
OO Separation Logic and
Specification/Verification of OO Programs1

Liu Yijing and Qiu Zongyan

LMAM and Department of Informatics, School of Mathematical Sciences, Peking University
Email: {liuyijing,qzy}@math.pku.edu.cn

Abstract

With a general storage model that reflects features of object oriented (OO) languages with pure
reference semantics, we develop an OO Separation Logic (OOSL) for specifying and verifying
OO programs. We define the semantics for OOSL, and show that it has essential and useful prop-
erties for OO reasoning. We then investigate some important problems related to specification
and verification of OO programs, and develop an OO language with specification features and a
bundle of verification rules for reasoning programs. We define the syntactic and scope rules, as
well as the inheritance and overriding rules for the specification facilities, and an important con-
cept named specification predicate to connect abstract specification with implementation details.
We use a set of typical OO programs to show the potential and power of our framework, how
the specification facility supports abstractions, and how the specification and verification can be
done in a modular manner.

Keywords: Specification, Verification, OO, Separation Logic

1. Introduction

Object Orientation (OO) is a mainstream paradigm in software development. For increas-
ingly demand on reliability and correctness recently, the requirement for powerful and useful
techniques for specifying/verifying OO programs become even urgent. Generally speaking, there
are two key issues mutually depending on each other: (1) building proper formal models for OO
languages, and (2) developing useful methods to specify and verify OO programs.

Core OO features, saying modularity, encapsulation, inheritance, polymorphism, etc. are
extremely important in the development of complex systems. Their suitable application can
enhance scalability of systems greatly. However, encapsulation and modularity imply informa-
tion hiding and invisible implementation details, and polymorphism enables dynamic behaviors.
They bring also great challenges to verification, because verification is a static procedure, which
needs inherently knowledge of implementation details.

The first formal concept to deal with inheritance and polymorphism is behavioral subtyp-
ing [20], which has become a useful guide for good OO programming, as well as for specification
and verification. An OO program with behavioral subtyping feature gives more support to reason
its behavior statically and modularly. And abstraction is the other key to modular verification of
OO programs, many concepts have been proposed, e.g., model field/abstract field [9, 18, 22],
data group [19], abstract predicate family [24, 25], and pure methods [28].

Many early works on OO verification targeted programs with class structures but carrying
computations of numerical values, for example [16, 3]. People investigated many OO issues in
this circumstance, and brought to light many interesting problems related to data abstraction,
class inheritance, etc. However, working only up to this level is not enough. For verifying more
wide spectrum of OO programs, we must take the mutable object structures into account. For
this ambitious goal, many new issues need to be (re)considered and conquered.

As the first step, we need a memory model to abstract mutable object structures properly. For
reasoning OO programs, we need a logic to describe the states of OO programs and the effects
made by commands on the states. Recently, many people think that Separation Logic [27] (SL
for short) is superior here, either used directly [21], or adjusted [24].

However, as pointed by Parkinson [25], the early works do not address the inheritance in a
satisfactory manner. They either restricts behaviors of subclasses, or requires re-verification of
inherited methods. To solve the problem, Parkinson [25] developed a framework, while Chin [10]
had a similar idea in the same time. Both suggested to use dual specifications for each method,
to avoid re-verification in the present of inheritance.

In this report, we present a wide-range study on the specification/verification of OO pro-
grams, a developed OO memory model, a revised separation logic for describing states and tran-
sitions of OO program, a gradually developed verification framework, a set of working examples
which show many typical and important specification and verification issues, as well as the way
our framework addresses them.

In the first part of this report, we build the theoretical foundation for specification and verifi-
cation of OO programs. We design a special separation logic OOSL (for OO Separation Logic)
for describing program states and properties of the states, i.e., the sets of the states. We develop
a classical semantics for the logic, but not the intuitionistic semantics. This make the logic pos-
sible to describe precise properties of OO states. In addition, we design a model OO language,
named µJava, which captures most important OO features, and give it a weakest precondition
semantics (WP semantics) using the OOSL. We have proved that the semantics is both sound
and complete, with respect to an operational semantics for µJava. This part of the work gives us
a solid foundation for carrying on the work for specification and verification of OO programs.

As the second part of this report, we focus on program verification related issues in the OO
world. We define first the concepts of method specifications and correctness of methods, then
the refinement relation between specifications, all based on the WP semantics. Then we go into
a deep study on the specification and verification of OO programs, taking µJava programs in the
work. We develop gradually a set of Hoare-style inference rules for reasoning OO programs, and
obtain at last a framework which supports modular specification and verification, in the present of
information hiding of classes, as well as method inheritance and overriding. One fundamental is
to support the abstract-level specification, and use specification predicates to connect the abstract
specification with the implementation details.

To give an intuition for these, we illustrate them by a simple example. Fig. 1 gives a typical
piece of OO code, where class Node defines nodes holding boolean values; Queue defines a kind
of simple queues, where field hd holds a linked list of Node objects with a head node, and the
node hd.nxt holds the first value in the queue. Method enqueue inserts a value into the queue.
EQueue is a subclass of Queue which defines faster queues. A new field tl in EQueue object
points to the last node of its list, and a new enqueue overrides the old one in Queue.

To specify and verify a program as this one, we need to consider some important issues. Most
of them are general in the specification and verification of OO programs:

2

class Node : Object {
public Bool val; public Node nxt;
Node(Bool b) { this.val = b; this.nxt = null; }

}

class Queue : Object {
Node hd;
Queue(){Node x; x = new Node(false); this.hd = x; }
void enqueue(Bool b) {

Node p, q, n; p = this.hd; q = p.nxt;
while (q!=null){ p = q; q = p.nxt; }
n = new Node(b); p.nxt = n;

}

}

class EQueue : Queue {
Node tl;
EQueue() {

Node x;
x = new Node(false);
this.hd = x; this.tl = x;

}

void enqueue(Bool b) {
Node p, n;
p = this.tl; n = new Node(b);
p.nxt = n; this.tl = n;

}

}

Figure 1: Example OO code: Queue and EQueue

• In OO field, developers often distinguish interfaces from implementations, to prevent close
dependence on implementation details, achieve high degree of modularity, and organize
inheritance hierarchy. These ideas may also be important in formal specification and veri-
fication. As an example, for method enqueue, we may sometimes better say abstractly its
effect on a sequence of values in the queue only, but nothing about the linked list.

• Having abstract specifications, we need a way to link them with code. Clearly, the link
should involve implementation details in general, but as in programming, we may want
to prevent details from leaking out. For example, for Queue, we need to link the abstract
queue concept to the concrete linked lists.

• Issues above are general to programs with data abstraction. For OO, we must consider
inheritance and overriding. Having Queue well-specified and verified, when we introduce
subclass EQueue, it is desired that existing specifications and verifications can be reused,
because EQueue is behavior subtype of Queue. However, now we have a very different
implementation. On one side, in sharing a same specification, it means that the same
assertion should have different meaning, thus comes the polymorphic specification. On the
other side, we need to connect the specification with the new implementation. In addition,
the inference rules must support these.

Our specification and verification framework embodies above ideas. A fully specified pro-
gram of Fig. 1 using our notation is given in Fig. 16. In fact, by a set of syntactic and semantic
rules, our framework introduce polymorphism into the specification and verification world. Due
to our limited knowledge, this is the first work which makes this idea clear and explicit.

The main contributions of the work include:

• We give an abstract memory model to capture important characters of object structures
of OO programs, and a new definition of separation for expressing both field-level and
object-level problems. Empty objects can be naturally represented and reasoned.

• We develop a revised separation logic, OO Separation Logic (OOSL), for expressing OO
program states and properties. User-defined predicates and logic environment are clearly
defined, and the semantics of the logic is defined as a least fix-point which is guaranteed
existing. OOSL adopts classical semantics, then is more expressive than the logic with

3

intuitionistic semantics. This makes the logic capable to specify precise properties of OO
programs. Properties of OOSL are explored, especially separated assertions, that is very
useful in reasoning OO programs.

• We develop a verification framework which supports abstract specification for informa-
tion hiding and encapsulation. We propose a concept specification predicate to connect
abstract specification with implementation details within a class. To support modularity,
we integrate specification facilities with important OO features, and define their scope
rules (visibility), as well as rules for their inheritance, overriding, etc. Based on this mech-
anisms, we show only one specification for each method is enough to support modular
verification, and avoid re-verification in the present of inheritance.

• By embedding the verification framework into a small OO language, we show how infor-
mation hiding, inheritance, overriding, etc. can be integrated with specification features to
enhance verification abilities for OO programs, and illustrate that these concepts are im-
portant not only in programming, but also in specifying and verifying OO programs. We
define a bundle of Hoare-style rules for generating proof obligations.

• Examples are developed to illustrate, in our framework, how the specification and veri-
fication can be carried out modularly, and how the gaps between a verification logic and
implementation details are bridged smoothly.

On most notable point is, our work shows that the polymorphism is very important and useful
in the specification and verification world. Based on this novel idea, we illustrate that abstract
specifications, specification predicates and relative rules form a solid base for modular specifica-
tion and verification of OO programs.

The rest of this report is organized as follows: We introduce our memory model for OO
programs in Section 2, and then the object oriented separation logic (OOSL) in Section 3. We
define a small OO language µJava in Section 4, as well as its WP semantics with a discussion
on properties of this semantics, especially the soundness and completeness theorems. Then we
try to develop a modular specification and verification framework for µJava. Section 5 introduce
the concepts and notations of method specification and refinement. Section 6 defines a basic
verification framework, which is powerful enough to do body verification but not ready for class
inheritance. We develop abstract and polymorphic specification techniques in Section 7 and
show these techniques really support the modular verification. In Section 8, we investigate the
concept ad hoc inheritance carefully and add explicit code reuse to enrich the semantics of class
inheritance. At last, we discuss some related work and conclude.

2. An OO Storage Model

Now we introduce a storage model for OO programs with pure reference nature. It is similar
to the classical Stack-Heap model. We assume three basic sets Name, Type and Ref, where

• Name: an infinite set of names, used for naming constants, variables, fields, etc. Three
special names, true, false, null ∈ Name, denote boolean and null constants.

• Type: an infinite set of types, including predefined types and user-defined types (classes).
We use T1 <: T2 to state that T1 is a subtype of T2, perhaps they are the same. We assume
three predefined types Object, Null and Bool, where Object is the super type of all

4

classes, Null is the subtype of all classes, and Bool is the type of boolean objects. Given
a type, we can obtain its field-type relation by function fields : Type → Name → Type;
and we define fields(Object) = fields(Null) = fields(Bool) = ∅. Other predefined types,
such as Integer, can be added easily, but we consider only boolean type here.

• Ref: an infinite set which are the identities of objects. Corresponding to Name constants,
Ref contains three basic references rtrue, rfalse, and rnull, where rtrue, rfalse refer to
Bool objects, and rnull never refers to any object. We assume two primitive functions for
Ref:2 For any r1, r2 ∈ Ref, eqref(r1, r2) = true iff r1 is same to r2. type : Ref → Type,
gives the type of object referred by reference in the running time. We define type(rtrue) =
type(rfalse) = Bool, and type(rnull) = Null.

We assume a function dtype, where dtype(v) gives the declaration type of constant or vari-
able v. In fact, Name, Type and functions (relations) defined on them, such as type, dtype, <:
and fields, are the basic facilities for describing states of OO programs. They gives the static
information of programs, especially the type information.

We define the storage model as (here “⇀fin” denotes finite partial functions.):

Store =̂ Name ⇀fin Ref Opool =̂ Ref ⇀fin Name ⇀fin Ref State =̂ Store × Opool

We will useσ and O, possibly with subscript, to denote elements of Store and Opool respectively.
A store σ ∈ Store maps variables and constants to references, and an object pool O ∈ Opool
maps references to field-reference pairs. A runtime state is a pair s = (σ,O) ∈ State. For every
σ ∈ Store, we assume that σtrue = rtrue, σfalse = rfalse, and σnull = rnull.

We will use r, r1, . . . to denote references, and a, a1, . . . fields of objects. An element of O is a
pair (r, f), where r is a reference to some object o, f is a function from fields of o to their values
(also references). For the “domain” of O, we sometimes want to say a subset of Ref associated
with a set of objects as discussed above. On the other hand, we sometimes want to say a subset
of Ref × Name associated with a set of values. We will use dom O for the first case, and define
dom2 O =̂ {(r, a) | r ∈ dom O, a ∈ dom O(r)} to get the reference-field pairs of non-empty objects
in O.

For the program states to be meaningful, we need some regularity. Now we define the concept
that a state is consistent with the static information of the program, i.e., the well-typed state.

Definition 1 (Well-typed Store). A store σ is well-typed iff all variables hold valid values.
Foramlly

∀v ∈ domσ · type(σ(v)) <: dtype(v).

Definition 2 (Well-typed Opool). An Opool O is well-typed iff

• ∀(r, a) ∈ dom2 O · a ∈ Att(r) ∧ type(O(r)(a)) <: fields(r)(a), and

• ∀r ∈ dom O · Att(r) = ∅ ∨ (Att(r) ∩ dom O(r) , ∅).

where Att(r) =̂ dom fields(type(r)).

2For example, we can define every reference as a pair (t, id) where t ∈ Type and id ∈ N, define eqref as pair
equivalence, and type(r) = r. f irst.

5

Note that fields(type(r)) is a function from field set (i.e., the set of an object to which r points)
to Type. The first condition requires that each field in O is valid according to its object, and holds
a value of a correct type. The second condition requires when O contains a non-empty object
(according to the type of the object), then it must contains at least one field of the object. Thus
we can identify empty objects.

Suppose we have dom fields(C) = {a1, a2, a3}, and a program state where type(r1) = Object,
type(r2) = C. Then is is easy to know that O1 = {r1 7→ ∅, r2 7→ {a1 7→ rnull, a2 7→ rnull}} is a
well-typed Opool, but O2 = {r1 7→ ∅, r2 7→ ∅} is not, because type(r2) = C has fields. Further,
we can calculate that dom O1 = {r1, r2}, and dom2 O1 = {(r2, a1), (r2, a2)}.

Definition 3 (Well-typed State). A state s = (σ,O) is well-typed iff both σ and O are well-typed.

We will only consider well-typed states from now on.
For convenience, we will use notation (r, {(a, -)}) to denote an (or a part of an) object, and use

(r, a, -) to denote a cell (i.e., the state of a field of an object) in the Opool. Here “-” represents
some value which we do not care about in the context.

We define a special overriding operator ⊕ on Opool:

(O1 ⊕ O2)(r) =̂
{

O1(r) ⊕ O2(r) if r ∈ dom O2

O1(r) otherwise

where the ⊕ on the right hand side is the standard function overriding operator. For example,
O1 ⊕ {(r, a, r′)} gives a new Opool, where only the value of field a of the object pointed by r is
modified (to r′).

As in Separation Logic, we use O1 ⊥ O2 to indicate that Opools O1 and O2 are separated
from each other. However, the definition for ⊥ is adapted for separating object pools,

O1 ⊥ O2 =̂ ∀r ∈ dom O1 ∩ dom O2·

O1(r) , ∅ ∧ O2(r) , ∅ ∧ dom (O1(r)) ∩ dom (O2(r)) = ∅.

That is, if a reference, referring to some object o, is in both dom O1 and dom O2, then both
O1 and O2 must contain non-empty subsets of o’s fields, respectively (the well-typedness also
guarantees this); and these two subsets must be disjoint. This means that we can separate fields
of an object in the Opool (providing that the object is not empty). Additionally, an empty object
cannot be in two separated Opools at the same time, because it cannot be partitioned. We will
use O1 ∗ O2 to indicate the union of O1 and O2 (O1 ⊕ O2), when O1 ⊥ O2.

As an example, suppose,

O1 = {(r1, ∅), (r2, {(a1, rnull)})}, O2 = {(r2, {(a2, rnull)})},
O3 = {(r1, ∅), (r2, {(a2, rnull)})}.

