
Atelier B

Redaction guide for
mathematical rules

Draft
This document is a translation. The author of the original document is Clearsy Ltd. The
responsible for this translation to English is David Deharbe. This translation has not yet
been submitted to endorsment to Clearsy Ltd.

1. Introduction .. 0
2. Bibliography .. 0
3. Terminology... 0

1. Abbreviations... 5
2. Glossary.. 5

4. Introduction to the theory language .. 0
1. What is a wildcard?... 6
2. What is a formula? ... 6
3. Matching formulas .. 7
4. What is a rule?... 7
5. Application of a rule to a formula .. 8

1. Deduction rule... 8
2. Rewrite rule .. 9

6. What is a theory? ... 9
7. Proof .. 10

1. Proof of a formula.. 10
2. Special case of conjunctive formulas .. 10

5. Tips to write mathematical rules.. 0
1. Order of rule applications .. 11
2. Restricting the application domain of a rule 11
3. Equivalence rules ... 11
4. Rewrite rules ... 12
5. Forward rules... 12
6. Lists ... 13
7. Tips for parenthesis .. 13
8. Wildcard instantiation ... 14
9. Ambiguities ... 15

10. Miscellaneous remarks .. 15
6. Using the mechanisms of the prover .. 0

1. Trying a proof ... 16
2. Difference... 16
3. Order relation ... 17
4. Positive value.. 17
5. Non membership ... 17
6. Membership to INTEGER... 18

7. Guards ... 0
8. A Expression normalization.. 0
9. B Common pitfalls.. 0

1. B.1 What is an infinite loop of the prover? 23
10. C Guards of the theory language.. 0

Introduction

This document is targeted to users of the prover that need to write mathematical rules
to facilitate in the verification of the generated proof obligations. As a matter of fact:
the proof in predicate logic is undecidable
the rule base of the prover is finite (it has approximatively 2800 rules)
It may therefore be necessary to add rules, either in a Pmm file or in a PatchProver file.

We draw the attention of the reader on the unfortunate consequences of inadequate
rules, that may induce an undesirable behavior of the prover. Particularly, employing
false rules enables showing correct false proof obligations and thus jeopardize the
development of a correct software.

This document contains advice to write rules that are correct and which verification will
be easier to perform.

Bibliography

[1] Redaction guide for mathematical rules (this document)
[2] Reference manual of the B language
[3] Reference manual of the interactive prover

Terminology

Abbreviations

PO: proof obligation
RPT: rule proving tools
TRATL: translator of rules written in the theory language
RB: rule base of the automatic prover

Glossary

Proof obligation: logic predicate produced by Atelier B from a component (machine,
refinement, implementation), written in the B language and that needs to be proved to
guarantee the soundness of this component.

Rule base: Set of mathematical rules written in the theory language that are necessary
for the prover to achieve proofs.

Pmm: A file containing user rules that enrichrd the RB used for a component.

PatchProver: A file containing user rules that enriches the RB used for a project.

Introduction to the theory language

The mathematical rules used by the prover are written in the so-called "theory
language". Without getting into the details of this language, which is similar to PROLOG,
the following sections expose the fundamental notions that may be employed to use the
theory language for the purpose of defining mathematical rules.

What is a wildcard?

A wildcard is a value that can take any value (literal, expression, etc.)
If it is assigned a value, then it is said to be instantiated.

The sole mechanism to represent a variable is the wildcard.
A wildcard is denoted as a single (latin) alphabet letter: one cannot have more that 52
wildcards inside a rule (considering both uppercase and lowercase letters).

For instance, the expression
a + bb*cc - d

contains wildcards a and d and literals bb and cc.
Wildcards a and d may be instantiated with ee+1 and 3, respectively. We then obtain the
expression:

ee + 1 + bb*cc - 3

What is a formula?

A formula is an expression that is built out of
• wildcards,
• literals and numbers
• logical connectors:

◦ conjunction : &
◦ disjunction : or
◦ implication : =>
◦ ́equivalence : <=>
◦ negation : not(a)

• quantifications:
◦ universal quantification : !
◦ existential quantification : #

• equality : =,
• set membership : :,
• set inclusion : <:
• operators to combine arithmetic, set, boolean, relational, functional and

sequence expressions of the B language (see [2]), obeying the syntax of the B
language.

For instance,
0=<aa & 0=<bb => 0<=aa*bb
a=TRUE or b=TRUE => a : BOOL

are syntactically correct formulas.
According to this definition, formulas need not have a boolean type. This terminology is
confusing. -Deharbe 01/04/09 09:06

Matching formulas

A formula f is said to match a formula g, if it is possible to obtain f by substituting, in g,
all the occurences of the same wildcards with some formulas . Recall that a wildcard is
an atomic formula composed of a single letter . A wildcard is thus a "formula variable".
For instance the following formula g:

aa + (bb/ee - (cc + dd)*aa) - bb/ee
matches the following formula f:

x + (y - z*x) - y
An assignment of formulas to wildcards is called a filter. A filter is thus a partial function
from wildcards to formulas. Applying a filter to a formula g consists in replacing each
wildcard occurence in g, that belongs to the domain of the filter, by the corresponding
formula. In summary, a formula f matches a formula g if there is a filter such that the
application of that filter to g yields f. In the case of the previous matching, we have the
following filter:

{ x |-> aa, y |-> bb/ee, z |-> cc + dd }

What is a rule?

A rule is a formula with the following form A => B. A is called the antecedent of the rule,
B is called the consequent of the rule. A and B may be conjunctions of predicates.
A may be omitted, in that case, the rule is said to be atomic.
A rule may be:

• inductive (backward)
If the current goal is B, then to prove B it is sufficient to prove A. A is
supposed to be simpler, or easier to prove, than B.
For instance, with the rule

x = FALSE => not(x = TRUE)
the goal

not (bool(0 <= aa*bb) = TRUE)In the original text, the relational
operator is denoted =< -Deharbe 01/04/09 09:15

is proved if the derived goal
bool(0 <= aa*bb) = FALSE

is proved.
Similarly, the atomic rule

not (BOOL = {})
is applied to prove immediately the goal with the same form.

