
COMPUTER	28

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE	

logics, but the program design errors we saw in 1967 can
still be found in today’s software. Applications of formal
methods to industrial practice remain such exceptions
that they confirm that the use of formal methods is not
common practice.

We must question the assumptions underlying current
formal methods to see what needs to be changed. The
articles published in Computer’s September issue did not
do that; they presented minor variations of ideas that their
authors, and other researchers, have advocated for years.

CLAIMS OF PROGRESS AND
INDUSTRIAL ADOPTION

The computer science research literature reveals that
“formal methods for software development” are a popular
research area. Variants of these approaches are frequently
discussed and debated at conferences and in journals.

Funding agencies often require that larger research-
funded projects include some cooperation with industrial
organizations and demonstrate the practicality of an ap-
proach on “real” examples. When authors report such
efforts, they state that they are successful. Paradoxically,
such success stories reveal the failure of industry to adopt
formal methods as standard procedures; if using these
methods was routine, papers describing successful use
would not be published.

T
he theme of the feature articles in Computer’s
September 2009 issue was “Rethinking Formal
Methods.” Rethinking this subject is certainly
long overdue.

It has been more than 40 years since the
late Robert Floyd showed us how to “assign meaning to
programs” and demonstrated how we could verify that
programs will do what they are intended to do.1 It has been
at least 35 years since I first heard Jean-Raymond Abrial
present the ideas that were the basis of Z and its many dia-
lects. The Vienna Development Method (VDM) community
began its work about the same time. Even second- and
third-generation formal methods show signs of age.

Since 1967, there have been numerous “revolutions” on
the hardware side and amazing improvements in man-
machine interfaces. The computer systems on my desk
today were unimaginable when Floyd wrote that article.
Unfortunately, there hasn’t been comparable progress in
formal methods. There have been new languages and new

We must question the assumptions under-
lying the well-known current formal soft-
ware development methods to see why
they have not been widely adopted and
what should be changed.

David Lorge Parnas, Middle Road Software

REALLY
RETHINKING
‘FORMAL
METHODS’

Authorized licensed use limited to: Peking University. Downloaded on February 22,2010 at 03:21:19 EST from IEEE Xplore. Restrictions apply.

There is a disturbing gap between
software development and traditional
engineering disciplines.

29JANUARY 2010

provement and will try almost any new method—provided
that it does not look like mathematics.

Gap between software development and
older engineering disciplines

There is also a disturbing gap between software devel-
opment and traditional engineering disciplines. Software
developers often identify themselves as engineers, but
their education and way of working are not at all like those
of traditional engineers. Engineering programs teach basic
science, applicable mathematics, and how to apply math-
ematics to predict the behavior of products. Most computer
science departments teach technology (which is often of
fleeting value in our rapidly changing field) and abstract
mathematics that the students do not learn to apply.

Twenty years ago, I heard a wise and experienced top-
level manager complain that his software developers and
his other engineers spoke such different “languages” and
thought in such different ways that it was difficult for them
to work together. That gap is still with us.

Gap between computer science and
classical mathematics

A more unexpected development is the separation
between theoretical computer scientists and classical
mathematics. Many computer science programs present
their students with a very narrow slice of mathemat-
ics, usually stressing recent developments and “pure”
mathematics over older work and what is called “applied
mathematics.” Mathematics has evolved slowly and con-
tains many mature and general concepts that can be used
when describing and analyzing computer systems.

As a result of the “split” between computer science and
mathematics departments, formal methods often use the
notation of mathematics but do not take advantage of
potentially useful mature concepts. It is easy to find situa-
tions in which a computer science researcher might invent
an approach in which a classically trained mathematician
would recognize that it was possible to use an older (and
simpler) concept to solve the problem.

An insight-provoking illustration of this is the contrast
between the approaches of two people at the same institu-
tion, mathematician N.G. de Bruijn and computer scientist
E.W. Dijkstra, to programming semantics and verification.
De Bruijn applied the classical concept of relations, while

Industry is so plagued by errors and high maintenance
costs that it would use any method it thought would help;
it chooses not to use methods such as Z or VDM.