We have O1 ⊥ O2, although each of them contains a part of object pointed by r2. But O1 6⊥ O3
because r1 ∈ dom O1 ∩ dom O3, while O1(r1) = {}. Additionally, O2 6⊥ O3, because r2 ∈

dom O2 ∩ dom O3, while dom (O2(r2)) ∩ dom (O3(r2)) = {a2}.
Clearly, above definition for the separation takes the basic cell (r, a, r′) as an unit, and treats

also carefully the empty objects. The separation here is a revision of separation concept in
Separation Logic, and takes the characteristics of OO programs into account. This definition
plays an important role in our work.

6

3. An OO Separation Logic

To facilitate OO features, almost all OO languages adopt pure reference models, where values
of variables and object fields are references to objects3. A special case is that their values can be
null to mean referring to no object. This model induces a great possibility of sharing: different
variables can share references, so do the fields, and they can have sharing with variables. For
reasoning these features, we define an OO Separation Logic (OOSL in short).

3.1. Assertions Language

We use Ψ for the set of all assertions of OOSL, and ψ, ψ1, . . . as typical assertions. The
assertion language of OOSL is similar to what in Separation Logic, with some revisions and
extensions, to fit the special needs of OO programs.

Basic assertions in OOSL are of two kinds, namely primitive assertions and user-defined
assertions. The primitive assertions here have the forms defined by following rules:

α ::= true | false | v = r | r1 = r2 | r : T | r <: T β ::= emp | r1.a 7→ r2 | obj(r)

where v denotes a variable or constant name, r denotes a reference. In fact, here r serves as either
“a reference” or “a reference variable” (a logic variable).

As shown, primitive assertions fall into two categories, where

• α denotes the assertions which are independent of the Opools. As said before, we take
references as atomic values in the logic. For two references r1, r2, r1 = r2 holds iff
eqref(r1, r2). Here r = v denotes the value equality. We treat r = v the same as v = r.
Assertion forms r : T and r <: T states that reference r refers to an object of exactly type
of T , or of some subtype of T respectively.

• β denotes the assertions involving Opools. Empty and singleton assertions take the similar
forms as in Separation Logic. As said before, a cell in the Opool is a field-value binding
of an object denoted by a reference, thus the singleton assertion takes the form r1.a 7→ r2.
In addition, assertion obj(r) indicates that r refers to a complete object of type T , and the
Opool contains exactly this object.

To make OOSL clear and simple, we do not define v.a 7→ r as a primitive assertion, because it
can be defined as ∃r′ · v = r′ ∧ r.a 7→ r′. In Separation Logic, we can use l 7→ - or l ↪→7→-
to denote that location l is in current heap, in fact, the heap contains exactly this location. Due
to the existence of empty object, we cannot use r.a 7→ - or r.a ↪→7→- to express that the object
which r refers to is in current Opool. To solve this problem, we introduce the special assertion
form obj(r). We will use obj(r) when we do not care about r’s type.

We allow user-defined predicates in OOSL. In fact, people always need to define some recur-
sive predicates to support specification and verification of OO programs involving recursive data
structures, e.g., list, tree. These definitions are recorded in a Logic Environment Λ defined as:

Λ ::= ε | Λ, p(r) .= ψ

3One exception might be variables and fields of the primitive types, e.g., the boolean or integer, while many languages
use value model for them for efficiency.

7

where ε denotes the empty environment, p is a symbol (predicate name) selected from a given
set S, r are (a list of) formal parameters, and ψ is the body assertion correlated with r. Clearly,
a logic environment Λ is simply a sequence of predicate definitions. Recursive definitions are
allowed. As a well-formed logic environment, Λ must be self-contained, that is: body ψ of a
definition in Λ cannot use symbols not defined in Λ. Further, we require that Λ must be finite
and syntactically monotone4, then a fix-point semantics for Λ exists.

For every symbol p defined in Λ, we use argcΛ(p) to denote its arguments number, where
subscript Λ may be omitted when there is no ambiguity.

General assertions are built upon basic assertions with classical FOL combinators and sepa-
ration combinators from Separation Logic:

ψ ::= α | β | p(r) | ¬ψ | ψ ∨ ψ | ψ ∗ ψ | ψ –∗ψ | ∃r · ψ

where p(r) is a user-defined assertion with real arguments r. Please notice that only references,
but not variables, can be quantified. The intension is clear: variables are defined in program
texts, thus must be free variables in assertions.

We will use ψ[v/x] (or ψ[r/x]) to denote the assertion built from ψ by substituting variable
x in it with variable or constant v (reference r). And ψ[r1/r2] denotes the assertion build from ψ
by substituting r2 with r1. At last, we define some abbreviations, that are classical:

ψ1 ∧ ψ2 ≡ ¬(¬ψ1 ∨ ¬ψ2) ψ1 ⇒ ψ2 ≡ ¬ψ1 ∨ ψ2
∀r · ψ ≡ ¬∃r · ¬ψ
r.a 7→- ≡ ∃r′ · r.a 7→ r′ r.a ↪→ r′ ≡ r.a 7→ r′ ∗ true

The last two abbreviations are widely used in Separation Logic related works.

3.2. Semantics

Now we define a least fix-point semantics for OOSL by a semantic function which maps
every assertion ψ ∈ Ψ to a subset of State. For this goal, we first define a semantics for Λ.

We introduce a family of Predicate Functions. For any n ≥ 0, let Pn =̂ Ref n → P(S tate)
be the set of functions from n references to subsets of State. Let P =̂

⋃
n

Pn be the set of all

possible predicate functions. We introduce a function arity : P → N to extract the arity of the
given predicate function: For any p ∈ P, arity(p) = n iff p ∈ Pn.

We will use p, q, possibly with subscripts, for typical elements of P. Given p(r), q(r′) ∈ Pn,
we define p ≤ q iff ∀r1, ..., rn · p(r1, ..., rn) ⊆ q(r1, ..., rn). Clearly, (P(S tate),⊆) forms a complete
lattice, with ∅ and State as its bottom and top elements. So for any n, (Pn,≤) is a complete lattice,
with ⊥Pn = {(r1, ...rn) 7→ ∅},>Pn = {(r1, ...rn) 7→ State} as its bottom and top elements.

With predicate functions, we have definition:

Definition 4 (Interpretation of Logic Environment). Given a logic environment Λ, we say a
function I : S → P is an interpretation of Λ iff for every symbol p defined in Λ, p ∈ domI and
arity(I(p)) = argcΛ(p).

We use IΛ to denote all interpretations of Λ. For any I1,I2 ∈ IΛ, we define:

I1 ≤ I2 iff ∀p ∈ domΛ · I1(p) ≤ I2(p).

8

[I-FALSE]MI(false) = ∅ [I-TRUE]MI(true) = State
[I-LOOKUP]MI(v = r) = {(σ,O) | σ(v) = r} [I-REF-EQ]M(r1 = r2) = State if eqref(r1, r2), ∅ else
[I-REF-TP]M(r : T) = State if type(r) = T, ∅ else [I-REF-STP]M(r <: T) = State if type(r) <: T, ∅ else
[I-EMPTY]MI(emp) = {(σ, ∅)} [I-SINGLE]MI(r1.a 7→ r2) = {(σ, {(r1, a, r2)})}
[I-OBJ]MI(obj(r)) = {(σ,O) | dom O = {r} ∧ dom (O(r)) = dom (fields(type(r)))}
[I-APP]MI(p(r)) = I(p)(r) [I-NEG]MI(¬ψ) = State \MI(ψ)
[I-OR]MI(ψ1 ∨ ψ2) = MI(ψ1) ∪MI(ψ2)
[I-S-CONJ]MI(ψ1 ∗ ψ2) = {(σ,O) | ∃O1,O2 · O1 ∗ O2 = O ∧ (σ,O1) ∈ MI(ψ1) ∧ (σ,O2) ∈ MI(ψ2)}
[I-S-IMPLY]MI(ψ1 –∗ψ2) = {(σ,O) | ∀O1 · O1⊥O ∧ (σ,O1) ∈ MI(ψ1) implies (σ,O1 ∗ O) ∈ MI(ψ2)}
[I-EX]MI(∃r · ψ) = {(σ,O) | ∃r ∈ Ref · (σ,O) ∈ MI(ψ)}

Figure 2: Semantic function for OOSL with interpretation I

Obviously, (IΛ,≤) is a complete lattice. ⊥Λ = {(p,⊥PargcΛ (p))|p ∈ domΛ} is the bottom element,
and >Λ = {(p,>PargcΛ (p))|p ∈ domΛ} is the top element.

We define a semantic function MI : Ψ → P(State) for OOSL by rules in Fig.2. Note
that here I is an arbitrary interpretation. Clearly, a logic environment can have many different
interpretations, but not every interpretation makes sense. This leads the following definition.

Definition 5 (Model of Logic Environment). Suppose I is an interpretation of Λ, we say I is a
model of Λ iff for every p(r) .= ψ in Λ, we have:

∀r′ · MI(p(r′)) =MI(ψ[r′/r]).

In fact, a model of Λ is a fix-point of function NΛ : (S → P)→ (S → P) where:

NΛ(I)(p) = {(r′,MI(ψ[r′/r])}, for any definition p(r) .= ψ in Λ

The fix-point ofNΛ exists, because the self-containedness of Λ, and the syntactically monotonic
requirement for each definition of symbols in Λ.

A given Λ may have many models. We choose the least one as its standard model, which is
the least fix-point of N . By Tarski’s fix-point theorem, this standard model is:

JΛ =

∞⋃
n=0

Nn
Λ(⊥Λ),

We give a simple example as an illustration. Suppose Λ contains only one definition

list(r) .= (r = null ∧ emp) ∨ ∃r′ · (r.a 7→ r′) ∗ list(r′)

which describes lists linked on a. To get the standard model of Λ, we have:

N0
Λ
= ⊥Λ

N1
Λ
= {(list, {(null, emp)})}

N2
Λ
= {(list, {(null, emp), (r, r.a 7→ null)})}

N3
Λ
= {(list, {(null, emp), (r, r.a 7→ null), (r, r.a 7→ r′ ∗ r′.a 7→ null)})}

. . .

We know that the model describes all possible lists of this type.
We use σ,O |=Λ ψ to mean that ψ holds on state (σ,O) with respect to logic environment Λ,

and define the semantics for our assertion language based on the standard model JΛ:

4For every definition p(r) .= ψ, every symbol occurs in ψ must lie under an even number of negations.
9

Definition 6 (Semantics of Assertions).

σ,O |=Λ ψ iff (σ,O) ∈ MJΛ (ψ).

We often use (σ,O) |= ψ as a shorthand when Λ is not ambiguous.

3.3. Properties and Inference Rules
The semantics defined above have many good properties:

Lemma 1. New predicate function can be safely added to Λ, without changing the meaning of
existing symbols in Λ. Formally, if Λ′ = (Λ, p(r) .= ψ) is a well-formed logic environment, then:

JΛ(q) = JΛ′ (q) for every symbol q defined in Λ.

By this lemma, we can easily get:

Lemma 2. For any given logic environment Λ: (1) we can safely add some new definitions
to it, without changing the meaning of the symbols already defined in Λ; and (2) if symbols p
defined in Λ are not mentioned in other definitions in Λ, then we can safely remove them, without
changing the meaning of the other symbols defined in Λ.

By the semantics of OOSL, it is straightforward to prove the following propositions:

Lemma 3. Suppose (σ,O) |= ψ, we have: (1) if domσ′ ∩ domσ = ∅, then (σ ∪ σ′,O) |= ψ;
and (2) if ψ does not contain variables in σ′, then (σ − σ′,O) |= ψ. Here σ − σ′ denotes
{(x, r) ∈ σ | x < domσ′}.

Lemma 4. (σ,O) |= ψ[e/x], if and only if (σ ⊕ {x 7→ σe},O) |= ψ.

Lemma 5. Suppose a1, a2, ..., ak are all fields of type T , then we have:

r : T ⇒ (obj(r)⇔ r.a1 7→- ∗ r.a2 7→- ∗ ... ∗ r.ak 7→-)

Lemma 6. obj(r1) ∗ obj(r2)⇒ r1 , r2.

Lemma 7.
emp ∗ ψ ⇔ ψ

ψ1 ∗ (ψ1 –∗ψ2) ⇔ ψ2
ψ1 –∗(ψ2 ∧ ψ3) ⇔ (ψ1 –∗ψ2) ∧ (ψ1 –∗ψ3)
ψ1 –∗ψ2 –∗ψ3 ⇔ (ψ1 ∗ ψ2) –∗ψ3

Proof. We prove the last statement. Note that ψ1 –∗ψ2 –∗ψ3 is ψ1 –∗(ψ2 –∗ψ3).

⇒: Assume (σ,O) |= ψ1 –∗(ψ2 –∗ψ3). Take any O′ such that O′ ⊥ O and (σ,O′) |= ψ1 ∗ ψ2,
by the definition of ∗, there exist O1 and O2 such that O′ = O1 ∗ O2, (σ,O1) |= ψ1, and
(σ,O2) |= ψ2. By O1 ⊥ O2 ∗O and the assumption, we know (σ,O1 ∗O) |= ψ2 –∗ψ3. From
this fact, and (σ,O2) |= ψ2 and O2 ⊥ O1 ∗O, we have (σ,O1 ∗O2 ∗O) |= ψ3. This is exactly
(σ,O′ ∗ O) |= ψ3, thus we have the “⇒” proved.

⇐: Suppose (σ,O) |= (ψ1 ∗ ψ2) –∗ψ3. Take any O1 such that O1 ⊥ O and (σ,O1) |= ψ1,
then take any O2 such that O2 ⊥ O1 ∗ O and (σ,O2) |= ψ2, now we need to prove that
(σ,O1 ∗O2 ∗O) |= ψ3. Because O1 ∗O2 ⊥ O and (σ,O1 ∗O2) |= ψ1 ∗ψ2, we have the result
immediately.

10

Many properties in Separation Logic also hold in OOSL. For example, rules (axiom schemata)
shown in the Section 3 of [27] are all valid here.

Similar to Separation Logic, we can define the pure, intuitionistic, strictly-exact and domain-
exact assertions. We find another important concept as follows.

Definition 7 (Separated Assertions). Two assertions ψ and ψ′ are separated from each other, iff
for all stores σ and Opools O,O′, (σ,O) |= ψ and (σ,O′) |= ψ′ implies O ⊥ O′.

Lemma 8. r1.a 7→- and r2.b 7→- are separated, provided that r1 , r2, or a and b are different
field names.

As an example, suppose we have a Node class with fields value and next. For a reference
r : Node, we know r.value 7→ - and r.next 7→ - are separated. No corresponding concept is in
Separation Logic, due to the absence of fields.

Lemma 9. Suppose ψ1 and ψ2 are separated. (1) If (σ,O1) |= ψ1 and (σ,O2) |= ψ2, then
(σ,O1 ∗ O2) |= ψ1 ∗ ψ2. (2) If (σ,O) |= ψ1 ∗ ψ2, there exists an unique partition of O = O1 ∗ O2,
that (σ,O1) |= ψ1 and (σ,O2) |= ψ2.

Lemma 10. ψ1 is separated from both ψ2 and ψ3, iff ψ1 is separated from ψ2 ∗ ψ3.

Theorem 1. For any ψ1, ψ2, ψ3, if ψ1 and ψ2 are separated from each other, then

ψ1 ∗ (ψ2 –∗ψ3)⇔ ψ2 –∗(ψ1 ∗ ψ3).

Proof. The proof is as follows:

⇒: For any σ and O such that (σ,O) |= ψ1 ∗ (ψ2 –∗ψ3), there exist O1,O2, such that O1 ∗O2 =

O, (σ,O1) |= ψ1, and (σ,O2) |= ψ2 –∗ψ3. By the definition of–∗, for any O3 satisfying
O2 ⊥ O3, we have

(σ,O3) |= ψ2 implies (σ,O2 ∗ O3) |= ψ3.