• deductive (forward)
If the antecedent A has the following form:

A1 & A2 &... & An
and if A1 is an hypothesis that has just been generated, and if

A2 & ... & An
are in the hypothesis stack then instances of predicates in the conjunction B
are generated and, if they do not appear in the hypothesis stack, are pushed
onto that stack.
For instance, with the rule:

not(a=b) & a=c => not(b=c)
If the hypothesis not(xx = 3) has just been generated, and the hypothesis
xx = aa * bb - cc is in the hypothesis stack, then the hypothesis
not(3=aa*bb-cc) is generated.

• rewrite
In this kind of rules, B has the form C == D.
If A is satisfied, then C is rewritten to D.
This kind of rules only applies to subformulas of the current goal, or on the

current goal itself.
For instance, the rule SimplifyIntMaxXY.3:

btest(p<=q) /* If p and q are integers */
=> /* such that p <= q */
max({p}\/{q}) == q /* then max({p}\/{q}) rewrites to p */The
original text uses braces instead of parenthesis for the argument to
max -Deharbe 01/04/09 09:29

applies to the goal
0 <= max({3}\/{5}) - min(1..4)The original text uses =< and neither
<= nor \le -Deharbe 01/04/09 09:30

and rewrites it to
0 <= 5 - min(1..4)

The rules contain wildcards, whereas hypothesis do not.

Application of a rule to a formula

To realize formal proofs, inference rules are applied. This section explains what is meant
by applying an inference rule to a formula.
The result of the application of a rule r to a formula f yields other formulas that are
called the SUCCESSors of f. The set of SUCCESSors may be empty. Also note that a rule
is not always applicable to a formula. When a rule r is applied to a formula f, r is said to
discharge f and produces a number of formulas.

We are now going to state in which conditions a rule is applicable to a formula and, if
when it is, define the result of this application. Recall that a rule has the following
general form:

a1 & a2 & ... * an => c
where a1, a2,... , an are called the rule antecedents, and c is the rule consequent. To
apply a rule to a formula, one must consider two cases, depending on the nature of the
consequent c.

Deduction rule

When the consequent of the rule does not have the form g == d, then the rule is a
deduction rule. For instance, the following is a deduction rule:

x < z & y < z => x+y < 2*z
A deduction rule is applicable to a formula f when f matches the consequent of r, yielding
a filter. The result of the application of r to f is then the application of this filter to the
different antecedents of r. This result may be empty when the rule has no antecedent.
For instance, the application of the previous rule to the following formula:

aa+bb+cc < 2*(cc+dd)
produces the two following formulas:
aa+bb < cc+dd
cc < cc+dd
It might be relevant to explain why this filter was chosen, instead of {x |-> aa, y |-

>bb+cc, z |-> cc+dd} -Deharbe 01/04/09 10:01

Rewrite rule

When the consequent c of the rule has the form g = dd, then the rule is called a rewrite
rule. In such rules, formula g and d are called the left hand side and the right hand side.
For instance, the following is a rewrite rule (without antecedent):

x*(y+z) == x*y + x*z
Such rule is applicable to a formula f if there exists a sub-formula h of f such that h
matches the left-hand side of the consequent of r, yielding a filter. The result of the
application of r to f corresponds first, as in the previous case, to the application of the
filter to the antecedents of r, if there is any. The result also contains the formula
obtained by replacing, in f, the sub-formula h by the application of the filter to the right-
and side of the consequent of r. Consequently, the application of the previous rule to the
formula

aa + bb + cc*(ee+ff) < cc + dd
produces the following formula:

aa + bb + (cc*ee + cc*ff) < cc + dd
If several subformulas match the left-hand side of the consequent, the "rightmost" sub-
formula is chosen. For instance, when the rule

a+b == b+a
is applied to formula

aa+bb+cc = cc+bb+aa
four subformulas match the left hand side, namely:

aa+bb
aa+bb+cc
cc+bb
cc+bb+aa

The selected sub-formula is thus cc+bb+aa. The rewrite rule results in the following
formula:

aa+bb+cc = aa+(cc+bb)

What is a theory?

A theory is a group of rules, written in the theory language. Two consecutive rules are
separated by a ';' (semi-colon). The rules are (implicitly) named t.n, where
t is the name of the theory
n : is the position of the rule in the theory, the first position being numbered 1.

Example :
THEORY th1 IS

binhyp(a: B) & /* Rule th1.1 */
binhyp(B<: C)
=>
a: C;
btest(0 <= -t) /* Rule th1.2 */
=>
0<=t**2 - 4*t + 1

END

The prover first tries to apply rules with a higher index before a rule with a lower index
(from the bottom to the top of the theory).
For instance, when using the command ar(th1) (see [3]), the prover always tries to
apply rule th1.2 before th1.1. In the case of this command, a rule th1.n only applies
when no rule th1.m (such that n < m) applies. When a rule has been applied, the prover
repeats its search from the last rule of the theory.

Proof

Proof of a formula

Given a set of rules, a formula f is said to be formally proved under this set of rules,
when the repeated applications of these rules to the initial formula f and its SUCCESSors,
and the SUCCESSors thereof, and so forth, results in an empty set. Equivalently, the
formula f is proved under a set of rules when f and all its descendants are discharged by
said these rules.

The initial formula and its descendants are called the goals of the proof. The initial
formula is the initial goal, and its descendants are intermediate goals that appear during
the course of the proof. By definition, all the goals are proved at the end of the proof.

This definition leaves space to some non-determinism, as we specify neither the order in
which the intermediate goals are proved, nor the order in which the rules are chosen to
discharge a given goal.

