
A Confinement Framework for OO Programs
(Revised Version)

Shu Qin1, Qiu Zongyan1, and Wang Shuling2

1 LMAM and Department of Informatics, School of Mathematical Sciences, Peking University
2 Institute of Software, Chinese Academy of Sciences

Email: shuqin@pku.edu.cn, qzy@math.pku.edu.cn, wangsl@ios.ac.cn

Abstract. We present a framework for specifying and reasoning about object
confinement in object-oriented programs. It supports the static checking of con-
finement of dynamic object references as required. Different from existing work,
the confinement requirement for an object is specified from outside to its con-
stituents inside. Formally, on the language level, we add an optional conf clause
in class declaration for specifying the confinement requirement of internal attribute-
paths, and meanwhile introduce a “same type and confinement” notation for ex-
pressing type dependencies among variables, parameters and returns of methods
in the class. Based on these linguistic extensions to a Java-like modeling language
and the existing techniques on alias analysis, we define a sound type system to
statically check the confinement of objects in programs.

1 Introduction

The sharing of object references (aliasing) is essential in object-oriented (OO) program-
ming. It brings much benefits to OO practice and has been utilized widely, however, it
is also the source of many program defects and vulnerabilities. The aliasing out of con-
trol makes behaviors of OO programs hard to understand or modify, since changes to
an object might affect all objects relying on it without awareness. It becomes an even
more serious problem when some objects inside critical regions for security get leaked
by unintended aliasing. Obviously, techniques for aliasing control, especially object
confinement, are crucial for safe OO programming.

Unfortunately, current OO languages do not provide linguistic support for confine-
ment. The access control in OO languages is just for protecting names, but not for
confining objects. For example, a private attribute of an object can be easily exposed as
a return value of a public method, or by an assignment to variables accessible outside.
People have paid much attention to this problem, and proposed interesting ideas and
technologies. Some schemes are proposed to confine object references inside a mod-
ule by using confined class [1, 2], or inside some object instances in more fine-grained
schemes by using ownership types [3–5]. Some others insist to define some objects as
unique or linear [6–8], etc.

However, after about two decades of study, there is still no finally widely accepted
technique for specifying and reasoning about object confinement, especially in the prac-
tical OO development. Therefore, novel ideas and techniques should continually be ex-
plored, tested, and compared, and finally, to find more acceptable solution for software
development.

class Node {
Node next ;
T data;
. . .

}

class Node<own> {
Node<own> next;
T data;
. . .

}

Fig. 1. Class Node without and with Ownership Types

For an OO program, objects created during its execution spread over the global
heap without any restriction, and potentially they are accessible from everywhere. For
achieving necessary confinement, one possibility is to find a way to classify the objects
into different domains which are not overlapped but may be nested, and then define ac-
cess restrictions among them. Inside each domain, objects are accessible between each
other. However, the only allowed access from objects in a domain to another different
one is via some special interface objects of the accessed domain [5].

As one of the well-known achievements in this field, ownership types [3] provide
a flexible way to specify object confinement and enable the static check, which was
fully developed in [9]. The idea is that, a kind of owner parameters for objects is intro-
duced to the syntax of an OO language, and then used to declare attributes, as well as
local variables, parameters and returns of methods for specifying run-time ownership
relations between objects. Fig. 1 shows a class Node in common syntax (left) and its
extension with ownership types (right), where T is the type of attribute data . In the
ownership typed code, we intent to give owner parameter to Node for the later possi-
bility to confine objects of Node and its attribute next in some up-level classes, which
can instantiate the parameter as the representation so it owns the Node object and the
next field, recursively. This preparation for future confinement is good and benefits a
clear and straightforward type system [3] but may sometimes not be complete enough
to apply properly such as for some possible client classes of Node .

Of course, given a class as simple as Node , we may introduce as many owner pa-
rameters as possible, to support all possible ownership relations of the attributes and
methods of the class. However, given a little more complex class with a dozen of at-
tributes and methods, introducing owner parameters for all possibilities will disturb the
class declaration seriously and make the class unacceptable, because in each use of the
type, we may have to instantiate correctly a dozen of ownership parameters.

Ownership types clarify many issues related to confinement, but its specification
form might not be quite satisfactory. For a specification form, in our opinion, when used
in specifying an entity in a program, e.g., a class, it is desired that we can concentrate our
attention on the facilities of the entity itself, but not some unclear future requirements.
Thus, a class like Node has no duty to offer facilities for plausible confinement in its
future use, because this is not the requirement of itself. If a using class, e.g., List , wants
to confine a sequence of Node objects to make them as the internal representation,
then it should have the whole duty to specify this requirement. Of course, the language
should provide mechanisms for programmers to express these intentions.

In this paper, we develop a confinement framework based on the above ideas, which
can offer similar expressive power as ownership types. We introduce an optional conf

2

clause in class declaration for specifying a set of paths to represent that objects referred
by the paths are confined inside this object, i.e., as the internal representation. Except
for attributes, we also need to consider confinement requirement of local variables,
parameters and returns of methods. To avoid tediously writing these requirements, we
propose a “same type and confinement” notation, with which a variable, a parameter,
or return of a method can be declared with type ctype[p] to express that it has the same
type and confinement requirement as the object referred by p. Examples in following
section will show that this notation is very beneficial.

These two linguistic extensions support to classify objects in the heap into object-
based domains with different access restrictions, and reach a language with confine-
ment specification. We will define a type system to check programs with confinement
specification in CµJava statically, which is proved to be sound and guarantees that a
well-typed program is always well-confined with respect to the confinement specifi-
cation in the program. Our framework provides a way to manage the classification of
objects, and different from ownership types, specifies object confinement from outside
to its constituents inside.

The paper is organized as follows. Section 2 illustrates our idea intuitively and com-
pares it with ownership types. Section 3 extends a Java-like language with confinement
specification. Section 4 defines the typing environments and some related notations as
basis for defining type system, which is presented in Section 5. Section 6 shows how to
apply the type system to check confinement of programs via several examples. Section 7
discusses related work and Section 8 concludes. Finally, the proof for the soundness of
the type system is put in Appendix A for reference.

2 Confinement Specification

To avoid the unintended modification to objects, we provide an approach to protect sen-
sitive objects inside a specific domain, to support object confinement. Inspired by own-
ership types, we allow programmers to express confinement requirements for objects in
programs and define a type system for checking statically whether the requirements are
satisfied during the execution. The essential difference between ownership types and
our approach is that, instead of assigning objects ownership contexts [3] using own-
ership parameters in lower-level classes, we specify directly in each class declaration
which internal objects it intends to confine from the higher containment level, while at
the same time, these confined objects do not need to say anything in their class decla-
rations. Now we illustrate our idea via some examples and give the formal definition in
the next section.

2.1 Internal Representation

To compare our approach with ownership types, we take an example from [3], as shown
in Fig. 2. Here class Pair has two context parameters m and n, which represent own-
ership contexts for its attributes fst of type X and snd of type Y , respectively. Class
Intermediate has two attributes of type Pair , where p1, p1.fst and p2.fst are defined
as its internal representation, but p1.snd , p2 and p2.snd public. A Main class declares

3

class Pair<m, n>{
m X fst , n Y snd ;

}

class Intermediate {
rep Pair<rep, norep> p1;
norep Pair<rep, norep> p2;
rep Pair<rep, norep> a() { return p1; }
norep Pair<rep, norep> b() { return p2; }
rep X x() { return p1.fst ; }
norep Y y() { return p1.snd ; }
void update() { p1.fst := new rep X(); }

}

class Main {
norep Intermediate safe;
void main(){
rep Pair<rep, norep> a;
norep Pair<rep, norep> b;

rep X x, norep Y y;
a := safe.a(); // wrong
b := safe.b(); // wrong
x := safe.x(); // wrong
y := safe.y(); // valid
safe.update(); // valid

}
}

Fig. 2. Example in Ownership Types

class Pair {
X fst , Y snd ;

}

class Intermediate {
Pair p1, p2;
conf {p1, p1.fst , p2, p2.fst};
ctype[p1] a() { return p1; }
ctype[p2] b() { return p2; }
ctype[p1.fst] x() { return p1.fst ; }
Y y() { return p1.snd ; }
void update() { p1.fst := new X(); }

}

class Main {
Intermediate safe;
void main(){

Pair a, b;
X x, Y y;
safe := new Intermediate();
a := safe.a(); // wrong
b := safe.b(); // wrong
x := safe.x(); // wrong
y := safe.y(); // valid
safe.update(); // valid

}
}

Fig. 3. Example in Our Approach

a public attribute safe of type Intermediate. According to the type system of owner-
ship types, methods with rep context are only visible in current class, and assignments
are valid only when expressions on both sides have the same ownership context. As a
result, method a cannot be called by safe in Main class, and similarly, other statements
in Main can be checked statically whether they are valid or not.

The example written using our notation is given in Fig. 3 which can achieve the
same confinement requirements. First of all, we assign no confinement requirement for
objects of Pair . We then confine paths originating from attributes (including them-
selves) of class Intermediate with rep context, by using a conf clause, which means
that all objects referred by these pathes are confined as the representation of current
Intermediate object. Here we define p1, p1.fst and p2.fst to be confined paths, and
besides, in order to preserve the prefix closure of conf set, we also define p2 confined.
Notice that with ownership types p2 (in Fig. 2) is public, but it does not imply that
we have more confinement restrictions for class Intermediate. In fact, according to
the type system of ownership types, the public attribute p2 with rep constituent can
only be operated in current class. In later work of ownership types [10], they proposed

4

the constraints on owners principle, which actually corresponds to the “prefix closure”
requirement of confined paths here.

Thanks to the type notation ctype[p], we can easily specify type dependencies be-
tween variables within a class. For all types with rep context in Fig. 2, we use ctype[p]
instead, where p is a confined path, to denote that the decorated variable (or parameter,
return) has the same type and confinement requirement with p. For example, in Fig. 2
method a returns a value of exactly the same type with p1, therefore we define ctype[p1]
as its return type. Other methods are similar.

Finally, for class Main in Fig. 2, it has no internal representation but declares two
local variables a and b with rep context. It seems to be problematic at first sight that
in our approach how to declare local variables with rep context when there is no conf
set in a class, like Main here. In fact, such local variables with rep context will only
be managed in current class without affecting any representation of the class at all.
Therefore, we only need to declare these variables with public types, as shown in Main
class in Fig. 3.