Because ψ1 and ψ2 are separated, then by Lemma 9,

(σ,O3) |= ψ2 implies (σ,O1 ∗ O2 ∗ O3) |= ψ1 ∗ ψ3.

This is (σ,O) |= ψ2 –∗(ψ1 ∗ ψ3).

⇐: For any σ and O that (σ,O) |= ψ2 –∗(ψ1 ∗ ψ3), for any O1 that O1 ⊥ O, if (σ,O1) |= ψ2,
then (σ,O1 ∗O) |= ψ1 ∗ψ3. Now we fix this O1. Because (σ,O1 ∗O) |= ψ1 ∗ψ3, there exist
O2 and O′3 such that O2 ⊥ O′3, O2 ∗ O′3 = O1 ∗ O, (σ,O2) |= ψ1 and (σ,O′3) |= ψ3. Because
ψ1, ψ2 are separated, then O2 ⊥ O1. Thus O′3 = O1 ∗ O3 for some O3, and we have

(σ,O2) |= ψ1, (σ,O1) |= ψ2, and (σ,O1 ∗ O3) |= ψ3.

Then we have (σ,O3) |= ψ2 –∗ψ3. Because the choice of O1 is arbitrary, and O = O2 ∗ O3,
we conclude that (σ,O) |= ψ1 ∗ (ψ2 –∗ψ3).

This theorem shows a very useful property when we are sure some parts of the Opool are
separated from each other. It is often used in the case, after we reason about an assignment to
one or more fields of an object, we need to re-construct the whole object. This can always be
done, because the different fields of an object are described by separated assertions.

Separated assertions are very useful in reasoning OO programs. Taking the Node class above
as an example, it allows us to combine relative fields back to form a whole Node object:

r1.value 7→- ∗ (r2.value 7→- –∗ r1.next 7→-)
⇔ r2.value 7→- –∗(r1.value 7→- ∗ r1.next 7→-)

11

4. µJava: Syntax and WP Semantics

The basic language we use in the work is a sequential subset of Java, µJava [32]. It contains
essential OO features, and takes the reference semantics for variables and fields to reflect the
reality of mainstream OO languages. µJava has a clear separation of store and heap operations.
It is relatively simple to facilitate theoretical study, and large enough for covering important OO
issues, e.g., dynamic binding, object sharing, aliasing, casting, etc.

The syntax of µJava is as follows:

v ::= this | x e ::= true | false | null | v
b ::= true | false | e = e | ¬b | b ∧ b | b ∨ b
c ::= skip | x := e | x := v.a | x := (C)v | v.a := e | x := v.m(e) |

x := new C(e) | return e | c; c | if b c else c | while b c
T ::= Bool | Object | C M ::= T m(T z){T y; c}
K ::= class C : C{T a; C(T z){T y; c}; M} G ::= K | K G

here x is a variable, C a class name, a and m field and method names respectively. Object, Null,
Bool, true and false take the same meaning as before, and only Bool <: Bool holds for the
boolean type. We use over-lined form to represent sequences. There are some explanations:

• Expressions have limited forms thus their values depend only on the store. Assignments
are limited to a number of special forms, including plain assignment x := e, mutation
v.a := e, and lookup x := v.a. We consider cast as a part of a special form of assignments.
Command x := new C(e) is also a special form of assignment which creates a new object,
builds it with parameters e and assigns its reference to variable x. More complex struc-
tures can be encoded with some auxiliary variables and/or assignments. We assume all
references to fields of current object are decorated with this, to make the field references
uniformly of the form v.a. We can remove this restriction by adding repeated rules.

• The special C(T z){T y; c} in each class C is the constructor, which has the same name as the
class. We assume return e only appears as the last statement in non-constructor methods,
and assume an internal-variable res for recording the return value in semantic definitions.
We require that local variables and res initialized to special nil values (represented as nil)
according to their types, i.e., rfalse for Bool and rnull for class types.

• We do not have access control here. A program is just a sequence of class declarations.
There can be a main method in last class as the execution entry. If there is a main method
in a µJava program, we say that it is a closed program, otherwise, an open program.

In [7] a static environment is defined, then only well-typed expressions and commands are
considered in the formal definitions to simplify the presentation. We follow the idea and define a
static environment ΓG = (∆G,ΘG) for program G. Typing environment ∆G (abbr. ∆) records static
structural information in G. We often omit the context ∆ when it is clear. We use super(C1,C2)
to mean that C2 is the immediate superclass of C1, thus T1 <: T2 is the transitive closure of
super. On the other hand, we record every method for each class in method lookup environment
Θ. We will use notation Θ,C,m� λ(z){var y; c} to denote that m(z){var y; c} is a method in class
C with parameters z, local variables y and body code c.

In [32], we give rules for constructing ∆ and Θ and typing. Because the rules are routine, we
omit the details here. Based on the static environment, we can check the type for expressions,

12

the well-typedness of commands and methods. Because of this, we will consider only the well-
formed commands and methods in the rest of the paper. We will use Γ,C,m ` e : T to state that
expression e is of the type T in the method m of class C under environment Γ; and similarly, use
Γ,C,m ` c : com to state that command c is well-typed.

In a class, method can be of the three kinds: is defined in the class in the first time, is an
overriding method, or is an inheriting method. We define some notations to distinguish them:

• Γ ` intro(m,C) states that method m is introduced (firstly defined) by class C, says all of
C’s super classes do not contains m.

• Γ ` ovr(m,C) states C override the definition of method m.

• We define def(m,C) =̂ intro(m,C) ∨ ovr(m,C), and ndef(m,C) =̂ ¬def(m,C).

• Γ ` inh(C,m, B) states class C inherits method m from its super class, and the definition is
provided by class B. That is, for any class T , if C <: T , T <: B and T , B, T does not
provide new definition for m. We use Γ ` inh(C,m,−) to indicate that C inherits m from
some class.

4.1. A WP Semantics for µJava

In this section, we define a weakest precondition semantics (WP semantics) for µJava and
investigate its properties. As usual, the WP semantics of a command c will be defined as a
predicate transformer, which maps any given predicate ψ to the weakest precondition of c with
respect to ψ. We define the semantics only for well-typed commands, that is, for any command
c in discussion, Γ,C,m ` c : com is supposed true. The static necessities ensured by typing will
not appear in semantic rules.

Remember Ψ denotes the set of assertions in OOSL, thus the set of predicate transformers
is T = Ψ → Ψ. We use [[Γ,C,m ` c : com]] to denote the WP semantics of command c, and
sometimes [[c]] if Γ, C and m are clear from the context. In most cases, we use λ-notations. We
use f = g in the definition to mean that ∀ψ · f (ψ)⇔ g(ψ).

The WP semantics rules for µJava are given in Fig. 3. The semantics of sequential composi-
tion, choice, and iteration are routine. Their semantics are given by three rules (SEQ), (COND),
and (ITER), where µφ · f denotes the least fix-point of λφ · f . Below we give some explanations
to each group of the other rules.

Basic Commands: The semantics of skip is the identity transformer. The semantics of the plain
assignment x := e is ordinary, due to the restricted expression forms in µJava, and the clear
separation of assertion forms for the stores and heaps in OOSL.

If any ψ holds after the mutation v.a := x, it is necessary that variable v points to some object
that has a field a. The existence of field a is guaranteed by typing. After the assignment, v.a
holds the reference which is the value of x. This semantics is defined by rule (MUT). The last
part of the rule takes the similar form as in the Separation Logic.

As shown by rule (LKUP), the lookup command x := v.a is similar to the plain assignment.
The only pre-requirement for executing this command is that v must point to an object which
contains a field a. This existence is also guaranteed by typing.

Type cast is treated by rule (CAST). Here we ask for that the variable v must refer to an object
with type N or some subtype of N. Remember that for any type T , null <: T .

13

[[Γ,C,m ` c1; c2 : com]] = [[c1]] ◦ [[c2]] (SEQ)

[[Γ,C,m ` if b c1 else c2 : com]] = λψ · (b⇒ [[c1]]ψ) ∧ (¬b⇒ [[c2]]ψ) (COND)

[[Γ,C,m ` while b c : com]] = λψ · µφ · (¬b⇒ ψ) ∧ (b⇒ [[c]]φ) (ITER)

[[Γ,C,m ` skip : com]] = λψ · ψ (SKIP)

[[Γ,C,m ` x := e : com]] = λψ · ψ[e/x] (ASN)

[[Γ,C,m ` v.a := e : com]] = λψ · ∃r1, r2 · (v = r1) ∧ (e = r2)∧
(r1.a 7→- ∗ (r1.a 7→ r2 –∗ψ))

(MUT)

[[Γ,C,m ` x := v.a : com]] = λψ · ∃r1, r2 · (v = r1) ∧ (r1.a ↪→ r2) ∧ ψ[r2/x] (LKUP)

[[Γ,C,m ` x := (N)v : com]] = λψ · ∃r · (r <: N) ∧ (v = r) ∧ ψ[v/x] (CAST)

[[Γ,C,m ` return e : com]] = λψ · ψ[e/res] (RET)

Θ,C,m � λ(z){var y; c}, [[Γ,C,m ` c : com]] = f

[[Γ,C ` m : method]] = λ this, z · λψ · f (ψ)[nil/y]
(MTHD)

Γ,C,m0 ` v : T, S 1, ..., S k are all subtypes of T,
[[Γ, S i ` m : method]] = Fi(i = 1, ..., k)

[[Γ,C,m0 ` x := v.m(e) : com]] = λψ · ∃r · (v = r) ∧ (
∨

(r : S i ∧ Fi(r, e)(ψ[res/x])))
(INV)

[[Γ,N ` N : method]] = F
[[Γ,C,m ` x := new N(e) : com]] = λψ · ∀r · raw(r,N) –∗ F(r, e)(ψ[r/x])

(NEW)

Figure 3: WP Semantics for µJava

Before discussing the WP semantics of method invocations, as well as semantics of the new
commands, we need to have some preparation.

Generally, we consider a method as a parameterized command. It can become a command
when a this reference and a set of arguments are provided. Following this idea, we define the
semantics of a method as a parameterized predicate transformer with typePT n+1 =̂ Refn+1

→ T ,
where n is the number of the parameters of the method, and an extra one for the current object
of the invocation. For a F : PT n+1, when we apply it to a set of references r0, r1, . . . , rn, which
stand for the objects referred by this and all the arguments, we obtain a predicate transformer
F(r0, r1, . . . , rn). For convenience, we define an abbreviation form that for any expression e,

F(r0, .., e, .., rn) =̂ λψ · ∃r · (e = r) ∧ F(r0, .., r, .., rn)(ψ).

In this case, we may allow an expression to be written in the instantiation form. We may also
accept more than one expressions in this abbreviation. For example, we can see that the form
F(r, e) appears in the last two rules in Fig. 3.

We use the notation [[Γ,C ` m : method]], or short [[C.m]], to denote the WP semantics of a
method m defined in class C under environment Γ. Here m could be C to denote the constructor
of class C. Now we are ready to give some explanation for the following rules.

Method: Rule (MTHD) gives the semantics of method and constructor declarations. Here all
local variables are replaced with nil values. This means that, on one hand, all local variables are
initialized with nil according to the requirements mentioned in the explanation for µJava; on the
other hand, this also makes all the local variables inaccessible from outside of the method. So, if
a given ψ contains names in y, we should rename such local variables to avoid it.

14

If all methods are non-recursive, we can get their parameterized predicate transformers di-
rectly. Otherwise, by the rules, we can obtain a group of equations about these parameterized
predicate transformers. Paper [11] tells us there exists a least fix-point solution for such a set of
equations, and we define the solution as the WP semantics for these methods respectively. So the
WP semantics for methods is well-defined.

Method Invocation: Based on the above definition, semantics for method invocation is given by
rule (INV) which takes a similar form as the corresponding one in [7]. Here we collect all meth-
ods of the subclasses of T in the program (which are determined statically by the program text),
and define the weakest precondition as the disjunction of the predicates produced by these sub-
classes. Note that r : S i ensures r , rnull. When reasoning on a real invocation, this disjunction
will be resolved by the type of current object and disappeared. In building the precondition, we
replace x with res in ψ, because the invocation can be viewed as two “actions”: the first one is
the execution of the body of v.m(e) which stores the return value in res at the end, and the second
copies the value to x.

Clearly, this rule demands that the program been reasoned about is a closed program. In this
case, our definition can describe the behavior of a method invocation precisely. The closeness of
the program is one crucial condition, because only under this condition, the WP semantics can
achieve completeness. We will study properties of this WP semantics in Section 4.2, including
the sound and complete theorems.

Object Creation: Informally, object creation can be thought as two “actions” sequentially: the
first one extends current heap by creating a new raw object (while all its fields take nil values) and
obtains its reference; the second initiates the object’s state. That is exactly the case for practical
OO languages, and specified by rule (NEW). The rule states that if we append any new object
of class N to current heap, after the execution of the constructor, ψ will hold. In this rule, the
assertion raw(r,N) asserts that r refers to a raw object of N, with the definition as

raw(r,N) =̂


obj(r), N has no field
r : N ∧ (r.a1 7→ nil) ∗ .. ∗ (r.ak 7→ nil),

{a1, .., ak} is the set of all attrs of N

We will use raw(r,−) if do not care the type. We can prove this assertion satisfies the following
proposition, which says that separated objects must be different:

Proposition 1. raw(r1, -) ∗ raw(r2, -)⇒ r1 , r2.

4.2. Properties of the WP Semantics
Now we show some properties of the WP semantics for µJava defined above. We have the

following theorems, with all their proofs in our report [30].
The first theorem says that the WP semantics is well-defined, i.e., it forms a well-defined

function on all well-typed commands and methods.

Theorem 2. Suppose we have built Γ for program G. For any c in G with Γ,C,m ` c : com, its se-
mantics [[Γ,C,m ` c : com]] is a total function on all formulas. Additionally, if Γ,C ` m : method,
the semantics [[Γ,C ` m : method]] is a well-defined parameterized predicate transformer.

The WP semantics is monotonic, that is, the predicate transformer defined by any well-typed
commands is a monotonic function. In fact, the monotonicity is essential to get a least fix-point
solution for parameterized predicate transformers.

15

Theorem 3. Suppose f : T is a predicate transformer produced by rules in Fig. 3, and ψ, ψ′ are
any well-formed predicates. If ψ⇒ ψ′, then f (ψ)⇒ f (ψ′).

Theorem 4. Given command c and assertions ψ1, ψ2, if FV(ψ2) ∩ md(c) = ∅, then

([[c]]ψ1) ∗ ψ2 ⇒ [[c]](ψ1 ∗ ψ2)

where FV(ψ2) is the set of all program variables (including internal variable res) in ψ2, md(c)
is the variable set modified by c, defined as:

md(c) =



{x}, c is x := . . .
{res}, c is return . . .
md(c1) ∪ md(c2), c is c1; c2
md(c1) ∪ md(c2), c is if b c1 else c2
md(c), c is while b c
∅, otherwise

In fact, this theorem is the Frame Rule [27] in the WP style.

Example 1 (Empty Object Creation). Now we give a small example to show how to do verifi-
cation with the WP semantics defined above. Suppose the body of the constructor of Object is
skip, then by the WP semantics we have:

[[Γ, Object ` Object : method]] = λψ · ψ

Then we have the following calculation:

[[x := new Object(); y := new Object();]](x , y)
= [[x := new Object();]](∀r · raw(r, Object) –∗ x , r)
= ∀r1, r2 · raw(r1, Object) –∗ raw(r2, Object) –∗ r1 , r2
= true

This indicates that two newly created empty objects are different. In fact, this result also holds
for non-empty objects, but the calculation is complicated.

More examples can be found in our report [30].
Now we give the soundness and completeness theorems of the WP semantics defined above.

