
BART
-

USER MANUAL

Réf. : Version : 1.0 Date :

CLEARSY Société par Actions Simplifiée au Capital de 266 880 Euros. - RCS Aix-en-Provence 433 901
402 - Code NAF 721 Z
320, Avenue Archimède – Les Pléiades III - Bât A - 13857 AIX EN PROVENCE CEDEX 3

Tél : 04 42 37 12 70 – Fax : 04 42 37 12 71

BART – USER MANUAL

RE V I S I O N S

Version Date Comment
1.0 Initial version

Version: 1.0 Page : 2 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

IN D E X

 Revisions ... 2
 Index .. 3
I Introduction .. 6
II Usage ... 7

II.1 Command usage .. 7
II.2 Input files ... 7
II.3 Visibility for loaded components ... 8
II.4 Bart standard output verbosity .. 8
II.5 Bart rule trace ... 9

III Automatic refinement principles ... 10
III.1 Refined elements .. 10

III.1.1 Abstract variables .. 10
III.1.2 Operations .. 10
III.1.3 Initialisation .. 11
III.1.4 Process ... 11

III.2 Pattern-Matching .. 11
III.2.1 Jokers syntax .. 12
III.2.2 Pattern matching ... 12

III.3 Refinement rules .. 13
III.3.1 Introduction .. 13
III.3.2 Constraints ... 13
III.3.3 Guards ... 14
III.3.4 Rule checking process .. 15
III.3.5 Jokers use in result .. 15

III.4 Hypothesis stack – Environment analysis ... 16
III.5 Result production and writing ... 17

IV Bart guards – Predicate synonyms .. 18
IV.1 Guards ... 18

IV.1.1 Expression guards .. 18
IV.1.2 Predicate guards .. 19
IV.1.3 Substitution guards .. 20

IV.2 Predicate synonyms ... 20
V Pragmas and comments ... 22

V.1 EMPILE_PRE, DEPILE_PRE ... 22
V.2 Magic .. 23

V.2.1 For variables ... 23
V.2.2 For substitutions .. 23

V.3 CAND .. 23
VI Rule files ... 25

VI.1 Syntax ... 25

Version: 1.0 Page : 3 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

VI.2 Using rule files .. 26
VI.2.1 Providing rule files on command line ... 26
VI.2.2 Rule file associated to the component ... 26
VI.2.3 Bart refinement rule base .. 26

VII Variables refinement .. 27
VII.1 Variable theories syntax .. 27
VII.2 Variable rule research ... 28
VII.3 Storing information predicates about found variable rules 30
VII.4 Invariant for refined abstract variables .. 30
VII.5 Specifying variable refinement results ... 31

VII.5.1 Using CONCRETE_VARIABLES clause ... 31
VII.5.2 Using REFINEMENT_VARIABLES clause ... 32

VIII Substitution refinement .. 34
VIII.1 Rule syntax .. 34
VIII.2 Rule research ... 35
VIII.3 Refinement process ... 36
VIII.4 Default refinement behaviours .. 40
VIII.5 Special refinement substitutions .. 42

VIII.5.1 Iterators ... 42
VIII.5.2 Using operations from seen machines - SEEN_OPERATION 48
VIII.5.3 Defining imported operations - IMPORTED_OPERATION 49
VIII.5.4 Controlling the refinement process ... 52
VIII.5.5 Local variable declarations .. 54

VIII.6 Declaring operation refinement variables .. 55
VIII.7 Usage of substitution rules ... 55

VIII.7.1 Structural and operation rules - Operation refinement 56
VIII.7.2 Initialisation rules .. 59

IX Tactic and user pass theories ... 62
IX.1 User pass theory ... 62

IX.1.1 Syntax .. 62
IX.1.2 Usage ... 62

IX.2 Tactic theory .. 63
IX.2.1 Syntax .. 63
IX.2.2 Usage ... 63

IX.3 Priority of Tactic and User pass theories ... 64
X Result production and writing .. 66

X.1 Formatting the result .. 66
X.2 Implementing results .. 67

X.2.1 Splitting operations in output components 67
X.2.2 Resolving deadlocks ... 68

XI Appendix A – Figures table .. 72
XII Appendix B – Syntax elements table .. 74
XIII Appendix C – Rule files complete syntax ... 75

XIII.1 Rule files .. 75
XIII.2 Variables refinement rules .. 75
XIII.3 Initialisation refinement rules ... 76
XIII.4 Operation refinement rules ... 76

Version: 1.0 Page : 4 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

XIII.5 Structural refinement rules ... 77
XIII.6 User pass theory ... 77
XIII.7 Tactic theory .. 77
XIII.8 Predicate synonyms theory ... 78
XIII.9 Substitutions .. 78
XIII.10 Predicates .. 80
XIII.11 Expressions .. 81
XIII.12 Diverse .. 82

Version: 1.0 Page : 5 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

I IN T R O D U C T I O N

 BART is a tool that can be used to automatically refine B components. This
process is rule based so that the user can drive refinement. Its own rule
language has been defined in this purpose.

It has been designed to be a stand-alone tool, but it may be launched from
AtelierB user interface.

Version: 1.0 Page : 6 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

I I US AG E

II.1 Command usage

The Bart command syntax is as follow (help message displayed by
command launching without parameters):

Bart { -r rule_file } -m machine_file

Options:

Parameter Comment
-h Displays this help message
-d Debug. This forces Bart to display back all the loaded

data
-I dir Adds the given directory to the list of directories

searched for machine files
-v Displays more information
-V Displays more information than –v
-s machine_name Adds a seen machine
-o operation_name Only refine the given operation
-a file_name Visibility file
-e Handles duplicate names in rmf files as error instead

of warning
-p project Name of the project that should be loaded (requires -b)
-b path Path to the bdp of the project
-H file Indicates a file containing the header that should be

inserted in the generated machines
-t Writes rule trace in the result
-g file Writes the list of generated files to file
-D dir Writes the generated files to the given directory
-x Displays output as Xml
-X file Writes input machine as Xml
-l Displays guards list
-f name Use given resolving information for finding path of

given component file

Figure 1 : Bart command line parameters

II.2 Input files

As an input, Bart must be given at least the machine or refinement (.mch
or .ref file) to refine. This file path must be given to Bart using –m parameter.
This given file path can be relative or absolute. There must be exactly one
component to refine.

Furthermore, user may provide rule files to process refinement of given
component. These files are .rmf suffixed, and are given using –r parameter. User
can provide zero, one or more rule files. Their path can be relative or absolute.

Version: 1.0 Page : 7 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

II.3 Visibility for loaded components

When Bart must load seen machines or given component abstraction, it must
be able to find their associated files on the file system. So at the command
launching user must provide necessary information. There are three ways to do
this:

• -I dir: This option allows the user to directly specify directories
components to load must be searched in. So there can be several –I
parameters on command line.

• -a file_name: This is used to give Bart a visibility file. Each line of this file
is a research directory. This option could be used together with –I option,
in this case file directories and command line directories are added

• -b path and –p project: With these options, information about an AtelierB
project is provided for searching components. –p option indicates the
project name, and –b is the project bdp path. –b and –p must be present
together.

All these options can not be used at the same time. Only AtelierB project
resolving is used if all these parameters are given on command line.

II.4 Bart standard output verbosity

In standard output mode, Bart prints result of variables, operations and
initialisation refinement on standard output.

Variable refinement result is the list of found rules associated to their
variables. In standard output mode, operation and initialisation refinement result
is symbolized with “+” (rule found) and “-“ (no rule could be found) characters.
For example:

Refining operation operation_test
++++++

Refinement of operation_test finished

Figure 2 : Example of Bart standard output

On the command line, the detail level of output can be increased with –v
(verbose mode) and –V (very verbose mode) options.

In verbose mode, the output for previous operation refinement would be as
follow:

Version: 1.0 Page : 8 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Refining operation operation_test
 Rule found: theory1.rule1
 Rule found: theory1.rule2
 Rule found: theory1.rule3
 Rule found: theory2.rule1
 Rule found: theory2.rule2
 Rule found: theory2.rule3
Refinement of operation_test finished

Figure 3 : Example of Bart verbose output mode

The failure character “-“ is replaced by a “No rule could be found” message
when launching Bart in verbose mode.

II.5 Bart rule trace

There are two ways to keep a trace of rules applied by Bart.

Each time a component is refined with Bart, the tool generates a file with
same name as the component with a .rs extension (example: machine.rs for
machine.mch or machine_r.ref). This file contains name of the rules used to
refine each element.

Furthermore, user may add –t parameter on command line. This option
indicates to Bart that it must write used rule names in comments in generated
components.

Version: 1.0 Page : 9 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

I I I AU TO M AT I C R E F I N E M E N T P R I N C I P L E S

Automatic refinement is a rule based refinement process for B components
(abstractions or refinements). The tool is given a component, and it searches, for
each element to refine, some rules that specify how it must be treated.

This section describes basic principles of automatic refinement.

III.1 Refined elements

III.1.1 Abstract variables
First elements treated by Bart tool are abstract variables of component to

refine (content of the ABSTRACT_VARIABLE clause). The tool must produce, for
each one of them, one or more abstract or concrete variables that implement it.

III.1.2 Operations
Bart processes operations of given component in order to refine them. It

must produce, for each operation, a substitution body concrete enough to be put
in the component implementation.

Refined operations are considered for the whole component abstraction. It
means that Bart refines most concrete version of each operation. Here is an
example of this process:

Figure 4 : Example of selection of operations to refine

For this example, if the given component to refine is Machine_2r,
operations processed by Bart will be:

• Op1 from Machine
• Op2 from Machine_r
• Op3 from Machine_2r

Version: 1.0 Page : 10 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

• Op4 from Machine_2r

III.1.3 Initialisation
Bart also refines content of initialisation clause of given component.

Typically, it produces a concrete result by specifying initialisation substitutions
for concrete variables refining content of ABSTRACT_VARIABLES clause.