Our type system to be defined will gain the same results with the type system of
ownership types when checking the example. But compared to ownership types, our
type system allows more valid programs. For instance, we assume that in class Pair , Y
is a subtype of X , and add one more method shown below:

void swap(){ fst := snd ; }
According to the type system of ownership types, the assignment inside the body is in-
valid because of the context parameters of fst and snd are different. But in our opinion,
it is too early to exclude such behavior, since in the later invocation of this method, m
and n may be instantiated with a same context. Our approach leaves the type checking
to the later stage when the method swap of class Pair is called.

2.2 Recursive Internal Representation

Fig. 4 presents a linked list example with a head node. Class Node declares a recursive
attribute next , and another data of type T respectively. Method setNext sets next of
this object to be of parameter n, and getNext returns next attribute. Class List declares
a head attribute of type Node , and confines head , head .data , and head .{next}+ of
current object. Here head .{next}+ represents all the nodes of the linked list except for
the first one referred by head . Notice here we confine the data of the head, while leave
all other data publicly accessible. It is meaningful in practice because the first node
is used to store some important information of the list, e.g. the length of the list. The
confinement structure of such a linked list is illustrated in Fig. 5.

Although head and head .{next}+ have the same declared type Node , and are both
confined in List , they have different confinement schemes. This is because head con-
fines one more attribute data than other nodes referred by head .{next}+. In order to
tackle this problem in static checking, we attach to the confinement scheme of each
object the confinement information of its related constituents, which will be discussed
in Section 4.

Method addNode in List adds a node after the head node, in which local variable
temp records the new created node with the same confinement requirement as other

5

class Node {
Node next ; T data;

void setNext(Node n){
this.next := n; }

Node getNext(){
return this.next ; }

}

class List {
Node head ;
conf {head , head .data, head .{next}+};

void addNode(T val){
ctype[head .next] temp;

temp := new Node();
temp.data := val ;
temp.next := head .getNext();
head .setNext(temp);
head .data := ...; }

ctype[head] getHead(){
return head ; }

void violate(List ls){
head := ls.head ; } // wrong

}

Fig. 4. A Linked List with Recursive Structure

l i s t

n o d e 1 n o d e 2 n o d e n

d a t a 1

d a t a 2 d a t a n

h e a d
n e x t n e x t n e x t n e x t

...

d a t a

d a t a d a t a

c o n f i n e m e n t b o u n d a r y

Fig. 5. Confinement Structure of a Linked List

non-head nodes, so it is declared with type ctype[head .next]. The node is then set
as the next node of head via invocations to getNext and setNext of Node . When a
method is declared without confinement types in the signature, such method is allowed
to be called by either public or confined objects. For the later case, we need to check
whether the invocation breaks the confinement or not, by analyzing the aliasing set of
the method body being called. Here addNode is valid. Similar to ownership types, if
a method is declared with confinement types, it can only be called by objects with the
same type and confinement as this, like getHead here. Our typing rules can deal with
all the cases.

Method violate in List attempts to assign the head of this by the head of another
node from the parameter ls. The assignment is not valid in our typing system because
they are confined inside two different lists. ls.head is not allowed to occur here because
it is invisible in current object. However, if we change the type of ls to be ctype[this]
instead, then the assignment will be valid. The type notation ctype[this] provides a way
for expressing that multiple objects share the same confinement domain.

Go back to ownership types, we find that the list with such confinement require-
ments as in Fig. 4 can not be implemented by a single Node class with ownership types,
as defined in Fig. 1. Another class needs to be introduced specially for implementing
head node :

6

class A : Object {
T1 a1;
T2 a2;
conf {a1};
. . .

}
class B : A {

S1 b1; S2 b2;
conf {b1};
. . .

}

class Main {
A a; B b;
conf {a, a.a2, b, b.b2};
void main (){

ctype[a] x;
ctype[b] y;
y := new B();
x := y; // wrong
. . .

}
}

Fig. 6. Example With Subtyping

class HNode<Nowner ,Towner>{
Node<Nowner> next ;
T<Towner> data;
. . .

}

2.3 Subtyping

We use an example in Fig. 6 to illustrate how confinement is specified with the presence
of subtyping. Here class A has two attributes a1 and a2, in which a1 is confined. Class B
extends A by two new attributes b1 and b2, in which b1 is confined. Class Main defines
two confined attributes, a of type A and b of type B respectively, and furthermore,
confines attributes a2 of a and b2 of b. In method main, local variable x and y are
declared to have the same type and confinement requirement as a and b respectively. A
new object of class B is created and assigned to y.

Our key idea for confinement related to subtyping is, what confined should not be
exposed to the outside. Therefore, what confined in a superclass should also be confined
in its subclasses. By our typing rule, the confinement scheme of y is not subtyping to
the one of x, since attribute a2 of x.a is confined while a2 of y.a is not. Therefore,
assignment x := y is invalid.

Examples in this section give some intuitive ideas of our approach for specifying
and checking confinement. In the following sections, we turn to our formal framework.

3 CµJava

Now we define a small OO language CµJava used in this work. It is a Java-like language
extended with confinement specifications.

7

3.1 Syntax

The syntax of CµJava is as follows:

e ::= null | this | x
c ::= skip | x := e | e.a := x | x := e.a | x := (C)e

| x := e.m(e) | x := new C() | c; c
T ::= Object | C
p ::= a | p.a | p.s+

TC ::= T | ctype[this] | ctype[p]
md ::= TC m(TC x){TC x; c; return e}
cd ::= class C : C{ T a; [conf {p};] md }
cds ::= cd | cd; cds
prog ::= cds

Here we use x to denote a variable name, C a class name, a an attribute name, and m
a method name, respectively. We use e to denote a sequence of expressions and corre-
spondingly ei the i-th element. The same overline convention will be used throughout
the paper. As in Java, this denotes current object, and null is special to mean that a
variable or attribute does not refer to anything.

To keep the language simple for the formal investigation on the confinement prob-
lem, we restrict CµJava in some aspects. There are only some special forms of assign-
ments, including plain assignment, attribute lookup x := e.a, and update e.a := x.
Besides, we take object creation x := new C() also as a special form of assignments,
that creates a new object of class C, initializes all its attributes with null, and lets vari-
able x refer to it finally. The restrictions on creation will leave all confinement related
problems to method call. The sequential composition is included, but other structural
statements are omitted here. All of these restrictions are not essential, and all the dis-
cussion below can be extended easily to the full language.

As usual, we take Object as the super type of all classes. We assume an internal
type Null as the type of null, which is the subtype of all class types, and is used only
for defining type system. In method declaration, we assume that there is always a state-
ment return e as the last statement. If there is not any return statement in a method,
a statement as “return null” is added by default. The return symbol void in previous
examples is only a shorthand for brevity.

We introduce a category of path expressions p for specifying the representation of
objects of the class, where a is an attribute name, and s is a finite set of attribute names.
All paths in class declarations start implicitly from current object. Form s+ is used to
define paths in recursive data structures. For example, if l refers to the head node of a
linked list, then l.{next}+ represents all nodes of the list except for the head. If r refers
to the root of a binary tree, we can use r.{left , right}+ to refer to all tree nodes except
the root node. We say p is a simple path (expression) when it does not contain the form
s+. A valid simple path p usually denotes an attribute of some class.

Now we give some explanations to the confinement specifications. In a class dec-
laration, the clause leaded by keyword conf specifies the confinement requirement for
attributes of the class. Here we can write a set of path expressions, {p}, to mean that

8

this.{p} forms the internal representation of this object and is confined in it. We will
use cpath(C) to denote the set of confined paths defined by conf clause of class C
(without the ones declared in its superclasses). Moreover, we introduce a type form
ctype[p], where ctype is a reserved word, p is a simple path, to stand for the same type
and confinement requirement as the object denoted by p. We require that p must be
some confined path of the class where the method is declared. In particular, the type
form ctype[this] represents the same type and confinement requirement as this.

We call the syntactic category TC confinement type. In CµJava, all parameters,
local variables and returns are typed with TC .

3.2 Valid Confinement Specification

Now we give some definitions and properties, which aims to define the well-formedness
and validation of confinement specifications in classes.

We use cattr(C) to denote the set of attributes directly declared in class C, and
attr(C) to denote all attributes of C, including the ones inherited from its superclasses.

The property prefix closure for conf clauses is presented as follows:

Definition 1 (Prefix Closure). Given a conf clause of class C, its confined set cpath(C)
satisfies the prefix closure property, iff ∀p ∈ cpath(C) ⇒ prefix (p) ⊆ cpath(C). ut
For attribute a, we define prefix (a) = ∅; and for x ∈ {a, {s}+}, prefix (p.x) = {p} ∪
prefix (p). This property implies that if a path p is in cpath(C), then all its non-empty
prefixes must also be in cpath(C). It is necessary, otherwise the confinement of a path
can be easily broken by invoking the methods of its non-confined prefix.

We introduce the concept confinement behaviorial subtyping as follows:

Definition 2 (Confinement Behaviorial Subtyping). Given a conf clause of class C,
its confined set cpath(C) satisfies the confinement behaviorial subtyping property, iff
∀p ∈ cpath(C) ∧ prefix (p) = ∅ ⇒ p ∈ cattr(C). ut
The confinement behaviorial subtyping property states that any subclass obeys the same
confinement requirement as its superclass for the paths starting from the inherited at-
tributes. In fact, trying to confine, in a subclass, a path starting from an inherited non-
confined attributes of its superclasses would not keep them confined. Such requirement
may be broken by upcasting objects to its superclass.

According to above two properties, only paths starting from new declared attributes
can appear in conf clause of a class. A subclass inherits all confined paths of its su-
perclasses (similar to the attribute inheritance), but cannot override them. We will use
cf(C) to denote all the confined paths of class C including inherited ones. Obviously,
if B is the direct superclass of C, then cf(C) = cf(B) ∪ cpath(C).

Now we define the visibility of paths in conf clauses where only non-confined at-
tributes of other classes can appear here.