Reports of successful industrial adoption do not always
stand up to scrutiny. Sometimes, the authors are just play-
ing with words. For example, the technique of placing
debugging statements in code, taught to me in 1959, has
recently been trumpeted as “industrial use of assertions.”

In other cases, close scrutiny reveals truly heroic efforts
with very complex formal models but little evidence that
the actual code is correct. Often, these efforts do not lead
to repeat use or broader adoption of the method. Develop-
ment organizations that routinely use these methods for
actual products are rare.

Some of the reported success may be attributable to
having two people looking hard at the problem and the
code. Thirty years ago, in a paper that is still worth reading
today, H.S. Elovitz described an experiment in which a pro-
gram in a second programming language was used in the
way that formal method advocates suggest that their nota-
tions be used.2 One programming language was called the
specification language; the other was the implementation
language. One programmer wrote the “specification” and
gave it to another, who translated it to the implementation
language. The specifier reviewed the translation. The error
rate was reduced, and this technique (an earlier version of
pair programming) was considered successful. This effect
alone could explain the few successes in formal methods
application. Reports that formal methods are ready for
industrial use must be taken with a grain of salt; if they
were ready, their use would be widespread.

THREE ALARMING GAPS
The past 40 years have seen some negative develop-

ments in the software field.

Gap between research and practice
The gap between formal methods research and practi-

cal software development is much larger today than it was
when Floyd wrote his paper. Floyd had been a successful,
innovative, and productive programmer. His article clearly
reveals the connection between mathematical expressions
and the programmer’s product.

Today, many research papers are written as if the math-
ematics were all that matters. They do not show how to
relate the formal models and results to the actual code on
real machines. Further, they offer no way to deal with the
complexity of software systems.

On the other side, most software developers perceive
formal methods as useless theory that has no connection
with what they do. There is no quicker way to lose the at-
tention of a room full of programmers than to show them
a mathematical formula. Developers see the need for im-

Authorized licensed use limited to: Peking University. Downloaded on February 22,2010 at 03:21:19 EST from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER	30

to answer even simple questions about the design. Some-
times the models are “write only” because no one but the
author can answer questions.

We must learn to use mathematics in software develop-
ment, but we need to question, and be prepared to discard,
most of the methods that we have been discussing and
promoting for all these years. We must examine the as-
sumptions on which these methods are based and see
which ones stand up to scrutiny.

WHAT TO RETHINK?
If we are really going to rethink formal methods, we

need to objectively reconsider a set of issues.

Identifiers and variables
Robert Floyd, and most who followed him, represented

the state of an executing program using the identifiers that
appear in the program. Thus, if a program had a variable
identified by “dogs,” that string would appear in the predi-
cate expressions used to characterize the state.

Variables in a program are finite state machines; what
we generally call the value of a variable is that machine’s
state. The identifier is a string that we use to refer to a
variable. A variable may have more than one identifier
(aliasing), and one identifier may refer to different variables
in different parts of a program.

In mathematics, variables are placeholders used
to define functions/relations; they have neither state
nor value. The difference is not always noted because
the identifiers in programs look like the variables in
mathematics.

Floyd implicitly assumed a one-to-one correspondence
between the program variables and the identifiers. He also
assumed that if an identifier does not appear in an expres-
sion or program line, the corresponding variable is not
involved in the calculations when that line is executed.
This is not always the case. “Workarounds” have been
proposed, but they tend to complicate use of the methods.
Many researchers have suggested that using programming
techniques that destroy a simple relationship between
identifiers and variables—for example, pointers—is bad
programming practice; those practices are useful, and
researchers are trying to cover up weaknesses in their
methods by casting aspersions on things they cannot
handle.

Arrays are a particularly vexing example of this prob-
lem. “A[j]” and “A[2]” may be identifying the same variable.
If we treat them as different, we can prove a program cor-
rect when it is not. Edsger Dijkstra proposed treating the
whole array as a single variable. This works nicely when
all elements of an array are used in the same way, but is
not always helpful.

A better way to deal with arrays is needed. In general, it
is time to rethink how states should be represented.

Dijkstra invented his “predicate transformers.” In my work,
I have found the relational approach far more convenient
and easier to use.