For instance, given the following rules:
x < z & x < z => x+y < 2*z
a-a == 0
x < x+1
0 < x+1

the goal is the following formula:
aa + (bb-bb) < 2*(aa+1)

The first rule may be used to discharge the initial goal, producing two intermediate
goals:

aa < aa+1 bb-bb < aa+1
The first goal is discharged with the third rule, without creating any new goal. The
second intermediate goal still needs to be proved. It is easy to see that can be done by
discharging the second and then the fourth rule. Since neither applications produce new
goals, we reach the point where no goal is left to be proved. The initial goal is then
formally proved under the enuntiated set of rules.

Special case of conjunctive formulas

When a goal has the form:
f1 & f2 & ... & fn

the proof of this goal is replaced by the proof of each formula f1, f2, ... fn, that become
new intermediate goals.

Tips to write mathematical rules

Order of rule applications

Rules may be separated according to the order of their application: forward (generating
new hypothesis) and backward (generating new goals or resolution). When a rule is
written, such order must be stated, either in the name of the corresponding theory, or
through comments. Rules with different application order shall not be grouped in a same
theory.

Restricting the application domain of a rule

Mathematical rules contain formulas conforming to the syntax of the B language. It is
however possible to restrict the application domain of a rule so that it remains valid, or
to parameterize it, by using guards of the theory language. Such guards are presented in
Chapter 7.
For instance, in the rule

bsearch((x: p..q), P, r) &
(SIGMA(x).(P & 0 <= -E | -E)<=SIGMA(x).(P & 0<=E | E))
=>
(0 <= SIGMA(x).(P | E))

the bsearch guard ensures that P contains the definition domain of variable x as an
interval.

In the rule
band(binhyp(n<=size(a)) ,
btest(n>0)) &
(size(a) = 1 => b = c) &
(2<=size(a) => first(a) = c)
=>
(first(a<+{size(a)|->b}) = c)

the two guards express that the sequence a has at least one element.

Equivalence rules

The fundamental principle to obey when writing rules is to write equivalence rules, that
is, when
writing a rule a => b, it is equivalent to show a to show b. This means that the
provability of b is preserved. Otherwise the produced goal may be erroneous and
prevent th proof when the rule is applied without control.
For instance, the rule

0<=a &
0<=b
=>
0<=a*b

is not an equivalence rule. It cannot be used to show the goal 0<=a*b when a<0 and
b<0.

However, the rule
binhyp(0<=a) &
binhyp(0<=b)
=>
0<=a*b

is an equivalence rule.

It is possible to write rules that are not equivalence rules. Such rules may only be
employed in interactive proofs, as a single application. There is no risk of showing a false
goal; only to reach an unprovable goal.

Rewrite rules

Application of rewrite rules within the scope of a quantifier must be done with care. In
the case of rewrite rules with an antecedent, the application is only correct if the context
variables appearing on the left-hand side of the consequent are bound at the rewrite
position.
For instance, the rule:

binhyp(x=0)
=>
(x == 0)

transforms the expression !x1.P(x1) into !0.P(0) under the hypothesis x1 = 0. The
problem comes from the fact that the variable bound to the wildcard x in the guard may
not be the same as that of the rewriting position (the rule matches since they are
synonymous).

The combination of guards blvar(Q) & Q\(H) may be used to prevent erroneous rewriting
within quantified formulas. Every rewrite rule that needs a restriction with blvar (beware
of the instantiation of H). The correct way to write the preceding rule is

binhyp(x=0) &
bgetallhyp(H) &
blvar(Q) &
Q\(H)
=>
(x == 0)

The paragraph on the use of these guards cannot be understood at this point. This reads
as a magical incantation to avoid a well-identified problem. -Deharbe 01/04/09 11:34

Forward rules

The behavior of forward rules is significatively different from that of backward rules; in
practice, there is little use of such rules outside of the core of the prover.
A forward rule may only apply when the hypothesis have just been generated and before
they are pushed onto the stack hypothesis (and before they are reachable through the
guard binhyp).
For instance, applying the backward rule

(not(X<=0 & Y<=0) => 0<=X & 0<=Y)
=>
(0<=X*Y)

on the goal
0<=(aa+bb)*(cc+3)

results in the new goal
not(aa+bb<=0 & cc+3<=0) => 0<=aa+bb & 0<=cc+3

Using the deduction mechanism, then prover then stacks the hypothesis
not(aa+bb<=0 & cc+3<=0)

and the new goal is:
not(aa+bb<=0 & cc+3<=0)

It is when the hypothesis is pushed on the stack that forward rules are applicable.

A forward rule has the form:
A1 ∧ A2 ∧ . . . ∧ An ⇒ B1 ∧ B2 ∧ . . . ∧ Bp

where A1 is a newly generated hypothesis and
A2 ∧ . . . ∧ An
are in the hypothesis stack. The hypothesis B1, B2,... Bn are then generated and pushed
onto the hypothesis stack, if they are not already there.

Examples:
(u\/v = w)
=>
u: POW(w) & v: POW(w)

not(b: a) &
not(b..c/\a = {})
=>
not(b+1..c/\a = {})

Such rule may be restricted by guards that shall obrigatorily be placed after hypothesis
A1. For instance,

not(a:POW({x})) &
bgetallhyp(H) &
bfresh(zz,H,z)
=>
#z.(z:a & not(z=x))

Lists

Lists hall be manipulated with extreme care in rules. For instance, formula
[a]

may match
[aa, bb, cc]

and also
[aa]

It is then important to be able to state in a rule if a wildcard shall match a literal or a
list. In the previous case, if one wishes to match sequences with a single element, the
following guard may be used

bnot(bpattern(a, (u, v))
Some rules that apply to lists may be grouped by pairs, where the first rule handles the
general case, i.e. when the list has at least two elements, and where the second rule
handles the special case of a list with a single element. The latter rule shall not be
applied to a list with multiple elements, as it would yield an unprovable goal.
For instance, the prover rules:

bnot(bpattern(a, (u,v))
=>
([a]1 == a)
[a,b]1 == [a]1

are used to simplify expressions selecting the first element of a sequence. Note the
recursive application expressed in the second rule, as the matching always selects the
rightmost occurence of a pattern.