Due to the page limit, we leave their proofs in our report [30].
Informally, a WP semantics [[•]] is sound, if for any command c and predicate ψ, if c executes

from a state satisfying the weakest precondition ψ′ = [[c]]ψ, when it terminates, the final state
will satisfy ψ. A WP semantics is complete, if it really gives the weakest precondition, that is, if
any command c executes from any state s and terminates on a state satisfying a condition ψ, then
[[c]]ψ = ψ′ holds on state s.

We take COM the space of legal commands, and use 〈c, (σ,O)〉 ∗ (σ′,O′) to denote con-
figuration transformation of µJava, that says when command c executes from current state (σ,O),
after its execution of the state will be (σ′,O′). More details about the state transformation (oper-
ational semantics for µJava) can be found in our report [30].

Now we give the definitions for the soundness and completeness of a WP semantics.

16

Definition 8 (Soundness). A WP predicate transformer generator [[•]] : COM→ T is sound, if
and only if for any assertions ψ, ψ′ ∈ Ψ and command c ∈ COM satisfying
[[Γ,C,m ` c : com]]ψ = ψ′, we have: For any pair of states (σ,O) and (σ′,O′), if (σ,O) |= ψ′ and
〈c, (σ,O)〉 ∗ (σ′,O′), then (σ′,O′) |= ψ.

Definition 9 (Completeness). A WP predicate transformer generator [[•]] : COM → T is
complete, if and only if for any two assertions ψ, ψ′ ∈ Ψ and command c ∈ COM satisfying
[[Γ,C ` c : com]]ψ = ψ′, we have: For any pair of states (σ,O) and (σ′,O′), if (σ′,O′) |= ψ and
〈c, (σ,O)〉 ∗ (σ′,O′), then (σ,O) |= ψ′.

In these definitions, we recognize the WP semantics as a generator which produces for each
command in COM a predicate transformer. In report [30], we give the detailed proofs for the
soundness and completeness of our WP semantics, according to the operational semantics of the
language. Thus we can conclude that,

Theorem 5. The WP semantics for µJava given in Section 4.1 is both sound and complete.

5. Specification, Refinement, and Behavioral Subtyping

Because the WP semantics defined above is both sound and complete, we can use it as a theo-
retical foundation to study various problems related to the semantics of µJava. In our report [30],
we prove a set of Hoare-style rules for reasoning about OO programs using the WP semantics,
including the Frame Rule which is important in local reasoning. Now we study the behavioral
subtyping concept. This concept involves many important issues in OO program verification,
including method specification, refinement and object invariants.

5.1. Method Specification and Refinement
The specification for a method (or a piece of code) is often given as a pair of assertions, i.e.,

the pre and post conditions. In the following we will use {P}-{Q} to denote a specification with
precondition P and postcondition Q.

A method C.m(z) satisfies the specification {P}-{Q}, if the body code of C.m executes under
a state (pre-state) where P holds, then Q will hold on the state (post-state) when C.m terminates.
This can be defined based on the WP semantics:

Definition 10 (Method Specification). Given any method C.m(z), we say that method C.m satis-
fies specification {P}-{Q}, written as {P}C.m {Q}, iff:

∀r, r′ · P[r, r′/this, z]⇒ [[C.m]](r, r′)(Q[r, r′/this, z]).

This definition is straightforward and intuitive. Based on this definition, we can define the
refinement relationship between specifications.

Definition 11 (Refinement of Specifications). We say a specification {P2}-{Q2} refines another
specification {P1}-{Q1}, written {P1}-{Q1} v {P2}-{Q2}, iff for any command c, {P2} c {Q2} im-
plies {P1} c {Q1}.

This definition implies that if {P2}-{Q2} refines {P1}-{Q1}, then the former can substitute the
latter anywhere. This idea follows the natural refinement order defined in [15].

Although this definition for the refinement concept is simple and clear, it is not easy for us
to use in practice, because we could hardly have ways to investigate all commands. Here we
provide a sound condition for the refinement judgement.

17

Theorem 6. Given specification {P1}-{Q1} and {P2}-{Q2}, we have {P1}-{Q1} v {P2}-{Q2} if
there exists an assertion R such that: (1). R does not contains program variables, and (2).
(P1 ⇒ P2 ∗ R) ∧ (Q2 ∗ R⇒ Q1).

In fact, this theorem combines the consequence rule in Hoare Logic and Frame Rule in Sep-
aration Logic. It provides a useful way to check refinement relation in OO programs where the
heap and heap extension are taken into account.

5.2. Behavioral Subtyping
Now we give our definition for Behavioral Subtyping based on above discussion.

Definition 12 (Behavioral Subtype). Given class C and B, we say C is a behavioral subtype of B,
written C � B, iff, for every client accessible method B.m we have for any specification {P}-{Q},
{P} B.m {Q} implies {P}C.m {Q}.

This definition requires that subclass obeys superclass’s behavior. Clearly, this definition
follows the thought of Liskov substitution principle.

From now on, we will turn our focus to develop the practical verification procedures. We
develop first verification conditions for a program with behavioral subtyping requirement. At
first, we introduce some notations. For a µJava program G, we suppose a specification envi-
ronment ΠG containing specifications of all methods of classes in consideration (we will omit
subscript G in what follows, because this will not make any confusion). Π is a map from a
method/constructor to its specification. We will use {P}C.m {Q} ∈ Π (or {P}C.C {Q} ∈ Π for
constructor) to state that {P}-{Q} is the specification for method C.m (or constructor of C).

Definition 13 (Satisfaction of Specification). We say a program G satisfies specification envi-
ronment Π, written G |= Π, iff for every {P}C.m {Q} ∈ Π, {P}C.m {Q} holds, here m could be the
constructor.

This definition leads the following verification conditions for G |= Π:

Theorem 7. Given a program G and a specification environment Π, we have G |= Π, if following
condition holds: for every method specification {P}C.m {Q} ∈ Π, {P}C.m {Q} holds.

6. Basic OO Specification and Verification Framework: VeriJ0

Now we begin our development of a framework for verifying OO programs, in which we use
the OOSL as the assertion language for the specification. In this section, we develop the basic
part of the framework for verifying the basic procedural structures.

6.1. Syntax
For build a verification framework, we need to add and modify some features of µJava. We

call the result language VeriJ0:

S ::= requires ψ; ensures ψ
M ::= T m(T z) [S] {T y; c; }
K ::= class C : C{T a; C(T z)[S]{T y; c}; M}

Here category S denotes the specifications for constructors and methods, where OOSL assertions
P and Q represent pre and post conditions of methods respectively. On the other side, both
method and constructor declarations are extended with specification structures.

On the logic side, we add some facilities to OOSL, where
18

[S-CON]
class C{..C(T z) requires P; ensures Q {T y; c}..}

{P}C(z) {Q} ∈ Π

[S-DEF]
class C{..T m(T z)requires P; ensuresQ{T y; c}..}

{P}C.m(z) {Q} ∈ Π

[S-SINH]

class C:B{..T m(T z){T y; c}..}
{P} B.m(z) {Q} ∈ Π
{P}C.m(z) {Q} ∈ Π [S-MINH]

Γ ` ndef(m,C) super(C, B)
{P} B.m(z) {Q} ∈ Π
{P}C.m(z) {Q} ∈ Π

Figure 4: Rules for constructing specification environment Π

• A special variable this is included which denotes always current object, as well as a
variable res used to hold the return value of current method.

• old(e) is an expression denotes the value of e evaluated under precondition.

As a predefined rule, if we do not provide precondition (postcondition) for some method, it
inherits one from its immediate super class, or takes “requires true;”(or ensures true”)
default when nothing to inherite.

We discussed the static environment for µJava in Section 4 for typing and method lookup, as
well as the specification environment Section 5.2. Now we introduce formally the specification
environment ΠG into our static environment. ΠG records the specifications for all the constructor
and method. Now for program G, ΓG = (∆G,ΘG,ΠG). We list rules for constructing ΠG in
Fig. 4. We will always omit subscribe G when its is clear. In the premise of rule [S-MINH], we use
Γ ` ndef(m,C) to say that class C does not define method m, where ndef(m,C) is defined in last
section. All these rules are simple, which do not deserve more explanations.

6.2. The Verification Framework

Now we show the basic part of our verification framework. We will use Γ,C,m ` ψ to denote
that ψ holds under Γ in method C.m. Clearly, if this hold, the truth value of ψ must not be
affected by commands in C.m. We use more often statements of the form Γ,C,m ` {P} c {Q},
which denotes that command c in C.m meets specification {P}-{Q}, and Γ ` {P}C.m {Q} denotes
that method C.m (or constructor C) meets specification {P}C.m {Q} ∈ Π under Γ.

If every method of class C is correct, then we say that C is correct. If every class in program
G is correct, we say that G is correct. Thus we have the following definition:

Definition 14 (Correctness of a program). Given program G in VeriJ0, and its static environment
is Γ = (∆,Θ,Π), we say G is correct iff for every specification {P}C.m(z) {Q} ∈ Π, we have
Γ ` {P}C.m {Q}.

Fig. 5 lists rules for verifying various VeriJ0 commands in method body. Rules [H-SKIP],
[H-ASN], [H-RET], [H-SEQ], [H-COND], and [H-ITER] are standard as in the Hoare Logic.
Rules [H-MUT] [H-LKP] verify the mutation and lookup commands, which are similar to their
correspondents in Separation Logic. [H-INV] determines the specification of an invocation by
callee’s static type, this rule requires that all classes obey the subtyping requirement. At last, rule
[H-NEW] is for verifying the object creations.

The rules in Fig. 6 are for verifying constructors and methods. As we discussed before,
the methods defined in a program can be divided into three kinds: directly defined, overridden
and inherited. [H-DEF] is for verifying defined methods, where we just need verify its body.

19

[H-SKIP] Γ ` {P} skip {P} [H-ASN] Γ ` {P[e/x]} x := e {P}
[H-MUT] Γ ` {v = r1 ∧ e = r2 ∧ r1.a 7→-} v.a := e {v = r1 ∧ e = r2 ∧ r1.a 7→ r2}

[H-LKP] Γ ` {v = r1 ∧ r1.a 7→ r2} x := v.a {x = r2 ∧ v = r1 ∧ r1.a 7→ r2}

[H-CAST] Γ ` {v = r ∧ r <: N} x := (N)v {x = r} [H-RET] Γ ` {P[e/res]} return e {P}

[H-INV]
Γ ` v <: C {P}C.m(z) {Q} ∈ Π

Γ ` {v = r ∧ e = r′ ∧ P[r, r′/this, z])} x := v.m(e) {Q[r, r′, x/this, z, res]}

[H-NEW]
{P}C(z) {Q} ∈ Π

Γ ` {e = r′ ∧ P[r′/z]} x := new C(e) {∃r · x = r ∧ Q[r, r′/this, z]}
[H-SEQ] [H-COND] [H-ITER]

Γ ` {P} c1 {Q}, Γ ` {Q} c2 {R}
Γ ` {P} c1; c2 {R}

Γ ` {b ∧ P} c1 {Q}, Γ ` {¬b ∧ P} c2 {Q}
Γ ` {P} if b c1 else c2 {Q}

Γ ` {b ∧ I} c {I}
Γ ` {I} while b c {¬b ∧ I}

Figure 5: Verification rules for commands

[H-CONSTR] [H-DEF]

Γ,C,C � λ(z){var y; c}
Γ ` {z = r ∧ y = nil ∧ raw(this,C) ∗ P[r/z]} c {Q[r/z]}

Γ ` {P}C(z) {Q}

Γ ` intro(m,C), Γ,C,m � λ(z){var y; c}
Γ ` {z = r ∧ y = nil ∧ P[r/z]} c {Q[r/z]}

Γ ` {P}C.m(z) {Q}
[H-OVR] [H-INH]

Γ ` ovr(m,C), Γ,C,m � λ(z){var y; c}, Γ ` super(C, B)
{PC}C.m(z) {QC} ∈ Π, {PB} B.m(z) {QB} ∈ Π

Γ ` {PB}-{QB} v {PC}-{QC}, Γ ` {z = r ∧ y = nil ∧ PC[r/z} c {QC[r/z]}
Γ ` {PC}C.m(z) {QC}

Γ ` inh(C,m, -)
Γ ` super(C, B)
Γ ` {P} B.m(z) {Q}
Γ ` {P}C.m(z) {Q}

local variables y are not free in P,Q

Figure 6: Verification rules for method body

[H-OVR] is for the overridden methods, here we must verify specification in the subclass refine
its correspondent in superclass besides body verification, that is, verifying Γ ` {PB}-{QB} v

{PC}-{QC}. For an inherited method C.m, because both of its body and specification are the same
as B.m in C’s superclass B, so as long as B.m is correct, we have C.m is correct. [H-INH] shows
this strategy and indicates that we do not need to reverify inherited methods in VeriJ0.

Fig. 7 lists some additional rules. [H-THIS] is simple, while [H-OLD] says that if expres-
sion e evaluates to r′ in pre-state, then old(e) is r′ even the value of e is modified. There is
a corresponding rule for constructors, which takes the same form. [H-CONS], [H-EX] and
[H-FRAME] are for consequence, existence and frame, where FV(R) is the set of all program
variables (including the internal res) in assertion R, and MD(c) denotes the variables modified
by command c. The definitions of FV and MD are routine thus are omitted here.

After building of a verification framework, we need to prove its soundness. Informally, a
verification framework is sound, iff Γ ` G holds for any program G, then every method in G meet
its specification. Based on µJava’s WP semantics mentioned before, this can be defined as:

Definition 15 (Sound Verification Framework). Given a verification framework `, it is sound iff
for every program G:

• for every command c, if ΠG ` {P} c {Q}, then P⇒ [[c]]GQ;

• for every method C.m, if ΠG ` {P}C.m(z) {Q}, then ∀r · P[r/z]⇒ [[C.m]]G(r)(Q[r/z]);

20

[H-THIS] Γ,C,m ` this : C [H-OLD]
{P}C.m(z) {Q} ∈ Π, Γ,C,m ` z = r ∧ P[r/z]⇒ e = r′

Γ,C,m ` old(e) = r′
[H-CONS] [H-EX] [H-FRAME]

P⇒ P′, Π ` {P′} c {Q′}, Q′ ⇒ Q
Γ ` {P} c {Q}

Γ ` {P} c {Q}, r is free in P,Q
Γ ` {∃r · P} c {∃r · Q}

{P} c {Q}, FV(R) ∩MD(c) = ∅
{P ∗ R} c {Q ∗ R}

Figure 7: Additional verification rules

class Node {
Node left, right;
Bool mark, check;
/* whether left subtree has been visited */
}

void schorr waite(Node root)
requires root = rroot ∧ utree(rroot);
ensures root = rroot ∧mtree(rroot);
{

Node t, p, q, s;
t := root; p := null;
while (p , null ∨ (t , null ∧ ¬t.mark)) {
if (t = null ∨ t.mark) {

if (p.check) { /* pop */
q := t; t := p; p := p.right; t.right := q;
}

else { /* swing */
q := t; t := p.right; s := p.left; p.right := s;
p.left := q; p.check := true;
}

}

else { /* push */
q := p; p := t; t := t.left; p.left := q;
p.mark := true; p.check := false;
}

}

}

Figure 8: Source code for SWM algorithm in VeriJ0

• for every constructor C, if ΠG ` {P}C(z) {Q}, then

∀r · P[r/z]⇒ (raw(this,C) –∗[[C.C]]G(r′)(Q[r/z])).

By this definition and µJava’s WP semantics, we can prove:

Theorem 8. The verification framework for VeriJ0 defined in this section is sound.

6.3. Verification Example: Method Body Verification
Now we use an examples to show how to verify VeriJ0 programs. We take the Schorr-Waite

Graph Marking Algorithm (SWM) as an example to show how to do method body verification.
SWM is a famous algorithm for stack-less graph marking, and is said to be “the first mountain
that any formalism for pointer aliasing should climb” [5]. Fig. 8 gives an implementation of
SWM in VeriJ0. Here class Node is the graph node class which has four fields: left and right are
links to the left and right subnodes respectively, flag mark indicates if the node is marked, and
flag check is used internally to indicate if its left part has been visited. In the listing, we can see
some the specification for the method. That parts will be explained below.