BEAUTY AND THE BEASTS
Most articles about the use of mathematics in software

development contain two distinct messages.

•	 A general message that reminds us of the ubiquity of
faults in software and argues that the use of math-
ematical notation and reasoning can ameliorate the
situation.

•	 A specific message that describes a detailed syntax
and semantics for a language that can be used to
describe a model and rules that allow us to “reason
about” that model and thereby check certain proper-
ties of it.

I always find the general message convincing. Edu-
cated as an electrical engineer, I know that mathematics
is a valuable tool for all engineering disciplines and that
there is no reason that software should be an exception.
As a daily user of current software, I see faults that I am
convinced would not be there if mathematics had been
used for software in the same way that engineers use it for
designing physical products. However, I find the specific
messages unconvincing.

•	 Even on small examples, it often appears that the
model is more complex than the code.

•	 The model is a program (a sequence of data transfor-
mations); it is not easier to write or understand the
model than it would be to write or read the program
that would actually run.

•	 The models often oversimplify the problem by ignor-
ing many of the ugly details that are likely to lead to
bugs.

•	 Often the example does not include the final code,
and, if it does, it is difficult to “connect” the model
with the code; it seems possible for the model to be
proven correct in spite of subtle errors in the code.

The problems are exacerbated in larger examples.
Often, it is necessary to understand a lot about the model

We need to question, and be prepared
to discard, most of the methods
that we have been discussing and
promoting for all these years.

Authorized licensed use limited to: Peking University. Downloaded on February 22,2010 at 03:21:19 EST from IEEE Xplore. Restrictions apply.

31JANUARY 2010

Rethinking would require serious consideration of this
alternative. We gain simplicity if we do not have to treat
time as anything special.

Axioms: Assignment or relational algebra?
In his early paper titled “An Axiomatic Basis for Com-

puter Programming,” C.A.R. Hoare introduced about a
dozen axioms.3 In logic, axioms are usually simple, in-
tuitive, and obviously universally true. Hoare’s axioms
(which I believe to be essentially the same as Floyd’s) don’t
have those properties. The axioms describing the arithme-
tic are not true of any practical computer. The axiom of
assignment is only true under very restrictive conditions.
The axiom given for iteration is more a sketch of a method
of proof than an axiom since it requires identifying the
right invariant.

There is an alternative. Some researchers have been
studying the use of relational methods in computer sci-
ence; they note that the effect of a terminating program
could be described by a relation on states and that the
well-known laws of relational algebra can serve as the
axiomatic basis for programming. The axioms of relational
algebra are simple and universal. They do not embody
the characteristics of any particular type of program and
can be used with any set of primitive programs. This ap-
proach seems to have been neglected by most “mainline”
researchers in the area of formal methods.

Direction of analysis: Forward,
backward, or inside out?

Floyd, Hoare, and most others analyzed a program in
the direction of execution—that is, starting with the first
statement and initial conditions and continuing to the
end of the program. Loops required an “inductive asser-
tion” or an “invariant,” but otherwise the direction was
forward. In a break from previous work, Dijkstra proposed
going in the opposite direction. His “weakest precondi-
tion” approach starts with the desired postcondition and
determines what had to be true before the program ran to
get the stated result. Few have followed him.

We can work either way. More important, going
“bottom up” or “inside out,” summarizing inner programs
until the whole program has been summarized is also a
possibility. In this approach, the relational method has an
advantage because the axioms are not based on particular

Conventional expressions or something
more structured?

The mathematical expressions used in most methods
are relatively easy to read for simple expressions and when
they are used to describe continuous functions. For com-
plex programs, we are describing piecewise-continuous
or discrete valued functions; in those cases, conventional
expressions can be very hard to read and write correctly.

It is time to look for new forms of expressions that are
designed for use with the functions implemented by digital
computer programs.

Hidden state: Normal or extension?
Variables in the programming languages of the 1960s

had the property that there was a simple relation between
the visible value and the state. With the introduction of
abstraction or information-hiding, and the subsequent
introduction of user-defined “abstract types” into program-
ming languages, it became possible to have variables such
as stacks where the visible values are only part of the state.
To deal with this, formal models often include ad hoc ex-
plicit state representations. These are arbitrary and often
add complexity.