III.1.4 Process

The following draw presents the order of previously described refinement
steps.

Figure 5 : Refinement process order

Abstract variables are refined first, as other parts of the process need its
output to find suitable rules for operations and initialisation. It is necessary at
these steps to know how variables have been refined.

This variable information is stored as predicates in Bart hypothesis stack
(cf. III.4).

As it will be described later, refinement process uses rules to determine
how each element is refined. A same rule can apply for several elements, so it
must be general. In this purpose, the rule language uses jokers, so that rules
can contain variable parts.

III.2 Pattern-Matching

A large part of the refinement process uses the concept of pattern-
matching. In Bart rule language, user can define patterns, containing jokers,
which will be matched against real B elements.

Version: 1.0 Page : 11 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

III.2.1 Jokers syntax

In Bart, jokers are ‘@’ character followed by a single letter. For example,
@a, @x and @t are valid Bart jokers.

@_ is a special joker, used for special treatments in pattern-matching.

III.2.2 Pattern matching
Bart jokers can be used to write general expression, predicate or

substitution patterns. These patterns can be matched against B elements.
Each pattern-matching action has a result status, as it may be either a

success or a failure, and instantiates jokers that it contains.

A simple joker matches with any B element. A complex pattern matches a
B element if each of its contained jokers can be instantiated with a subpart of the
element. If a joker appears several times in a pattern, it has the same value in a
unique instantiation

 If the pattern-matching is a success, jokers contain element subparts that
made the match successful. The @_ joker is a special one, as it means that its
instantiation has not to be stored. So @_ joker can stand for different elements
in a same pattern if it appears several times.

The following table shows examples of successful or failed pattern-
matching, with their status and associated jokers instantiation.

Pattern Element Status Jokers instantiation
@a aa Success {@a = aa}
@a aa + bb Success {@a = aa + bb}
@a + @c yy + 2 Success {@a = yy, @c = 2}
@a + @c yy - 2 Failure -
@a + @c (aa + 1) + f(3) Success {@a = aa + 1, @b = f(3)
@a + @b * @a aa + bb * 2 Failure -
@a + @b * @a aa + bb * aa Success {@a = aa, @b = bb}
not(@p) not(vv < 0) Success {@p = vv < 0}
@a IF val THEN

 aa := 0
ELSE
 aa := 1
END

Success {@a = IF val THEN
 aa := 0
ELSE
 aa := 1
END }

IF @p THEN
 @t
ELSE
 @e
END

IF val THEN
 aa := 0
ELSE
 aa := 1
END

Success {@p = val, @t = aa :=0, @e =
aa := 1}

IF @_ THEN
 @t
ELSE
 @e
END

IF val THEN
 aa := 0
ELSE
 aa := 1
END

Success {@t = aa :=0, @e = aa := 1}

Version: 1.0 Page : 12 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Figure 6 : Examples of pattern-matching without previous instantiation

In some cases, some jokers may already be instantiated when the pattern
matching is done. An instantiated joker matches an element if its stored value is
equal to the element.

For example, if pattern is @a + @b, following table shows how pattern-
matching is done if some jokers are already instantiated.

Element Original instantiation Status Result instantiation
1 + 3 {@a = 2} Failure -
1 + 3 {@a = 1} Success {@a = 1, @b = 3}
aa + (1 + bb) {@b = bb} Failure -
aa + (1 + bb) {@b = 1 + bb} Success {@b = 1 + bb, @a = aa}
var1 + (var2 –
1)

{@a = var1, @b = var2 –
1}

Success {@a = var1, @b = var2 –
1}

Figure 7 : Examples of @a + @b pattern-matching with previous instantiation

III.3 Refinement rules

III.3.1 Introduction
Bart uses rules for refining variables, operations and substitutions. These

rules belong to different types: variables rules, or substitution rules, which can
be used for both operations and initialisation. Rules of same type are gathered in
theories.

Rules usually contain a pattern, and may contain a constraint. These two
elements are used to know if a rule can be applied to refine a certain element.
Rules also contain clauses that express the refinement result.

III.3.2 Constraints
Rules may have constraints, expressed in their WHEN clause. A constraint

is a predicate, which may contain jokers. It may be a complex predicate, built
with “&” and “or” operators.

Bart contains a stack of hypothesis (cf. III.4), which is built from the
machine to refine and its environment. A constraint is successfully checked if its
elementary elements (element not containing “&” or “or”) can be pattern-
matched with a predicate of the stack so that the complex constraint is true.
According to operators, Bart uses backtracking to try every combination of
instantiation that should be a success.

If several instantiations can make the constraint be successfully checked,
Bart uses one of them. In this case, it is better to write a more detailed
constraint to have only one result. If there are several results, Bart could choose
one which is not what the user had planned.

Version: 1.0 Page : 13 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Usually, when checking a constraint, some jokers have already been
instantiated.

Here are some examples of constraint checking, if the hypothesis stack
contains the following predicates:

Stack =
{bb <= 0,
 var = bb,
 mm : INT,
 nn = 2,
 nn : INT}

Figure 8 : Hypothesis stack for constraint checking examples

Constraint Original
instantiation

Status Result
instantiation

@a <= 0 {} Success {@a = bb}
@a <= 0 {@a = cc} Failure -
@a <=0 &
(@b = 0 OR @b
= @a)

{@a = bb} Success {@a = bb, @b = var}

@a : INT & @a
= 2

{} Success {@a = nn}
(Bart tries mm but it
fails, so the joker is
instantiated with nn)

Figure 9 : Examples of constraint checking

III.3.3 Guards
Guards are special predicates which may be present in rule constraint

clauses. They allow checking some properties on elements to refine and their
environment.

There are two kinds of guards: some are simply present in the predicate
stack. They are added at the environment loading. For instance ABCON (abstract
constant), ABVAR (abstract variable) belong to this kind of guards.

The other kind is calculated guards. For these ones, during constraint
checking, Bart doesn’t try to match them with the stack, but directly calculates if
the guard is true or false. This kind of guards may also have side effects. For
example bnum (numeric test) or bident (identifier test) are calculating guards.

Guards are simply put in the constraint as regular predicates.

Example: @a <= @b & ABVAR(@b) & bnum(@a), with @b instantiated.

Version: 1.0 Page : 14 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

It checks that @b is an abstract variable (predicate present in the stack),
that a predicate @a <= @b is present, and that @a from this predicate is a numeric
value (checked by the tool with computations).

III.3.4 Rule checking process
The following figure presents how Bart determines if a rule can be used to

refine an element:

Figure 10 : Bart testing rule process

This process is used for variables, operations and initialisation refinement,
although it is simpler for variables.

Every rule contains a pattern. First Bart tries to match it with the element
to refine. If it succeeds, it tries, if the rule has a constraint clause, to check it
against hypothesis. When checking the constraint, some jokers have already
been instantiated by pattern matching. If the constraint checking is a success or
the rule had no constraint, then it will be used to refine current element.

Variable process is simpler as variable rules have simple pattern, which is
a single joker (cf. IV). Variable rule patterns are only matched in order to
instantiate the joker representing currently refined abstract variable. This joker is
reused in WHEN or result clauses.

III.3.5 Jokers use in result

Once a rule has been chosen to refine an element, Bart must build
refinement results. These results are specified in dedicated clauses of variable or
substitution rules.

Jokers that have been instantiated by the rule selecting process are reused
in the result specification. Those which have been instantiated with identifiers

Version: 1.0 Page : 15 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

can be reused to build new identifiers. For instance, if @i joker was present in
pattern and its value is “ident”’, user can provide @i_r value in the result. This
value will be “ident_r” after instantiation.

For substitution rules, result pattern is a substitution. For variable rules, it
is a list of refinement variables identifiers, invariant and initialisation. For building
the result, Bart replaces in this pattern all joker occurrences with their values
previously calculated.

III.4 Hypothesis stack – Environment analysis

At launch, Bart builds an hypothesis stack with predicates coming from the
machine to refine and its environment, and with guards, which are predicates
giving more information about environment.

This section shows which parts of the environment are analysed to fill the
predicate stack.

Machine Predicate stack
All machines (component to refine,
abstraction, seen machines)

I &

A &

P &

SET(S) &
ENUM(E) & v1 : E &…& vn : E &
COCON(v1) & …… & COCON(vn) &

COCON(CC1) & COCON(CC2) &

COVAR(CV1) & COVAR(CV2) &

ABVAR(AV1) & ABVAR(AV2) &

ABCON(AC1) & ABCON(AC2) &

DECL_OPERATION(par1  op1(par2) |
body1) & DECL_OPERATION(op3(par3) |
body2)

REFVAR(AV3) & REFVAR(AV4)

INVARIANT
 I
ASSERTIONS
 A
Seen Machines only
PROPERTIES
 P
SETS
 S;
 E = {v1, …., vn}

CONCRETE_CONSTANTS
 CC1, CC2
CONCRETE_VARIABLES
 CV1, CV2
ABSTRACT_VARIABLES
 AV1, AV2
ABSTRACT_CONSTANTS
 AC1, AC2
OPERATIONS
 par1  op1(par2) = body1 ;
 op3(par3) = body2
Component to refine only
ABSTRACT_VARIABLES
 AV3, AV4

Figure 11 : Hypothesis stack filling with environment

This table presents only how parts of given component environment are
used to fill the stack. Bart doesn’t necessarily add predicates in this exact order.

Some others stack guards will be added to the stack during refinement
process. These guards will be only presented in IV, as they are not a part of the

Version: 1.0 Page : 16 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

initial environment analysis. Variables refinement also adds type predicates to
the stack (cf. VII.3).

III.5 Result production and writing

Once every element (variables, operations and initialisation) has been
refined, Bart must write the result. For a unique component, there may be
several output components.

Operation refinement process may define new operations called in original
ones refinement results. Furthermore, sometimes some operations can’t be
implemented in the same component. So Bart output is actually a chain of output
components, each implementation importing the following machine. Original
variables and operations, and new operations, are implemented along the chain.