Tips for parenthesis

Writing rules requires using parenthesis. Misplacing parenthesis may result in flawed
rules. The following tips advise on the correct usage of parenthesis:

• Parenthesis and existential quantifiers
For compatibility with the Linux port of Atelier B, it is required to over-
parenthesize formulas under the scope of an existential quantifier.

#X. P shall be written (#x. P) to be used under Linux.

• Quantified predicates
Parenthesizing of a quantified predicate is not guaranteed. For instance, the
following rule:

Antecedent => (!x.(x: E & P(x)))
is too restrictive as it does not apply to goals such as

!xx. (xx : E & A(xx) & B(xx))

• Operator precedence (and implicit parenthesis) in the theory language might be
ambiguous to the user. For instance
bsearch (aa, aa => bb, C)
is interpreted and implicitly parenthesized as bsearch((aa, aa) => (bb, c)) in the
prover.
Also:

◦ rule a == b & c is interpreted as ((a == b) & C)
◦ rule a => b => c is interpreted as ((a => b) => c).

To avoid surprises in the application of rules in the prover, it is recommended to be
systematic in the use of parenthesis when writing such rules.

Wildcard instantiation

Three types of problems may happen with wildcards:
• Non-instantiated jokers in the rule antecedent, or in the right-hand side of a

rewrite rule consequent provoke the inclusion of so-called "dead wildcards".
Dead wildcards are wildcards that become identifiers and are no longer part of
the pattern matching process. This creates a new variable, not present in the
source code
For instance:

e: FIN(s) => card(e): NATURAL
s is a not instantiated and will become a dead wildcard.
• Renaming is a special case of a non-instantiated wildcard that happens when two

distinct wildcards designate the same mathematic object. For instance,
binhyp(s~: E +-> NATURAL) &
1<=size(f)
=>
(tail(s)~: E +-> NATURAL)

f represents the same sequence as s.
• The last problem is the name confusion occuring when the same wildcard

represent different mathematical objects. In that case, either the rule is badly
typed, or the rule is correct but very restrictive.

band(binhyp(r~: C +-> B)
binhyp(C: FIN(D))) &
(a: POW(r<+{a}))
=>
(a: FIN(r<+[a}))

both occurences of the wildcard are incompatible from the viewpoint of typing.

When writing a rule, special care must be taken regarding wildcards. "Copy&paste" is
specially dangerous regarding to that kind of problem. Coherence in the use of wildcards
always need to be checked.

The limited number of available wildcards hinders the readability of rules. However, as
long as possible, the following conventions must be applied:

• f , g, h for functions,
• r for a relation,

• A, B, C, D, E, F for sets,
• the same letter, lowercase, for an element of the set,
• s, t for sequences,
• i, j, k, m, n, p for integers,
• P, Q, R for predicates,
• x, y, z for variables.

Ambiguities

Some notations lead to ambiguities:
• - denotes both arithmetic subtraction and set difference;
• * denotes both arithmetic product and cartesian product.

The rules that may lead to false proof due to overloading such operators must be
corrected or eliminated. Ambiguous expressions need to be correctly typed and
disambiguated. If it is not possible to remove ambiguities, the rule must be
eliminated.Here I have interpreted the original text that was too vague. -Deharbe 01/04/
09 13:36

Miscellaneous remarks

The exact semantics of guards is defined in Appendix C . Special care must be taken with
the following points:

• The guards best(a=b) and (btest a/=b), differently from other uses of btest, do
not check that a and b are elements of NAT. Beware, if btest(a=b) passes then
a=b, however if btest(a/=b) passes, it is not necessarily the case that a /= b.
Indeed if x and y are two different wildcards that match the same expression,
btest(x /= y) passes but x = y is true.

• The guard btest(a+b=b+a) fails since a+b is not an identifier.
• The guard bsubfrm is used mainly to guide the proof. This guard shall not be

employed for other purposes in rules.
• The guard bsearch only performs one extraction.

bsearch(a, b, c): b needs to be a list with at least two elements, under the form
x op y, where op is an associative and commutative operator. The associative
and commutative properties of the operator are fundamental as the give the
same importance to the different occurences of a within b. If op does not have
these properties, the translation in the language of mathematics is no longer
general.what did they mean? -Deharbe 01/04/09 13:43

Using the mechanisms of the prover

This section presents different mechanisms of the prover that may be referred to and
employed in the mathematical rules. These mechanisms have been validated and may
simplify the conception phase of these rules. For each mechanism, the following points
will be presented:

• syntax to use the mechanism
• semantics associated with the mechanism
• a textual description of the mechanism
• an illustrating example.

Trying a proof

Syntax: bguard(attempt_to_prove: a_t_t_e_m_p_t__t_o__p_r_o_v_e(P | Curr))

Translation: P

Description: This mechanism triggers a sub-proof on P. It is successful if P can be
demonstrated by the prover.
P must be correctly typed.

Examples

band(binhyp(f: s +-> (t --> u)) ,
bguard(attempt_to_prove: a_t_t_e_m_p_t__t_o__p_r_o_v_e(
(t: POW(a) & u: POW(b)) | Curr)))
=>
(f(x): a +-> b)

bguard(attempt_to_prove: a_t_t_e_m_p_t__t_o__p_r_o_v_e(
(not(b) => a) | Curr))
=>
(a or b)

(n: a) &
not(n: b) &
bguard(attempt_to_prove: a_t_t_e_m_p_t__t_o__p_r_o_v_e(
(a: POW(b))| Curr))
=>
bfalse

This last rule is a forward rule. If an hypothesis matching n: a has just been generated,
if there is an hypothesis not(n: b) and if the prover is able to show that a: POW(b) is
true, then the hypothesis bfalse is generated.

Difference

Syntax: bguard(Fast_Prove_Difference: not(a = b)

Translation: not(a = b)

Description: This mechanism may be employed to prove that two terms are not equal. If
the call succeeds, then a and b are not equal.