It is time to consider hidden state to be the normal case
and develop methods that deal with it systematically.

Termination: Normal or exception?
The earliest formal methods assumed that a program

would be started with initial values of a data structure, and
execution would terminate with an answer in that data.
They introduced the concept of partial correctness, which
meant that if a program terminated, the answer would be
correct, but the program might not terminate. Yet some
programs fail by not terminating and others are intended
to execute indefinitely. Extensions and notations that deal
with nonterminating programs have been added to a basic
model that assumes otherwise.

Rethinking requires asking if nontermination should
be treated as the normal case in a way that lets us treat
terminating programs as a special case.

Time: A special variable or another variable?
When the original formal methods were developed,

execution time was not a major concern. If a program ex-
ecuted more quickly than expected, users were happy. If
a program was too slow, the user might become annoyed,
but the answer was still useful. Time was not a factor in
the program correctness proofs.

With the advent of real-time systems, this all changed;
programs that are too fast or too slow are incorrect. Special
logics were developed for dealing with time issues. This
is quite different from such areas as control theory and
circuit theory, where time is represented by an additional
variable that is not treated in any special way.

It is time to look for new forms of
expressions that are designed for use
with the functions implemented by
digital computer programs.

Authorized licensed use limited to: Peking University. Downloaded on February 22,2010 at 03:21:19 EST from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER	32

sary properties as specifications may result in a product
that is overdesigned or unnecessarily expensive. Methods
that will be useful in practice must use models that are
descriptions and clearly state whether or not they can be
interpreted as specifications.

Specifications: Programs or predicates?
Before Floyd’s work became known, some of the research-

ers interested in verification argued that since we had no
way to state what a program should do, we could only prove
program equivalence. They would write a program that was
“obviously right,” then prove that a more complex, usually
more efficient, program would get the same answers.

This way of thinking seems to live on in some ap-
proaches to formal methods. The “specification” is a
program that describes a sequence of state changes or
data transformations.

Unless the sequence of transformations is a require-
ment, programs should not be used as specifications. An
alternative view that has not received enough attention
is to view a specification as a predicate. With a predicate
you cannot directly compute an answer but you can easily
check the correctness of a proposed answer.

It is time to look for methods that use predicates on
observable behavior as specifications.

Specification language: Programming language
or mathematical description?

The term “specification language” often causes
confusion. Since a specification is also a description, spec-
ification languages are actually description languages.
Further, most notations that are presented as specification
languages are actually programming languages.

We should be considering methods that do not use the
term “specification language.”

What can be ignored?
A formal analysis uses a simplified description of the

real system—that is, a model. Simplification is achieved
by ignoring certain facts such as the limits in the sizes
of data elements and the errors in arithmetic operations.
Unfortunately, these are exactly the type of details that
can cause faults and lead to failures. No formal analysis
of such a model that leaves out critical limits can reveal
faults attributable to those limits.

We should be looking for methods that do not ignore
the finite limits that are one of the most frequent causes
of bugs.

How do we establish correspondence
between model and code?

Because practical programming languages often do
not have a complete formal semantics, one that takes into
account such issues as the support for software behavior

programs (such as assignment) but are general and apply
to programs of any size.

Side effects: Normal or bad?
One limitation on the axioms in the Hoare paper is that

they are not true if the programs that evaluate an expression
have side effects—that is, if they affect the values of other
variables. Most mainline methods disparage side effects as
a bad programming practice. Yet even in well-structured,
reliable software, many components do have side effects;
side effects are very useful in practice. It is time to investigate
methods that deal with side effects as the normal case.

Nondeterminism: Normal or extension?
Early formal methods dealt with deterministic pro-

grams—programs in which the starting state determines
the final state. When such methods are extended to deal
with other programs, it is usually an afterthought and
more complex. In practice, there are many reasons to deal
with a component of a system as nondeterministic. Speci-
fications are usually nondeterministic. Perhaps a formal
method should treat nondeterminism as the normal case
and deterministic programs as a special case.