The basic idea of SWM is that, during the course to traverse the graph (or tree), the algorithm
temporarily reverses the left/right pointers, to form a stack. By this stack, after the algorithm
finishes some part of marking, it can go up-ward and then traverses other part of the graph (or
tree). When the algorithm goes up, it will restore the pointer to their original states, thus recover
the original graph (or tree) at the end. Until that time, it finishes the marking as well.

To verify SWM, we must specify that given any unmarked graph pointed by root, after the
execution schorr waite, all nodes in the graph are marked and the graph structure is preserved.
Complete verification for these two properties is complicated, especially for the second property,

21

node(r, r1, r2, c,m) .
= r.left 7→ r1 ∗ r.right 7→ r2 ∗ r.check 7→ c ∗ r.mark 7→ m

mtree(r) .
= (r = rnull ∧ emp) ∨ (∃r1, r2 · node(r, r1, r2, -, rtrue) ∗mtree(r1) ∗mtree(r2))

utree(r) .
= (r = rnull ∧ emp) ∨ (∃r1, r2 · node(r, r1, r2, -, rfalse) ∗ utree(r1) ∗ utree(r2))

sbot(r) .
= ∃r1, r2, c · node(rb, r1, r2, c, rtrue) ∗

((c = rtrue ∧ r2 = rnull ∧mtree(r1)) ∨ (c = rfalse ∧ r1 = rnull ∧ utree(r2)))
sseg(rt, rb) .

= (rt = rb ∧ sbot(rb)) ∨ (∃r1, r2, c · node(r, r1, r2, c, rtrue) ∗
((c = rtrue ∧mtree(r1) ∗ sseg(r2, rb)) ∨ (c = rfalse ∧ utree(r2) ∗ sseg(r1, rb)))))

Figure 9: User defined predicates for verifying SWM algorithm

for which we must introduce some mathematical concepts for graphs. Yang [29] presented the
first work on verifying SWM with Separation Logic, where he gave a complete verification of
SWM on binary tree. For the verification, he introduced some auxiliary mathematical concepts,
including tree and list. As an illustrative example possibly been included in this paper, here, we
simplify the specification in two aspects: We require the input is a tree, and do not care about
the tree structure preservation. So we take a specification as: given any unmarked tree, after the
execution of SWM, all nodes in the tree are marked. Though this specification is not complete,
it is an interesting example to illustrate the usefulness and power of our framework.

At first, we introduce in Fig. 9 some user-defined assertions. Predicate node specifies a
single tree node; mtree(r) and utree(r) specify that the whole tree from r is marked or unmarked,
respectively. These two predicates are used in the specification for schorr waite in Fig. 8. On
the other hand, sbot and sseg talk about the implicit stack and the segment of nodes reachable
through the stack. In details, sbot(r) specifies that r is the only node in the stack and has been
marked; and if the flag check of this node is true, then all nodes in its left subtree are marked
and its right subtree is null, otherwise, its left subtree is null and all nodes in its right subtree
is unmarked. Predicate sseg(rt, rb) specifies a stack with rt as its top element and rb its bottom
element. Further, if rt = rb, then the stack has only one node. Every node in the stack has been
visited, and if the check flag of a node is true, then its left subtree is marked and its right field
records the next node in the stack, otherwise its right subtree is unmarked and its left field records
the next node in the stack.

From Fig. 8, we know the specification for the SWM program is:

{root = rroot ∧ utree(rroot)} SWM {root = rroot ∧mtree(rroot)} (1)

Here SWM represents the body of the function schorr waite. This is the statement which we
need to prove.

For proving the specification, the key-point is defining a suitable loop invariant. We define
the loop invariant I as follows (with auxiliaries Invp and Invr):

I .
= ∃rt, rp · t = rt ∧ p = rp ∧ (rp = rnull⇒ rt = rroot) ∧ Ip(rp) ∗ It(rt), where

Ip(rp) .
= (rp = rnull ∧ emp) ∨ (rp , rnull ∧ sseg(rp, rroot))

It(rt)
.
= mtree(rt) ∨ utree(rt)

This loop invariant says:

• If p is null, which means the stack is empty, then the value of t must be root;

• The whole Opool consists of two separated parts. The first part is specified by Ip(rp) which
is the part of nodes reachable from the implicit stack where p refers to the top element.

22

If p is null then this part is empty. The second part is specified by Ip(rt) which is a tree
denoted by t. The nodes in the tree must be all marked or unmarked.

We can simply prove the following facts:

First, the precondition establishes the loop invariant:

{root = rroot ∧ utree(rroot)}
t := root; p := null;
{root = rroot ∧ t = rroot ∧ p = rnull ∧ utree(rroot)}
{I}

And, the postcondition holds when the loop ends:

(∃rp, rt · p = rp ∧ t = rt ∧ rp = rnull ∧ (rt = rnull ∨ rt.mark ↪→ rtrue)) ∧ I
⇒ t = rroot ∧mtree(rroot)

Now we prove that the loop invariant is preserved by the loop body. The whole proof is split
into three cases according to the conditional branches in the body. Now we give these proofs one
by one, the pop case, the swing case, and then the push case:

Case Pop. For this case, the branch condition is p , null ∧ (t = null ∨ t.mark) ∧ p.check. We
have following deduction:

{(∃rt, rp · p = rp ∧ t = rt ∧ rp , rnull ∧
(rt = rnull ∨ rt.mark ↪→ rtrue) ∧ rp.check ↪→ rfalse) ∧ I}

{∃rt, rp, rpl, rpr · p = rp ∧ t = rt ∧

(mtree(rt) ∗ ((rp = rroot ∧ rpl = rnull ∧ node(rp, rpl, rpr, rfalse, rtrue) ∗ utree(rpr)) ∨
(node(rp, rpl, rpr, rfalse, rtrue) ∗ utree(rpr) ∗ sseg(rpl, rroot))))}

{∃rt, rp, rpl, rpr · p = rp ∧ t = rt ∧

(utree(rpr) ∗ ((rp = rroot ∧ rpl = rnull ∧ node(rp, rpl, rpr, rfalse, rtrue) ∗mtree(rt)) ∨
(node(rp, rpl, rpr, rfalse, rtrue) ∗mtree(rt) ∗ sseg(rpl, rroot))))}

q := t; t := p.right; s := p.le f t;
{∃rt, rp, rpl, rpr · q = rt ∧ p = rp ∧ t = rpr ∧ s = rpl ∧

(utree(rpr) ∗ ((rp = rroot ∧ rpl = rnull ∧ node(rp, rpl, rpr, rfalse, rtrue) ∗mtree(rt))∨
(node(rp, rpl, rpr, rfalse, rtrue) ∗mtree(rt) ∗ sseg(rpl, rroot))))}

p.right := s; p.le f t := q; p.check := true;
{∃rt, rp, rpl, rpr · q = rt ∧ p = rp ∧ t = rpr ∧ s = rpl ∧

(utree(rpr) ∗ ((rp = rroot ∧ rpl = rnull ∧ node(rp, rt, rpl, rtrue, rtrue) ∗mtree(rt))∨
(node(rp, rt, rpl, rtrue, rtrue) ∗mtree(rt) ∗ sseg(rpl, rroot))))}

{∃rt, rp, rpl, rpr · p = rp ∧ t = rpr ∧ (utree(rpr) ∗ sseg(rp, rroot))}
{I}

Case Swing. For the swing case, the proof is
similar. In this case, the branching condition is p , null ∧ (t = null ∨ t.mark) ∧ ¬p.check.

23

Thus we have deduction:

{(∃rt, rp · t=rt ∧ p=rp ∧ rp, rnull ∧ (rt= rnull ∨ rt.mark ↪→ rtrue) ∧ rp.check ↪→ rtrue) ∧ I}
{∃rt, rp, rpl, rpr · t = rt ∧ p = rp ∧

(mtree(rt) ∗ ((rp = rroot ∧ rpr = rnull ∧ node(rp, rpl, rpr, rtrue, rtrue) ∗mtree(rpl))∨
(node(rp, rpl, rpr, rtrue, rtrue) ∗mtree(rpl) ∗ sseg(rpr, rroot))))}

{∃rt, rp, rpl, rpr · t = rt ∧ p = rp ∧ (mtree(rt) ∗ node(rp, rpl, rpr, rtrue, rtrue) ∗mtree(rpl) ∗
((rp = rroot ∧ rpr = rnull ∧ emp) ∨ sseg(rpr, rroot)))}

q := t; t := p; p := p.right;
{∃rt, rp, rpl, rpr · q = rt ∧ t = rp ∧ p = rpr∧

(mtree(rt) ∗ node(rp, rpl, rpr, rtrue, rtrue) ∗mtree(rpl)∗
((rp = rroot ∧ rpr = rnull ∧ emp) ∨ sseg(rpr, rroot)))}

t.right := q;
{∃rt, rp, rpl, rpr · q = rt ∧ t = rp ∧ p = rpr ∧

(mtree(rt) ∗ node(rp, rpl, rt, rtrue, rtrue) ∗mtree(rpl)∗
((rp = rroot ∧ rpr = rnull ∧ emp) ∨ sseg(rpr, rroot)))}

{∃rp, rpr · t = rp ∧ p = rpr ∧ (rpr = rnull⇒ rp = rroot) ∧
(mtree(rp) ∗ ((rpr = rnull ∧ emp) ∨ sseg(rpr, rroot)))}

{I}

Case Push:. Here the condition is t , null ∧ ¬t.mark. We have

{(∃rt · t = rt ∧ rt , rnull ∧ rt.mark ↪→ rfalse) ∧ I}
{∃rt, rp, rtl, rtr · t = rt ∧ p = rp ∧ (rp = rnull⇒ rt = rroot) ∧

(Ip(rp) ∗ node(rt, rtl, rtr, -, rfalse) ∗ utree(rtl) ∗ utree(rtr))}
q := p; p := t; t := t.le f t;
{∃rt, rp, rtl, rtr · q = rp ∧ p = rt ∧ t = rtl ∧ (rp = rnull⇒ rt = rroot) ∧

(Ip(rp) ∗ node(rt, rtl, rtr, -, rfalse) ∗ utree(rtl) ∗ utree(rtr))}
p.le f t := q; p.mark := true; p.check := false;
{∃rt, rp, rtl, rtr · q = rp ∧ p = rt ∧ t = rtl ∧ (rp = rnull⇒ rt = rroot) ∧

(Ip(rp) ∗ node(rt, rp, rtr, rfalse, rtrue) ∗ utree(rtl) ∗ utree(rtr))}
{∃rt, rp, rtl, rtr · q = rp ∧ p = rt ∧ t = rtl ∧ utree(rtl)∗

((rp = rnull ∧ rt = rroot ∧ emp) ∨ sseg(rp, rroot)) ∗ node(rt, rp, rtr, rfalse, rtrue) ∗ utree(rtr)}
{∃rt, rp, rtl, rtr · p = rt ∧ t = rtl ∧ (utree(rtl) ∗ sseg(rt, rroot))}
{I}

Although here we carry the proof for SWM only with a simple specification, we can see that
the verification framework of VeriJ0 works well. In addition, we see that in the real verifica-
tion procedure, some auxiliary predicates need to be introduced, especially when the program
involves in some mathematical concepts. Thus, a useful framework must allow users to define
their own predicates and use them in the verification.

6.4. Class Verification and Problems
In [25], Parkinson verified some typical examples in OO verification. We investigate these

examples in this section. Fig. 10 lists our sample code, but without specifications.
Cell is the base class here which contains a field x and two methods to manipulate x. ReCell

inherits Cell and extends it by introducing an additional y to backup x’s value. This value is
backuped by an overriding method set, and is restored by a new method undo. ReCell should

24

class Cell : Object {
Bool x;
void set(Bool b) { this.x = b; }
Bool get() { return this.x; }
}

class ReCell : Cell {
Bool y;
void set(Bool b) { this.y = this.x; this.x = b; }
void undo() { this.x = this.y; }

}

class DCell : Cell {
void set(Bool b) { x = ¬b; }

}

class TCell : Cell {
Bool y;
void set(Bool b) { this.y = b; }
Bool get() { return this.y; }

}

Figure 10: Source Code for Cell

class Cell : Object {
void set(Bool b)
requires this.x 7→ -;
ensures this.x 7→ old(b);
{ this.x = b; }
Bool get()
requires this.x 7→ b; ensures res = b;
{ return this.x; }

}

class ReCell : Cell {
void set(Bool b)
requires this.x 7→ - ∗ this.y 7→ -;
ensures this.x 7→ old(b)∗

this.y 7→ old(this.x);
{ this.y = this.x; this.x = b; }
void undo()
requires this.x 7→ - ∗ this.y 7→ b;

ensures this.x 7→ b ∗ this.y 7→ b;
{ this.x = this.y; }

}

class DCell : Cell {
void set(Bool b)
requires this.x 7→ -; ensures this.x 7→ ¬old(b);
{ x = ¬b; }

}

class TCell : Cell {
void set(Bool b)
requires this.y 7→ -; ensures this.y 7→ old(b);
{ this.y = b; }

Bool get()
requires this.y 7→ b; ensures res = b;
{ return this.y; }

}

Figure 11: The First Specification for Cell Program

be a behavioral subtype of Cell. DCell inherits Cell, but exhibits a different behavior: Cell.set(b)
stores b in x, but DCell.set(b) stores ¬b instead. So DCell is not a behavioral subtype of Cell.
This type of inheritance is called interface reuse. TCell maintains behavior of set and get, but its
inner state is very different from Cell. TCell use a new field y in implementing set and get.

Now we consider how to specify Cell and its subclasses, and if we can verify their subtype
relationship correctly.

6.4.1. The First Attempt
It is not hard to provide specifications for the methods, as shown in Fig. 11. These spec-

ifications seems make sense, and we can straightforwardly prove that every method meets its
specification. Now we focus on their subtype relationship.

For ReCell, we need to show that ReCell.set’s specification refines Cell.set’s, that is:

{this.x 7→ -}-{this.x 7→ old(b)} v
{this.x 7→ - ∗ this.y 7→ -}-{this.x 7→ old(b) ∗ this.y 7→ old(this.x)}

Unfortunately, this refinement can not be proved, because it does not hold! The reason is that
25

class Cell : Object {
void set(Bool b)
requires obj(this); ensures this.x ↪→ old(b);
{ this.x = b; }
Bool get()
requires obj(this); ensures res = old(this.x);
{ return this.x; }

}

class ReCell : Cell {
void set(Bool b)
requires obj(this);
ensures this.x ↪→ old(b) ∧ this.y ↪→ old(this.x);
{ this.y = this.x; this.x = b; }
void undo()
requires obj(this); ensures this.x ↪→ old(this.y);
{ this.x = this.y; }

}

class DCell : Cell {
void set(Bool b)
requires obj(this);
ensures this.x ↪→ ¬old(b);
{ x = ¬b; }

}

class TCell : Cell {
void set(Bool b)
requires obj(this);
ensures this.y ↪→ old(b);
{ this.y = b; }

Bool get()
requires obj(this);
ensures res = old(this.y);
{ return this.y; }

}

Figure 12: The Second Specifications for Cell

the specification of ReCell.set mentions more storage, this does not conform to the definition of
refinement Defintion 11.

For DCell, we have the following incorrect refinement:

{this.x 7→ -}-{this.x 7→ old(b)} v {this.x 7→ -}-{this.x 7→ ¬old(b)}

So, we can not judge if class DCell is a behavioral subtype of Cell or not in VeriJ0.
At last, for TCell, we need prove:

{this.x 7→ -}-{this.x 7→ old(b)} v {this.y 7→ -}-{this.y 7→ old(b)}, and
{this.x 7→ b}-{res = b} v {this.y 7→ -}-{res = b}

Clearly, as for ReCell, these two refinement relationships can not be proved.
We carefully investigate the precondition of Cell.set, this.x 7→ -. This assertion requires

that this method depends on field this.x, and excludes anything else in current Opool. This
precondition is too strong because it abandons any memory extension. This example tells us that
we must consider some proper extension for our specification.