Examples :
bguard(Fast_Prove_Difference: not(a = b)) &
blvar(Q) &
Q\not(a = b)
=>
({a}<<|{b|->c} == {b|->c})

bguard(Fast_Prove_Difference: not(a = c)) &
blvar(Q) &
Q\(a = c)
=>
({a|->b}<+{c|->d} == {a|->b}\/{c|->d})

Order relation

Syntax: bguard(Fast_Prove_Order: m<=n)

Translation: m<=n

Description: If the call to this mechanism is successful , then the relation m <= n is true.

Example:
bguard(Fast_Prove_Order: c<=d) &
(a = c) &
(b = d)
=>
(a..b = c..d)

Positive value

Syntax: bguard(Fast_Prove_Positif: a)

Translation: 0<=a

Description: If the call to this mechanism succeeds, then the value of the arithmetic
expression a is positive or zero.

Example :
binhyp(s: POW(a..b)) &
bguard(Fast_Prove_Positif: a)
=>
(s: POW(NATURAL))

Non membership

Syntax: bguard(Fast_Prove_Distinction: not(x: s))

Translation: not(x: s)

Description: If the call to this mechanism is successful , then x does no belong to s.

Example :

Fast_Prove_Distinction(not(a: dom({c|->d})))
=>
not({a|->b} = {c|->d})

Membership to INTEGER

Syntax: bguard(Fast_Prove_Num: n)

Translation: n: INTEGER

Description: A call to this mechanism is successful entails that n is an integer.

Example :
bguard(Fast_Prove_Num:(x))
=>
(succ(x) == x+1)

Guards

This chapter presents succinctly the different kinds of guards that are available to write
mathematical rules (for further details, see Appendix C). For each guard, the following
elements are presented:

• syntax,
• possibly its semantics,
• a textual description of its behaviour.

It must be noted that certain guards have a mathematical semantics only under special
circumstances (e.g. the bsearch guard).

The following guards may be employed to obtain one or several hypothesis from the
stack, by processing first the most recently inserted hypothesis.

Syntax Semantics

bgetallhyp(H) H

bgethyp(H) H

binhyp(H) H

The following guard checks if s is an element of STRING.
Syntax Semantics

bstring(s) s : STRING

The following guard checks if P is a conjunction.
Syntax Semantics

bpattern(P, (Q & R)) P <=> (Q & R)

The bsearch guard has a mathematic semantics when the list in which the search is
performed is the argument list of an associative and commutative operator. This is the
case for the operators &, or, \/ and /\. This is also the case of the operator , (comma)
for a list of quantified variables. One must thus check that the application of the rule
remains within such cases.
Syntax Semantics

bsearch(N, (P, Q), M) (P, Q) = (M, N)

bsearch(N, (P & Q), M) (P & Q) <=> (M & N)

bsearch(d, (a or b), c) (a or b) <=> (c or d)

bsearch(d, (a \/ b), c) a \/ b = c \/ d

bsearch(d, (a /\ b), c) a /\ b <=> c /\ d

The following guard succeeds if t is true and has the form a op b.
Syntax Semantics

btest(t) t

The following guard checks if n is a numeric value both positive and smaller or equal to
maxint.
Syntax Semantics

bnum(n) n : NATURAL

The following guard succeeds if both arguments succeed.
Syntax Semantics

band(P, Q) Semantics of P and semantics of Q

The role of the following guards is to verify the relationship between wildcards
representing variables and wildcards representing expressions.
Syntax Semantics

bvrb(x) x

blvar(x) x

x\P x such that x \ P

bfresh(x, P, y) y (y\P)
I am not sure how is this supposed to be helpful for the reader. -Deharbe 01/04/09
14:32

A Expression normalization

In order to limit the number of rules in the prover base, expressions are normalized.
Every expression that the prover manipulates must have been first normalized. Thus
every user rule found in a Pmm file is automatically normalized when it is loaded.
However the rules that are stored in the PatchProver need to be manually normalized,
otherwise they may induce an anomalous behavior of the prover.

The normal forms are the following:

Expression Normal form

n > m - 1 m <= n

m < n m <= n - 1

a <=> b (a => b) & (b => a)

a <: b a : POW(b)

a <<: b a : POW (b) & not (a = b)

a /: b not (a : b)

a /= b not (a = b)

a /<: b not (a : POW(b))

a /<<: b a : POW(b) => a = b

a : NATURAL a : INTEGER & 0 <= a

NATURAL1 NATURAL - {0}

NAT1 NAT - {0}

FIN1(A) FIN(A) - {}

POW1(A) POW(A) - {}

seq1(A) seq(A) - {}

iseq1(A) iseq(A) - {{}}

perm(E) iseq(E) /\ (NATURAL - {0} +->> E)

<> {}

{x, y} {x} \/ {y}

{x | P} SET(x).P

When writing a rule, it is necessary to check that this rule is indeed normalized.
Otherwise, the rule will be normalized when it is loaded and may no longer be applicable
as desired.

For instance, the following rule:
btest(0<x)
=>
0<=x**2-1

is normalized into
btest(0+1<=x)
=>
0<=x**2-1

But the guard btest only accepts as argument expression of the form a op b, where a

and b are integers. This rule will thus never be applicable. The following rule should be
thus preferred:

btest(1<=x)
=>
0<=x**2-1

B Common pitfalls

B.1 What is an infinite loop of the prover?

For instance, consider applying the rule:
a * a == a * a * a / a
on the following goal
cc(v) = vv * vv
We will obtain SUCCESSively the following goals:
cc(v) = vv * vv * vv / vv
cc(v) = (vv * vv * vv / vv) * vv / vv
...

The kernel of the prover then produces the following messageskrt: sequence memory
short
krt: asking for 1500000 int, waiting for system reply...
krt: OK, memory obtained, we continue.
krt: sequence memory short
krt: asking for 2249997 int, waiting for system reply...
krt: OK, memory obtained, we continue.
krt: sequence memory short
krt: asking for 3374992 int, waiting for system reply...
krt: OK, memory obtained, we continue.
...

The messages krt: sequence memory short are generated by the kernel when it
dynamically claims additional memory.