Definition 3 (Path Visibility). Given a conf clause of class C, its confined set cpath(C)
satisfies the path visibility property, iff ∀p ∈ cpath(C), predicate visPath(p, C) is true,
where:

visPath(a,C) ⇔ a ∈ cattr(C)
visPath(p.a, C) ⇔ visPath(p, C) ∧ a ∈ va(dtype(p))
visPath(p.s+, C) ⇔ visPath(p, C) ∧ s ⊆ va(dtype(p))

9

Here dtype(p) is the static type of the attribute denoted by (simple path) p, which may
be a primitive type or a class type in program, and the confinement augmentation is not
taken into account; va(C) denotes non-confined attributes of C defined as:

va(C) =̂ attr(C) \ cf(C) ut
Definition 4 (Confinement Type Well-formedness). A confinement type TC in a class
C is well-formed, iff either TC is an ordinary type T , or of the form ctype[this] or
ctype[p] for p ∈ cpath(C). ut

Finally, we define the valid confinement specification as follows:

Definition 5 (Valid Confinement Specification). A confinement specification of a class
C is valid, iff

– All the confinement types used in C are well-formed, and
– cpath(C) satisfies the properties of prefix closure, confinement behaviorial subtyp-

ing, and path visibility. ut
These properties are easy to be checked statically. In the rest of this paper, we will
consider only valid confinement specifications.

4 Typing: Environments and Notations

Before presenting the type system, we need to build the typing environment first. Given
a program P , our typing environment consists of two components, where ΓP records
type and inheritance information of classes in P ; and ΘP records confinement informa-
tion represented by confinement schemes of objects, each of which is composed of the
confinement context, plus inductively the confinement schemes for the attribute-paths
of current object confined in the same context. We also consider the subtyping relation
between confinement schemes, used for checking whether each assignment is valid.

4.1 Standard Typing Environment ΓP

Given a program P , the standard typing environment ΓP records all the typing infor-
mation for classes, methods, and variables in P , as well as the inheritance information.
It is defined as a tuple:

ΓP =̂ 〈cnameP , superP , attrP ,methodP , locvarP 〉
where cnameP is the set of class names declared in P , plus predefined Object and Null;
superP is a map associating each class to its direct superclass; attrP maps each class
name in P to its set of attribute-type pairs including the inherited attributes; methodP

maps each pair of class name and method name in P to the signature of the corre-
sponding method; and locvarP maps a tuple of a class name, a method name and a
variable name to the type of the variable. Notice that the types occurring in methodP

and locvarP are confinement types TC as defined in the syntax.
The typing environment ΓP can be extracted directly from program P , and we omit

it due to page limit. Readers can refer to our report [11] for details. In the following, we
will omit the subscript P when there is no confusion. We will use Γ.cname, Γ.super,
etc to denote the cname, super, etc components of Γ , respectively.

10

4.2 Confinement Typing Environment ΘP

For a program P , each class C has a confined path set cpath(C), which may be empty.
We record these information in environment ΘP using confinement scheme introduced
below. Our type system will use the information to check if an accessing to a variable
or a method in a given context is valid or not.

Confinement scheme We use confinement scheme to represent the type of objects,
denoted by CS , which has the form defined as:

ω ::= T 〈C, a 7→ ω, b 7→ +〉
CS ::= T 〈this〉 | T | ω

Confinement scheme ω defines a type with confinement context. If the scheme of an
object is T 〈C, a 7→ ω, b 7→ +〉, this means that the object is of type T , and moreover,
C here denotes the domain in which the object is confined, and the rest followed by
C are the attribute-paths which are confined inside class C, accompanied with their
confinement schemes. Then, only the attributes confined in C are recorded in the list.
The ω for attribute a must also have the form T ′〈C, · · ·〉 assuming a is of type T ′. The
notation b 7→ + means that b has the same confinement scheme as current object. It is
used mainly in schemes of objects with confined recursive attributes.

Scheme T 〈this〉 represents that the object under consideration has the same type
and confinement context as this object of class T . Finally, a type T without confinement
context means that the object is of type T and not confined.

For future use, we overload function dtype(CS) to extract the pure type from scheme
CS , thus we have dtype(T 〈C, . . .〉) = T , dtype(T 〈this〉) = T , and dtype(T) = T .

Confinement tree

Definition 6 (Confinement Tree). A confinement tree is a rooted, labeled and directed
tree, defined as a quadruple:

T = (R,N ,A, E)

where R is the root representing a class type,N is the node set representing class types
or +,A is the label set representing attributes, and E ⊆ N ×A×N is the edge set. ut

An edge (C, a, D) ∈ E means that class C has an attribute a of type D and a is
confined in some class; and similarly, (C, a,+) ∈ E means that class C has a recursive
attribute a of type C and a is confined in some class. In the following, we will use Tr,
Tr′ to stand for confinement trees, C, D for nodes, a, b for labels, and p, q for sequences
of labels (attribute-paths).

Given a confinement tree Tr and a path p, we use subtree(Tr, p) to denote the subtree
that roots at the target node referred by p in Tr. From our assumption that attribute
names in a class are distinct, the target node is unique when existing, so the subtree is
also unique. In the context of class C, given a confinement tree T with root type R,
we can construct a confinement scheme by traversing the tree recursively, denoted by
trans(Tr, C), as follows:

11

• Starting from the root, first, for all the edges (R, a, D) ∈ Tr, we construct maps
a 7→ trans(Tr′, C), where Tr′ are the subtrees originating from the node R respec-
tively;

• Second, for all edges (R, b, +) ∈ Tr, we construct b 7→ + in correspondence;
• At last, the confinement scheme trans(Tr, C) is defined as

R〈C, a 7→ trans(Tr′, C), b 7→ +〉

We use confinement tree to model the confinement structure of a class. Given a class
C, we build its confinement tree TrC based on its confined set cpath(C), as follows:
• If cpath(C) is empty, then TrC is an empty tree.
• Otherwise, choose a path p ∈ cpath(C) randomly, all the prefixes of p will be also

in cpath(C) by the prefix closure assumption of cpath(C). Denote the first element
of p by fr(p), and the rest by rs(p). Clearly fr(p) is an attribute of C, take its type as
D. We then add the edge (C, fr(p), D) to the tree TrC if it does not exist, otherwise
do nothing. Now we consider the rest path rs(p) recursively. When the construction
process reaches some node N , and the corresponding element in the path is of form
s+, where s is a set of attributes, then we add for each attribute e ∈ s, the edge
(N, e,+) to TrC . If there is a further element c followed by s+ in the path, we add
the edge (N, c,M) to the tree, where M is the type of c. Continue the process till the
rest path is empty, we have the sub-tree corresponding to the path p.

• Repeat the second process for each path in cpath(C), we finally build the confine-
ment tree TrC for class C.

Finally, we define the confinement typing environment ΘP for program P as fol-
lows:

ΘP =̂ {C 7→ TrC}C∈ΓP .cname

Similar to Γ , we often omit the subscript and write directly Θ when there is no con-
fusion. As shown above, given a CµJava program, both typing environments for it can
be built statically. In the following, we simply assume their existence, and concentrate
on how to define the type system based on them.

4.3 Static Visibility

Variables or methods declared with confinement types are invisible from outside. Espe-
cially such methods can only be invoked by objects of type ctype[this] (including this)
in current class. We use static visibility to represent this access constraint.

Definition 7 (Static Visibility). For expression e and confinement type TC , we say
TC is visible to e if sv(e,TC) holds:

sv(e,TC) =̂ ¬(e : ctype[this] ∨ e = this) ⇒ TC 6= ctype[p] for some path p

where e : ctype[this] means that the declared type of e is equivalent to ctype[this].

Having this definition, we can check whether a method is visible or confined in a
given context.

12

4.4 Confinement scheme for confinement type

Based on the typing environments Γ and Θ, we introduce a function σ(TC , C) to return
the confinement scheme for TC declared in class C, defined as follows:

σ(TC , C) =̂

T if TC = T ∈ Γ.cname,
C〈this〉, if TC = ctype[this]
trans(subtree(Θ(C), p), C), if TC = ctype[p] ∧ p ∈ cpath(C)

For pure type T , the confinement scheme is itself. When TC is of form ctype[this], the
confinement scheme will be C〈this〉 that is different form the pure C. When it is of form
ctype[p], where p is a confined path, we first look up the confinement tree TrC from the
Θ by using Θ(C), then get the subtree that p corresponds to in the tree by using subtree,
and finally transform the subtree into corresponding confinement scheme by using the
function trans, which is exactly the confinement scheme of ctype[p].

4.5 Examples

Now we take an example from Section 2 to illustrate our approach to get the confine-
ment scheme for the confinement type. First of all, the confinement trees for them are
built via their conf clause and shown in Fig. 7.

Then based on the confinement tree for class Intermediate, the confinement scheme
of ctype[p1] is built: Firstly, we obtain the subtree rooted with the node that p1 points
to; and then apply trans to the subtree to obtain corresponding scheme of ctype[p1],
i.e., Pair〈Intermediate, fst 7→ X〈Intermediate〉〉. Similarly, we get the confinement
scheme of ctype[p2], which is the same as the one of ctype[p1]. Moreover, we get the
confinement schemes for p1.fst and p2.fst , both of which are X〈Intermediate〉.

We do similar work for class List and Main . List is recursive, following the rules,
the confinement scheme for ctype[head] is Node〈List , next 7→ Node〈List ,next 7→
+〉, data 7→ T 〈List〉〉, the scheme for ctype[head .data] is T 〈List〉, and the scheme for
ctype[head .next] is Node〈List ,next 7→ +〉. For class Main (ref. Fig 6 and Fig. 7) with
subtyping, the confinement scheme for ctype[a] is A〈Main, a2 7→ T2〈Main〉〉, the one
for ctype[b] is B〈Main, b2 7→ S2〈Main〉〉, the one for ctype[a.a2] is T2〈Main〉, and
the one for ctype[b.b2] is S2〈Main〉.

