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logics, but the program design errors we saw in 1967 can 
still be found in today’s software. Applications of formal 
methods to industrial practice remain such exceptions 
that they confirm that the use of formal methods is not 
common practice.

We must question the assumptions underlying current 
formal methods to see what needs to be changed. The 
articles published in Computer’s September issue did not 
do that; they presented minor variations of ideas that their 
authors, and other researchers, have advocated for years.

CLAIMS OF PROGRESS AND  
INDUSTRIAL ADOPTION

The computer science research literature reveals that 
“formal methods for software development” are a popular 
research area. Variants of these approaches are frequently 
discussed and debated at conferences and in journals.

Funding agencies often require that larger research-
funded projects include some cooperation with industrial 
organizations and demonstrate the practicality of an ap-
proach on “real” examples. When authors report such 
efforts, they state that they are successful. Paradoxically, 
such success stories reveal the failure of industry to adopt 
formal methods as standard procedures; if using these 
methods was routine, papers describing successful use 
would not be published. 

T
he theme of the feature articles in Computer’s 
September 2009 issue was “Rethinking Formal 
Methods.” Rethinking this subject is certainly 
long overdue. 

It has been more than 40 years since the 
late Robert Floyd showed us how to “assign meaning to 
programs” and demonstrated how we could verify that 
programs will do what they are intended to do.1 It has been 
at least 35 years since I first heard Jean-Raymond Abrial 
present the ideas that were the basis of Z and its many dia-
lects. The Vienna Development Method (VDM) community 
began its work about the same time. Even second- and 
third-generation formal methods show signs of age. 

Since 1967, there have been numerous “revolutions” on 
the hardware side and amazing improvements in man-
machine interfaces. The computer systems on my desk 
today were unimaginable when Floyd wrote that article. 
Unfortunately, there hasn’t been comparable progress in 
formal methods. There have been new languages and new 

We must question the assumptions under- 
lying the well-known current formal soft-
ware development methods to see why 
they have not been widely adopted and 
what should be changed. 
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There is a disturbing gap between 
software development and traditional 
engineering disciplines.
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provement and will try almost any new method—provided 
that it does not look like mathematics.

Gap between software development and  
older engineering disciplines

There is also a disturbing gap between software devel-
opment and traditional engineering disciplines. Software 
developers often identify themselves as engineers, but 
their education and way of working are not at all like those 
of traditional engineers. Engineering programs teach basic 
science, applicable mathematics, and how to apply math-
ematics to predict the behavior of products. Most computer 
science departments teach technology (which is often of 
fleeting value in our rapidly changing field) and abstract 
mathematics that the students do not learn to apply.

Twenty years ago, I heard a wise and experienced top-
level manager complain that his software developers and 
his other engineers spoke such different “languages” and 
thought in such different ways that it was difficult for them 
to work together. That gap is still with us.

Gap between computer science and  
classical mathematics

A more unexpected development is the separation 
between theoretical computer scientists and classical 
mathematics. Many computer science programs present 
their students with a very narrow slice of mathemat-
ics, usually stressing recent developments and “pure” 
mathematics over older work and what is called “applied 
mathematics.” Mathematics has evolved slowly and con-
tains many mature and general concepts that can be used 
when describing and analyzing computer systems. 

As a result of the “split” between computer science and 
mathematics departments, formal methods often use the 
notation of mathematics but do not take advantage of 
potentially useful mature concepts. It is easy to find situa-
tions in which a computer science researcher might invent 
an approach in which a classically trained mathematician 
would recognize that it was possible to use an older (and 
simpler) concept to solve the problem.

An insight-provoking illustration of this is the contrast 
between the approaches of two people at the same institu-
tion, mathematician N.G. de Bruijn and computer scientist 
E.W. Dijkstra, to programming semantics and verification. 
De Bruijn applied the classical concept of relations, while 

Industry is so plagued by errors and high maintenance 
costs that it would use any method it thought would help; 
it chooses not to use methods such as Z or VDM. 