This example is simple. Infinite loops may be caused by combination of rule applications
and be more difficult to detect a priori.

C Guards of the theory language

This chapter presents guards (operators) that may be used to write rules. Such guards
may be used to constrain the domain of application of a rule, using informations related
to the goal and the hypothesis. To help writing and verifying the rules, all the guards of
the theory language are documented thereafter.

A guard is a special antecedent in a rule. In fact, each guard in a rule is interpreted
directly before the rule being effectively applied or not. Evaluating a guard never results
in the creation of a SUCCESSor. The evalution of a guard may succeed or fail. For a rule
to be effectively applicable, all the associated guard must be successful .

The following table summarizes the guard constructs:

band conjunction of two guards

bfresh construction of a fresh variable

bgetallhyp obtains all the hypothesis

binhyp tests the presence of a formula in (as
???) an hypothesis

blvar lists the quantified variables

bmatch identity by matching

bnot negation of a guard

bnum numerality test

bpattern tests formula matching

bsearch tests presence in a list

bstring tests if is a character string

bsubfrm finds sub-formulas

btest numeric comparison

bvrb variable test

band(g1,g2)

Parameters
g1 : garde
g2 : garde

Nature
Guard

Summary
Coordinates several guards.

Evaluation
The evaluation strategy differs according to the nature of the guards g1 and g2 :

• if g1 is binhyp(H), or binhyp(n,H), or binhyp(m,n,H), and if, in the last
two cases, n is a wildcard, then the resulting guard succeeds if there exists
an hypothesis h that matches H and that is such that g2 is successful

• if g1 is a bsubfrm, bsearch or brule guard, then the resulting guard is
successful if there exists a wildcard instantiation such that g1 successful ,
and such that g2 is successful .

• in all other cases, the resulting guard is successful if both guards g1 and
g2, evaluated in sequence are successful . If g2 fails, the evaluation does
not backtrack to g1 as in the preceding cases.

Example
THEORY tentative IS

band(binhyp(aaa(x)), band(binhyp(ccc),binhyp(bbb(x)))) &
bcall(WRITE: bwritef("x: %\n",x))
=>
H;
bcall((DED~;ess):((bbb(1) => (aaa(2) & bbb(2) & ccc & aaa(1) => titi))))
=>
foobar

END

Result
x: 1

bnot(g)

Parameters
g : guard

Nature
Guard

Summary
Used to simplify expression of guards in case of failure.

Evaluation
The evaluation of bnot(g) is successful if the evaluation of g is a failure.

Example
THEORY tentative IS

bcall(WRITE: bwritef("OK \n"))
=>

aaa(n);

breade("Write ?>? (substituting the ? with numbers): ",a>b) &
bnot(btest(a>b)) &
bcall(WRITE: bwritef("Hello??? \n")) &
aaa(n+1)

=>
aaa(n)/*(a,b)*/;

bcall((ARI;ess)~: aaa(1))
=>

foobar
END

Result
Write ?>? (substituting the ? with numbers): 3>5
Hello???
Write ?>? (substituting the ? with numbers): 4>9
Hello???
Write ?>? (substituting the ? with numbers): 5>1
OK

bfresh(v, f, V)

Parameters
v: variable or variable list
f: formula
V: wildcard

Nature
Guard

Summary
To create fresh variables.

Evaluation
The evaluation is always successful . The wildcard V is instantiated with as many
variables as there are in v. Moreover the new variables are not free in f. If v is not
free in f, then V is the same as v.

Example
THEORY tentative IS

bfresh((xx,yy,zz),aaa+xx$0-yy*zz,V) &
bcall(WRITE: bwritef("%\n",V))

=>
foobar

END

Result
xx$1,yy$1,zz$1

bgethyp(h), bgetallhyp(h)

Parameters
h : formula

Nature
Guard

Summary
This guard gets the hypothesis in a proof.

Evaluation
The evaluation of the guard is successful when the proof contains hypothesis and
that the conjunction of these hypothesis matches with formula h. These hypothesis
also depend on the type of guard:

• Guard bgethyp only yields the main hypothesis;
• Guard bgetallhyp yields the main hypothesis as well as the hypothesis

derived from these main hypothesis.
In any case, all the wildcards of h are instantiated.

Example
HEORY tentative IS

bgethyp(H) &
bgetallhyp(G) &
bcall(WRITE: bwritef("Main hypothesis: %\n",H)) &
bcall(WRITE: bwritef("Main and derived hypothesis: %\n",G))

=>
P;

bcall((DED;ess),fwd: (aaa & bbb => ggg))
=>

foobar
END

&

THEORY fwd IS
aaa => ccc;
ccc & bbb => ddd & eee

END

Result
Main hypothesis: aaa & bbb
Main and derived hypothesis: aaa & bbb & ccc & ddd & eee

binhyp(h), binhyp(n, h), binhyp(m, n, h)

Parameters
h: formula
n: formula
m: number

Nature
Guard

Summary
To access an hypothesis.

Evaluation
The guard binhyp(h) is successful when there exists an hypothesis that matches h.
When there are several hypothesis, the last one is picked. All wildcards of h are
instantiated.
The evaluation of the guard binhyp(n,h) depends on the nature of n:
When n is a number, the evaluation is successful when the hypothesis of rank n
exists and matches hypothesis h. All wildcards of h are instantiated.
When n is a wildcard, the evaluation is successful if there exists an hypothesis that
matches hypothesis h. n is then instantiated with the rank of h. All wildcards of h
are instantiated.
In all other cases, the evaluation fails.
The evaluation of the guard binhyp(m,n,h) is similar to that of the guard
binhyp(n,h), but in the case where n is a wildcard, the selected hypothesis is the
last that matches h and with rank smaller or equal to i m.
Note the similarities between these last two forms of the binhyp guard and the
guards brule and lemma.