6.4.2. The Second Attempt
One simple idea is using looser assertions like this.x ↪→ - to replace this.x 7→ -, because

this.x ↪→ - ⇔ (this.x 7→ - ∗ true), this.x ↪→ - holds on any extension of this.x 7→ -.
But this does not work either, because although this.x ↪→ - allow memory extension, it can not
ensure that necessary cells are in current Opool, for example, the field y of ReCell.

In fact, in practice we often need to talk about the whole object but not only some particular
fields. Take method set and get as examples, we hope our specification is “they can execute on
any object of Cell or its subclass, and get always return latest value set by set”. This recalls our
assertion form obj(r) in OOSL, which just describes a complete object which r refers to. We use
it to specify Cell and its subclasses, and list our second attempt in Fig. 12.

26

Consider the new specification for Cell.set, {obj(this)}-{this.x ↪→ old(b)} says that set can
execute on any complete object of Cell or its subclasses; and after its execution, the value of x
will be old(b). Inside Cell, we have this : Cell by rule (H-THIS), then by Lemma 5 we have:

this : Cell ∧ obj(this)⇔ this.x 7→-

Clearly we can prove that Cell.set meets its new specification, and so for all other methods.
The power of obj(this) comes from that it will take the suitable meaning according to the

object type of this. This precondition can be read as “the method can execute on an object
of Cell or its subclass”. It has multiple meanings, thus gives a polymorphic specification! This
recognition is very important in building a useful verification framework for OO programs.

For the subtype relationship related to ReCell, we need to prove

{obj(this)}-{this.x ↪→ old(b)} v {obj(this)}-{this.x 7→ old(b) ∗ this.y 7→ old(this.x)}

Clearly, by Theorem 6, this refinement holds, so ReCell is a behavioral subtype of Cell.
For DCell, refinement

{obj(this)}-{this.x 7→ old(b)} v {obj(this)}-{this.x 7→ ¬old(b)}

can not be proved, so we can not judge if DCell is a behavioral subtype of Cell or not still.
For TCell, we also can not prove the following refinement be because their postconditions

have nothing to do with each other.

{obj(this)}-{this.x 7→ old(b)} v {obj(this)}-{this.y 7→ old(b)}

However, we really want to prove this behavior subtype relationship too.

6.4.3. Discussions
From above specification/verification samples, we have the following recognitions:

1. In specification/verification of OO programs, user-defined predicates are indispensable,
especially in dealing with recursive object structures. We cannot image that a framework
can offer all possible useful predicates. Although many works in this field use some predi-
cates explicitly, almost none of the work give them syntactic positions in the language, not
to say their visibility/usability rules in verifications. We find this is a very fruitful problem
to investigate, and will give our solution in next section.

2. A subclass may take an implementation totally different from its superclass, but still pro-
vide similar behavior in the view of the users, e.g., class TCell. The naive specification
mechanism shown above refuses such departures, thus is not flexible enough in support-
ing OO verification. Polymorphic specification mechanisms, like obj(this), should be
provided to support the verification in the present of inheritance and overriding.

3. As another issue, DCell above should not be Cell’s subtype behaviorally. But our frame-
work provide no rule for stating that class C is not B’s behavioral subtype! In fact, this
relation should be determined and announced by users to prevent such verification.

From above work, we learn that VeriJ0 is not expressive and power enough, we must intro-
duce user-defined predicates and polymorphic specification into our language.

27

[S-PDEF] [S-PINH] p is not defined inC
class C{..def [public] p(a) : ψ; ..}

(p(a), [public]ψ) ∈ Φ(C)
class C : B {. . .} (p(a), [public]ψ) ∈ Φ(B)

(p(a), [public]ψ) ∈ Φ(C)

Figure 13: Constructing of Specification Predicates Environment Φ

7. Information Hiding and Abstract Specification: VeriJ1

Now we extend VeriJ0 by adding abstract specifications and specification predicates with
scope rules to solve issues 1 and 2 given in last section. We call the new language VeriJ1.

7.1. Extension of Language and Static Environment

We add user defined predicates (in our words, specification predicate) in VeriJ1 as follows:

N ::= public P ::= def [N] p(this, a) : ψ
K ::= class C : C{[N] T a; P; C(T z) [S] {T y; c}; M}

Here are some explanations:

• Access modifier public is introduced to decorate fields and specification predicates. The
public fields are visible everywhere, while the non-public ones are visible only in the
class or its subclass(es) (similar to the case of protected in Java).

• Declaration def p(this, a) : ψ introduces a specification predicate in current class, where
parameter this (written explicitly at first) denotes current object. The signature of a pred-
icate is visible everywhere, but its definition (its body) has different visibility rule. A
predicate can be declared as public thus its definition can be used everywhere. On the
other hand, when a non-public p is defined in class C, its body is visible only in C and
subclasses of C. In other place, p, or C.p as a complete name, is atomic.

• As a rule, a subclass inherits all predicates declared in its superclass, and can override
them. However, in the overriding, the new predicates should take the same case in public
or not as their counterparts in the super classes.

• We demand that not any public field can appear in non-public predicates, and only public
fields can appear in public predicates.

To support specification predicates, we need to extend the static environment, now Γ for
VeriJ1 consists of four parts, Γ = (∆,Θ,Π,Φ). We call the new Φ specification predicates envi-
ronment, that records all the user-defined predicates. Formally speaking, Φ is a map from class to
a set of specification predicates. Φ(C) gives all names and bodies of the specification predicates
defined in C. Fig. 13 lists rules for constructing Φ, where [S-PDEF] says that if predicate p is
defined in C (including overridden), then p’s definition is in Φ(C); and [S-PINH] says that C
inherits its superclass’ predicates when it does not overrides them. As shown, Φ also records if a
predicate is public. In the following, we will use Φ(C.p(this, a)) = [public]ψ to denote that
(p(this, a), [public]ψ) ∈ Φ(C).

Thanks to specification predicates, VeriJ1 is more expressive and powerful than VeriJ0. We
can solve many problems encountered in VeriJ0 before.

28

[H-DPRE]
r : B C <: B, Φ(B.p(this, a)) = ψ
Γ,C,m ` p(r, r′)⇔ ψ[r, r′/this, a]

[H-SPRE]
C <: B, Φ(B.p(this, a)) = ψ

Γ,C,m ` B.p(r, r′)⇔ fix(B, ψ)[r, r′/this, a]

[H-PDPRE]
r : D, Φ(D.p(this, a′)) = public ψ
Γ,C,m ` p(r, r′)⇔ ψ[r, r′/this, a′]

[H-PSPRE]
Φ(D.p(this, a)) = publicψ

Γ,C,m ` D.p(r, r′)⇔ fix(D, ψ)[r, r′/this, a]

[H-INH1]
Γ ` inh(C,m, B) Γ ` {P} B.m(z) {Q}, Γ,C,m ` {P}-{Q} v {fix(B, P)}-{fix(B,Q)}

Γ ` {P}C.m(z) {Q}

Figure 14: Additional Rules for VeriJ1

7.2. Verification Framework
We take most of the verification rules for VeriJ0 as the rules for VeriJ1, including the rules

for commands listed in Fig. 5, Fig. 7, and Fig. 6 except the rule [H-INH] for verifying inherited
methods. Fig. 14 lists the new rules for VeriJ1.

[H-DPRE] and [H-SPRE] define the scope, or visibility, of (non-public) specification pred-
icates. They say if a predicate is visible in a class, then it can be unfolded there. However, they
have some dissimilarities. [H-DPRE] says if r is of a class D, then in any subclass of D we can
unfold p(r, r′) to its definition. [H-SPRE] tells that D.p(r, r′) is equivalent to its definition in D.
Here fix(D, ψ) gives the instantiated assertion for D.p(. . .), and the definition of fix is

fix(D, ψ) =



¬fix(D, ψ′), if ψ is ¬ψ′

fix(D, ψ1) ⊗ fix(D, ψ2), if ψ is ψ1 ⊗ ψ2
∃r · fix(D, ψ′), if ψ is ∃r · ψ′

D.p(this, r), if ψ is p(this, r) ∧
D.p(this, a) ∈ domΦ

ψ, otherwise.

where ⊗ can be ∨, ∗, or –∗. Intuitively, fix replaces names of predicates defined in D to their
complete names, and unfold, so it can fix the meaning of an assertion in a class. In other words,
this function provides a static and fixed explanation for ψ, according to a given class D.

Notice in [H-SPRE], when unfolding D.p(r, r′), we have to use fix(D, ψ) to fix body of p
at first, then do the substitution. In fact, [H-DPRE] is for dynamic binding of specification
predicate, while [H-SPRE] for static binding. These two rules allow us to hide implementation
details of a class, even they are used in the definition of specification predicates.

Rules [H-PDPRE] and [H-PSPRE] are similar to [H-DPRE] and [H-SPRE], but deal with
the public predicates. Comparing to the corresponding rules, they do not restrict the scope.

7.3. Soundness
We give the soundness result of verification framework for VeriJ1 here, the key point is the

semantics of specification predicates:

Definition 16 (Semantics of specification predicates). Suppose p(this, a) is a specification
predicate, and Φ(C1, p(this, a)) = ψ1, . . . ,Φ(Cn, p(this, a)) = ψn are all its definitions in Φ,
we define:

p(r, r′) =̂
∨

(r : Ti ∧ ψn[r, r′/this, a]) i = 1, . . . , n.

From this definition, we can see that the semantics of p(r, r′) is determined by all its defi-
nitions and its first argument r’s type. So, specification predicates are “abstract” and “polymor-
phic”. This is similar to the “dynamic biding” in OO world.

By this definition, we can easily prove (H-DPRE) and (H-PDPRE) are sound.
29

Lemma 11. (H-DPRE) and (H-PDPRE) are sound.

Then, by the definition of fix, we have:

Lemma 12. (H-SPRE) are (H-PSPRE) sound.

Proof. Induction on structure of ψ.

At last, we prove the soundness of (H-INH1).

Lemma 13. (H-INH1) is sound.

Proof. By premise, C.m is inherited from superclass D, and Γ ` {P}D.m(z) {Q}. By body verifi-
cation of (H-MTHD) and (H-OVR) we have:

Γ,D,m ` {z = r ∧ y = nil ∧ P[r/z]} c {Q[r/z]},

Then
Γ,C,m ` {z = r ∧ y = nil ∧ fix(D, P)[r/z]} c {fix(D,Q)[r/z]},

This is
Γ ` {fix(D, P)}C.m(z) {fix(D,Q}).

At last, by refinement relationship

Γ,C,m ` {P}-{Q} v {fix(D, P)}-{fix(D,Q)},

So Γ ` {P}C.m(z) {Q}).

Combing soundness of VeriJ0’s verification rules, we can conclude that the verification frame-
work of VeriJ1 is sound.

7.4. Study Cases

In this section, we show by examples how the modular specification and verification can be
carried out in our framework.

7.4.1. Reexamine Cell
At first, we reexamine the Cell example in last section except DCell, which is left to next

section. Fig. 15 list Cell, ReCell and TCell with new specifications in VeriJ1. In Cell we define
a specification predicate cell for describing its behavior, and this predicate is overridden in the
declaration of TCell.

By rules (H-THIS) and (H-DPRE), we have cell(this, v) ⇔ this.x 7→ v holds in Cell, and
cell(this, v) ⇔ this.x 7→ v ∗ this.y 7→ - in ReCell, while cell(this, v) ⇔ this.y 7→ v in
TCell. Clearly, predicate cell is polymorphic. It is straightforward to complete body verification
by the rules. Now we investigate verification conditions about overriding and inheritance.

For ReCell.set, we must prove the behavioral subtype condition:

{cell(this, -)}-{cell(this, old(b))} v {cell(this, r)}-{cell(this, old(b)) ∧ bak(this, r))}

Clear it holds.

30

class Cell : Object {
Bool x;
def cell(this, v) : this.x 7→ v;
void set(Bool b)
requires cell(this, -);
ensures cell(this, old(b));
{ this.x = b; }
Bool get()
requires cell(this, b); ensures res = b;
{ return this.x; }

}

class ReCell : Cell {
Bool y;
def cell(this, v) : this.x 7→ v ∗ this.y 7→ -;

def bak(this, v) : this.x 7→ - ∗ this.y 7→ v;
void set(Bool b)
requires cell(this, r);
ensures cell(this, old(b)) ∧ bak(this, r);
{ this.y = this.x; this.x = b; }
void undo()
requires bak(this, b); ensures cell(this, b);
{ this.x = this.y; }

}

class TCell : Cell {
Bool y;
def cell(this, v) : this.y 7→ v;
void set(Bool b) { this.y = b; }
Bool get() { return this.y; }

}

Figure 15: Specifications for Cell in VeriJ1

For ReCell.get, we should verify

{cell(this, -)}-{res = b} v {fix(cell(this, -))}-{fix(res = b)}

this is
{this.x 7→ b ∗ this.y 7→ -}-{res = b} v {this.x 7→ b}-{res = b}

By Theorem 6, this refinement relationship holds.
Combine above deductions, we can conclude that ReCell is a behavioral subtype of Cell.
Then we investigate overridden methods TCell.get and TCell.set. Because their specifications

are same as their correspondence in Cell. We have that TCell is a behavioral subtype of Cell.
From this example, we can see that, thanks to specification predicates, especially their poly-

morphic features, we can abstract implementation details away in VeriJ1. By these more power
framework, we may specify and verify more programs, or do the work more naturally.

7.4.2. Queue
Now we investigate a non-trivial example. Fig. 16 gives the implementation and specifica-

tions for two queue classes. Here Node defines nodes holding boolean values; Queue defines
simple queues, in which field hd holds a linked list of Node objects with a head node, thus the
node denoted by hd.nxt holds the first value in the queue. Method enqueue inserts a value into
the queue. Subclass EQueue of Queue defines a kind of faster queues. A new field tl in EQueue
object points to the last node of its list, and a new enqueue definition overrides the old one in
Queue. We omit return in enqueue and write its return type as void only for convenience,
because enqueue does not need to return any value.

For the specification to be possible, we extend the assertion language by adding mathematical
concept of sequences with boolean elements, here α, β and γ denote sequences:

α, β, γ ::= [] | [b] | α :: α

where [] is the empty sequence; [b] is a singleton; and :: denotes sequence concatenation.

31

class Node : Object {
public Bool val; public Node nxt;
def public node(this, v, n) :

this.val 7→ v ∗ this.nxt 7→ n;
Node(Bool b)
requires emp; ensures node(this, old(b), rnull)
{ this.val = b; this.nxt = null; }

}

class Queue : Object {
Node hd;
def queue(this, α):∃rh · this.hd 7→ rh∗

list(this, rh, rnull, [rfalse] :: α)
def list(this, r1, r2, α) : (α = [] ∧ r1 = r2 ∧ emp) ∨

(∃r3, b, β · (α = [b] :: β)∧
(node(r1, b, r3) ∗ list(this, r3, r2, β)));

Queue()
requires emp; ensures queue(this, [])
{ Node x; x = new Node(false); this.hd = x; }
void enqueue(Bool b)
requires queue(this, α);
ensures queue(this, α :: [old(b)])
{ Node p, q, n; p = this.hd; q = p.nxt;
while (q!=null){p = q; q = p.nxt; }
n = new Node(b); p.nxt = n; }

Bool dequeue()
requires queue(this, [b] :: α);
ensures res = b ∧ queue(this, α) ∗ true
{ Bool x; Node h, p; h = this.head; p = h.next;

x = p.value; p = p.next; h.next = p; return x; }

Bool empty()
requires queue(this, α);
ensures queue(this, α)∧

((α = [] ∧ res = true)∨
(α , [] ∧ res = false))

{ Node p; Bool b;
p = this.head; p = p.next;
if (p==null) b = true;
else b = false;
return b;

}

}

class EQueue : Queue {
Node tl;
def queue(this, α) : ∃r, r′, β, b·

([rfalse] :: α = β :: [b])∧
(this.hd 7→ r ∗ this.tl 7→ r′∗
list(this, r, r′, β) ∗ node(r′, b, rnull));

EQueue()
requires emp; ensures queue(this, [])
{ Node x; x = new Node(false);
this.hd = x; this.tl = x;

}

void enqueue(Bool b)
{ Node p, n;

p = this.tl; n = new Node(b);
p.nxt = n; this.tl = n;

}

}

Figure 16: Queue and EQueue in VeriJ1

Class Node defines a public predicate node(this, v, n). The definition of that predicate is
accessible in any client of Node.