Reports of successful industrial adoption do not always 
stand up to scrutiny. Sometimes, the authors are just play-
ing with words. For example, the technique of placing 
debugging statements in code, taught to me in 1959, has 
recently been trumpeted as “industrial use of assertions.”

In other cases, close scrutiny reveals truly heroic efforts 
with very complex formal models but little evidence that 
the actual code is correct. Often, these efforts do not lead 
to repeat use or broader adoption of the method. Develop-
ment organizations that routinely use these methods for 
actual products are rare.

Some of the reported success may be attributable to 
having two people looking hard at the problem and the 
code. Thirty years ago, in a paper that is still worth reading 
today, H.S. Elovitz described an experiment in which a pro-
gram in a second programming language was used in the 
way that formal method advocates suggest that their nota-
tions be used.2 One programming language was called the 
specification language; the other was the implementation 
language. One programmer wrote the “specification” and 
gave it to another, who translated it to the implementation 
language. The specifier reviewed the translation. The error 
rate was reduced, and this technique (an earlier version of 
pair programming) was considered successful. This effect 
alone could explain the few successes in formal methods 
application. Reports that formal methods are ready for 
industrial use must be taken with a grain of salt; if they 
were ready, their use would be widespread.

THREE ALARMING GAPS
The past 40 years have seen some negative develop-

ments in the software field.

Gap between research and practice
The gap between formal methods research and practi-

cal software development is much larger today than it was 
when Floyd wrote his paper. Floyd had been a successful, 
innovative, and productive programmer. His article clearly 
reveals the connection between mathematical expressions 
and the programmer’s product.

Today, many research papers are written as if the math-
ematics were all that matters. They do not show how to 
relate the formal models and results to the actual code on 
real machines. Further, they offer no way to deal with the 
complexity of software systems.

On the other side, most software developers perceive 
formal methods as useless theory that has no connection 
with what they do. There is no quicker way to lose the at-
tention of a room full of programmers than to show them 
a mathematical formula. Developers see the need for im-
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to answer even simple questions about the design. Some-
times the models are “write only” because no one but the 
author can answer questions.

We must learn to use mathematics in software develop-
ment, but we need to question, and be prepared to discard, 
most of the methods that we have been discussing and 
promoting for all these years. We must examine the as-
sumptions on which these methods are based and see 
which ones stand up to scrutiny. 

WHAT TO RETHINK?
If we are really going to rethink formal methods, we 

need to objectively reconsider a set of issues.

Identifiers and variables
Robert Floyd, and most who followed him, represented 

the state of an executing program using the identifiers that 
appear in the program. Thus, if a program had a variable 
identified by “dogs,” that string would appear in the predi-
cate expressions used to characterize the state.

Variables in a program are finite state machines; what 
we generally call the value of a variable is that machine’s 
state. The identifier is a string that we use to refer to a 
variable. A variable may have more than one identifier 
(aliasing), and one identifier may refer to different variables 
in different parts of a program.

In mathematics, variables are placeholders used 
to define functions/relations; they have neither state 
nor value. The difference is not always noted because 
the identifiers in programs look like the variables in 
mathematics. 

Floyd implicitly assumed a one-to-one correspondence 
between the program variables and the identifiers. He also 
assumed that if an identifier does not appear in an expres-
sion or program line, the corresponding variable is not 
involved in the calculations when that line is executed. 
This is not always the case. “Workarounds” have been 
proposed, but they tend to complicate use of the methods. 
Many researchers have suggested that using programming 
techniques that destroy a simple relationship between 
identifiers and variables—for example, pointers—is bad 
programming practice; those practices are useful, and 
researchers are trying to cover up weaknesses in their 
methods by casting aspersions on things they cannot 
handle.

Arrays are a particularly vexing example of this prob-
lem. “A[j]” and “A[2]” may be identifying the same variable. 
If we treat them as different, we can prove a program cor-
rect when it is not. Edsger Dijkstra proposed treating the 
whole array as a single variable. This works nicely when 
all elements of an array are used in the same way, but is 
not always helpful. 

A better way to deal with arrays is needed. In general, it 
is time to rethink how states should be represented.