Example
THEORY tentative IS

foo(i);

binhyp(i,n,H) &
bcall(WRITE: bwritef("hyp_%: %\n",n,H)) &
foo(n-1)
=>
foo(i);

binhyp(n,H) &
bcall(WRITE: bwritef("hyp_%: %\n",n,H)) &
foo(n-1)
=>
bar;

binhyp(1,H) &
bcall(WRITE: bwritef("hyp_1: %\n",H)) &
bar
=>
baz;

binhyp(H+G) &
bcall(WRITE: bwritef("hyp: %\n",H+G)) &
baz
=>
P;

bcall((DED;(ARI;ess)~):((aaa & bbb+ccc & ddd) => pp))
=>
foobar

END

Result
hyp: bbb+ccc
hyp_1: aaa
hyp_3: ddd
hyp_2: bbb+ccc
hyp_1: aaa

blvar(l)

Parameters
l : list of variables

Nature
Guard

Summary
To get the list of quantified variables at the current rewrite position.

Evaluation
The guard is always successful .
If there is at least one quantified variable at the current rewrite position, l contains
the list of quantified variables. Othewise l contains ?. For instance, if the current
goal is
(aa,bb,cc).0<=aa & 0<=bb & 0<=cc => 0<=aa+bb+cc
and the rule
binhyp(x=0) &
blvar(Q) &
x\Q
=>
x == 0
is applied, then Q will be (aa,bb,cc).
This guard is used within rewrite rules. It provides the guarantee that one does not
mix quantified with non-quantified variables. It is often used in conjunction with
the absence of freedom guard bnfree x \ E.
? \ E is always true, whatever E is.

Example
THEORY tentative IS

bnot(blvar(?))
=>
qq == pp;

!qq.(qq+1>qq)
=>
%ii.(ii: NAT | uu) = oi$5;

blvar(t$i)
=>
(t$i) == ii;

blvar(Q) &
Q\!yx.(yx<yx+oo) &
bcall(WRITE: bwritef("free Q is %\n",Q)) &
%(tt$0).(tt$0: NAT | uu) = oi$5
=>
!yx.(yx<yx+oo);

blvar(Q) &
Q\(aa+2) &
bcall(WRITE:bwritef("aa transforms into oo\n"))
=>
aa == oo;

blvar(Q) &

Q\(yx+2) &
bcall(WRITE:bwritef("yx transforms into za\n"))
=>
yx == za;

!yx.(yx<yx+aa)
=>
!(zz$0,uu,hh$9).(zz$0+uu+hh$9>0);

blvar(Q) &
bcall(WRITE:bwritef("Q is %\n",Q))
=>
vv == hh;

!(zz$0,uu,vv$9).(zz$0+uu+vv$9>0)
=>
!yy.(yy<yy+1);

blvar(Q) &
bcall(WRITE:bwritef("Q is %\n",Q))
=>
xx == yy;

!xx.(xx < xx+1)
=>
foobar

END

Result
Q is xx
Q is xx
Q is xx
Q is zz$0,uu,vv$9
Q is zz$0,uu,vv$9
aa transforms into oo
free Q is ?
EXECUTION ABORTED ON GOAL: !pp.(pp+1>pp)

bmatch(x, p, q e)

Parameters
x: variable
p: formula
q: formula
e: formula

Nature
Guard

Summary
Checks if a quantified formula may be instantiated.

Evaluation
For the guard to be successful , it is first necessary that the formula p does not
contain quantifiers. Then it is required that there exists a formula f such that the
substitution of x by f in p is the same as formula q. Finally, formula f must match
e. All wildcards in e are instantiated.

Example
THEORY tentative IS

binhyp(!x.(H=>P)) &
bmatch(x,P,Q,E) &
bcall((SUB;WRITE):
bwritef("P: %\nx: %\nE: %\n[x:=E]P: %\nQ: %\n",P,x,E,[x:=E]P,Q))
=>
Q;

(!(xx$1,yy).(qq(xx$1,yy) => pp(xx$1,ff(xx$1),yy))
=>
pp(aa,ff(aa),bb)

)
=>
ccc;

bcall((ess;DED;ess):ccc)
=>
coco

END

Result
P: pp(xx$1,ff(xx$1),yy)
x: xx$1,yy
E: aa,bb
[x:=E]P: pp(aa,ff(aa),bb)
Q: pp(aa,ff(aa),bb)

bpattern(f, g)

Parameters
f: formula
g: formula

Nature
Guard

Summary
Tests if a formula matches another formula.

Evaluation
The guard is successful if formula f matches formula g. All wildcards in g are
instantiated.

Example
THEORY tentative IS

bnot(bpattern(p,q)) &
bcall(WRITE: bwritef("FAILURE"))
=>
baz(p,q);

bpattern(aaa+bbb,a+b) &
bcall(WRITE: bwritef("% %\n",a,b)) &
baz(aaa+bbb,k+l)
=>
foobar

END

Result
aaa bbb
FAILURE

bsearch(p, l, r) bsearch(p, l, r, s)

Parameters
p: formula
l : non-atomic formula
r: formula
s: formula

Nature
Guard

Summary
To search, and possibly modify an element in a list.

Evaluation
The formula l has the form l1 op ... op li op ... op ln where n is greater than or
equal to 2 and op is a binary operator.
The guard bsearch(p,l,r) is successful when there exists a sub-formula li that
matches p, and when the formula obtained by removing li from l matches formula
r.
The guard bsearch(p,l,r,s) is successful when there exists a sub-formula li that
matches p, and when the formula obtained by substituting li in l with the
corresponding instance matches formula r.
All wildcards in p, r and s are instantiated.

Example
THEORY tentative IS

bsearch((a-{x}),(aaa \/ (bbb-{xx}) \/ ccc \/ (ddd \/ {xx}) \/ eee),r,a) &
bsearch((b\/{x}),r,s,b) &
bsearch((b\/{x}),(aaa \/ (bbb-{xx}) \/ ccc \/ (ddd \/ {xx}) \/ eee),h) &
bcall(WRITE: bwritef("r: %\na: %\nb: %\ns: %\nh: %\n",r,a,b,s,h))
=>
coco

END

Result
r: aaa\/bbb\/ccc\/(ddd\/{xx})\/eee
a: bbb
b: ddd
s: aaa\/bbb\/ccc\/ddd\/eee
h: aaa\/bbb-{xx}\/ccc\/eee

bstring(f)

Parameters
f: formula

Nature
Guard

Summary
To test that a formula is a character string.