In Queue, we define a specification predicate queue, which gives the implementation detail
of Queue objects: field hd refers to a linked list holding sequence [rfalse] :: α, i.e., a list with a
head node recording rfalse, and the rest nodes hold values in α sequentially. We can see how this
predicate is used to specify methods of Queue.

Here we define also an auxiliary predicate list(this, r1, r2, α). It is used to assert a single
linked list segment between r1 and r2 which holds α. Note that although this (a Queue object)
is not really used in list, it makes a link to the class where the predicate defines, thus can be used.
We may extend the language with static predicates to mimic static methods in OO languages to
make the specification more nature.

The specification of Queue.enqueue says that, if a Queue object q holds values α, after
q.enqueue(b) it will hold α :: [old(b)]. On the other hand, the specification of Queue.dequeue
says, if q holds [b] :: α, after q.dequeue() it will hold α, and the return value is b. The “∗ true”
part in ensures of dequeue means that after execution, some objects covered by the precondi-
tion are thrown. To dequeue, that is the node formerly recording the first value of the queue, but
has been taken away now. Specification for empty is simple. Please note, no specification here

32

mentions anything in the implementation, thus they are abstract.
In EQueue, which is a subclass of Queue, according to the modified implementation, we

override predicate queue to reflect the structures of this class. And we redefine code of enqueue
but inherit its specification. By rules, now queue in the specification refers to the new definition,
although the specification is inherited from Queue. Please note that, here list is not redefined,
thus is inherited. It is also allowed to override auxiliary predicates.

Now, we prove correctness of these classes:

Node.Node meets its specification.

{emp}
Node (Bool b) {
{b = rb ∧ raw(this,Node)}
this.val = b; this.nxt = null;
{b = rb ∧ this.val 7→ rb ∗ this.nxt 7→ rnull}
}

{this.val 7→ old(b) ∗ this.nxt 7→ rnull}

Queue.Queue meets its specification.

{emp}
Queue() {

Node x;
{x = rnull ∧ raw(this,Queue)}
x = new Node(false);
{∃rh · x = rh ∧ raw(this,Queue) ∗ node(rh, rfalse, rnull)}
this.hd = x;
{∃rh · x = rh ∧ this.hd 7→ rh ∗ list(rh, rnull, [rfalse])}

}

{queue(this, [])}

33

Queue.empty meets its specification.

{queue(this, α)}
Bool empty() {

Node p; Bool b;
{p = rnull ∧ b = rfalse ∧ queue(this, α)}
p = this.hd;
{∃r1 · p = r1 ∧ b = rfalse ∧ this.hd 7→ r1 ∗ list(r1, rnull, [rfalse] :: α)}
p = p.nxt;
{∃r1, r2 · p = r2 ∧ b = rfalse ∧ this.hd 7→ r1 ∗ node(r1, rfalse, r2) ∗ list(r2, rnull, α)}
if (p == null)
{∃r1 · p = rnull ∧ b = rfalse ∧ this.hd 7→ r1 ∗ node(r1, rfalse, rnull) ∗ list(rnull, rnull, [])}
b = true;
{∃r1 · p = rnull ∧ b = rtrue ∧ this.hd 7→ r1 ∗ node(r1, rfalse, rnull)}
{p = rnull ∧ b = rtrue ∧ queue(this, [])}

else

{∃r1, r2 · p = r2 ∧ r2 , rnull ∧ b = rfalse∧
this.hd 7→ r1 ∗ node(r1, rfalse, r2) ∗ list(r2, rnull, α)}

b = false;
{∃r1, r2 · p = r2 ∧ r2 , rnull ∧ b = rfalse∧
this.hd 7→ r1 ∗ node(r1, rfalse, r2) ∗ list(r2, rnull, α)}

{∃r2 · p = r2 ∧ r2 , rnull ∧ b = rtrue ∧ queue(this, α)}
return b;
}

{queue(this, α) ∧ ((α = [] ∧ res = rtrue) ∨ (α , [] ∧ res = rfalse))}

Queue.enqueue meets its specification.

{queue(this, α)}
void enqueue(Bool b) { // enqueue in class Queue

Node p, q, n;
{b = rb ∧ p = rnull ∧ q = rnull ∧ n = rnull ∧ queue(this, α)}
p = this.hd; q = p.nxt;
{∃r1, r2 · b = rb ∧ p = r1 ∧ q = r2 ∧ n = rnull ∧
this.hd 7→ r1 ∗ node(r1, rfalse, r2) ∗ list(r2, rnull, α)}

while (q != null) {
{∃rp, rq, c, β, γ · p = rp ∧ q = rq ∧ ([rfalse] :: α = β :: [c] :: γ) ∧

list(r1, rp, β) ∗ node(rp, c, rq) ∗ list(rq, rnull, γ)}
p = q; q = p.nxt;

}

{∃r1, r2, rp, β, c · b = rb ∧ p = rp ∧ q = rnull ∧ n = rnull ∧
([rfalse] :: α = β :: [c]) ∧ this.hd 7→ r1 ∗ list(r1, rp, β) ∗ node(rp, c, rnull)}

n = new Node(b); p.nxt = n;
{∃r1, r2, rp, rn, β, c · b = rb ∧ p = rp ∧ q = rnull ∧ n = rn ∧ ([rfalse] :: α = β :: [c])∧
this.hd 7→ r1 ∗ list(r1, rp, β) ∗ node(rp, c, rn) ∗ node(rn, rb, rnull)}

{∃r1 · b = rb ∧ this.hd 7→ r1 ∗ list(r1, rnull, [rfalse] :: α :: [rb])}
}

{queue(this, α :: [old(b)])}

34

Queue.dequeue meets its specification.

{queue(this, [b] :: α)}
Bool dequeue() {
Bool x; Node h, p;
{b = rfalse ∧ h = rnull ∧ p = rnull ∧ queue(this, [b] :: α)}
h = this.hd; p = h.nxt;
{∃rh, rp · x = rfalse ∧ h = rh ∧ p = rp∧

this.hd 7→ rh ∗ node(rh, rfalse, rp) ∗ list(rp, rnull, [b] :: α)}
x = p.val;
{∃rh, rp · x = b ∧ h = rh ∧ p = rp∧

this.hd 7→ rh ∗ node(rh, rfalse, rp) ∗ list(rp, rnull, [b] :: α)}
p = p.nxt;
{∃rh, rp, r1 · x = b ∧ h = rh ∧ p = rp∧

this.hd 7→ rh ∗ node(rh, rfalse, r1) ∗ node(r1, b, rp) ∗ list(rp, rnull, α)}
h.nxt = p;
{∃rh, rp, r1 · x = b ∧ h = rh ∧ p = rp∧

this.hd 7→ rh ∗ node(rh, rfalse, rp) ∗ list(rp, rnull, α) ∗ node(r1, b, rnull)}
{∃rh, r1 · x = b ∧ h = rh ∧ this.hd 7→ rh∗

list(rh, rnull, [rfalse] :: α) ∗ node(r1, b, rnull)}
{∃r1 · x = b ∧ queue(this, α) ∗ node(r1, b, rnull)}
return x;
}

{res = b ∧ queue(this, α) ∗ true}

EQueue.EQueue meets its specification.

{emp}
EQueue(){ Node x;
{x = rnull ∧ raw(this,EQueue)}
x = new Node(false);
{∃r1 · x = r1 ∧ raw(this,EQueue) ∗ node(r1, rfalse, rnull)}
this.hd = x; this.tl = x;
{∃r1 · x = r1 ∧ this.hd 7→ r1 ∗ this.tl 7→ r1 ∗ list(r1, r1, []) ∗ node(r1, rfalse, rnull)}

}

{queue(this, [])}

35

EQueue.enqueue meets its specification.

{queue(this, α)}
void enqueue(Bool b) { // enqueue in class EQueue

Node p, n;
{b = rb ∧ p = rnull ∧ n = rnull ∧ queue(this, α)}
p = this.tl; n = new Node(b);
{∃rh, rt, rn, β, c · b = rb ∧ p = rt ∧ n = rn ∧ ([rfalse] :: α = β :: [c])∧

node(rn, rb, rnull) ∗ (this.hd 7→ rh ∗ this.tl 7→ rt ∗ list(rh, rt, β) ∗ node(rt, c, rnull))}
p.nxt = n; this.tl = n;
{∃rh, rt, rn, β, c · b = rb ∧ p = rt ∧ n = rn ∧ ([rfalse] :: α = β :: [c])∧

(this.hd 7→ rh ∗ this.tl 7→ rn ∗ list(rh, rt, β) ∗ node(rt, c, rn) ∗ node(rn, rb, rnull))}
{∃rh, rt, rn · b = rb ∧

(this.hd 7→ rh ∗ this.tl 7→ rn ∗ list(rh, rn, [rfalse] :: α) ∗ node(rn, rb, rnull))}
}

{queue(this, α :: [old(b)])}

Please pay attention, Rule [H-OVR] asks also for verifying Γ,C,m ` {P′}-{Q′} v {P}-{Q}.
Because P′/Q′ and P/Q are the same, nothing needs to do here.

EQueue.dequeue meets its specification. For the inherited method EQueue.dequeue, by Rule
[H-INH], we need to prove that there exists an R such that:

Γ,EQueue, dequeue ` (P⇒ fix(Queue, P) ∗ R) ∧ (fix(Queue,Q) ∗ R⇒ Q)

where P is queue(this, [b] :: α) and Q is res = b ∧ queue(this, α) ∗ true. By definition of fix,
we get

Γ,EQueue, dequeue ` (P⇒ fix(Queue, P) ∗ R)
⇔ (queue(this, [b] : α)⇒ Queue.queue(this, [b] :: α) ∗ R)

and then
Γ,EQueue, dequeue ` (fix(Queue,Q) ∗ R⇒ Q)
⇔ (Queue.queue(this, α) ∗ R⇒ queue(this, α))

So, the key point is to prove

Γ,EQueue, dequeue ` Queue.queue(r, α) ∗ R⇔ queue(r, α)

Let R = ∃rt · r.tl 7→ rt, we have

Γ,EQueue, dequeue ` Queue.queue(r, α) ∗ R
⇔ ∃rh · r.hd 7→ rh ∗ list(this, rh, rnull, [rfalse] :: α) ∗ (∃rt · r.tl 7→ rt)
⇔ ∃rh, rt · r.hd 7→ rh ∗ r.tl 7→ rt ∗ list(this, rh, rnull, [rfalse] :: α) ⇔ queue(r, α)

So, we conclude that EQueue.dequeue is correct, because it maintains the behavior subtyping
relationship. Here we do not need to touch the code, thus no re-verification is necessary.

EQueue.empty meets its specification. Similar to EQueue.dequeue.

From these proofs we can see that we use only the specifications locally, especially the spec-
ification predicates (except in the inheritance case shown above, where we have also locality),
thus we have information hiding.

36

EQueue trans(Queue q)
requires queue(q, α);
ensures queue(old(q), []) ∗

queue(res, α) ∗ true;
{

Bool f , t; EQueue eq;
eq = new EQueue();
f = q.empty();
while (¬ f){

t = q.dequeue();
eq.enqueue(t);
f = q.empty();

}

return eq;
}

EQueue trans(Queue q)
requires queue(q, α); ensures queue(old(q), []) ∗ queue(res, α) ∗ true;
{

{q = rq ∧ queue(rq, α)}
Bool f , t; EQueue eq; eq = new EQueue();
{∃r · q = rq ∧ eq = r ∧ queue(rq, α) ∗ queue(r, [])}
f = q.empty();
{(α = [] ∧ f = true) ∨ (α , [] ∧ f = false)}
while (¬ f){
{∃r, β, γ · q = rq ∧ eq = r ∧ γ , [] ∧ α = β :: γ∧

queue(rq, γ) ∗ queue(r, β) ∗ true}
t = q.dequeue(); eq.enqueue(t); f = q.empty();

}

{∃r · q = rq ∧ eq = r ∧ queue(rq, []) ∗ queue(r, α) ∗ true}
return eq;
{queue(old(q), []) ∗ queue(res, α) ∗ true}

}

Figure 17: A client of Queue and EQueue and its verification

7.4.3. A Client of Queue and EQueue
Now we define a client which using Queue and EQueue to show how client code can be

specified and verified abstractly without referring to any implementation details. In Fig. 17 (left
part), we define a method trans which takes a Queue as its parameter, transfers all elements of
this queue to a new created EQueue, and returns the new EQueue. We list the proof of trans
also in Fig. 17 (right part). In this example, our verification is carried out only with the interface
of method Queue.enqueue and EQueue.queue. This shows that our framework supports both
abstraction and modularity.

8. Explicit Code Reuse: VeriJ2

It is widely recognized that the inheritance feature in OO languages can be used for spe-
cialization, overriding, and code reuse (i.e., [25]). For the specialization and overriding, we
require that the behavior of a subclass should be compatible to the behavior of its superclass
(behavior subtyping). While for code reuse, we only intend to share interface and/or code of
the superclasses. Recall the Cell example in Section 6.3, we see that DCell is a typical code
reuse example. Although we can specify and verify ReCell and TCell properly via specification
predicates in VeriJ1, we can not specify classes like DCell according to our intensions.

In this section, we propose an approach to distinguish these different usages, or, different
relationships between classes. We call C inherits D while C should be a behavioral subtype of
D, meanwhile C reuses D while C need not be a behavioral subtype of D, but only utilizes some
facilities of D. Our purpose is to add explicit some syntactic notations for declaration of code
reuse to VeriJ1, in order for the users to announce that classes like DCell need not be a behavioral
subtype of its superclass. This forms our new language VeriJ2.

8.1. Syntax
Comparing to VeriJ1, its extension VeriJ2 introduces a new subclass declaration:

R ::= class C CC {[N] T a; P; [I;] C(T z) [S] {T y; c}; M}
37

[T-RSUPER]
class C C B {. . .}
super(C, Object) [T-REUSE]

class C C B {. . .}
reuse(C, B) [T-REUSE2]

class C : B {. . .}
reuse(C, B)

[T-RMTHD]
reuse(C, B), (m,T → T) ∈ methods(B)

(m,T → T) ∈ methods(B)
[T-RFIELD]

reuse(C, B), (a,T) ∈ fields(B)
(a,T) ∈ fields(C)

[T-RLOCAL] [M-REUSE]

reuse(C, B), (m, x : T) ∈ fields(B)
(m, x : T) ∈ fields(C)

Γ ` ndef(m,C), reuse(C, B), (m, λ(z){y; c}) ∈ Θ(B)
(m, λ(z){y; c}) ∈ Θ(C)

[S-RSINH]

class C C B{..T m(T z){T y; c}..}
{P} B.m(z) {Q} ∈ Π
{P}C.m(z) {Q} ∈ Π [S-RMINH]

Γ ` ndef(m,C), reuse(C, B)
{P} B.m(z) {Q} ∈ Π
{P}C.m(z) {Q} ∈ Π

[P-RINH]
p is not defined inC class C C B {. . .} (p(a), [public]ψ) ∈ Φ(B)

(p(a), [public]ψ) ∈ Φ(C)

Figure 18: Extension of static environment Γ

Class C reuse D, denoted by class C C D {. . .}, means that C takes all of D’s interface
and implementation, including D’s specification predicates and method specifications, but C’s
behavior need not to be compatible D. In this case, we do not need to verify the behavior subtype
relationship. In fact, inheritance can be seen as a special case of reuse.