Models, descriptions, and specifications
Many papers on formal methods use the words “model”

and “specification” interchangeably, perhaps based on a
standard dictionary definition of specification as specific
information. This definition does not correspond to engineer-
ing use, and there are alternatives that should be considered.

•	 In engineering, the word “specification” is used in
a narrower sense, denoting a detailed statement of
requirements.

•	 A “model” of a product is something that resembles
the original system but is simpler. Some properties of
the model may not be properties of the original.

•	 A model or document is a “description” if everything
that you can learn from it is true of the real thing. A
specification is a description of a satisfactory product,
but some descriptions are not specifications because
they describe properties that are not required.

Using models that are not descriptions is dangerous
because they can lead to incorrect conclusions about the
real product. Treating descriptions that describe unneces-

Perhaps a formal method should
treat nondeterminism as the normal
case and deterministic programs as a
special case.

Authorized licensed use limited to: Peking University. Downloaded on February 22,2010 at 03:21:19 EST from IEEE Xplore. Restrictions apply.

33JANUARY 2010

search area in formal methods. It is not.

Pre- and Postconditions
The earliest formal methods were based on associating

a program with a pair of predicates. One was the precon-
dition, describing a class of states that must hold before
the program is executed; the other was the postcondi-
tion, describing the states that must hold afterward. More
than 30 years ago Susan Gerhart and Lawrence Yelowitz
clearly showed that these are not really two separate con-
ditions.4 They specified a sort program with a precondition
requiring only that there be some values in an array and
a postcondition that the array be sorted. A program that
assigned the value j to the jth element of the array would

satisfy this specification.
Instead of two separate conditions, we need a relation

between starting state and stopping state. A few research-
ers have used this approach, but in most methods we still
see pre- and post- as separate conditions. Extra variables
are often added to allow the initial values to be mentioned
in the postcondition.

It is time to consider abandoning the idea of pre- and
postconditions.

Correctness proof or property calculation?
Computer scientists interested in mathematical soft-

ware development methods have focused on “proof of
correctness.” Strangely, although engineers heavily use
mathematics, they rarely use that phrase. Instead, they use
mathematics to calculate properties of a product such as
voltage on the output, harmonic distortion, heat loss, and
so on. They use these calculations to evaluate and compare
designs. “Correctness” is a useful term in mathematics,
but not in engineering. In engineering, it is usually a seri-
ous challenge to define “correctness” for any application.
Moreover, engineers are often interested in choosing the
best design from a set of “correct” designs. Correctness is
not the issue.

Researchers interested in developing practical formal
methods should consider the engineering viewpoint; it re-
places a vague general question with a set of specific ones.

OBSERVATIONS
This article is intended to ask questions, not answer

them. There are, however, some observations that can
be made.

and finite limits, many formal methods work with a model
quite different from the actual code. Often the connec-
tion between the code and the model is complex and not
clearly described; in such cases, there is a question about
whether the model could be (proven) correct while seri-
ous bugs remain in the code. In electrical engineering,
a mathematical model is usually a set of equations that
can be derived from the circuit systematically by, for ex-
ample, using Kirchoff’s laws. Some “idealization” happens
in practice, but often this is taken into account by stating
tolerances and deriving the possible inaccuracy in the
computed result.

We need similar techniques for deriving mathematical
models from program text. Floyd was careful to do this,
but many of today’s methods do not.

Mathematics in documentation
To do their job properly, both programmers and users

need precise information. They need to know what is
expected of their products and what they can expect of
the programs they use. Even “small” details are impor-
tant because, in software, small errors can cause serious
failures.

Experience has shown that natural-language doc-
umentation rarely provides what is needed. Those
documents are usually incomplete, imprecise, and poorly
organized. The information in them is often wrong either
because the original writer made an error or because the
document was not properly updated when a change was
made. There is no way to test an informal document. If
the documentation is not trustworthy, a programmer in
search of information must either find a knowledgeable
colleague or read and understand thousands of lines of
code written over many years by many other people.
Neither technique is likely to provide complete and ac-
curate information.

One of the most important roles that mathematics could
play in software development would be to provide precise,
provably complete, easy-to-use, testable documents. The
popular formal methods have not been designed with use
in documentation as the main goal.