4.6 Calculating types of attributes from confinement scheme

As we defined above, the confinement scheme for an object not only records the type
and confinement information of itself, but also those of its attribute-paths which are
confined in the same domain. Given a confinement scheme CS and an attribute a of an
object, we can calculate the confinement scheme of a under typing environments Γ and
Θ as follows:

tΓ,Θ(CS , a) =̂

CS if CS = T 〈C, x 7→ CSx〉 ∧ {x 7→ CSx}(a) = +
CS ′ if CS = T 〈C, x 7→ CSx〉 ∧ {x 7→ CSx}(a) = CS ′

σ(ctype[a], C) if CS = C〈this〉 ∧ a ∈ cpath(C)
Γ.attr(T)(a) if dtype(CS) = T ∧ a ∈ va(T)

13

I n t e r m e d i a t e

p p

P a i r

X

f s t

P a i r

X

f s t

1 2

L i s t
h e a d

N o d e
n e x t

N o d e

d a t a
T

n e x t

+

M a i n

a b

A

T

a

B

S

2 b 2

2 2

Fig. 7. Confinement Trees for Examples in Section 2

There are three main possibilities: the first two cases are for the situation when a
is confined in the confinement context of CS . For this situation, when there is a 7→ +
in CS , it means that a is a recursive attribute, then the scheme of a will be CS itself,
otherwise, it is directly the projection of a in CS . The third case is when a is a confined
attribute, and it can only be accessed by objects declared with ctype[this]. The last case
is when a is not confined, then the scheme of a is its declared type.

The function tΓ,Θ(CS , a) only calculates the types of attributes a of the object that
are visible in the confinement context for CS . Therefore, the visibility of attributes can
be enforced by the function implicitly.

4.7 Subtyping

Based on the super component in Γ , we define an extended subtyping relation ¹e be-
tween confinement schemes as follows:

Γ.super(T2) = T1

Γ ` T2 ¹e T1
Γ ` Null ¹e CS Γ ` T 〈this〉 ¹e T

Γ ` T2 ¹e T1 {a 7→ ωa} ⊆ {b 7→ ωb} {b} \ {a} * Γ.attr(T1)
Γ ` T2〈C, b 7→ ωb〉 ¹e T1〈C, a 7→ ωa〉

Γ ` CS ¹e CS Γ ` CS2 ¹e CS1 Γ ` CS3 ¹e CS2
Γ ` CS3 ¹e CS1

The type Null is subtype to all confinement schemes. The confinement scheme
T 〈this〉 is always subtype to T . Given two confinement schemes ω1 and ω2 with non-
empty confinement contexts, ω2 ¹e ω1 iff the declared type of ω2 is subtype to that of
ω1, and they have the same confinement context; and furthermore, ω2 inherits all the
confined attributes of ω1, and in addition, confines more new declared attributes which
do not belong to ω1. The subtyping relation is reflexive and transitive.

5 A Type System for Confinement

Now we are ready to define a type system for CµJava programs with confinement spec-
ifications, for checking whether a program is well-confined or not. Given a program P ,
the type system is defined under the two typing environments ΓP and ΘP .

14

Γ.locvar(C, m, x) = TC
Γ, Θ, C, m ` x : σ(TC , C)

Γ, Θ, C, m ` this : C〈this〉 Γ, Θ, C, m ` null : Null

Fig. 8. Typing Expressions

5.1 Typing Expressions

Typing judgments for expressions take the form of Γ, Θ,C, m ` e : CS , which states
that expression e in the method m of class C has confinement scheme CS under typing
environments Γ and Θ. The typing rules for expressions are present in Fig. 8.

A variable x in method m of class C has the confinement scheme corresponding to
its declared type TC using σ(TC , C). From the definition of σ(TC , C), if TC is a pure
type T , then the confinement scheme is still T and thus variable x is publicly accessible;
otherwise, if TC is a confinement type ctype[p], the variable has the same confinement
scheme as p, which can be obtained from the confinement typing environment Θ, and
in this case, the variable can only be accessed in C. For the special variable this in C,
we define its confinement scheme as C〈this〉. As a result, all the confined attributes of
this will be visible and can be accessed. As usual, the constant null has confinement
scheme Null.

5.2 Typing Statements and Programs

Now we are ready to present the typing rules for statements except for method calls,
which is more complicated and will be considered in the following Subsection 5.3. The
typing judgement for statements c takes the form “Γ, Θ,C, m ` c : com”, which means
that command c is well-confined in the context of m in C under typing environments
Γ and Θ. Furthermore, we use the judgements “Γ, Θ,C ` m : ok”, “Γ, Θ ` cd : ok”
and “Γ, Θ ` P : ok” to state that method m, class declaration cd, and program P are
well-confined under the environments respectively. The typing rules for statements and
programs are listed in Fig. 9.

The statement skip is always well-confined, as shown in rule [tp-skip]. For assignment
x := e (rule [tp-assign]), it is required that the confinement scheme of e must be subtype
to the one of x. For update e.a := x (rule [tp-update]), the confinement scheme of e.a is
calculated from the one of e by using tΓ,Θ(CS e, a), from whose definition we know
that a must be a visible attribute of e in current class C. Besides it is still required
that the confinement scheme of assignee x is subtype to the one of assigner e.a. Rule
[tp-lookup] for lookup x := e.a is similarly defined. The type cast x := (T)e requires
that the declared type of e is subtype to cast type T , which is subtype to the declared
type of x, and moreover, the confinement scheme of e must be subtype to the one of
x, as shown in rule [tp-asncast]. The object creation x := new T () creates an object of
class T and then lets x to refer to it. The rule [tp-objcreate] requires that T is subtype to
the declared type of x. The sequential composition c1; c2 is well-confined iff c1 and c2

are well-confined, as shown in rule [tp-sequence].
As shown in rule [tp-method], a method declaration in class C is well-confined, iff

its method body is well-confined, and moreover, the confinement scheme of the return
value is subtype to the one corresponding to return type. A class is well-confined iff

15

[tp-skip]
Γ, Θ, C, m ` skip : com

[tp-assign]

Γ, Θ, C, m ` x : CSx Γ, Θ, C, m ` e : CS e CS e ¹e CSx

Γ, Θ, C, m ` x := e : com

[tp-update]

Γ, Θ, C, m ` x : CSx Γ, Θ, C, m ` e : CS e

tΓ,Θ(CS e, a) = CSa CSx ¹e CSa

Γ, Θ, C, m ` e.a := x : com

[tp-lookup]

Γ, Θ, C, m ` x : CSx Γ, Θ, C, m ` e : CS e

tΓ,Θ(CS e, a) = CSa CSa ¹e CSx

Γ, Θ, C, m ` x := e.a : com
[tp-asncast]

Γ, Θ, C, m ` x : CSx Γ, Θ, C, m ` e : CS e

T ¹e dtype(CSx) dtype(CS e) ¹e T CS e ¹e CSx

Γ, Θ, C, m ` x := (T)e : com

[tp-objcreate]
Γ, Θ, C, m ` x : CSx T ¹e dtype(CSx)

Γ, Θ, C, m ` x := new T () : com

[tp-sequence]
Γ, Θ, C, m ` ci : com, i = 1, 2

Γ, Θ, C, m ` c1; c2 : com
[tp-method]

Γ, Θ, C, m ` c : com Γ, Θ, C, m ` e : CS e CS e ¹e σ(TC , C)

Γ, Θ, C ` TC m(TC 1 x){TC 2 x; c; return e} : ok

[tp-class]
Γ, Θ, C ` md : ok

Γ, Θ ` class C : D{T a; [conf {p};] md} : ok

[tp-program]
Γ, Θ ` cd : ok

Γ, Θ ` P : ok
where P = cd

Fig. 9. Typing Statements

all the methods declared in the class are well-confined, and furthermore, a program is
well-confined iff all its classes in it are well-confined, as shown in rules [tp-class] and
[tp-program] respectively.

5.3 Typing Rules for Method Invocation

Ownership types specify confinement dependency between the constituents of a class
when the class is declared, but instead, our approach delays the process to the moment
when the class is used. As a result, more confinement dependency may be introduced
for a class in the future. This makes the typing for method invocation more complicated
than what in ownership types. Under some circumstance, we have to go back to re-check
confinement of the method body being called.

16

We have two typing rules for method invocation. The first one is for the cases when
the method being called is declared with confinement types, or otherwise, both caller
and actual arguments are public. Both cases can be checked by rule:

[tp-methinv]

Γ, Θ,C, m ` x : CSx Γ, Θ,C, m ` e : CS e Γ, Θ,C, m ` e1 : CS e1

(dtype(CS e1),m1(TC y : y) : TC) ∈ Γ.method
sv(e1,TC) sv(e1,TC y) Γ, Θ,C, m1 ` y : CSy

CS e ¹e CSy σ(TC , C) ¹e CSx

Γ, Θ,C, m ` x := e1.m1(e) : com

where CS e1 is C〈this〉 or some ordinary type T .
As usual, we always need to check that the confinement schemes of actual argu-

ments e are subtype to the ones of formal parameters y, and furthermore, the con-
finement scheme corresponding to return type TC is subtype to the one for x being
assigned. We also require that method m1 is visible to the caller e1, represented by
sv(e1,TC) and sv(e1,TC y) in the rule. As a result, when m1 is declared with confine-
ment types, it can only be called by objects of type C〈this〉. In such case, the caller e1

and the callee m1 are in the same confinement context corresponding to this, therefore,
the method invocation is well-confined. On the other hand, if m1 is declared without
confinement types, it can be called freely by objects in any confinement context. The
rule [tp-methinv] restricts that the caller e1 and actual arguments e be not confined in cur-
rent class C, i.e., they are of ordinary types. With this condition, it can be guaranteed
that no more confinement dependence for the method body being called will be intro-
duced during the invocation, and therefore, the method invocation is well-confined.

When method m1 being called is declared without confinement types, and the caller
e1 or actual arguments e for m1 are confined in current class C, we define the typing
rule [tp-methinv’]. Under such circumstance, besides the usual type checking, we need to
further check whether the new confinement dependence induced by e1 and e during the
invocation to method m1 will break confinement or not.

In order to solve the problem, given a program P , we introduce its alias summary
AS, which maps a pair of class name C and method m to a set of aliasing sets:

AS(C, m) =̂ {A1, A2, · · · , An} for all C ∈ ΓP .cname,m ∈ ΓP .method

Each aliasing set Ai is composed of attribute-paths, starting from this, or formal param-
eters x of m, or the return variable res, followed by a sequence of attribute accesses.
For any i 6= j, we have Ai ∩Aj = ∅. The aliasing summary AS records the aliasing
relation produced by each method in the program. It can be built statically by structural
induction on the body commands for methods. There have been a range of work on this,
such as [12, 13]. We demand a preservative partition for the pathes, where any proba-
bly aliasing is respected. We assume the existence of AS here and will not detail the
construction process, because it is not what the paper concentrates on mainly.