8.2. Static Environment and Verification Framework

For VeriJ2, we need to extend VeriJ1’s static environment to support reuse relation. We add
a new relation reuse between classes to type environment ∆, while reuse(C, B) means that C
reuse B:

∆ = 〈cnames, super,methods, fields, locvars, reuse〉

The [T-] rules in Fig. 18 define the extension of ∆. [T-RSUPER] says that when C reuse
B, C’s superclass is Object but not B. It is the key rule for making reuse different from the
inheritance. [T-REUSE] and [T-REUSE2] are for constructing relation reuse, and [T-REUSE2]
shows that inheritance is also reuse. [T-RFIELD], [T-RLOCAL], and [T-RMTHD] are simple,
they show that when one class reuse another, the former contains all implementation of the latter.
We define C is the reflexive transitive closure of reuse.

Similar to ∆, other components Θ,Π,Φ in the static environment also need to be extended to
support reuse, and Fig. 18 lists all their rules.

It may be surprising that VeriJ2 takes the same verification framework as VeriJ1. None new
inference rule needs to be introduced for the reuse. Let’s recall the verification framework of
VeriJ0 and VeriJ1, we say that methods can be of the three kinds: directly defined, overridden
and inherited. This is classified by relation super in ∆. From Fig. 18, when C reuse B, we set
C’s direct superclass to Object. In this case, in verifying C, we need do nothing with B.

8.3. Recall DCell Example

Thanks to explicit code reuse, now we can specify that DCell reuses Cell, while is not the
behavioral subtype of Cell. Fig. 19 gives the new code and specification for DCell. Comparing
to the code in Section 6.3, we only change the relationship between DCell and Cell.

By the verification framework defined above, we will verify DCell.get and DCell.set by rule
(H-DEF). Then nothing about the refinement relationship in Section 6.3 need to be verified.

38

class Cell : Object {
def cell(this, v) : this.x ↪→ v;

void set(Bool b)
requires cell(this, -); ensures cell(this, old(b));
{ this.x = b; }

Bool get()
requires cell(this, b); ensures res = b;

{ return this.x; }
}

class DCell C Cell {
void set(Bool b)
requires cell(this, -);
ensures cell(this,¬old(b));
{ x = ¬b; }

}

Figure 19: DCell reuse Cell

9. Related Work

To develop a full-armed specification and verification framework for OO programs is a long
standing goal in CS research community. The work presented here is an attempt in this direction.
In this section, we overview some closely related work and make some comparisons.

A well defined abstract memory model is essential for formal studies. People have proposed
various models to capture the complicated structures of the state space of OO programs. Major
models can be roughly classified as object graphs, access traces, and stack-heaps.

The object graph models treat objects and their connections as graphs. Examples in this
direction include the topological model [23], or object diagram [31]. Models of this kind are
intuitive and always independent of languages. [14] presents an operational semantics based on
a graph model. However, a suitable reasoning framework for graph models still does not exist.
The access traces model was introduced by [12] (for pointer-programs), where objects were
identified by sets of traces to them. This kind of models have advantages in alias analysis [6],
but seem too abstract for general purpose. [8] attempted to define a general inference framework
for a trace model. The stack-heap models extend normal store model with an heap (a map from
address to values) to represent objects. These models seem low-level, however, they are relatively
easy to used for defining semantics of programs. Some works have been done upon such models,
e.g. [25]. However, a full accounting of all important OO features is still missing.

Early work used FOL in reasoning OO programs. However, it is well-known that the mutable
object structures are hard to handle in this setting. Middelkoop tried first to use separation logic
(SL) in [21], where only the memory model is revised, not the assertion language. In the work,
separation conjunction ∗ is defined on the object level, hence objects cannot be split. This limits
the power of the logic considerably, especially the power of frame rule.

Parkinson defined a revised SL for OO in his thesis [26] etc. Although the start ideas are
similar to ours, the framework is very different. In Parkinson’s work, states are defined as:

Heaps =̂ (OIDS × FieldNames ⇀fin Values) × (OIDS ⇀fin Class)
Stacks =̂ Vars→ Values Interpretations =̂ AuxVars→ Values
States =̂ Heaps × Stacks × Interpretations .

The first part of a heap in h ∈ Heaps stores values of objects’ fields, and the second part stores
their type information. Here an object is not explicit, but only a set of cells with the same id from
OIDS (object ids). The extra component “Interpretations” records values of logical variables.
Taking Interpretations into states looks not nice, because it has no place in practice, and logical
variables are used only in verification but not in execution. Operator ∗ separates only the first

39

part of heaps in states, thus different empty objects can not be represented. As seen, our state
model records only information of program variables and objects. We have a novel definition for
the separation of heaps, and this is efficient even the heaps contain empty objects.

In addition, the logic in [26] adopts intuitionistic semantics, thus assertions preserve true
with heap extension. This makes it impossible to express precise specifications about heaps,
even the simplest “the heap is empty”. Consequently, no precise property about OO programs
can be verified. Our logic takes classical semantics, thus is more expressive [13]. The precise
assertions are default, and intuitionistic assertions can be written easily (ref. to [27]).

As an important and blooming field, the challenges of specification and verification for OO
programs extract wide attention recently. [17] is a comprehensive survey for this field. Because
OO technology advertises abstraction, modularity, inheritance, reuse, etc., these issues become
also the key focuses in the formal studies.

In one important direction, abstract fields (or similarly model field, specification variable)
and pure methods are used in works on abstract specifications. [9, 18] proposed abstract speci-
fication and modular verification; [22] presented a modular verification framework via abstract
fields. Smans [28] use similar techniques in implicit dynamic frames to specify and verify
frame properties. Similar abstraction techniques are also used in the widely known tools like
Spec# [3, 2] and JML [16]. However, these concepts often either make restrictions on subclasses,
or require to reverify the inherited methods. On the other hand, in most of these work, many im-
portant OO features are largely omitted, or not well-addressed, especially features related to the
mutable object structures, and modular verification in the present of inheritance.

Parkinson developed in [25] a verification framework based on SL, where many OO features
are considered. In the work, a concept of abstract predicate families is used for data abstrac-
tion. Each method is specified by a pair of static/dynamic specifications. Coincidentally, Chin
et al. [10] presented a similar work with dual specifications. For each method, the static spec-
ification describes detailed behavior of the method for verifying the implementation; and the
dynamic specification describes its interface, serving for verification of invocations. Based on
this, both approaches can avoid re-verification of inherited methods in some extents. However,
dual specifications will not only increase the workload, but also raise consistent issues.

Our framework can achieve the same ability but avoiding the dual specifications. It supports
abstraction and offers modularity for both specification and verification. We specify the methods
only on the abstract level, and offer specification predicates to link abstract specifications with
implementation details. We propose syntactic rules for visibility, inheritance and overriding of
specification predicates and method specifications, similar to what general OO languages do for
methods. Our approach offers full encapsulation ability for implementation details, and can also
avoid reverification of inherited methods.

The specification predicates are different from abstract predicate families in several aspects:
Predicates in an abstraction predicate family do not have syntactic position, nor clear interrela-
tions to the OO language where they target, but only link to some class by the type of their first
parameter and a tag. The families do not have clear connection with the class hierarchy of the
programs. This means that abstract predicate families are aliens from the programs. Oppositely,
we give specification predicates clear syntactic position, and define their properties according to
that. By single specification, we get rid of repeated expressions for implementation details, and
can express the semantic design decision for a class only in the local defined predicates. This fea-
ture makes it possible to support, in specifications of programs, the single point rule, i.e., every
important design decision should be expressed in exact one point. This rule is extremely impor-
tant in programming practice. In addition, we allow recursive defined predicates, and define rules

40

for them. This is necessary in support complex class classes in practice. And more important,
our framework introduces the polymorphism into specification mechanisms to support modular
verification of OO programs. None of the former work make this clear before.

10. Conclusion and Future Work

In this paper, we present a carefully-designed framework for the specification and verification
of OO programs. It is based on a state model for OO programs, and a novel definition for the
separation of object heaps. For building the framework, we define an OO Separation Logic
(OOSL) with some new assertion forms. We give a full treatment on user-defined predicates and
introduce the concept of logic environment into our framework. We list the necessary conditions
which guarantee the existence of the fixed point for a logic environment. We define semantics
for the logic and prove some properties (reasoning rules) for it.

We extend our model OO language µJava with specifications step by step, investigate many
important specification and verification techniques. The method body verification in VeriJ0 is
the basis for practice. Then we introduce the specification predicates, as well as modular speci-
fication and verification techniques related to this concept in VeriJ1. By these techniques, people
can write polymorphic specifications in VeriJ1 so that specifying and verifying program behavior
become more naturally. At last, we introduce a new syntax for inheritance to deal with code
reuse which is very common in practice. As far as our knowledge, such topic has not been care-
fully studied before. To summary, our approach captures many important core OO features, and
supports both abstraction and modularity in specification and verification naturally.

As for the future work, first, it would be interesting to study properties of OOSL, provide and
prove more inference rules for more effectively reasoning OO programs. Second, we also take
interests in the connection between OOSL and the original Separation Logic (SL). We conjecture
that every proposition holding in SL, when it does not involve in address arithmetic, will hold in
SL. If such conjecture holds, we can borrow many useful inference rules from SL. The third, we
want to explore potentials of single specification approaches, and compare them with the dual
ones. The fourth, we also think about more concepts in existing work for OO and others, such
as JML, ACSL [4], CASL [1], and to extend our framework to support such concepts. Now, we
think that concepts like axiom in ACSL and structural specifications in CASL are very useful in
program specification and verification. At last, we are going to integrate more formal features,
such as class invariant, frame properties and so on, into our framework. On the other hand, we
also think about specification and verification problems related to more features in OO practice,
such as interface, design patterns, and application frameworks, etc.

References

[1] Egidio Astesiano, Michel Bidoit, Hélène Kirchner, and Bernd Krieg-Br˙ Casl: the common algebraic specification
language.

[2] M. Barnett, R. DeLine, M. Fähndrich, K.R.M. Leino, W. Schulte, K. Rustan, and M. Leino. Verification of object-
oriented programs with invariants. Journal of Object Technology, 3:2004, 2003.

[3] M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system: An overview. In CASSIS 2004,
LNCS, pages 49–69. Springer, 2005.

[4] Patrick Baudin, Jean C. Filliâtre, Thierry Hubert, Claude Marché, Benjamin Monate, Yannick Moy, and Virgile
Prevosto.

[5] Richard Bornat. Proving pointer programs in hoare logic. In Proceedings of the 5th International Conference on
Mathematics of Program Construction, MPC ’00, pages 102–126, 2000.

41

[6] Marius Bozga, Radu Losif, and Yassine Lakhnech. On logics of aliasing. SAS 2004, 3148:344–360, 2004.
[7] A.L.C. Cavalcanti and D. Naumann. A weakest precondition semantics for refinement of object-oriented programs.

IEEE Trans. on Software Engineering, 26(8):713–728, 2000.
[8] Yifeng Chen and J W Sanders. A pointer logic for object diagrams. Technical report, International Institute for

Software Technology, The United Nations University, 2007.
[9] Yoonsik Cheon, Gary Leavens, Murali Sitaraman, and Stephen Edwards. Model variables: cleanly supporting

abstraction in design by contract. Software: Practice and Experience, 35(6).
[10] Wei-Ngan Chin, Cristina David, Huu Hai Nguyen, and Shengchao Qin. Enhancing modular oo verification with

separation logic. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL ’08, pages 87–99, 2008.

[11] W. H. Hesselink. Predicate-transformer semantics of general recursion. Acta Informatica, 26:309–332, February
1989.

[12] C.A.R. Hoare and Jifeng He. A trace model for pointers and objects. ECOOP’99, Object Oriented Programming,
1628/1999:344–360, 1999.

[13] Samin S. Ishtiaq and Peter W. O’Hearn. In Proceedings of the 28th ACM SIGPLAN-SIGACT symposium on Prin-
ciples of programming languages, POPL ’01, pages 14–26, New York, NY, USA, 2001. ACM.

[14] Wei Ke, Zhiming Liu, Shuling Wang, and Liang Zhao. A graph-based operational semantics of OO programs. In
ICFEM 2009, volume 5885 of LNCS, pages 347–366. Springer, 2009.

[15] Gary T. Leavens and David A. Naumann. Behavioral subtyping is equivalent to modular reasoning for object-
oriented programs. Technical Report 06-36, Department of Computer Science, Iowa State University, Ames, Iowa,
50011, December 2006.

[16] G.T. Leavens, A.L. Baker, and C. Ruby. Preliminary design of JML: A behavioral interface specification language
for Java. SIGSOFT Software Engineering Notes, 31(3):1–38, 2006.

[17] G.T. Leavens, K.R.M. Leino, and P. Müller. Specification and verification challenges for sequential object-oriented
programs. Formal Asp. Comput., 19(2):159–189, 2007.

[18] K. Rustan Leino. Toward reliable modular programs. PhD thesis, California Institute of Technology, Pasadena,
CA, USA, 1995. UMI Order No. GAX95-26835.

[19] K. Rustan M. Leino. Data groups: specifying the modification of extended state. SIGPLAN Not., 33:144–153,
October 1998.

[20] Barbara Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Trans. Program. Lang. Syst.,
16(6):1811–1841, 1994.

[21] Ronald Middelkoop, Kees Huizing, and Ruurd Kuiper. A separation logic proof system for a class-based language.
In Proceedings of the Workshop on Logics for Resources, Processes and Programs (LRPP), 2004.

[22] P. Müller. Modular Specification and Verification of Object-Oriented Programs. Springer-Verlag, 2002.
[23] James Noble, Robert Biddle, Ewan Tempero, Alex Potanin, and Dave Clarke. Towards a model of encapsulation.

Technical report, Elvis Software Design Research Group, 2003.
[24] Matthew Parkinson and Gavin Bierman. Separation logic and abstraction. In Proceedings of the 32nd ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’05, pages 247–258, 2005.
[25] Matthew J. Parkinson and Gavin M. Bierman. Separation logic, abstraction and inheritance. In Proceedings of

the 35th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’08, pages
75–86, 2008.

[26] M.J. Parkinson. Local reasoning for Java. PhD thesis, University of Cambridge, 2005.
[27] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Symposium on Logic in

Computer Science, pages 55–74, Los Alamitos, CA, USA, 2002. IEEE Computer Society.
[28] Jan Smans, Bart Jacobs, and Frank Piessens. Implicit dynamic frames: Combining dynamic frames and separation

logic. In Sophia Drossopoulou, editor, ECOOP 2009 - Object-Oriented Programming, volume 5653 of LNCS,
pages 148–172. Springer, 2009.

[29] Hongseok Yang. Local Reasoning for Stateful Programs. PhD thesis, University of Illinois at Urbana-Champaign,
2001. (Technical Report UIUCDCS-R-2001-2227).

[30] Liu Yijing, Qiu Zongyan, and Long Quan. A weakest precondition semantics for Java. Technical Report 2010-
46, School of Math., Peking University, 2010. Avaliable at http://www.mathinst.pku.edu.cn/index.php?styleid=2,
Preprints.

[31] Liang Zhao, Xiaojian Liu, Zhiming Liu, and Zongyan Qiu. Graph transformations for object-oriented refinement.
Formal Aspects in Computing, 21(1):103–131, 2009.

[32] Qiu Zongyan, Wang Shuling, and Long Quan. Sequential µJava: Formal foundations. Technical Report 2007-
35, School of Math., Peking University, 2007. Avaliable at http://www.mathinst.pku.edu.cn/index.php?styleid=2,
Preprints.

42