Dijkstra invented his “predicate transformers.” In my work, 
I have found the relational approach far more convenient 
and easier to use. 

BEAUTY AND THE BEASTS
Most articles about the use of mathematics in software 

development contain two distinct messages.

•	 A general message that reminds us of the ubiquity of 
faults in software and argues that the use of math-
ematical notation and reasoning can ameliorate the 
situation.

•	 A specific message that describes a detailed syntax 
and semantics for a language that can be used to 
describe a model and rules that allow us to “reason 
about” that model and thereby check certain proper-
ties of it.

I always find the general message convincing. Edu-
cated as an electrical engineer, I know that mathematics 
is a valuable tool for all engineering disciplines and that 
there is no reason that software should be an exception. 
As a daily user of current software, I see faults that I am 
convinced would not be there if mathematics had been 
used for software in the same way that engineers use it for 
designing physical products. However, I find the specific 
messages unconvincing.

•	 Even on small examples, it often appears that the 
model is more complex than the code.

•	 The model is a program (a sequence of data transfor-
mations); it is not easier to write or understand the 
model than it would be to write or read the program 
that would actually run.

•	 The models often oversimplify the problem by ignor-
ing many of the ugly details that are likely to lead to 
bugs.

•	 Often the example does not include the final code, 
and, if it does, it is difficult to “connect” the model 
with the code; it seems possible for the model to be 
proven correct in spite of subtle errors in the code.

The problems are exacerbated in larger examples. 
Often, it is necessary to understand a lot about the model 

We need to question, and be prepared 
to discard, most of the methods 
that we have been discussing and 
promoting for all these years.
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Rethinking would require serious consideration of this 
alternative. We gain simplicity if we do not have to treat 
time as anything special.

Axioms: Assignment or relational algebra?
In his early paper titled “An Axiomatic Basis for Com-

puter Programming,” C.A.R. Hoare introduced about a 
dozen axioms.3 In logic, axioms are usually simple, in-
tuitive, and obviously universally true. Hoare’s axioms 
(which I believe to be essentially the same as Floyd’s) don’t 
have those properties. The axioms describing the arithme-
tic are not true of any practical computer. The axiom of 
assignment is only true under very restrictive conditions. 
The axiom given for iteration is more a sketch of a method 
of proof than an axiom since it requires identifying the 
right invariant.

There is an alternative. Some researchers have been 
studying the use of relational methods in computer sci-
ence; they note that the effect of a terminating program 
could be described by a relation on states and that the 
well-known laws of relational algebra can serve as the 
axiomatic basis for programming. The axioms of relational 
algebra are simple and universal. They do not embody 
the characteristics of any particular type of program and 
can be used with any set of primitive programs. This ap-
proach seems to have been neglected by most “mainline” 
researchers in the area of formal methods.

Direction of analysis: Forward,  
backward, or inside out?

Floyd, Hoare, and most others analyzed a program in 
the direction of execution—that is, starting with the first 
statement and initial conditions and continuing to the 
end of the program. Loops required an “inductive asser-
tion” or an “invariant,” but otherwise the direction was 
forward. In a break from previous work, Dijkstra proposed 
going in the opposite direction. His “weakest precondi-
tion” approach starts with the desired postcondition and 
determines what had to be true before the program ran to 
get the stated result. Few have followed him.

We can work either way. More important, going 
“bottom up” or “inside out,” summarizing inner programs 
until the whole program has been summarized is also a 
possibility. In this approach, the relational method has an 
advantage because the axioms are not based on particular 

Conventional expressions or something  
more structured?

The mathematical expressions used in most methods 
are relatively easy to read for simple expressions and when 
they are used to describe continuous functions. For com-
plex programs, we are describing piecewise-continuous 
or discrete valued functions; in those cases, conventional 
expressions can be very hard to read and write correctly. 

It is time to look for new forms of expressions that are 
designed for use with the functions implemented by digital 
computer programs.