When advocates of formal methods do provide doc-
umentation that can help programmers understand a
program, it is usually in the form of assertions within the
code. This works well for small programs but is impractical
for large ones. For large programs and components, there
is a need for external documentation that summarizes
the behavior of hundreds or thousands of lines of code,
allowing a programmer who uses that code to avoid read-
ing it. Some formal methods use abstract models for this
purpose, but these models do not usually capture all the
details that programmers need to know about the pro-
grams they use.

Mathematical documentation should be a major re-

Natural-language documentation is
usually incomplete, imprecise, and
poorly organized.

Authorized licensed use limited to: Peking University. Downloaded on February 22,2010 at 03:21:19 EST from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER	34

Step by step from user to code
Software is complex, and the only way to deal with

this complexity is to proceed in small, systematic steps
so that the relation between the abstract view given the
user and the concrete code that runs on the machines can
be followed. Any mathematics-based method must be an
integrated set of techniques that supports a systematic
step-by-step process. The integration means that consis-
tent notation must be used at every step.

Abstract views must be simpler but true
Nobody doubts the value of abstraction, but it is essential

to remember that everything that we can derive from an
abstraction must be true of the real thing. If we can derive
something that is not actually true, what we have is not an
abstraction but a lie.

Our role model should be engineers,
not philosophers or logicians

Engineers use mathematics in very different ways from
pure mathematicians and logicians. Mathematicians who
prove theorems use axiom systems that allow them to
search for a proof. Engineers usually evaluate expressions,
a process that requires no search, just repeated substitu-
tion of values for variables and application of functions.

M
ore money is not the answer. It is common
for researchers who do not achieve what
they set out to achieve to blame the fund-
ing. Research in formal methods for
software development has been very well

funded. More money won’t help; more thinking will.

References
	 1.	 H.S. Elovitz, “An Experiment in Software Engineering: The

Architecture Research Facility as a Case Study,” Proc. 4th
Int’l Conf. Software Eng., ACM Press, 1979, pp. 145-152.

	 2.	 R.W. Floyd, “Assigning Meanings to Programs,” Proc. Symp.
Applied Mathematics, Am. Mathematical Soc., vol. 19, 1967,
pp. 19-31.

	 3.	 C.A.R. Hoare, “An Axiomatic Basis for Computer Program-
ming,” Comm. ACM, Oct. 1969, pp. 576-580.

	 4.	 S.L. Gerhart and L. Yelowitz, “Observations of Fallibility
in Applications of Modern Programming Methodologies,”
IEEE Trans. Software Eng., vol. 2, no. 3, 1976, pp. 195-207.

David Lorge Parnas is professor emeritus at McMaster
University, Canada, and the University of Limerick, Ireland,
as well as president of Middle Road Software. His nearly 50
years of research have delved into many topics looking for
ways to connect theory and practice in the field of software
design. Parnas received a PhD in electrical engineering
from Carnegie Mellon University. Contact him at parnas_
mcmaster .ca.

Software is broken, but broken
formal methods won’t fix it

There is widespread agreement that something must
be done to improve the quality of software. We have noth-
ing better than mathematics for that purpose. However,
there are serious questions about the popular formal meth-
ods, and researchers must find answers that are more
convincing.

We need research, not advocacy
When we find that people are not adopting our meth-

ods, it is tempting to try “technology transfer” and other
forms of advocacy. When that fails, which it has, we must
return to research and look seriously for ways to improve
those methods. It is our job to improve these methods, not
sell them. Good methods, properly explained, sell them-
selves. Our present methods don’t sell beyond the first trial.

Reach
Higher

Advancing in the IEEE Computer
Society can elevate your standing
in the profession.

•	 Application in Senior-grade
	 membership recognizes ten
	 years or more of professional
	 expertise.

•	 Nomination to Fellow-grade
	 membership recognizes
	 exemplary accomplishments in
	 computer engineering.

GIVE YOUR CAREER A BOOST
n

UPGRADE YOUR MEMBERSHIP

www.computer.org/join/grades.htm

Authorized licensed use limited to: Peking University. Downloaded on February 22,2010 at 03:21:19 EST from IEEE Xplore. Restrictions apply.