For instance, following figure shows what could be a Bart output, when
refining the component “Machine”:

Figure 12 : Example of Bart output components

Thinnest arrows are importation links, and thick ones are refinement links.

If an operation refinement result calls a new imported operation, the new
one must be defined and implemented further in the chain.

Version: 1.0 Page : 17 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

IV BAR T G U AR D S – PR E D I C AT E S Y N O N Y M S

IV.1 Guards

Following tables describe Bart predefined guards, with their name, type
(stack guard or calculated guard) and short descriptions of their meaning and
side effects.

Guards description is available on command-line using the –l parameter
with bart executable. Users can add new guards, by adding suitable classes to
Bart library. Using the command line will display all registered guards, so it may
print more information than this section.

Calculated guards usually must have all their joker instantiated to be used,
except if the description explicitly says not. Most of stack guards should have
their joker instantiated, although it is not mandatory.

For example, user could write a simple constraint as ABVAR(@a) where @a
joker is not instantiated by rule pattern matching. This means the constraint
checks if at least one abstract variable is present in seen machines, and @a is
instantiated with one of seen machines abstract variables identifiers, if any.

IV.1.1 Expression guards

Guard Type Description
ABCON(expr) Stack Checks if given expression is an identifier of a

seen machine abstract constant
ABVAR(expr) Stack Checks if given expression is an identifier of a

seen machine abstract variable
B0EXPR(expr) Calculated Checks if given expression is a B0 expression
bident(expr) Calculated Checks if given parameter is an identifier
bnum(expr) Calculated Checks if given expression is a numeric literal
bpattern(expr1,expr2) Calculated Tries to make expr2 match with expr1. expr2 may

be not fully instantiated

If the match is successful, jokers of expr2 are
instantiated

COCON(expr) Stack Checks if given expression is an identifier of a
seen machine concrete constant

COVAR(expr) Stack Checks if given expression is an identifier of a
seen machine concrete variable

ENUM(expr) Stack Checks if given expression is an enumerated set
identifier from a seen machine

match(joker,expr) Calculated “joker” must be a single joker. This guard makes

Version: 1.0 Page : 18 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

joker match with expr. Joker may be
uninstantiated.

If joker is not instantiated, the guard is true and
joker value is now expr

If joker is instantiated, guard is true if g can match
with joker instantiation.

PAR_IN(expr) Stack Checks if given expression is an identifier of a
currently refined operation input parameter.

These guards are added to the stack when a new
operation refinement begins

PAR_OUT(expr) Stack Checks if given expression is an identifier of a
currently refined operation output parameter.

These guards are added to the stack when a new
operation refinement begins

REFINED(expr) Stack Checks if given expression is an identifier of a
variable introduced by another variable
refinement.

These guards are added after variables refinement
phase

REFVAR(expr) Stack Checks if given expression is an abstract variable
of the component to refine

SET(expr) Stack Checks if parameter is a non-enumerated set
identifier from seen machines

VAR_G(expr) Stack Checks if given parameter is a concrete variable
introduced by the operation refinement process.

Added when the concrete variable is introduced
VAR_LOC(expr) Stack Checks if given parameter is a local variable

introduced by current operation refinement.

Added when the local variable is introduced

Figure 13 : Bart expression guards

IV.1.2 Predicate guards

Guard Type Description
PR(pred) Calculated Checks if given predicate is true using AtelierB prover

pred must be a simple predicate with no guards
bisfalse(pred) Calculated Checks if not(pred) is present within the hypothesis

stack.

pred must be a simple predicate with no guards
bistrue(pred) Calculated Checks if pred constraint can be matched against

Version: 1.0 Page : 19 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

hypothesis

pred must be a simple predicate with no guards
bnot(pred) Calculated Checks if given constraint can not be checked against

hypothesis

pred can contain guards

Figure 14 : Bart predicate guards

IV.1.3 Substitution guards
Some of following guards are called substitution guards because their

parameter is internally represented as substitution by the tool.

Guard Type Description
DECL_OPERATION(oper) Stack “oper” must be an operation description that can

contain jokers.
The shape of the parameter is prototype
separated of operation body with a “|”, for
example: @h <-- @i(@j) | PRE @p THEN @h :=
@g(@j) END.

A guard of this type is added for each operation
of machines seen by the component to refine.

bhasflow(sub) Calculated Checks if given substitution contains flow (i.e.
branch structures as IF or SELECT substitutions)

bsearch(pattern | list |
result)

Calculated Checks if pattern substitution is present in list
substitution.

If so, result, which must be an uninstantiated
joker, takes the value of list without pattern
occurrences.

Figure 15 : Bart substitution guards

IV.2 Predicate synonyms

In addition to Bart guard extensibility, which requires code writing and
recompilation, Bart provides a mechanism to the user allowing to custom
predicates that can be used in rule constraints.

This is done using a special theory, which must be put in rule files (cf. VI).

Syntax of the predicate theory is:

PredicateTheory
=

“THEORY_PREDICATES”
“IS”
 PredicateDefinition { “|” PredicateDefinition}

Version: 1.0 Page : 20 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

 “END”
.

PredicateDefinition
=

ident “(“ JokerList “)” “ <=> ” Predicate
.

Syntax 1 : Predicate theory

Here is an example of this special theory:

THEORY_PREDICATES IS
 test(@a) <=> bnum(@a) |
 NumOrIdent(@a) <=> bident(@a) or test(@a) |
 belongs(@a,@b) <=> (@a : @b) |
 ElementOfSet(@d) < => @d : @s
END

Figure 16 : Predicate theory example

Left part of each line is a synonym. It is a predicate identifier with a list of jokers
between parentheses. Right part is the value, it’s a predicate containing jokers.
When these keywords are found in a rule file, they are replaced by predicates
described on the right part. Jokers present in the value and in the synonym are
replaced by the element given at use. Others jokers are left unchanged.

For example, if the preceding predicate theory is used and a rule has the
following constraint:

belongs(@c,INT) & 0 <= @c & ElementOfSet(@e)

, the following predicate will be actually loaded by Bart:

@c: INT & 0 <= @c & @e: @s

Every synonym predicate defined in the rule file must have been defined
before. If, for example, Bart finds test(@a) before the predicate theory that
defines test, it will load this predicate as a type predicate (predicates to be
matched with hypothesis added by variable refinement, cf. VII.3).

A synonym can use another one previously defined (as NumOrIdent uses
test in the example).

A predicate theory is local to its definition rule file. Definitions from a
particular file can not be used in another one.

Version: 1.0 Page : 21 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

V PR AG M AS AN D C O M M E N T S

In most cases, Bart tries to keep comments from original B component
elements, and to rewrite them beside suitable refinement results.

Pragmas are special comments that the user writes in the B component to
refine in order to impact the refinement process. These elements are not
processed by AtelierB, but only by Bart. AtelierB processes them as simple
comments. Each pragma begins with /* pragma_b.

V.1 EMPILE_PRE, DEPILE_PRE

These two pragmas are used to modify the top of Bart predicate stack. They
must be written before a substitution of an operation from the machine to refine.
They are used when the refinement of the substitution they are written before
begins.

/* pragma_b EMPILE_PRE(predicate) */ is used to add predicate at the top of
the hypothesis stack.

/* pragma_b DEPILE_PRE */ is used to remove last predicates added to the
stack.

For example, if Bart must refines following substitution:

IF valeur > 100 THEN
/* pragma_b EMPILE_PRE(valeur > 0) */
Substitution1

ELSE
/* pragma_b DEPILE_PRE */
Substitution2

END

Figure 17 : Substitution for EMPILE_PRE and DEPILE_PRE example

Let’s assume that Bart adds the if condition for refining the THEN branch,
and the negation of the condition for refining the ELSE branch. Following table
presents the stack state depending on pragmas presence.

Branch Stack
Without pragma With pragma

Then branch valeur > 100 &
Previous predicates

valeur > 0 &
valeur > 100 &
Previous predicates

Else branch Not(valeur > 100) & Previous predicates

Version: 1.0 Page : 22 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Previous predicates

Figure 18 : Example of stack evolution with EMPILE_PRE and DEPILE_PRE

V.2 Magic

Pragma MAGIC can be used to directly specify in B components which rules
must be used to refine certain elements (variables or substitutions). It is useful
to force use of a certain rule. The given one is used even if suitable rules could
be found before it in a regular rule research. Bart checks that the given rule can
be applied to the element (pattern matching and constraint checking).

V.2.1 For variables
Magic pragma is used to specify which rule should be used to refine a

certain variable. The syntax is /* pragma_b MAGIC(theory.rule,variable) */. It
means that given rule from given theory will be used to refine the variable.

Variable magic pragmas must be put at the machine beginning. There can
be several magic pragmas at the machine beginning. As the rule file is not
specified, Bart processes rule files in the classic rule research order to find the
rule in the suitable theory. If no such rule is found, a refinement error occurs.

V.2.2 For substitutions

Magic pragma can also be used for refining substitutions. The pragma
must be written directly before the involved substitution in the B model. The
syntax is /* pragma_b MAGIC(theory.rule) */

For example:

/* pragma_b MAGIC(theory_operation.r_affect_bool) */
bool_value := TRUE

will refine the substitution using r_affect_bool rule in theory theory_operation.

V.3 CAND

This pragma has a particular shape. It must be written /* CAND */, and be
put just before a “&” operator in B model.

It means that this operator is a conditional and (right part is not evaluated if
left part is false).

Version: 1.0 Page : 23 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

A “&” operator from B model that has a /* CAND */ pragma will match with
cand operator of Bart rule files.

Version: 1.0 Page : 24 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

VI RU L E F I L E S

VI.1 Syntax

Rule files are files containing theories, each theory containing one or
several rules used to refine given component. Rule file extension is usually .rmf.