The aliasing summary serves to check confinement of invocation of methods de-
clared without confinement types. We then actually only need to build the set of alias-
ing sets for methods declared without confinement types in AS. For example, the alias

17

summary for the program in Fig. 4 is defined as follows:

AS(Node, setNext) = {{n, this.next}}
AS(Node, getNext) = {{res, this.next}}
AS(List , addNode) = {{val , this.head .next .data}}

Based on these definitions, the second typing rule for method invocation is defined
as follows:

[tp-methinv’]

Γ, Θ,C, m ` e1 : CS e1 Γ, Θ,C, m ` x : CSx Γ, Θ,C, m ` e : CS e

(dtype(CS e1),m1(Ty : y) : T) ∈ Γ.method dtype(CS e) ¹e Ty T ¹e dtype(CSx)
∀D ¹e dtype(CS e1), Ak ∈ AS(D, m1), pi, pj ∈ Ak.(CS i ¹e CS j ∨ CS j ¹e CS i)

Γ, Θ,C, m ` x := e1.m1(e) : com

Given a path p, we use δ(p) to denote p[e1/this, e/y, x/res], which substitutes first
variable of p with the related instantiation for this, formal parameters y, and return
parameter res in the caller context. In the rule, CSi denotes the confinement scheme for
the substituted path pi, i.e., σ(ctype[δ(pi)], C), and CSj the same.

As defined in rule [tp-methinv’], to check x := e1.m1(e) in method m of class C,
except for the usual type checking (as shown in the first two lines), we need to further
check: first, the declared types of actual arguments are subtype to the ones of formal
parameters, and the return type is subtype to the declared type of x being assigned.
In this step, we don’t care about confinement; second, the method body of m1 being
executed during the invocation should not break confinement of related objects. Because
of dynamic binding of method invocation, we consider all possible implementations of
m1 in the subclasses of declared type of e1, i.e., D in the rule. For method m1 in class
D, any two aliasing paths in the aliasing summary should have compatible confinement
schemes during the method invocation. That is, they satisfy subtyping relation, e.g.,
CS i and CS j in the rule, which one is subtype to the other is actually guaranteed by
the subtyping relation between their corresponding declared types.

In next section, we will illustrate how to apply the type system for checking program
confinement.

6 Case Study

We will use the type system defined above to check the confinement of programs in
Section 2.

Example 1 (Pair). First of all, assume the typing environments for the program in Fig. 3
are Γ and Θ. The work to get Γ for programs is routine thus we do not list here. The
establishing of Θ can be obtained via the conf clauses.

18

The method a of Intermediate only consists of a return statement, then following
the rule [tp-method], we have

Γ, Θ, Intermediate, a ` this : Intermediate〈this〉
Γ, Θ, Intermediate, a ` this.p1 : tΓ,Θ(Intermediate〈this〉, p1)
tΓ,Θ(Intermediate〈this〉, p1) ¹e σ(ctype[p1], Intermediate)

Γ, Θ, Intermediate ` ctype[p1] a(){return p1} : ok

where the subtyping relation in hypothesis is satisfied, based on the fact that both evalu-
ation on left and right hand sides result in the same scheme, i.e., Pair〈Intermediate, fst
7→ X〈Intermediate〉〉. Similar to method a, we can then check methods b, x, y in the
same class. We can also check the method update by applying rules [tp-objcreate] and
[tp-method]. The method update does not have a return statement for brevity. By add a
statement return null and following the rule [tp-objcreate] and [tp-method], we have

Γ, Θ, Intermediate, update ` p1 : Pair〈Intermediate, fst 7→ X〈Intermediate〉〉
tΓ,Θ(Pair〈Intermediate, fst 7→ X〈Intermediate〉〉, fst) = X〈Intermediate〉

dtype(X〈Intermediate〉) ¹e X
Γ, Θ, Intermediate, update ` p1.fst := new X() : com

Γ, Θ, Intermediate, update ` Null ¹e σ(Null, Intermediate)

Γ, Θ, Intermediate ` void update(){...} : ok

For class Main, by applying rule [tp-methinv], the statement a := safe.a() in method
main is not well-confined. The reason is that method a declared in class Intermediate
has return type ctype[p1], which is not visible to safe. As a result, sv(safe, ctype[p1])
is not satisfied in the rule. For the same reason, both statements b := safe.b() and x :=
safe.x() are not well-confined, however, y := safe.y() is well-confined. Following the
rule [tp-methinv], we have

Γ, Θ,Main,main ` safe : Intermediate Γ, Θ,Main,main ` y : Y
(Intermediate, y() : Y) ∈ Γ.method sv(y, Y) Y ¹e Y

Γ, Θ,Main,main ` y := safe.y() : com

Finally, we proof the call to method update by safe. It is also the case for the rule
[tp-methinv]. The derivation is as follows:

Γ, Θ,Main,main ` safe : Intermediate
(Intermediate, update() : Null) ∈ Γ.method Null ¹e Null

Γ, Θ,Main,main ` safe.update() : com

ut
Example 2 (List). We use the type system to illustrate a concrete typing of a single-
linked list in Fig. 4 strictly.

First we inspect the method addNode in class List . temp := new Node() can be
checked by rule [tp-objcreate]. Beforehand, the inference a typing expressions inference
rule for the confinement scheme of the local variable temp is necessary. By the typing

19

expressions inference rule, we get the confinement scheme of temp is Node〈List ,next
7→ +〉.

Γ, Θ,List , addNode ` temp : Node〈List ,next 7→ +〉
dtype(Node〈List ,next 7→ +〉) = Node

Γ, Θ,List , addNode ` temp := new Node() : com

The command temp.data := val can be checked by the rule [tp-update].

Γ, Θ,List , addNode ` temp : Node〈List ,next 7→ +〉
tΓ,Θ(Node〈List ,next 7→ +〉, data) = T Γ, Θ,List , addNode ` val : T

Γ, Θ,List , addNode ` temp.data := val : com

Method getNext of class Node is declared without any confinement type, and then
is called in class List by a confined object head , i.e., temp.next := head .getNext().
We can apply rule [tp-methinv’] to check confinement of the statement. First calculate
the confinement scheme of temp.next , and then apply rule [tp-methinv’] to perform the
checking:

Γ, Θ,List , addNode ` temp.next : Node〈List ,next 7→ +〉
Γ, Θ,List , addNode ` this.head : CS this.head

(Node, getNext() : Node) ∈ Γ.method
Node ¹e dtype(Node〈List ,next 7→ +〉)

CS δ(this.next) ¹e CS δ(res) ∨ CS δ(res) ¹e CS δ(this.next)

Γ, Θ,List , addNode ` temp.next := head .getNext() : com

where we use CS this.head to represent the confinement scheme of this.head , which is,
Node〈List ,next 7→ Node〈List ,next 7→ +〉, data 7→ T 〈List〉〉. The alias set for
method getNext is {{this.next , res}}, defined by AS(Node, getNext()). We then find
that the confinement schemes of this.next [this.head/this] and res[temp.next/res] af-
ter instantiation are the same, so all subtyping conditions in hypothesis are satisfied.
According to rule [tp-methinv’], the statement is well-confined.

It is the same case to use the rule [tp-methinv’] for the invocation setNext(temp) by
head . The derivation is as follows:

Γ, Θ,List , addNode ` temp : Node〈List ,next 7→ +〉
Γ, Θ,List , addNode ` this.head : CS this.head

(Node, setNext(n : Node) : Null) ∈ Γ.method
dtype(Node〈List ,next 7→ +〉 ¹e Node

CS δ(this.next) ¹e CS δ(n) ∨ CS δ(n) ¹e CS δ(this.next)

Γ, Θ,List , addNode ` head .setNext(temp) : com

The alias set for method setNext is {{this.next , n}}, defined by AS(Node, setNext()).
The subtyping relation for the confinement scheme of this.next and n with substitu-
tions is needed. Here CS δ(this.next) is calculated by CS this.head.next , and CS δ(n) is
calculated by CS temp , both are Node〈List, next 7→ +〉. All subtyping conditions in
hypothesis are satisfied. According to rule [tp-methinv’], the statement is well-confined.

20

The method getHead is checked by the rule [tp-method] for both the confinement
scheme of the return value head and ctype[head] is the same.

The method violate could not pass the rule [tp-method] for the command head :=
ls.head is not well-confined. We can not get the confinement scheme of ls.head be-
cause the confinement scheme calculation for attributes requires head ∈ va(List) when
the confinement scheme of ls is List . But actually, head /∈ va(List) is the truth. ut
Example 3 (Subtype). Finally, we proof the example in Fig. 6 with subtyping by our
typing rules. In the example, the attribute a1 is confined in class A, so what visible for
the other classes is only the attribute a2, i.e. va(A) = {a2}. For class B, va(B) =
{a2, b2}. The conf clauses in the three classes are checked to be valid. The confinement
tree for class Main is of the third one in Fig. 7. Using the typing expressions rules, we
can get the confinement schemes of variables in method main of class Main .

Γ.locvar(Main,main, x) = ctype[a]
σ(ctype[a],Main) = A〈Main, a2 7→ T2〈Main〉〉

Γ, Θ,Main,main ` x : A〈Main, a2 7→ T2〈Main〉〉
Γ.locvar(Main,main, y) = ctype[b]

σ(ctype[b],Main) = B〈Main, b2 7→ S2〈Main〉〉
Γ, Θ,Main,main ` y : B〈Main, b2 7→ S2〈Main〉〉

The confinement scheme of x is A〈Main, a2 7→ T2〈Main〉〉, which is not subtype to
B〈Main, b2 7→ S2〈Main〉〉, the confinement scheme of y , so the command x := y is
not well-confined. ut

7 Related Work

Because of the importance in software security, the object aliasing problem [14] has
attracted a lot of research and discussion for many years. Some early attempts include
Hogg’s Islands [15] and Almeida’s Balloon types [16], which both enforce full encapsu-
lation, preventing all objects encapsulated in an object from being exposed outside the
object. However, this restriction is too strong such that excludes the possibility to sep-
arate the internal representation from shared objects in a collection. Later approaches,
including ours, allow specifying what needs to be confined while leaving other objects
to be accessible, thus provide more flexible object encapsulation.

