ SNd(d, null, DATA,−)}
return;

} else {
{I ∗ SNd(d, null, DATA,−) ∗ SNd(h,−, DATA F ∨ REQ F,−) ∗ true }
n = h.next;

nn = n.next;

{I∗SNd(d, null, DATA,−)∗SNd(h,−, DATA F ∨ REQ F, n) ∗ SNd(n,−,−, nn) ∗ true }
n.casMatch(null, h)

{I∗SNd(d, null, DATA,−)∗SNd(h,−, DATA F ∨ REQ F, n) ∗ SNd(n, !null,−, nn) ∗ true }
casHead(h, nn);

{I ∗ SNd(d, e, DATA,−)}
}

}

28

Note that the algorithm is also semantically equivalent if the line that marked
by (†††) is deleted. The reason is that the pre- and post-conditions of that line
are the same.

29