A rule file can contain variable, operation, structure and initialisation
theories. It can also contain utility theories such as tactic, user pass, or definition
of predicates synonyms.

Syntax of rule files is:

RuleFile = [Theory { "&" Theory }].

Theory
=
VariableTheory
| OperationTheory
| StructureTheory
| InitialisationTheory
| UserPassTheory
| TacticTheory
| PredicateTheory
.

Syntax 2 : Rule files

The rule file syntax must also respect certain constraints:
• User pass can be present at most once
• Tactic can be present at most once
• Predicate theory can be present at most once

Order between theories has no syntactical impact, expect for predicates
theory: it must be defined before its elements are used in the rule.

Order between theories has an impact on the rule research, as the
standard process (no user pass or tactic) reads theories from bottom to top.

User pass and tactic can be defined anywhere in the file, even before
theories they refer to have been defined.

Version: 1.0 Page : 25 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

VI.2 Using rule files

VI.2.1 Providing rule files on command line
As it was previously described, user provides rules files when lauching Bart

by using –r parameter. This parameter can be present several times, and is not
mandatory.

When it searches for rules, Bart processes rule files from right to left,
according to command line order.

Let’s consider following command line:
./bart –m machine.mch –r rule2.rmf –r rule1.rmf

For a given element to refine, the tool will search first in rule1.rmf, and
then in rule2.rmf if the first file did not contain a suitable rule.

VI.2.2 Rule file associated to the component
If directory that contains the given machine file also contains a rule file

with same name, it has not to be specified on the command line, Bart will
automatically load it.

If such a file is present, it will be used in priority (as it had been given last
using –r parameter on command line).

For this command line:
./bart –m machine.mch –r rule.rmf

, Bart will look for machine.rmf in current directory. If it is present, rule files will
be used in this order: machine.rmf, then rule.rmf.

VI.2.3 Bart refinement rule base
The tool comes with a set of predefined rule base, contained in the file

PatchRaffiner.rmf present in Bart distribution. It provides rules that permit to
refine most of the classical B substitutions.

When Bart is used on command line, the rule base must be provided using
–r parameter.

The classical automatic refinement scheme is the following: most elements
of given component can be refined using the rule base. If an element can not be
refined with it, or needs a more specific treatment, user should write suitable
rules in rmf files that will be provided after the rule base on command line, or in
the component associated rule file.

Version: 1.0 Page : 26 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

VII VAR I AB L E S R E F I N E M E N T

VII.1 Variable theories syntax

VariableTheory
=

"THEORY_VARIABLE" ident
"IS"
 VariableRule { ";" VariableRule }
"END" ident

.

VariableRule
=

"RULE" ident ["(" JokerList ")"]
"VARIABLE" JokerList
["TYPE" ident "(" JokerList ")"]
["WHEN" Predicate]
"IMPORT_TYPE" Predicate
(VariableImplementation | VariablesRefinement)
"END"

.

VariableImplementation =
"CONCRETE_VARIABLES" JokerList
["DECLARATION" Predicate]
"INVARIANT" Predicate

.

VariablesRefinement =
"REFINEMENT_VARIABLES"
VariableRefinement { "," VariableRefinement }
"GLUING_INVARIANT" Predicate

.

VariableRefinement =
"CONCRETE_VARIABLE" joker
"WITH_INV" Predicate
"END"
|
 "ABSTRACT_VARIABLE" joker
"REFINED_BY" ident “.” ident "(" Expression ")"
"WITH_INV" Predicate
"END"

.

Syntax 3 : Variable rule theories

Each theory has an identifier, which must be repeated after the END
keyword. A theory can contain several rules, each rule having its own unique
identifier. Each following subsection will associate a variable refinement
functionality with one or more clauses of variable rules.

Version: 1.0 Page : 27 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

VII.2 Variable rule research

Variable rule research is different from rule research for operations and
initialisation. Instead of processing each variable and finding a suitable rule for it,
it processes each rule of considered theories (all variable theories or a subset if
tactic or user pass is used, cf. IX) and checks if it can be used to refine some
variables.

This is necessary because a single variable rule can be used to refine
several variables. Once a rule has been selected for one (or several) variable,
resulting refinement variables can be calculated from its clauses.

The principle of rule research is the following:

• At the beginning the tool considers the set of abstract variables to refine
• It processes every theory that could be used (according to tactic, user pass or

neither) from bottom to top. For each theory:
o The tool processes all rules of theory from bottom to top. For each variable

rule:
 Bart determines which variables can be refined by current rule
 Refined variables are removed from the set of remaining variables

Figure 19 : Processing variable theories to find rules

This process stops when there are not variables to refine anymore, or when all
variable rules to consider have been treated. Variable refinement is successful if
all variables have been associated with a rule. It is a failure if all rules have been
treated and some variables could not be refined.

For a certain rule, Bart determines which variables it can refine as follow:

• The tool tries every combination of values to instantiate joker list of VARIABLE
clause. For each instantiation:

o Bart checks constraint expressed in WHEN clause against hypothesis stack,
with jokers of VARIABLE clause instantiated

 If WHEN constraint could be checked, variables used to instantiate
VARIABLE clause can be refined by this rule

 Variable refined by the rule are removed from set of remaining
variables, to be sure they won’t be used in following tried instantiation

Figure 20 : Searching variables refined by a particular rule

If current rule has several jokers in VARIABLE clause, there are more
combinations to try than for simple variable rules.

Following example presents results of a variable rule research, with given
theories and predicates stacks. Variable to refine are {aa, bb, cc, dd, ee}.

Theories Stack
THEORY_VARIABLE t1 IS aa : INT &

Version: 1.0 Page : 28 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

 RULE r1
 VARIABLE
 @a
 WHEN
 @a : INT & @b < @a & ABCON(@b)
 […]
 END;

 RULE r2
 VARIABLE
 @a, @b
 WHEN
 @a : INT & @b : NAT
 & @a < 0 & 0 <= @b
 […]
 END

END t1 &

THEORY_VARIABLE t2 IS

 RULE r3
 VARIABLE
 @a
 WHEN
 @a : NAT & 1 <= @a
 […]
 END

END t2

bb : INT &
cc : NAT &
dd : NAT &
ee : NAT &
value < aa &
bb < 0 &
0 <= cc &
1 <= dd &
1 <= ee &
ABCON(value)

Figure 21 : Theories and stack for variable rule research example

For this stack, the rule research process is the following:

 Trying theory t2
o Trying rule r3

 Possible instantiations of VARIABLE clause: {aa}, {bb}, {cc}, {dd},
{ee}

 dd and ee can be refined by the rule
 Set of variables to refine is now {aa, bb, cc }

 Trying theory t1
o Trying rule r2

 Possible instantiations of VARIABLE clause : {aa, bb}, {bb, cc}, {aa,
cc}, {bb, aa}, {cc, bb}, {cc, aa}

 Only {bb,cc} instantiation makes the WHEN clause be checked. bb and
cc can be refined by the rule

 Set of variables to refine is now {aa}
o Trying rule r1

 aa can be refined by current rule

Figure 22 : Variable rule research example

For this example, variable refinement is successful, as each variable has been
refined.

Version: 1.0 Page : 29 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

VII.3 Storing information predicates about found variable rules

Bart allows specifying, in variable rules, predicates that will be added in
the stack if the rule is selected. These predicates will be called “Type predicates”
and are specified in TYPE clause of variable rules.

Type predicates are constituted of an identifier and a joker list between
parentheses. They are added to the stack after variables refinement, to be
reused in operations and initialisation refinement (in substitution rules
constrains). Jokers of the joker list must be have been present in VARIABLE or
WHEN clauses, because they have to be instantiated for the type predicate to be
added to the stack.

If we reuse previous example and complete rules with these TYPE clauses:

 RULE r1
 VARIABLE
 @a
 TYPE
 COMP(@a,@b)
 WHEN
 @a : INT & @b < @a
& ABCON(@b)
 […]
 END

RULE r2
 VARIABLE
 @a, @b
 TYPE
 DOUBLE(@a,@b)
 WHEN
 @a : INT & @b : NAT
 & @a < 0 & 0 <= @b
 […]
 END

RULE r3
 VARIABLE
 @a
 TYPE
 SCALAR(@a)
 WHEN
 @a : NAT & 1 <= @a
 […]
END

Figure 23 : Rules for type predicate example

These predicates will be added after variable refinement previously described:

{SCALAR(ee) &
SCALAR(dd) &
DOUBLE(bb,cc) &
COMP(aa,value)}

Figure 24 : Example of type predicates adding

VII.4 Invariant for refined abstract variables

In the output chain components, refined abstract variables won’t be
necessarily implemented in the first one. It is necessary to provide the invariant
that must be copied in component in which variables refined by the rule have not
been implemented yet.

This is done within the clause IMPORT_TYPE of the rule. This clause is a
predicate which may contain jokers. These jokers must have been present in
VARIABLE or WHEN clauses, because they have to be instantiated for the
predicate to be copied in output components.

Version: 1.0 Page : 30 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

VII.5 Specifying variable refinement results

Refinement results for abstract variables are specified in
REFINEMENT_VARIABLES or CONCRETE_VARIABLES clauses of variables rules.
These two clauses can not be used at the same time.

VII.5.1 Using CONCRETE_VARIABLES clause
Using CONCRETE_VARIABLE clause is simpler than using

REFINEMENT_VARIABLES, but it is less powerful as it is impossible to specify
abstract refinement variables. This clause corresponds to the
VariableImplementation element of the syntax presented in VII.1.

This clause contains a list of jokerized identifiers (CONCRETE_VARIABLES
clause), which will be concrete variables refining abstract variable treated by the
rule, and the invariant that will be added for these concrete variables
(INVARIANT clause). Jokers in the invariant must have been instantiated during
the rule selection. Expressions designating new concrete variable must be built
on previously instantiated jokers.

As the result is a joker list, and not a single joker, it is possible to specify
several refinement variables for a unique rule.