The most notable work in this area is Flexible Alias Protection proposed by No-
ble, Vitek, and Potter et al. [17], known as ownership types, and then it is formalized by
Clarke et al. in [3, 9]. With the notions of ownership contexts and owners, the ownership
relation between objects are structured by parameterized annotating classes. At the be-
ginning, for each object can have at most one owner, it obtains the owner-as-dominators
property. As the first static type system providing flexible object encapsulation, owner-
ship types have been extended into two mainstreams.

In the first direction, people attempt to enhance ownership types to support inher-
itance and other features while keeping the owner-as-dominators property. Clarke and
Drossopoulou [18] enforce computational effects to describe how to exploit the strong
encapsulation for OO languages. Boyapati et al. [10] propose a way to implement the

21

important programming idioms such as iterators by extending ownerships with inner
classes, where objects of classes defined in the same modular have the privilege of ac-
cessing each other’s representation. Ownership Domains [5] supports more precise and
flexible aliasing protection, where domain stands for a logically related set of objects
that are accessible between each other. Programmers can specify multiple domains in
one object. An object can be in one shared or owned domain, and links between domains
specify which objects can be accessed by objects in other domains.

The second line of attempts aims at minimizing annotations in programs, and mean-
while, providing flexible aliasing control. Universe [19, 4] takes rep and peer modifiers
to build the topological ownership structures on a set of objects, and provides read-only
references to enforce owner-as-modifier property, in the sense that other objects can
read an object but only its owner can modify it. This work has been integrated into JML
notation for Java specifications [20]. Universe Types [21] is later proposed to support
ownership transfer. Generic Universe Types has been formalized in [22], and a com-
piler for Java with ownership types and generic universe types is implemented in [23].
A recent work on minimal annotations of ownership is Pedigree Types [24] inspired
by universe types, where ownership information is represented with an explicit shaping
Pedigree, etc. Our work also aims at simplifying annotations in programs while keeping
the expressive power.

Most of the mechanisms discussed above have the restriction that one object can
only have one owner. Cameron et al. develop Multiple Ownership [25], where objects
can have more than one owner. It is suitable for implementing many modern program id-
ioms such as design patterns. In other direction, Confined Types [1, 2] adopts a package-
level encapsulation to provide better security.

As numerous aliasing control schemes with their own usages and limitations have
been proposed, people also want to have a unified understanding of the confinement
problem, and have published some results [26–28].

8 Conclusion

In this paper, we present a new framework for specifying and reasoning about con-
finement of OO programs. Our basic idea is inspired by the ownership types. In our
approach, a class is not responsible for specifying future confinement requirement of
other employing classes. If a class wants to confine its representation, it has to express
this requirement entirely in its declaration by itself. In this sense, we say that the object
confinement scheme proposed in this paper is built from outside. Thus, our framework
is based on an intricate different idea from what of ownership types, although they have
similar intentions and abilities.

The specification of program confinement becomes simpler and more direct, by
delaying confinement description of classes to the later employed phase. But on the
other hand, this to some extent burdens the design of the type system, where as shown
above, the typing rule for method invocation needs to retreat to the method body being
called, to check whether confinement of the body is broken because of the new type
dependence introduced during method invocation. We use alias summary to solve this

22

problem, though a little complicated, our approach aims at facilitating programmers to
express their confinement requirement.

Currently, we restrict that an object cannot be the representations of more than one
object at the same time, thus suffers the limitation to implement common programming
idioms such as external iterators. One considerable solution to relax this restriction in
our future work is to define confinement types visible for multiple classes by connecting
internal domain of these classes.

References

1. Vitek, J., Bokowski, B.: Confined types in Java. Software Practice and Experience 31 (2000)
507–532

2. Grothoff, C., Palsberg, J., Vitek, J.: Encapsulating objects with confined types. In: Proc.of
OOPSLA’01, ACM Press (2001)

3. Clarke, D., Potter, J., Noble, J.: Ownership types for flexible alias protection. In: Proc.of
OOPSLA’98, ACM Press (1998)

4. Müller, P.: Modular specification and verification of object-oriented programs. PhD thesis,
FernUniversit at Hagen, LNCS 2262, Springer (2002)

5. Aldrich, J., Chambers, C.: Ownership domains: Separating alias policy from mechanism. In:
Proc.of ECOOP’04, Springer (2004)

6. Boyland, J.: Alias burying: Unique variables without reads. Software Practice and Experi-
ence 31(6) (2001) 533–553

7. Aldrich, J., Kostadinov, V., Chambers, C.: Alias annotations for program understanding. In:
Proc.of OOPSLA’02, ACM Press (2002)

8. Clarke, D., Wrigstad, T.: External uniqueness. In: Proc.of FOOL’03, ACM Press (2003)
9. Clarke, D.: Ownership types and containment. PhD thesis, School of Computer Science and

Engineering, University of New South Wales, Australia (2001)
10. Boyapati, C., Liskov, B., Shrira, L.: Ownership types for object encapsulation. In: Proc.of

POPL’03, ACM Press (2003)
11. Qiu, Z., Wang, S., Quan, L.: Sequential µJava: Formal foundations. In: Proc.of AWSF’07.

(2007) Avaliable at: www.math.pku.edu.cn:8000/en/preindex.php.
12. Meyer, B.: The theory and calculus of aliasing. CoRR abs/1001.1610 (2010)
13. Naeem, N.A., Lhoták, O.: Faster alias set analysis using summaries. In: Proc.of CC’11.

Volume 6601 of Lecture Notes in Computer Science., Springer (2011) 82–103
14. Hogg, J., Lea, D., Wills, A., de Champeaus, D., Holt, R.: The geneva convention on the

treatment of object aliasing. ACM SIGPLAN OOPS Messenger 3(2) (1992) 11–16
15. Hogg, J.: Islands: Aliasing protection in object-oriented languages. In: Proc. of OOPSLA’91,

ACM Press (1991)
16. Almeida, P.S.: Balloon types: Controlling sharing of state in data types. In: Proc. of

ECOOP’97, Springer (1997)
17. Noble, J., Vitek, J., Potter, J.: Flexible alias protection. In: Proc.of ECOOP’98, Springer

(1998)
18. Clarke, D., Drossopoulou, S.: Ownership, encapsulation and the disjointness of type and

effect. In: Proc.of OOPSLA’02, ACM Press (2002)
19. Müller, P., Poetzsch-Heffter, A.: Universes: A type system for controlling representation

exposure. Technical Report 263, FernUniversitat Hagen (1999)
20. Dietl, W., Müller, P.: Universes: Lightweight ownership for JML. Journal of Object Tech-

nology 4 (2005) 5–32

23

21. Müller, P., Rudich, A.: Ownership transfer in universe types. In: Proc.of OOPSLA’07, ACM
Press (2007)

22. Dietl, W., Drossopoulou, S., Müller, P.: Generic universe types. In: Proc.of ECOOP’07,
Springer (2007)

23. Cameron, N.R., Noble, J.: Encoding ownership types in Java. In: TOOLS (48), Springer
(2010)

24. Liu, Y.D., Smith, S.F.: Pedigree types. In: Proc.of IWACO’08, Springer (2008)
25. Cameron, N.R., Drossopoulou, S., Noble, J., Smith, M.J.: Multiple ownership. In: Proc.of

OOPSLA’07, ACM Press (2007)
26. Noble, J., Biddle, R., Tempero, E., Potanin, A., Clarke, D.: Towards a model of encapsula-

tion. In: Proc.of IWACO’03, Darmstadt, Germany (2003)
27. Zhao, Y., Boyland, J.: A fundamental permission interpretation for ownership types. In:

Proc.of TASE’08, IEEE CS (2008)
28. Wang, S., Shu, Q., Liu, Y., Qiu, Z.: A semantic model of confinement and locality theorem.

Frontiers of Computer Science 4(1) (2010) 28–46

A Soundness

To demonstrate the soundness of our type system, we follow the strategy [3] to prove
subject reduction. First we give the operational semantics associated with a state com-
prised of a store and an object pool for CµJava. Then we introduce a definition for the
well-confinedness on states. Finally, we prove a subject reduction theorem, which ap-
plies to commands with a given well confined state, to get the soundness of our type
system.

A.1 Operational Semantics

Similar as [28], we define a program state as a pair composed of a stack and store.
Formally,

Store =̂ Variables ⇀ Ref
Opool =̂ Ref ⇀ Attributes ⇀ Ref
States =̂ Store×Opool

where a store maps variables (Variables) to values (Ref) and an object pool maps pairs
of object references and attributes names (Attributes) to corresponding values.

The operational semantics given in Fig. 10 is expressed in terms of a transition rela-
tion on a state (σ,O), a command c and another state (σ′, O′), written as 〈c, (σ,O)〉 Ã
(σ′, O′) or 〈c, (σ,O)〉 Ã∗ (σ′, O′), in which σ ∈ Store, O ∈ Opool. We use 4(C, m)
to get the signature of the method m in class C. For well-typed programs, we omitted
the part of operational semantics on states that go wrong in the execution.