Evaluation
The evaluation of the guard is successful if f is a character string (i.e. a sequence
in characters between double-quotes). A double-quote may be present inside the
string if it is preceded by a backslash.

Example
THEORY tentative IS

bcall (WRITE: bwritef("test3: FAILURE\n"))
=>
test3;

bstring(aa+bb);
bcall (WRITE: bwritef("test3: SUCCESS\n"))
=>
test3;

bcall (WRITE: bwritef("test2: FAILURE\n"))
test3
=>
test2;

bstring(aaa) &
bcall (WRITE: bwritef("test2: SUCCESS\n")) &
test3
=>
test2;

bcall (WRITE: bwritef("test1: FAILURE\n")) &
test2
=>
test1;

bstring("Hello \"Sir\"") &
bcall (WRITE: bwritef("test1: SUCCESS\n")) &
test2
=>
test2;

bcall(ess: test1)
=>
coco

END

Result
test1: SUCCESS
test2: FAILURE
test3: FAILURE

bsubfrm(g, d, p, q) bsubfrm(g, d, p, (q, v))

Parameters
g: formula
d: formula
p: formula
q: formula
v: formula

Nature
Guard

Summary
Tests the presence of a sub-formula in a formula and substitute it with another
one.

Evaluation
For the evaluation of the first type of guard to be successful , it is first necessary
that a formula f of p matches g (not instantiated). We then consider p obtained by
substitution, in p, by the instantiated sub-formula f. Such formula p must match q
(not instantiated). Most of the time, q is a simple wildcard.
In the second type of guard, the list of quantified variables on which f depends is
also considered. If there is no such variable, then the list contains a single
element: ?. This list must match v, not instantiated. Most of the time v is also a
simple wildcard.
All remaining unmatched wildcards are instantiated.

Example
THEORY tentative IS
bsubfrm(x/:s,not(x:s),#(y,z).!(xxx$1,x,bbb).(x/:s => aaa),(q,v)) &
bcall((SUB;WRITE): bwritef("q: %\nv: %\n",q,v))
=>
coco
END

Result
q: #(y,z).!(xxx$1,x,bbb).(not(x: s) => aaa)
v: xxx$1,x,bbb,y,z

btest(m op n)

Parameters
m: formula
n: formula
op: comparison operator

Nature
Guard

Summary
To compare two numeric values.

Evaluation
The evaluation of the guard is successful when m and n related by the specified
operator. The comparison operators:
– Equal: =
– Different: /=
– Smaller: <
– Smaller or equal: <=
– Greater: >
– Greater or equal: >=
When the operator is equality or difference, the evaluation of the guard is also
successful when m and n are both identifiers that are related by the operator

Example
THEORY tentative IS
btest(bb/=aa) &
bcall(WRITE: bwritef("test3: SUCCESS\n"))
=>
test3;
bnot(btest(8=aa)) &
bcall(WRITE: bwritef("test2: FAILURE\n")) &
test3
=>
test2;
btest(8=8) &
bcall(WRITE: bwritef("test1: SUCCESS\n")) &
test2
=>
foobar
END

Result
test1: SUCCESS
test2: FAILURE
test3: SUCCESS

bvrb(f)

Parameters
f : formula

Nature
Guard

Summary
To test that a formula is a variable.

Evaluation
The evaluation is successful if f is a variable. Recall that a variable is either a letter
(wildcard) or an identifier that do not start with an underscore, or one of the two
previous possibilities followed by a $ and a number smaller than 10000, or a list
composed of distinct elements that fall into the previous cases.

Example
THEORY tentative IS

bcall(WRITE: bwritef("test5: FAILURE\n"))
=>
test5;
bvrb(a+b) &
bcall(WRITE: bwritef("test5: SUCCESS\n"))
=>
test5;
bcall(WRITE: bwritef("test4: FAILURE\n")) &
test5
=>
test4;
bvrb(_a) &
bcall(WRITE: bwritef("test4: SUCCESS\n")) &
test5
=>
test4;
bcall(WRITE: bwritef("test3: FAILURE\n")) &
test4
=>
test3;
bvrb(a$10000) &
bcall(WRITE: bwritef("test3: SUCCESS\n")) & test4
=>
test3;
bcall(WRITE: bwritef("test2: FAILURE\n")) &
test3
=>
test2;
bvrb(a,a,bbb) &
bcall(WRITE: bwritef("test2: SUCCESS\n")) &
test3
=>
test2;
bcall(WRITE: bwritef("test1: FAILURE\n")) &
test2
=>
test1;
bvrb(aaaa_3,xxx,xx$2,y) &

bcall(WRITE: bwritef("test1: SUCCESS\n")) &
test2
=>
test1;
bcall(ess: test1)
=>
foobar

END

Result
test1: SUCCESS
test2: FAILURE
test3: FAILURE
test4: FAILURE
test5: FAILURE

	Introduction
	Bibliography
	Terminology
	Abbreviations
	Glossary

	Introduction to the theory language
	What is a wildcard?
	What is a formula?
	Matching formulas
	What is a rule?
	Application of a rule to a formula
	Deduction rule
	Rewrite rule

	What is a theory?
	Proof
	Proof of a formula
	Special case of conjunctive formulas

	Tips to write mathematical rules
	Order of rule applications
	Restricting the application domain of a rule
	Equivalence rules
	Rewrite rules
	Forward rules
	Lists
	Tips for parenthesis
	Wildcard instantiation
	Ambiguities
	Miscellaneous remarks

	Using the mechanisms of the prover
	Trying a proof
	Difference
	Order relation
	Positive value
	Non membership
	Membership to INTEGER

	Guards
	A Expression normalization
	B Common pitfalls
	B.1 What is an infinite loop of the prover?

	C Guards of the theory language