For example, if the rule:

RULE r_ens
VARIABLE

@a
TYPE

raffinement_ensemble(@a, @b, @c)
WHEN

SET(@c) &
@a <: @c

IMPORT_TYPE
@a <: @c

CONCRETE_VARIABLES
@a_r

INVARIANT
@a_r : @c --> BOOL &
@a = @a_r~[{TRUE}]

END

Figure 25 : Example of variable refinement rule with variable implementation

is used to refine the abstract variable “ee”, this variable will be refined by “ee_r”.
If we suppose that @c joker value determined by constraint checking was “set”,
the following predicate will be added to the invariant of the output
implementation it will be implemented in: ee_r : set --> BOOL & ee =
ee_r~[{TRUE}].

Version: 1.0 Page : 31 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

VII.5.2 Using REFINEMENT_VARIABLES clause

Using this clause allows specifying both concrete and abstract variable to
refine the abstract variable treated by the rule. It corresponds to
VariablesRefinement element of syntax described in VII.1.

This clause must contain a list of VariableRefinement elements as
described in the syntax in VII.1. Each one of these elements specify a
refinement variable (abstract or concrete), and its associated invariant. For
refinement abstract variables, rule that will be used to refine it must also be
provided, with its parameters (cf. example). Jokers contained in subparts of
these elements must all have been previously instantiated.

After the list of refinement variables, the GLUING_INVARIANT clause must
be written. This predicate is the invariant that will be put in output components
when all refinement variables will have been implemented. This predicate must
only contain previously instantiated jokers.

Following rule using REFINEMENT_VARIABLES clause is equivalent to the
previously described one:

RULE r_ens
VARIABLE

@a
TYPE

raffinement_ensemble(@a, @b, @c)
WHEN

SET(@c) &
@a <: @c

IMPORT_TYPE
@a <: @c

REFINEMENT_VARIABLES
CONCRETE_VARIABLE
 @a_r
WITH_INV
 @a_r : @c --> BOOL &
END

GLUING_INVARIANT
@a = @a_r~[{TRUE}]

END

Figure 26 : Variable refinement rule with concrete variable

If we need to refine the variable with another abstract variable, the rule should
be:

RULE r_ens
VARIABLE

@a
TYPE

raffinement_ensemble(@a, @b, @c)
WHEN

SET(@c) &
@a <: @c

IMPORT_TYPE
@a <: @c

Version: 1.0 Page : 32 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

REFINEMENT_VARIABLES
ABSTRACT_VARIABLE
 @a_r
REFINED_BY
 theory.abstract_rule(@a_r)
WITH_INV
 @a_r : @c --> BOOL &
END

GLUING_INVARIANT
@a = @a_r~[{TRUE}]

END

Figure 27 : Variable refinement rule with abstract variable

Here we directly specify which rule will be used to refine the new variable in
REFINED_BY clause. The syntax is theory.rule(parameters). Values specified
between parentheses after the rule name are parameters. This means that the
given rule must have parameters, like this:

RULE abstract_rule(@a)
VARIABLE @a
[…]
END

When a rule is given for a new refinement variable, the VARIABLE and WHEN
clause jokers are instantiated with the variable name and the parameters. Then
the regular rule checking process goes on as the WHEN constraint is verified.

If new abstract variables are introduced, a REFINEMENT component will be
introduced in output chain.

Version: 1.0 Page : 33 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

VII I SU B S T I T U T I O N R E F I N E M E N T

Substitution refinement gathers operation, initialisation and structural
rules. Operation and structure rules are identical. Initialisation rules are simpler
versions of operation rules.

Syntax and principles of substitution refinement will be presented through
operations rules. A further section will be dedicated to the different kind of
substitution rules, their usage and differences. So in first sections of this chapter,
“refining a substitution” will stand for “refining a substitution from an operation”.

Substitution refinement is more complex than variable refinement, as it
can be recursive, i.e. result of refinement for a given substitution may have to be
refined too. Furthermore, for a given substitution, refinement may need several
sub-processes (cf. SUB_REFINEMENT clause or default refinement behaviours for
parallel or semicolon). So refinement sub-branches are created and the
underlying structure that can be used to represent substitution refinement is in
fact a tree.

VIII.1Rule syntax

Here is the syntax of operation theories:

OperationTheory
=

"THEORY_OPERATION" ident
"IS"
 OperationRule { ";" OperationRule }
"END" ident

.

OperationRule
=

"RULE" ident
"REFINES" Substitution
["WHEN" Predicate]
["SUB_REFINEMENT" SubRefinementRule { "," SubRefinementRule }]
("REFINEMENT" | "IMPLEMENTATION")

 { RefinementVarDecl }
Substitution

["IMPLEMENT" IdentOrJokerList]
"END"

.

RefinementVarDecl =
("VARIABLE" | “ABSTRACT_VARIABLE” | “CONCRETE_VARIABLE”) joker
["REFINED_BY" ident "(" Expression ")"]

Version: 1.0 Page : 34 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

"WITH_INV" Predicate
"WITH_INIT" Substitution
"IN"

.

SubRefinementRule =
"(" Substitution ")" "->" "(" Joker ")"

.

Syntax 4 : Operation rule theories

Syntax for others kinds of substitution rules will be presented further.

As for variable theories, an identifier must be present after THEORY_OPERATION
keyword and repeated after the END keyword.

VIII.2Rule research

The substitution rule research process is simpler than for variables.

• For a substitution to refine, Bart processes each rule file as long as he could
not find a rule.

• For each rule file it processes operation theories to consider (all theories, or a
subset if tactic or user pass is used, cf. IX) from bottom to top.

• For each theory it processes operation rules from bottom to top
• For each rule, Bart checks if it can be used to refine currently treated

substitution.

If each rule file was processed by Bart and no rule could be found for a
certain substitution, an operation refinement may occur (cf. VIII.3).

Each operation rule has a pattern (REFINES clause) and may have a
constraint (WHEN clause). The process used to check if a rule can be applied to a
substitution is as described in III.3.4.

First the tool tries to match the rule pattern with the substitution. If it is
successful, the rule can be applied under the condition it has no WHEN constraint
or its WHEN constraint can be checked against hypothesis stack.

For example, if par_out := par_in1 + par_in2 must be refined, with following
theories and stack:

Theories Stack
THEORY_OPERATION assign_plus IS
 RULE r_assign_plus_par_in
 REFINES
 @a := @b + @c
 WHEN
 PAR_OUT(@a) & PAR_IN(@b) & PAR_IN(@c)
 […]

PAR_OUT(par_out) &
PAR_IN(par_in1) &
PAR_IN(par_in2)

Version: 1.0 Page : 35 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

 END;

 RULE r_assign_plus_const
 REFINES
 @a := @b + @c
 WHEN
 PAR_OUT(@a) & ABCON(@b) & ABCON(@c)
 […]
 END
END assign_plus &

THEORY_VARIABLE assign_minus IS
 RULE assign_minus_1
 REFINES
 @a := @b - @c
 […]
 END
END assign_minus

Figure 28 : Theories and stack for operation rule research

Let’s suppose that for this rule file there is no tactic or user pass. The rule
research will be as follow:

• First tried rule is assign_minus.assign_minus_1. Its pattern doesn’t match the
substitution, so it can not be used

• Second tried rule is assign_plus.assign_plus_const. Its pattern matches the
substitution, but its WHEN constraint can not be checked, so it can not be used

• Third tried rule is assign_plus.assign_plus_par_in. Its pattern matches the
substitution, and its WHEN constraint can be checked, so this rule is selected.

Figure 29 : Example of operation rule research

VIII.3Refinement process

The substitution refinement process depends, for given rule and
substitution, on the presence and content of SUB_REFINEMENT,
IMPLEMENTATION and REFINEMENT clauses.

SUB_REFINEMENT clause corresponds to SubRefinementRule element of
syntax described in VIII.1. It contains a “,” separated list of sub-elements.

 Each sub-element left part is a substitution that may contain jokers.
These jokers must all have been instantiated by pattern matching and constraint
checking. Right part of the sub-element must be a single and still uninstantiated
joker.

This clause is used to refine the given substitution and store the result in
given joker. This is done before calculation of the rule substitution result, so the
sub-refinement can be used to express the result.

IMPLEMENTATION clause expresses the result of current rule. It contains a
substitution which may contain jokers. All these jokers must have been

Version: 1.0 Page : 36 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

instantiated during pattern matching, constraint checking or sub-refinement
processing. IMPLEMENTATION clause may also contain concrete operation
refinement variable declaration (cf. VIII.6).

Using IMPLEMENTATION clause means that given result is the final result
of current branch and doesn’t need to be refined again.

REFINEMENT clause expresses the result of current rule. It contains a
substitution which may contain jokers. All these jokers must have been
instantiated during pattern matching, constraint checking or sub-refinement
processing. REFINEMENT clause may also contain abstract or concrete operation
refinement variable declaration (cf. VIII.6).

Using REFINEMENT clause means that given result is not the final result of
current branch. The result of rule must be refined.

IMPLEMENTATION and REFINEMENT clause can not be both used in a same
rule. When a rule has been selected (and eventual sub-refinements have been
processed), the rule result is calculated by instantiating jokers of its result
clause.

A rule can contain both SUB_REFINEMENT and REFINEMENT clauses. In
this case, each subrefinement is calculated and stored in its joker. Then content
of REFINEMENT clause is instantiated and refined.

For a substitution to refine, if no rule could be found, Bart will check if it
can be refined using a “predefined behaviour”. For some kinds of substitutions,
Bart may know how to refine them if no rule is present. Predefined behaviour can
be the end of current branch (skip substitution refinement) or a simple node of
refinement tree. In this case, Bart may create one (BEGIN substitution
refinement) or several (semicolon refinement) subnodes in refinement tree for
current substitution. For each new subnode created by predefined refinement
behaviour, the recursive refinement process is restarted as a rule or predefined
behaviour will be searched for each one.