A.2 Well-confined State

Definition 8 (Confinement Context). The confinement context in a method m of class
C applies to the opool. The object pool O can be partitioned to several protected do-
mains since the confinement status depends on many objects with their own represen-
tations. Assume there are n separated protected domains: {pdn

i=1}, each domain con-
sists of three separated parts: the confined attributes part of interface objects (φ1i), the

24

[op-skip] 〈skip, (σ, O)〉 Ã (σ, O)

[op-assign] 〈x := e, (σ, O)〉 Ã (σ ⊕ {x 7→ σe}, O)

[op-update]
〈σe, a〉 ∈ dom2 O

〈e.a := x, (σ, O)〉 Ã (σ, O ⊕ {〈σe, a〉 7→ σx})

[op-lookup]
〈σe, a〉 ∈ dom2 O

〈x := e.a, (σ, O)〉 Ã (σ ⊕ {x 7→ O(σe)(a)}, O)

[op-asncast]
type(σe) ¹ T

〈x := (T)e, (σ, O)〉 Ã (σ ⊕ {x 7→ σe}, O)
[op-objcreate]

r /∈ dom O ∧ {f = attr(C)}
〈x := new T (), (σ, O)〉 Ã (σ ⊕ {x 7→ r}, O ⊕ {〈r, f〉 7→ null})
[op-methinv]

type(σe1) = D,4(D, m1) = λ(y){var x; c; return e}
〈x := nil; c; return e[(D)e1/this, e/y], (σ, O)〉 Ã∗ (σ′, O′)

〈x := e1.m1(e), (σ, O)〉 Ã∗ (σ ⊕ {x 7→ σ′res}, O′)
[op-sequence]

〈c1, (σ, O)〉 Ã∗ (σ′, O′), 〈c2, (σ
′, O′)〉 Ã∗ (σ′′, O′′)

〈c1; c2, (σ, O)〉 Ã∗ (σ′′, O′′)

Fig. 10. Operational Semantics

confined attributes part of confined objects (φ2i), and non-confined attributes part of
confined objects (φ3i). The confined objects in φ1i might nest their own confinement
contexts. We use θC,m =̂ {(φ1i, φ2i, φ3i)|i = 1..n} to denote the confinement context
for method m in C, in which we use (φ11, φ21, φ31) to denote the partition decided by
current object this. ut
Definition 9 (well-confined State). Assume θC,m = {(φ1i, φ2i, φ3i)|i = 1..n}. (σ,O)
is a well-confined state under θ(C, m) iff the following conditions are satisfied:

– Let [[φji]] (σ,O) = Oji and Oi = O1i ∪ O2i ∪ O3i for j = 1..3 and i = 1..n,
(O11, O21, O31) denotes the partition decided by current object this, then

O1i, O2i, O3i are disjoint for i = 1..n;
for each Oi, (O1i ∗O2i) B (O2i ∗O3i);
(O \ ¯n

i=1(O1i ∗O2i)) B (O \ ¯n
i=1(O2i ∗O3i))

– For each variable or return value x ∈ dom σ, if the confinement scheme of x (de-
noted by CSx) is T 〈C, . . .〉, then σx ∈ dom(O21 ∗ O31); else σx ∈ dom(O \
¯n

i=1(O2i ∗O3i)).

We say O is well-confined under θC,m, if the first condition above holds. ut
Theorem 1 (Soundness Theorem). If Γ, Θ ` P : ok , and P starts with a state
(σinit, Oinit) that is well-confined, then if P is terminated in a state (σ′, O′), (σ′, O′) is

25

a well confined state under its confinement context, where σinit = ∅, Oinit = {root 7→
null}. ut

For the soundness of our type system, we have to prove that if program P is well-
typed under the type system then P is well-confined under its confinement context.
Since P is a set of classes in CµJava, we finally must prove that for each command
getting through the related typing rules in methods of P is well-confined under the
confinement context of the related method.

Theorem 2 (Subject Reduction). If Γ, Θ,C, m ` c : com, the execution of command
c starts from any well-confined state (σ,O), then if the execution of c is terminated in a
state (σ′, O′), the state (σ′, O′) is well-confined. ut

Notice that here in the theorem of [Subject Reduction], (σ,O) is an any given
well-confined states. However, if we prove the soundness under the reachable state
(σC,m, OC,m), it grantees that the soundness can be also kept under (σ,O). Since the
unreachable part of the state would never be changed, (σ,O) = (σC,m ∗ true, OC,m ∗
true). So we only prove the soundness on the reachable stack and opool.

Definition 10 (Reachable Opool). For a call to method m of class C, the reachable
opool OC,m contains all the objects can be accessed by the method, including the newly
created objects, the refers through the caller’s attributes and the objects referred by real
parameters. ut

A.3 Soundness Proof

Now we prove the subject reduction theorem 2. Assume that the confinement con-
text is θ(C, m) and the state is (σ,O) before the command execution, [[θ(C, m)]] =
{(O1i, O2i, O3i)|i = 1..n} satisfies the conditions in definition 9 and each command
satisfies the corresponding typing rule. The unreachable states from the current object
obviously satisfy the confinement conditions of the current context, so we take no ac-
count of the garbage collection in the proof.

[skip] skip
Proof: It is trivial to prove that the statement skip preserves the well-confinedness.
[assign] x := e
Proof: By induction on the confinement typing derivation.
Case: x : T ⇒ CSx = T

1. (a) By assumptions, x := e satisfies the rule [tp-assign]

(b) By operational semantics, 〈x := e, (σ,O)〉 Ã (σ ⊕ {x 7→ σe}, O)
(c) By assumptions, (σ,O) satisfies definition 9

2. (a) By CSx = T , σx ∈ dom(O \ ¯n
i=1(O2i ∗O3i))

(b) By (1.a) and CSx = T , ∃S.CS e = S ¹e T , σe ∈ dom(O \ ¯n
i=1(O2i ∗O3i))

(c) By (1.a) and (1.b), O′ = O, then by (1.c) all the partitions are still well-
confined. And by (2.b), σ′x = σe ∈ dom(O \ ¯n

i=1(O2i ∗O3i))

Case: x : ctype[p] ⇒ CSx = T 〈C · · ·〉

26

1. (a), (b) and (c) are the same as (1.a), (1.b) and (1.c) stated in the previous case
2. (a) By x : ctype[p], σx ∈ dom(O21 ∗O31)

(b) By (1.a), CS e = S〈C · · ·〉 ¹e CSx, σe ∈ dom(O21 ∗O31) and moreover, the
confined part of O21 ∗O31 that σx and σe can access has the same confinement
paths, eg., if ∃(σx, f, σ(x)(f)) ∈ (O21 ∗O31) ⇒
(σe, f, σ(e)(f)) ∈ (O21 ∗O31)

(c) By (1.b), O′ = O, by (2.b), all the partitions are still well-confined.
(d) By (2.b) and (2.c), σ′x = σe ∈ dom(O′21 ∗O′31)

Consequently, for the two cases, by (2.c) in the first case and (2.c), (2.d) in the second
case, (σ′, O′) under θ(C, m) satisfies the definition 9. The assignment statement keeps
the well-confinedness.
[update] e.a := x
Proof: By induction on the confinement typing derivation.
Case: x : T ⇒ CSx = T

1. (a) By assumptions, e.a := x satisfies the rule [tp-update]

(b) By operational semantics, 〈σe, a〉 ∈ dom2 O ⇒ 〈e.a := x, (σ,O)〉 Ã (σ,O⊕
{〈σe, a〉 7→ σx})

(c) By assumptions, (σ,O) satisfies definition 9
2. (a) By CSx = T , σx ∈ dom(O \ ¯n

i=1(O2i ∗O3i))
(b) By (1.a) and CSx = T , ∃S.CS e.a = S ¹e T ⇒ σ(e)(a) ∈ dom(O \

¯n
i=1(O2i ∗O3i))

(c) By (2.b), (σe, a) ∈ dom2 O31 ∨ (σe, a) /∈ dom2¯n
i=1(

O1i ∗O2i ∗O3i)
i. Case (σe, a) ∈ dom2 O31 ⇒ (O′11, O

′
21, O

′
31) = (O11, O21, O31⊕{〈σe, a〉

7→ σx}), thus (O′11 ∗O′21) B (O′21 ∗O′31). For this case, without changing
any other partitions, (O1i ∗O2i) B (O2i ∗O3i), i = 2..n is preserved.
Moreover, by (1.b) O′ = O ⊕ {〈σe, a〉 7→ σx}, O′ \ ¯n

i=1(O
′
2i ∗ O′3i) =

O ⊕ {〈σe, a〉 7→ σx} \ ¯n
i=1(O2i ∗ O3i), O′ \ ¯n

i=1(O
′
2i ∗ O′3i) = O \

¯n
i=1(O2i ∗O3i) ⇒ (O′ \ ¯n

i=1(O
′
1i ∗O′2i)) B (O′ \ ¯n

i=1(O
′
2i ∗O′3i))

ii. Case (σe, a) /∈ dom2¯n
i=1(O1i ∗ O2i ∗ O3i), all the partitions are not

changed, thus (O1i ∗O2i) B (O2i ∗O3i), i = 1..n is preserved.
Moreover, by (1.b) O′ = O ⊕ {〈σe, a〉 7→ σx}, O′ \ ¯n

i=1(O
′
1i ∗ O′2i) B

O′ \ ¯n
i=1(O

′
2i ∗O′3i)

(d) By (2.b), σ′x = σx ∈ dom(O \ ¯n
i=1(O2i ∗O3i))

Case: x : ctype[p] ⇒ CSx = T 〈C · · ·〉
1. (a), (b) and (c) are the same as (1.a), (1.b) and (1.c) stated in the previous case
2. (a) By x : ctype[p], σx ∈ dom(O21 ∗O31)

(b) By (1.a), CS e.a = S〈C · · ·〉 ¹e CSx, thus (σe, a) ∈ dom2(O11 ∗O21)
i. Case (σe, a) ∈ dom2 O11 ⇒ CS e = C〈this〉 ∧ a ∈ cpath(C), thus

(O′11, O
′
21, O

′
31) = (O11⊕{〈σe, a〉 7→ σx}, O21, O31), thus (O′11∗O′21) B

(O′21 ∗ O′31). For this case, without changing any other partitions, (O1i ∗
O2i) B (O2i ∗ O3i), i = 2..n is preserved. Moreover, by (1.b) O′ =
O ⊕ {〈σe, a〉 7→ σx}, (O′ \ ¯n

i=1(O
′
1i ∗O′2i)) B (O′ \ ¯n

i=1(O
′
2i ∗O′3i))

27

ii. Case (σe, a) ∈ dom2 O21 ⇒ (O′11, O
′
21, O

′
31) = (O11, O21 ⊕ {〈σe, a〉 7→

σx}, O31),thus (O′11 ∗ O′21) B (O′21 ∗ O′31). Moreover, by (1.b) O′ =
O⊕〈σe, a〉 7→ σx}, O′ \¯n

i=1(O
′
1i ∗O′2i) = O \¯n

i=1(O1i ∗O2i)∧O′ \
¯n

i=1(O
′
2i ∗O′3i) = O \ ¯n

i=1(O1i ∗O2i), thus (O′ \ ¯n
i=1(O

′
1i ∗O′2i)) B

(O′ \ ¯n
i=1(O

′
2i ∗O′3i))

(c) By (1.b), σ′x = σx ∈ dom(O21 ∗O31)

Consequently, for the two cases, (σ′, O′) under θ(C, m) satisfies the definition 9. The
well-confinedness is preserved.
[lookup] x := e.a
Proof: By induction on the confinement typing derivation.
Case: x : T ⇒ CSx = T

1. (a) By assumptions, x := e.a satisfies the rule [tp-lookup]