Hidden state: Normal or extension?
Variables in the programming languages of the 1960s 

had the property that there was a simple relation between 
the visible value and the state. With the introduction of 
abstraction or information-hiding, and the subsequent 
introduction of user-defined “abstract types” into program-
ming languages, it became possible to have variables such 
as stacks where the visible values are only part of the state. 
To deal with this, formal models often include ad hoc ex-
plicit state representations. These are arbitrary and often 
add complexity. 

It is time to consider hidden state to be the normal case 
and develop methods that deal with it systematically.

Termination: Normal or exception?
The earliest formal methods assumed that a program 

would be started with initial values of a data structure, and 
execution would terminate with an answer in that data. 
They introduced the concept of partial correctness, which 
meant that if a program terminated, the answer would be 
correct, but the program might not terminate. Yet some 
programs fail by not terminating and others are intended 
to execute indefinitely. Extensions and notations that deal 
with nonterminating programs have been added to a basic 
model that assumes otherwise. 

Rethinking requires asking if nontermination should 
be treated as the normal case in a way that lets us treat 
terminating programs as a special case.

Time: A special variable or another variable?
When the original formal methods were developed, 

execution time was not a major concern. If a program ex-
ecuted more quickly than expected, users were happy. If 
a program was too slow, the user might become annoyed, 
but the answer was still useful. Time was not a factor in 
the program correctness proofs. 

With the advent of real-time systems, this all changed; 
programs that are too fast or too slow are incorrect. Special 
logics were developed for dealing with time issues. This 
is quite different from such areas as control theory and 
circuit theory, where time is represented by an additional 
variable that is not treated in any special way. 

It is time to look for new forms of 
expressions that are designed for use 
with the functions implemented by 
digital computer programs.
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sary properties as specifications may result in a product 
that is overdesigned or unnecessarily expensive. Methods 
that will be useful in practice must use models that are 
descriptions and clearly state whether or not they can be 
interpreted as specifications.

Specifications: Programs or predicates?
Before Floyd’s work became known, some of the research-

ers interested in verification argued that since we had no 
way to state what a program should do, we could only prove 
program equivalence. They would write a program that was 
“obviously right,” then prove that a more complex, usually 
more efficient, program would get the same answers.

This way of thinking seems to live on in some ap-
proaches to formal methods. The “specification” is a 
program that describes a sequence of state changes or 
data transformations. 

Unless the sequence of transformations is a require-
ment, programs should not be used as specifications. An 
alternative view that has not received enough attention 
is to view a specification as a predicate. With a predicate 
you cannot directly compute an answer but you can easily 
check the correctness of a proposed answer.

It is time to look for methods that use predicates on 
observable behavior as specifications.

Specification language: Programming language 
or mathematical description?

The term “specification language” often causes 
confusion. Since a specification is also a description, spec-
ification languages are actually description languages. 
Further, most notations that are presented as specification 
languages are actually programming languages. 

We should be considering methods that do not use the 
term “specification language.”

What can be ignored?
A formal analysis uses a simplified description of the 

real system—that is, a model. Simplification is achieved 
by ignoring certain facts such as the limits in the sizes 
of data elements and the errors in arithmetic operations. 
Unfortunately, these are exactly the type of details that 
can cause faults and lead to failures. No formal analysis 
of such a model that leaves out critical limits can reveal 
faults attributable to those limits.

We should be looking for methods that do not ignore 
the finite limits that are one of the most frequent causes 
of bugs.

How do we establish correspondence  
between model and code?

Because practical programming languages often do 
not have a complete formal semantics, one that takes into 
account such issues as the support for software behavior 

programs (such as assignment) but are general and apply 
to programs of any size.

Side effects: Normal or bad?
One limitation on the axioms in the Hoare paper is that 

they are not true if the programs that evaluate an expression 
have side effects—that is, if they affect the values of other 
variables. Most mainline methods disparage side effects as 
a bad programming practice. Yet even in well-structured, 
reliable software, many components do have side effects; 
side effects are very useful in practice. It is time to investigate 
methods that deal with side effects as the normal case.