Following figure summarizes the process:

Version: 1.0 Page : 37 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Figure 30 : Process of substitution refinement

Rectangles are actions processed by Bart. Ellipses are decisions. Error and
success boxes represent error and success for current branch (an error in current
branch means error in the whole refinement process).

Subrefinement computations are represented aside because they must be
calculated for the result to be instantiated, but refinement of substitutions
contained in left part of SUB_REFINEMENT clauses sub-elements uses the same
process.

For example, if we consider following substitution to refine:

IF in < 0 THEN
aa := aa + 1

ELSE
aa := 0

END

and the following theories:

THEORY_OPERATION theory IS

RULE assign
REFINES
 @a := @b
IMPLEMENTATION

Version: 1.0 Page : 38 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

 @a := @b
END;

RULE r_assign_plus_2
REFINES
 @a := @b + @c
IMPLEMENTATION
 @a := @b + @c
END;

RULE r_assign_plus
REFINES
 @a := @b + @c
WHEN
 bnot(B0EXPR(@a))
REFINEMENT
 #1 := @b + @c ;
 @a := #1

 END ;

RULE r_if
REFINES
 IF @a THEN @b ELSE @c END
SUB_REFINEMENT
 (@b) -> (@d),
 (@c) -> (@e)
IMPLEMENTATION
 #1 := bool(@a);
 IF #1 = TRUE THEN @d ELSE @e END
END

END theory

Figure 31 : Substitution and theories for rule tree example

#x expressions written in rules result clauses are used to introduce local
variables (cf. VIII.5.5).

For this example the resulting rule tree will be:

Version: 1.0 Page : 39 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Figure 32 : Example of refinement rule tree

Each rectangle (except the first one which shows only the first found rule)
shows the substitution to refine at current node, and the found rule.

First rule (r_if) has its result described in an IMPLEMENTATION clause but
the refinement goes on as it contains SUB_REFINEMENT clauses. The refinement
of r_assign_plus_rule_2 rule result uses the predefined refinement behaviour for
semicolon.

For the refinement of this substitution, the result will be:

l_1 := bool(in < 0);
IF l_1 = TRUE THEN

l2 := bb + 1;
 aa := l_2
ELSE

 aa := 0
END

VIII.4Default refinement behaviours

When a substitution must be refined and no rule could be found for it, Bart
may apply a predefined behaviour to process refinement further.

If both a rule and a predefined behaviour are suitable for a substitution,
the rule will be applied. For example Bart knows by default how to refine a
semicolon substitution. But if a rule is present with @a;@b pattern and a WHEN
constraint that can be checked for current substitution, Bart will use the rule.

Version: 1.0 Page : 40 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Following table show which kind of substitutions can be refined by Bart
even if no rule could be found in rule files. Here are only shown regular B
substitutions that can be refined by predefined behaviours. Some Bart specific
substitutions use this mechanism to control the refinement process, they will be
described later.

In this table result(sub) means refinement result of substitution sub.

Substitution Refinement result Comment
Semicolon :
sub1 ;
sub 2

result(sub1);
result(sub2)

-

Parallel:
sub1 ||
sub2

sequentialization(
result(sub1) ;
result(sub2)
)

Result is
sequentialized.
Variables modified
in left part and
read in right part
are stored in local
variables

Bloc substitution:
BEGIN
 sub
END

BEGIN
 result(sub)
END

-

Guarded substitution:
PRE
 predicate
THEN
 sub
END

BEGIN
 result(sub)
END

“predicate” is
added to the
hypothesis stack
for refining “sub”

Assertion substitution:
ASSERT
 predicate
THEN
 sub
END

ASSERT
 predicate
THEN
 result(sub)
END

“predicate” is
added to the
hypothesis stack
for refining “sub”

Operation call Refined by itself -
Skip Refined by itself -
Local variables :
VAR
 list
IN
 sub
END

VAR
 list
IN
 result(sub)
END

VAR_LOC
hypothesis is
added to the
stack for each
element of “list”

Loop substitution:
WHILE condition DO
 body
INVARIANT
 I
VARIANT
 V
END

WHILE condition DO
 result(sub)
INVARIANT
 I
VARIANT
 V
END

“condition” is
added to the
hypothesis stack
for refining “body”

Figure 33 : Bart predefined refinement behaviours

Version: 1.0 Page : 41 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

As described in the table, a sequentialization is done when a parallel
substitution is refined. For example if aa := bb || cc := aa must be refined and
each branch is refined by itself, result without sequentialization would be aa :=
bb ; cc := aa, which is incorrect. So Bart makes sequentialization, and the real
produced result will be l_1 := aa; aa := bb; cc := l_1, where l_1 is a local
variable declared for the sequentialization. The local variable will be declared
with others ones coming from # declaration in rules (cf. VIII.5.5).

VIII.5Special refinement substitutions

In operation rules result clauses, it is possible to use Bart specific
substitutions to control the refinement process or add elements to the produced
result.

These substitutions don’t exist in regular B models, and they can only be
written in REFINEMENT or IMPLEMENTATION clauses of substitution rules and
used to express the rule result. As they are present only in result clauses, all
jokers contained in these substitutions must have been instantiated before. They
are presented in following sections.

VIII.5.1 Iterators
Several substitutions can be used in Bart to manage iterators. These

substitutions become WHILE loops when the result of rule they are written in is
calculated. At the same time, some of them generate iterator machines that
contains operations called in generated while loops. These generated machines
are then refined by Bart using predefined rules.

VIII.5.1.1 TYPE_ITERATION

TYPE_ITERATION substitution allows specifying loops iterating on all
elements of a set. In the produced implementation, this substitution is replaced
by an automatically built WHILE loop which calls operations from an iteration
machine created by Bart.

TYPE_ITERATION substitution syntax is as follow:

"TYPE_ITERATION" "("
[("tant_que"|"while") "=>" IdentOrJokerOrVarDecl ","]
"index" "=>" Expression ","
"type" "=>" Expression ","
"body" "=>" "(" Substitution ")" ","
"invariant" "=>" Predicate

")"

Version: 1.0 Page : 42 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Syntax 5 : Type iteration

The different clauses meaning is:
• while: It must be given a variable (instantiated or not). This clause may be

used if the iteration might be stopped before all elements of the set have
been processed. If while clause is present, the loop continues as long as
there are still more elements in the set, and given variable is TRUE. Given
variable should be set to FALSE in the user defined loop body part to stop
the loop

• index : Name of the variable that will contain each element of the given
set

• type : Set the loop is iterating on
• body : User defined part of the loop body
• invariant : User defined part of the loop invariant

This shows how Bart generates the WHILE loop for a TYPE_ITERATION
substitution (with no while clause):

vg_loop <-- init_iteration_TYP E ;
WHILE vg_loop = TRUE DO

vg_loop, i n d e x <-- continue_iteration_TYP E ;
b o d y

INVARIANT
vg_loop= bool(TYP E _remaining /= {}) &
TYPE _remaining \/ TYPE _done = TYPE &
TYPE _remaining /\ TYPE _done = {} &
i n v a r i a n t

VARIANT
card(TYPE _remaining)

END

Figure 34 : Type iteration generated loop, without while parameter

In this example, vg_loop is the automatically generated variable used to
iterate on elements of the set. If a while clause is added to the TYPE_ITERATION
substitution, generated loop becomes:

vg_loop <-- init_iteration_TYP E ;
WHILE vg_loop = TRUE DO

vg_loop, i n d e x <-- continue_iteration_TYP E ;
b o d y ;
vg_loop := bool(vg_loop = TRUE & wh i l e = TRUE)

INVARIANT
vg_loop= bool(TYP E _remaining /= {}) &
TYPE _remaining \/ TYPE _done = TYPE &
TYPE _remaining /\ TYPE _done = {} &
i n v a r i a n t

VARIANT
card(TYPE _remaining)

Version: 1.0 Page : 43 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

END

Figure 35 : Type iteration generated loop, with while parameter

In these generated loops, called operations are defined in the following
generated machine:

MACHINE
iterator_name

ABSTRACT_VARIABLES
TYPE _remaining, TYP E _done

INVARIANT
TYPE _remaining <: TYPE &
TYPE _done <: TYPE &
TYPE _remaining /\ TYPE _done = {}

INIT IAL I SATION
TYPE _remaining := {} ||
TYPE _done := {}

OPERATIONS

continue <-- init_iteration_TYP E =
BEGIN

TYPE _done := {} ||
TYPE _remaining := TYPE ||
c o n t i n u e := b o o l (TYPE /= {})

END;

continue, elt <-- continue_iteration_TYPE =
PRE

TYPE _remaining /= {}
THEN

ANY
nn

WHERE
nn : TYPE &
nn : TYPE _remaining

THEN
TYPE _done := TYPE _done \/ {nn} ||
TYPE _remaining := TYPE _remaining - {nn} ||
elt := nn ||
continue := bool(TYPE _remaining /= {nn})

END
END

END

Figure 36 : Type iteration generated machine

This is a simple example in which a single iterator is generated for a given
refined component. Generated machines can be more complex (cf. VIII.5.1.4)

Version: 1.0 Page : 44 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

VIII.5.1.2 INVARIANT_ITERATION

As TYPE_ITERATION, this substitution allows to automatically generate
loops. But here, iteration is done on the image of a relation element.