(b) By operational semantics, 〈σe, a〉 ∈ dom2 O ⇒ 〈x := e.a, (σ,O)〉 Ã (σ ⊕
{σx 7→ O(σe)(a)}, O)

(c) By assumptions, (σ,O) satisfies definition 9
2. (a) By CSx = T , σx ∈ dom(O \ ¯n

i=1(O2i ∗O3i))
(b) By (1.a) and CSx = T , ∃S.CS e.a = S ¹e T , thus we get O(σe)(a) ∈

dom(O \ ¯n
i=1(O2i ∗O3i))

(c) By (1.b) and (2.b), all the partitions in the confinement context are not changed,
and σ′x = O(σe)(a) ∈ dom(O \ ¯n

i=1(O2i ∗ O3i)), thus (σ′, O′) satisfies
definition 9

Case: x : ctype[p] ⇒ CSx = T 〈C · · ·〉
1. (a), (b) and (c) are the same as (1.a), (1.b) and (1.c) stated in the previous case
2. (a) By x : ctype[p], σx ∈ dom(O21 ∗O31)

(b) By (1.a), CS e.a = S〈C · · ·〉 ¹e CSx, thus O(σe)(a) ∈ dom(O21 ∗O31)
(c) By (1.b), we get O′ = O and (O′11, O

′
21, O

′
31) =

(O11, O21[O(σe)(a)/σx], O31[O(σe)(a)/σx])
(d) By (1.c) and (2.c), (O1i ∗O2i) B (O2i ∗O3i), i = 1..n
(e) By O′ \ ¯n

i=1(O
′
1i ∗O′2i) B (O′ \ ¯n

i=1(O
′
2i ∗O′3i))

(f) By (1.b), σ′x = O(σe)(a) ∈ dom(O21 ∗O31)

Consequently, for the two cases, (σ′, O′) under θ(C, m) satisfies the definition 9. The
well-confinedness is preserved.
[asncast] x := (T)e
Proof: By induction on the confinement typing derivation.

1. By assumptions, x := (T)e satisfies the rule [tp-asncast] that only allows the upcasting
2. By the operational semantics,type(σe) ¹ T ⇒ 〈x := (T)e, (σ,O)〉 Ã (σ⊕{x 7→

σe}, O)
3. By the above, the proof is similar as x := e.

[objcreate] x := new T ()
Proof: By induction on the confinement typing derivation.
Case: x : T ⇒ CSx = T

28

1. (a) By assumptions, x := new T () satisfies the rule [tp-objcreate]

(b) By operational semantics, 〈x := new T (), (σ,O)〉 Ã (σ ⊕ {x 7→ r}, O ⊕
{〈r, f〉 7→ null}) Where r /∈ dom O ∧ {f} = attr(C)

(c) By assumptions, (σ,O) satisfies definition 9
2. (a) By CSx = T , we get σx ∈ dom(O \ ¯n

i=1(O2i ∗O3i))
(b) By (1.a) and (1.b), (O1i ∗ O2i) B (O2i ∗ O3i), i = 1..n and O′ = O ⊕

{〈r, f〉 7→ null}, thus O′\¯n
i=1(O

′
1i∗O′2i) = O⊕{〈r, f〉 7→ null}\¯n

i=1(O1i∗
O2i, O

′ \ ¯n
i=1(O

′
2i ∗ O′3i) = O ⊕ {〈r, f〉 7→ null} \ ¯n

i=1(O2i ∗ O3i, so we
know (O \ ¯n

i=1(O1i ∗O2i)) B (O \ ¯n
i=1(O2i ∗O3i)) is satisfied.

(c) By 1.b) and 2.b), r /∈ dom O ⇒ σ′x =∈ dom(O′ \ ¯n
i=1(O

′
2i ∗O′3i))

Case: x : ctype[p] ⇒ CSx = T 〈C · · ·〉
1. (a), (b) and (c) are the same as (1.a), (1.b) and (1.c) stated in the previous case
2. (a) By x : ctype[p], σx ∈ dom(O21 ∗O31)

(b) By (1.a) and (1.b), (O′11, O
′
21, O

′
31) =

(O11, O21[r/σx], O31[r/σx]) ∧ O′ = O ⊕ {〈r, f〉 7→ null}, because for each
{f} = attr(C) refer to null, thus (O11∗O21[r/σx]) B (O31[r/σx]), i.e., (O′11∗
O′21) B (O′21 ∗ O′31). Besides, for the other partitions are preserved, (O′1i ∗
O′2i) B (O′2i∗O′3i), i = 2..n, so (O\¯n

i=1(O1i∗O2i)) B (O\¯n
i=1(O2i∗O3i))

(c) By (1.b) and (2.b), σ′x = r ∈ dom(O′21 ∗O′31)

Consequently, for the two cases, (σ′, O′) under θ(C, m) satisfies the definition 9. The
well-confinedness is preserved.
[methodinv] x := e1.m1(e)
Proof: From the operational semantics, we have

type(σe1) = D,4(D, m1) = λ(y){var x; c; return e}
〈x := nil; c; return e[(D)e1/this, e/y], (σ,O)〉 Ã∗ (σ′, O′)

〈x := e1.m1(e), (σ,O)〉 Ã∗ (σ ⊕ {x 7→ σ′res}, O′)

We denote the confinement context of the method m invocation by C, and the one where
m1 is defined by D. We need to prove that, if x := e1.m1(e) satisfies the related
rule for the method invocation, then if (σ,O) is well-confined in C, the resulted state
(σ ⊕ {x 7→ σ′res}, O′) is well-confined in C.

From that O is well-confined in C, if C6=D, it can be partitioned into the following
parts:

(O1C ∗O1D, O2C ∗O2D, O3C ∗O3D)

where (O1C , O2C , O3C) represents the three parts for the confinement context C and
(O1D, O2D, O3D) represents the three parts for D. If the confinement context of Cand
Drelate to the same this, then C=D, O1i and O2i are the same one, thus O is partitioned
into (O1C , O2C , O3C).

We will prove this fact by considering three cases for the separated premises on
method invocation typing rules.

The first is for the case when [tp-methinv] is used. We need to prove it is sound.
Here we will prove a stronger fact (1), which says that for any command s in x :=

29

nil; c; return e[(D)e1/this, e/y], if it ends at (σ′, O′) starting from (σ,O) and O is
well-confined in C, then the executing of s would not break the well-confinedness ofD.
Moreover, O′ is still well-confined in C.

1. Case CS e1 : C〈this〉, then C= D, proof for O′ is the same for basic statements
proved ahead; proof for σ ⊕ {x 7→ σ′res}, res can refer to any part of O′.

2. Case CS e1 : T , then C6= D. From e1 is not confined in C , then e1 and its attributes
will not locate at O1C ∗O2C ∗O3C . Plus the premise sv(e1,TC) and sv(e1,TC y),
we know that TC and TC y are all ordinary types. From CS e ¹e CSy , CSy are all
ordinary types too. Therefore, e are not confined in C. Besides, by σ(TC , C) ¹e

CSx, CSx is some ordinary type, then x is not confined in C either. By induction
on the commands s in D,
(a) Case x:=e: when x and e are of confinement type ctype[•], by C6= D, x, e

are both confined in D, then x, e will not change OiC , i = 1..3 at all. From
the well-confinedness of assignment x := e in D, we can see the assignment
will preserve the well-confinedness of OiD, i = 1..3 in D. So O′ is still well-
confined in C. On the other hand, if x and e are of type T , then the assignment
will not change the partition (O1C ∗ O1D, O2C ∗ O2D, O3C ∗ O3D) at all,
obviously O′ is well-confined in C.

(b) Case x := e.a: when x is of confinement type ctype[•], x, e.a are confined
in D. After the lookup, O1D ∗ O2D ∗ O3D will be changed to a still well-
confined partition O1D ∗ O′2D ∗ O′3D. OiC , i = 1..3 are not changed at all.
From the well-confinedness of assignment x := e.a in D, we can see the as-
signment will preserve the well-confinedness of OiD, i = 1..3 in D. So O′

is still well-confined in C. On the other hand, if x is of confinement type T ,
then e.a is of confinement scheme T , the assignment will not change the par-
tition (O1D, O2D, O3D) at all. In addition, both e1 and e are not confined in
C, then the well-confinedness of OiD, i = 1..3 in D is preserved. Thus O′ is
well-confined in C.

(c) Case e.a := x: similar as the previous case x := e.a.
(d) Case x := (T)e: similar as first case x := e.
(e) Case x := new T (): when x is of confinement type ctype[•],

O′2D⊕{〈r, f〉 7→ null}where r /∈ dom O∧{f} are the confined attributes of T
and
O′3D ⊕ {〈r, f〉 7→ null} , where r /∈ dom O ∧ {f} are the
non-confined attributes of T , the partition is still preserved, thus O′ is well-
confined in C.

(f) x := e.m(e): proved by induction.
(g) return e: it will not change the opool at all.

So the fact (1) is proved.
Now we need to prove that σ ⊕ {x 7→ σ′res} is well-confined in C. From C6=
D and the premise σ(TC , dtype(CS)) ¹e CSx, x is not confined in C. We
need to prove σ′res is not confined in Cand D. From the operational semantics,
σ′res = σ′e, and the rule [tp-method] for m1, CS e ¹e σ(TC ,CS e1), by TC is
an ordinary type, we get the return e is not confined in Cand D. The fact holds.

30

The second is for the case that the caller e1 or actual arguments e for m1 are confined
in C, and m1 being called is declared without confinement types. For this case, we apply
the typing rule [tp-methinv’], and we need to prove its soundness. From the typing rule,
we have the facts that all the aliases for the command c; return e in the body of m1

have the compatible confinement schemes with the related instantiation substituted, we
can get the fact that all the alias in c; return e[(D)e1/this, e/y] have the compatible
confinement schemes. Therefore, after executing c; return e[(D)e1/this, e/y], (σ′, O′)
is still well-confined. The fact is proved.
[sequence] c1; c2;
Proof: By induction on the structure of the command c1 and c2. By assumptions, be-
fore executing c1, the state (σ,O) is well-confined. By operational semantics, after the
executing c1, the state is (σ′, O′). For each kind of commands, we have proved the
well-confinedness maintained, so that the state (σ′, O′) is well-confined. Similarly, af-
ter executing c2, we get that the state (σ′′, O′′) is well-confined.

31