Nondeterminism: Normal or extension?
Early formal methods dealt with deterministic pro-

grams—programs in which the starting state determines 
the final state. When such methods are extended to deal 
with other programs, it is usually an afterthought and 
more complex. In practice, there are many reasons to deal 
with a component of a system as nondeterministic. Speci-
fications are usually nondeterministic. Perhaps a formal 
method should treat nondeterminism as the normal case 
and deterministic programs as a special case.

Models, descriptions, and specifications
Many papers on formal methods use the words “model” 

and “specification” interchangeably, perhaps based on a 
standard dictionary definition of specification as specific 
information. This definition does not correspond to engineer-
ing use, and there are alternatives that should be considered.

•	 In engineering, the word “specification” is used in 
a narrower sense, denoting a detailed statement of 
requirements.

•	 A “model” of a product is something that resembles 
the original system but is simpler. Some properties of 
the model may not be properties of the original.

•	 A model or document is a “description” if everything 
that you can learn from it is true of the real thing. A 
specification is a description of a satisfactory product, 
but some descriptions are not specifications because 
they describe properties that are not required.

Using models that are not descriptions is dangerous 
because they can lead to incorrect conclusions about the 
real product. Treating descriptions that describe unneces-

Perhaps a formal method should 
treat nondeterminism as the normal 
case and deterministic programs as a 
special case.
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search area in formal methods. It is not.

Pre- and Postconditions
The earliest formal methods were based on associating 

a program with a pair of predicates. One was the precon-
dition, describing a class of states that must hold before 
the program is executed; the other was the postcondi-
tion, describing the states that must hold afterward. More 
than 30 years ago Susan Gerhart and Lawrence Yelowitz 
clearly showed that these are not really two separate con-
ditions.4 They specified a sort program with a precondition 
requiring only that there be some values in an array and 
a postcondition that the array be sorted. A program that 
assigned the value j to the jth element of the array would 

satisfy this specification.
Instead of two separate conditions, we need a relation 

between starting state and stopping state. A few research-
ers have used this approach, but in most methods we still 
see pre- and post- as separate conditions. Extra variables 
are often added to allow the initial values to be mentioned 
in the postcondition.

It is time to consider abandoning the idea of pre- and 
postconditions.

Correctness proof or property calculation?
Computer scientists interested in mathematical soft-

ware development methods have focused on “proof of 
correctness.” Strangely, although engineers heavily use 
mathematics, they rarely use that phrase. Instead, they use 
mathematics to calculate properties of a product such as 
voltage on the output, harmonic distortion, heat loss, and 
so on. They use these calculations to evaluate and compare 
designs. “Correctness” is a useful term in mathematics, 
but not in engineering. In engineering, it is usually a seri-
ous challenge to define “correctness” for any application. 
Moreover, engineers are often interested in choosing the 
best design from a set of “correct” designs. Correctness is 
not the issue.

Researchers interested in developing practical formal 
methods should consider the engineering viewpoint; it re-
places a vague general question with a set of specific ones.

OBSERVATIONS
This article is intended to ask questions, not answer 

them. There are, however, some observations that can 
be made.

and finite limits, many formal methods work with a model 
quite different from the actual code. Often the connec-
tion between the code and the model is complex and not 
clearly described; in such cases, there is a question about 
whether the model could be (proven) correct while seri-
ous bugs remain in the code. In electrical engineering, 
a mathematical model is usually a set of equations that 
can be derived from the circuit systematically by, for ex-
ample, using Kirchoff’s laws. Some “idealization” happens 
in practice, but often this is taken into account by stating 
tolerances and deriving the possible inaccuracy in the 
computed result. 

We need similar techniques for deriving mathematical 
models from program text. Floyd was careful to do this, 
but many of today’s methods do not.

Mathematics in documentation
To do their job properly, both programmers and users 

need precise information. They need to know what is 
expected of their products and what they can expect of 
the programs they use. Even “small” details are impor-
tant because, in software, small errors can cause serious 
failures.