INVARIANT_ITERATION syntax is:

"INVARIANT_ITERATION" "("
[("tant_que"|"while") "=>" IdentOrJokerOrVardecl ","]
"1st" "index" "=>" Expression ","
"2nd" "index" "=>" Expression ","
"constant" "=>" Expression ","
"1st" "type" "=>" Expression ","
"2nd" "type" "=>" Expression ","
"body" "=>" "(" Substitution ")" ","
"invariant" "=>" "(" Predicate ")"

")"

Syntax 6 : Invariant iteration syntax

Clauses meaning is:

• while : If present, provides a variable which permits to interrupt the loop
before its natural ending

• constant : Defines the relation which will be used to iterate
• 1st index: Defines original element of iteration. Iteration will be done on

constant[{1st index}]
• 2nd index : Element storing current element of the loop
• 1st type : Type of constant domain elements
• 2nd type : Type of constant range elements
• body : User defined part of the loop body
• invariant : User defined part of the loop invariant

Generated loop for an INVARIANT substitution is:

vg_loop <-- init_iteration_CONSTANT (i n d e x 1);
WHILE vg_loop = TRUE DO

vg_loop, i n d e x 2 <-- continue_iteration_CONSTANT (i n d e x 1);
b o d y

INVARIANT
vg_loop = bool(CONSTANT_ remaining /= {}) &
CONSTANT _remaining \/ CONSTANT _done = CONSTANT [{i n d e x 1 }]
CONSTANT _remaining /\ CONSTANT _done = {} &
i n v a r i a n t

VARIANT
card(CONSTANT_ remaining)

END

Figure 37 : Invariant iteration generated loop

Version: 1.0 Page : 45 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

As for TYPE_ITERATION, vg_loop := bool(vg_loop = TRUE & while = TRUE) will
be added to the loop body if a while substitution is added.

Generated iteration machine for a single INVARIANT_ITERATION is:

MACHINE
iterator_name

ABSTRACT_VARIABLES
CONSTANT _remaining,
CONSTANT _done

INVARIANT
CONSTANT _remaining <: ran(CONSTANT) &
CONSTANT _remaining <: TYPE 2 &
CONSTANT _done <: TYPE 2 &
CONSTANT _remaining /\ CONSTANT _done = {}

INIT IAL I SATION
CONSTANT _remaining := {} ||
CONSTANT _done := {}

OPERATIONS

continue <-- init_iteration_CONSTANT (elt) =
PRE

elt : TYPE 1
THEN

CONSTANT _done := {} ||
CONSTANT _remaining := CONSTANT [{elt}] ||
continue := bool(CONSTANT [{elt}] /= {})

END;

continue, elt <-- continue_iteration_CONSTANT =
PRE

CONSTANT _remaining /= {}
THEN

ANY
nn

WHERE
nn : TYPE 2 &
nn : CONSTANT _remaining

THEN
CONSTANT _done := CONSTANT _done \/ {nn} ||
CONSTANT _remaining := CONSTANT _remaining - {nn} ||
elt := nn ||
continue := bool(CONSTANT _remaining /= {nn})

END
END
END

Figure 38 : Invariant iteration generated machine

Version: 1.0 Page : 46 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

VIII.5.1.3 CONCRETE_ITERATION

CONCRETE_ITERATION substitution also produces automatically generated
WHILE loops. Unlike TYPE_ITERATION or INVARIANT_ITERATION, these loops
don’t use any iteration machine.

Syntax for CONCRETE_ITERATION substitution is:

"CONCRETE_ITERATION" "("
"init_while" "=>" "(" Substitution ")" ","
("tant_que"|"while") "=>" Expression ","
"body" "=>" "(" Substitution ")" ","
"invariant" "=>" "(" Predicate ")" ","
"variant" "=>" Expression ","
"flag" "=>" IdentOrJoker

")"

Syntax 7 : Concrete iteration

The generated loop for this substitution is:

i n i t _ w h i l e ;
vg_loop := bool(wh i l e);
WHILE vg_loop = TRUE DO

/*? Flag iteration: f l a g ?*/
b o d y ;
vg_loop := bool(wh i l e)

INVARIANT
invariant

VARIANT
variant

END

Figure 39 : Concrete iteration generated loop

VIII.5.1.4 Iteration components

During refinement process, Bart stores information about iteration
machines used by operations refinement and defined by TYPE_ITERATION or
INVARIANT_ITERATION substitutions.

 After splitting refinement results in output components (cf. X), Bart
creates an iteration machine associated to each generated implementation, if
necessary. Each iteration machine generated contains variables and operations
for all iterators defined and used by refinement of operations implemented in
associated implementation.

Following table presents which abstract variables and operations are
generated in iteration machines for the refinement of a component “Machine”,
according to TYPE_ITERATION and INVARIANT_ITERATION substitutions used
during refinement.

Version: 1.0 Page : 47 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Iterators used by operations
refinement

Associated iteration machine

Machine_i -
Operation1:
 No iterator defined
Machine1_i Machine1_it
Operation2:
 Type iterator on type 1
 Invariant iterator on const1
Operation3:
 Type iterator on type2
Operation4:
 Invariant iterator on const1

Abstract variables:
 type1_remaining, type1_done,
 const1_remaining, const1_done,
 type2_remaining, type2_done
Operations:
 init_iteration_type1 ;
 continue_iteration_type1;
 init_iteration_const1;
 continue_iteration_const1;
 init_iteration_type2;
 continue_iteration_type2

Machine2_i Machine2_it
Operation5:
 Type iterator on type2
Operation6:
 Invariant iterator on const2

Abstract variables:
 type2_remaining, type2_done,
 const2_remaining, const2_done
Operations:
 init_iteration_type2;
 continue_iteration_type2;
 init_iteration_const2;
 continue_iteration_const2

Figure 40 : Example of generated iterators

If a same iterator is used by several operations of implementation, it is
only created once in iteration machine. Bart gathers all iteration variables and
operations necessary for all refinement results written in the implementation.
Invariant and initialisation are generated according to defined variables. Real
iteration machines are actually merges of iteration machines presented in
VIII.5.1.1 and VIII.5.1.2.

VIII.5.2 Using operations from seen machines - SEEN_OPERATION

SEEN_OPERATION substitution is used to insert a call to an operation from
a seen machine in the rule result. Its syntax is:

"SEEN_OPERATION" "("
"name" "=>" IdentOrJoker ","
"out" "=>" "(" [IdentJokerVardeclList] ")" ","
"in" "=>" "(" [IdentJokerVardeclList] ")" ","
“ body “ “ => “ “(“ Substitution “)“

") "

Syntax 8 : Seen operation

• name : Name of the operation to use
• out : Output parameters of the operation call

Version: 1.0 Page : 48 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

• in : Input parameters of the operation call
• body: Substitution that may be used by Bart to control in seen machines

that it corresponds to the given identifier. For now the control is not done,
so the clause can be filled with @_ joker

For example,
SEEN_OPERATION(

name => operation,
out => (out1),
in => (in1),
body => (@_))

will be converted in out1 <-- operation(in1) operation call.

When SEEN_OPERATION is used, Bart doesn’t check if the operation exists
or if the user has provided the correct number of parameters. The operation is
supposed to exist.

If the operation existence must be checked, it is better to use the
DECL_OPERATION guard in the WHEN clause of the rule, and then express the
result using jokers instantiated by constraint checking.

VIII.5.3 Defining imported operations - IMPORTED_OPERATION

IMPORTED_OPERATION substitution lets the user create a new operation
that will be called in this one refinement and inserts a call to it. The newly
created operation will be declared further in the output components chain. For
example, if currently refined operation is implemented in Machine1_i, the new
one will be first declared in Machine2, and implemented in Machine2_i or a
further implementation.

In the generated implementation, IMPORTED_OPERATION will be replaced
by a call to the created operation.

IMPORTED_OPERATION substitution syntax is:

"IMPORTED_OPERATION" "("
["name" "=>" ident ","]
"out" "=>" "(" [IdentJokerVardeclList] ")" ","
"in" "=>" "(" [IdentJokerVardeclList] ")" ","
"pre" "=>" "(" Predicate ")" ","
"body" "=>" "(" Substitution ")"

")"

Syntax 9 : Imported operation

• name: This facultative clause can contain a base for generating the
name of the new operation. If it is given, Bart may add number suffixes
to the identifier to distinguish between different generated operation
(as a rule can be selected several times)

• output: Output call parameters. Formal output parameters for the
operation definition will also be generated from this list

Version: 1.0 Page : 49 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

• input: Input call parameters. Formal input parameters for the operation
definition will also be generated from this list

• pre : User defined part of the precondition for the new operation
• body : The new operation body

VIII.5.3.1 Naming new operations

If name clause is given in IMPORTED_OPERATION, Bart will generate a
unique name from it by adding a number suffix to the identifier.

Else Bart will use current operation name as a base, and will add number
suffix to it. For example, IMPORTED_OPERATION substitution used in refinement
of operation1 may generate operation1_1, operation1_2, etc.

As there can be several level of overlapped operations (ex: operation
generates operation1 which generates others operations), Bart may add several
numbers to an original pattern. To avoid conflicts in naming, it adds underscore
after the first counter and before each counter greater than 10.

For example :

operation -> operation1 -> operation1_1 -> operation1_1_11
operation -> operation1 -> operation1_1 -> operation1_11 -> operation1_111

Figure 41 : Imported operation naming example

VIII.5.3.2 Operation parameters

The user can provide input or output parameters for the operation.

Following table presents an IMPORTED_OPERATION treatment in a simple
case where instantation is {@a = aa, @b = bb, @c= cc}. For this example we do
not consider operation abstraction and hypothesis stack (cf. VIII.5.3.3).

Rule Operation call Generated operation
IMPORTED_OPERATION(

name => add
out => (@a),
in => (@b,@c),
pre => (@b : INT &

@c : INT),
body => (@a := @b +

@c))

aa <-- add1(bb, cc) out <-- add1(in1, in2) =
PRE

in1 : INT &
in2 : INT

THEN
out <-- in1 + in2

END

Figure 42 : Simple imported operation example

In some case, “body” can contain, when instantiated, identifiers that are
local variables or current operation parameters, and that are not directly put by
user as parameters of new operation.

Version: 1.0 Page : 50 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

In these cases, generated operation would be incorrect, as these
identifiers would be unknown in the machine the new operation will be declared
in. So in these particular cases, Bart automatically adds inputs (for read ones) or
output (modified ones) parameters to give these values to the newly defined
operation.