Experience has shown that natural-language doc-
umentation rarely provides what is needed. Those 
documents are usually incomplete, imprecise, and poorly 
organized. The information in them is often wrong either 
because the original writer made an error or because the 
document was not properly updated when a change was 
made. There is no way to test an informal document. If 
the documentation is not trustworthy, a programmer in 
search of information must either find a knowledgeable 
colleague or read and understand thousands of lines of 
code written over many years by many other people. 
Neither technique is likely to provide complete and ac-
curate information.

One of the most important roles that mathematics could 
play in software development would be to provide precise, 
provably complete, easy-to-use, testable documents. The 
popular formal methods have not been designed with use 
in documentation as the main goal.

When advocates of formal methods do provide doc-
umentation that can help programmers understand a 
program, it is usually in the form of assertions within the 
code. This works well for small programs but is impractical 
for large ones. For large programs and components, there 
is a need for external documentation that summarizes 
the behavior of hundreds or thousands of lines of code, 
allowing a programmer who uses that code to avoid read-
ing it. Some formal methods use abstract models for this 
purpose, but these models do not usually capture all the 
details that programmers need to know about the pro-
grams they use.

Mathematical documentation should be a major re-

Natural-language documentation is 
usually incomplete, imprecise, and 
poorly organized.
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Step by step from user to code
Software is complex, and the only way to deal with 

this complexity is to proceed in small, systematic steps 
so that the relation between the abstract view given the 
user and the concrete code that runs on the machines can 
be followed. Any mathematics-based method must be an 
integrated set of techniques that supports a systematic 
step-by-step process. The integration means that consis-
tent notation must be used at every step.

Abstract views must be simpler but true
Nobody doubts the value of abstraction, but it is essential 

to remember that everything that we can derive from an 
abstraction must be true of the real thing. If we can derive 
something that is not actually true, what we have is not an 
abstraction but a lie.

Our role model should be engineers,  
not philosophers or logicians

Engineers use mathematics in very different ways from 
pure mathematicians and logicians. Mathematicians who 
prove theorems use axiom systems that allow them to 
search for a proof. Engineers usually evaluate expressions, 
a process that requires no search, just repeated substitu-
tion of values for variables and application of functions.

M
ore money is not the answer. It is common 
for researchers who do not achieve what 
they set out to achieve to blame the fund-
ing. Research in formal methods for 
software development has been very well 

funded. More money won’t help; more thinking will. 

References
	 1.	 H.S. Elovitz, “An Experiment in Software Engineering: The 

Architecture Research Facility as a Case Study,” Proc. 4th 
Int’l Conf. Software Eng., ACM Press, 1979, pp. 145-152.

	 2.	 R.W. Floyd, “Assigning Meanings to Programs,” Proc. Symp. 
Applied Mathematics, Am. Mathematical Soc., vol. 19, 1967, 
pp. 19-31.

	 3.	 C.A.R. Hoare, “An Axiomatic Basis for Computer Program-
ming,” Comm. ACM, Oct. 1969, pp. 576-580.

	 4.	 S.L. Gerhart and L. Yelowitz, “Observations of Fallibility 
in Applications of Modern Programming Methodologies,” 
IEEE Trans. Software Eng., vol. 2, no. 3, 1976, pp. 195-207.

David Lorge Parnas is professor emeritus at McMaster 
University, Canada, and the University of Limerick, Ireland, 
as well as president of Middle Road Software. His nearly 50 
years of research have delved into many topics looking for 
ways to connect theory and practice in the field of software 
design. Parnas received a PhD in electrical engineering 
from Carnegie Mellon University. Contact him at parnas_
mcmaster .ca.

Software is broken, but broken  
formal methods won’t fix it 

There is widespread agreement that something must 
be done to improve the quality of software. We have noth-
ing better than mathematics for that purpose. However, 
there are serious questions about the popular formal meth-
ods, and researchers must find answers that are more 
convincing.

We need research, not advocacy
When we find that people are not adopting our meth-

ods, it is tempting to try “technology transfer” and other 
forms of advocacy. When that fails, which it has, we must 
return to research and look seriously for ways to improve 
those methods. It is our job to improve these methods, not 
sell them. Good methods, properly explained, sell them-
selves. Our present methods don’t sell beyond the first trial.
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