Let’s consider a new example with instanciation {@a = aa, @e = bb + cc},
in which bb and cc are input parameters of current refined operation, and
without considering the hypothesis stack or operation abstraction:

Rule Operation call Generated operation
IMPORTED_OPERATION(

name => add
out => (@a),
body => (@a := @e))

aa <-- add1(bb, cc) out <-- add1(in1,in2) =
BEGIN

out <-- in1 + in2
END

Figure 43 : Imported operation example with parameters adding

As bb and cc are local parameters that can not be directly exported in new
operation body, two input parameters are automatically added to new defined
operation.

If bb and cc had been global variables, Bart would not have added input
parameters, as they could have been directly exported.

Functionality of automatically adding parameters is used to avoid
typecheck errors when a parameter is missing, when local parameters can not be
identified because they are contained in a joker (as in the example, @e = bb +
cc), or to help the user when the instantiated body clause is huge and contains a
lot of identifiers.

However, it is still better when every parameter that should be present in
“in” or “out” clauses is, so that user can have a better control of the refinement.

VIII.5.3.3 Imported operation preconditions

As it has been said before, user can provide to Bart a piece of invariant
that will be added to the generated operation. But Bart also automatically adds
predicates to the operation invariant.

These added predicates are:
• Preconditions of abstractions of currently refined operation
• Predicates added by the refinement process while refining current

operation (LH substitution, guarded substitution)

These predicates correspond in fact to every predicates added to the stack
since the beginning of current operation refinement. When they are added, they
are filtered with identifiers appearing in the new operation body, so that only
relevant predicates are added.

Version: 1.0 Page : 51 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

 Bart, when adding those predicates, doesn’t check if user has put some of
them in its “pre” clause, so sometimes predicates can appear several times.
Basic typing predicates are often automatically added as they are normally
present in previous abstractions. “pre” clause of the substitution should better be
used for more complex and specific predicates.

Here is an example of Bart automatic predicate adding. The instantiation is
{@a = aa, @b = bb, @c = cc}. bb and cc are input parameters of current
operation, and the stack contains bb : INTEGER & cc : INTEGER (coming for
example from operation precondition).

Rule Operation call Generated operation
IMPORTED_OPERATION(

name => add
out => (@a),
in => (@b,@c),
body => (@a := @b +

@c))

aa <-- add1(bb, cc) out <-- add1(in1, in2) =
PRE

in1 : INTEGER &
in2 : INTEGER

THEN
out <-- in1 + in2

END

Figure 44 : Example of imported operation precondition adding

VIII.5.3.4 Imported operations refinement

Refinement of given component operations may introduce new imported
operations.

Once all original operations have been refined, Bart processes new
imported operations to refine them. If their refinement introduces new
operations, the process goes on until there are no new operations.

VIII.5.4 Controlling the refinement process

Some substitution that user can write in result clauses are not really
expressing the result but permits to control the following refinement.

VIII.5.4.1 IMPLEMENT

IMPLEMENT syntax is:

ImplementSubstitution = "IMPLEMENT" "(" Substitution ")".

Syntax 10 : Implement

When IMPLEMENT is present in a result clause it means that its content will
be written in the result without being more refined.

Version: 1.0 Page : 52 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Usage of IMPLEMENT only makes sense in a REFINEMENT clause, as
refinement stops when result is expressed in an IMPLEMENTATION one.

For example if IMPLEMENT(aa := 1) is present in a rule clause, aa := 1 will
be written without being more refined, while others parts of the result clause
may have their refinement processed further.

VIII.5.4.2 LH

LH stands for “Local Hypothesis” substitution. Its syntax is:

"LH" Predicate "THEN" Substitution "END"

Syntax 11 : LH

It is not translated in B substitution by Bart when the result clause is
instantiated, but it allows the user to add a hypothesis for refining given
substitution.

As IMPLEMENT, LH usage doesn’t make sense in IMPLEMENTATION clause.
It can be used in REFINEMENT, and, unlike other substitutions presented in this
section, in SUB_REFINEMENT clause.

For example, with the following elements:

Substitution to refine Rule
IF val > 0 THEN
 aa := TRUE
ELSE
 aa := FALSE
END

RULE r_if
REFINES
 IF @a THEN @b ELSE @c END
SUB_REFINEMENT
 (LH @a THEN @b END) -> (@d),
 (LH not(@a) THEN @c END) -> (@e)
IMPLEMENTATION
 #1 := bool(@a) ;
 IF #1 = TRUE THEN @d ELSE @e END
END

Figure 45 : Substitution and rule for LH example

, following figure shows the evolution of the stack, if we suppose it is empty
before applying the rule.

Version: 1.0 Page : 53 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Figure 46 : Example of stack filling with LH substitutions

VIII.5.5 Local variable declarations
In Bart result clauses, it is possible to declare local variables and use them

to express the result substitution.
The syntax is a “#” character followed by a number. If the same “#”

declaration appears several times in the clause, it designates the same variable.
Same declaration can be used in different rules, they will stand for different local
variables.

If local variables are used by found rules during the whole operation
refinement process, they will all be declared in a local variables (VAR…IN)
substitution which will embrace the operation refinement result. For more
information on formatting operation refinement results, see X.1.

Version: 1.0 Page : 54 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Here is an example (we suppose that subrefinements are refinement by
themselves):

Operation body Rule Operation refinement
result

BEGIN
 IF value > 0 THEN
 Aa := TRUE
 ELSE
 Aa := FALSE
 END ||
 IF value2 > 0 THEN
 Bb := TRUE
 ELSE
 Bb := FALSE
 END
END

RULE r_if
REFINES
 IF @a THEN @b ELSE @c END
SUB_REFINEMENT
 (LH @a THEN @b END) -> (@d),
 (LH not(@a) THEN @c END) ->
(@e)
IMPLEMENTATION
 #1 := bool(@a) ;
 IF #1 = TRUE THEN @d ELSE @e
END
END

VAR l_1,l_2
 L_1 := bool(value > 0);
 IF l_1 = TRUE THEN
 Aa := TRUE
 ELSE
 Aa := FALSE
 END;
 L_2 := bool(value2 > 0);
 IF l_2 = TRUE THEN
 Bb := TRUE
 ELSE
 Bb := FALSE
 END
END

Figure 47 : Local variable declaration example

VIII.6Declaring operation refinement variables

Besides declaring local variables during operation refinement, it is also
possible to declare new abstract or concrete variables that can be used in
REFINEMENT clauses of rules.

This kind of declaration corresponds to RefinementVarDecl element of
syntax described in VIII.1.

If VARIABLE or ABSTRACT_VARIABLE keyword is used, it means that the
new variable is an abstract one. In this case, REFINED_BY clause may be present
to specify which rule must be used. Syntax is
REFINED_BY(theory.rule(parameters)). Parameters usage is identical as for
abstract variable refinement. If REFINED_BY clause is not present, the rule for
the variable will be simply searched in rule files.

If CONCRETE_VARIABLE is used, the new variable is a concrete one. In
this case, usage of REFINED_BY clause doesn’t make sense.

Invariant and initialisation for new variable are expressed in WITH_INV
and WITH_INIT clauses.

If new abstract variables are introduced, a REFINEMENT component will be
introduced in output chain.

VIII.7Usage of substitution rules

Version: 1.0 Page : 55 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

VIII.7.1 Structural and operation rules - Operation refinement

VIII.7.1.1 Structural rules

Structural rules are exactly identical to operation rules, but they are
gathered in theories called structure theories. So structure theories syntax is:

StructureTheory
=

"THEORY_STRUCTURE" ident
"IS"
 OperationRule { ";" OperationRule }
"END" ident

.

Syntax 12 : Structure theories

Structural rules are only used in certain cases for refining operations of the
given component to refine. Newly introduced imported operations are only
refined with operation rules from operation theories.

VIII.7.1.2 Operation refinement process

Structural rules are used to refine operations from given component that
contains control structures, i.e. at least one following substitutions: IF, SELECT.
They are usually used to split IF and SELECT structure branches into several
operation calls. Bart rule base contains structure theories allowing to treat these
substitutions. But structure rules researching process is exactly identical to
operation rules one, so user can define his own rules in his rule files.

Following figure shows how Bart uses structure and operation theories to
refine operations of given component. This process is not used for refinement of
created imported operations.

Version: 1.0 Page : 56 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Figure 48 : Usage of structure and operation rules

Bart tries structural refinement if current operation contains structure
substitution. A structural refinement error occurs if Bart can not find structure
rules to completely refine the operation. If such an error occurs, Bart will try to
refine the operation with operation rules from the beginning.

Consequently, an operation rule tree can contain only one kind of rules:
structure rules (for operation containing structure that could be structurally
refined) or operation rules (for operations without structure, or operations with
structure that could not be structurally refined).

Once all original operations have been refined using structure or operation
rules, imported operations introduced by this process are refined using
exclusively operation rules.

Here is an example of refinement using structure and operation rules.

Rules Operations
THEORY_STRUCTURE structure IS

 RULE default
 REFINES
 @a
 WHEN

operation(val) =
PRE
 val : INTEGER
THEN
 IF val > 0 THEN
 aa := TRUE

Version: 1.0 Page : 57 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

 bnot(bhasflow(@a))
 IMPLEMENTATION
 IMPORTED_OPERATION(
 out => (),
 in => (),
 pre => (0=0),
 body => (@a))
 END;

 RULE if_then_else
 REFINES
 IF @a THEN
 @b
 ELSE
 @c
 END
 REFINEMENT
 #1 := bool(@a);
 IF #1 = TRUE
 THEN
 LH @a THEN @b END
 ELSE
 LH not(@a) THEN @c END
 END
 END

END structure &

THEORY_OPERATION operation IS

 RULE r_affect_bool_2
 REFINES
 @a := @b
 WHEN
 match(@b,TRUE) or match(@b,FALSE)
 IMPLEMENTATION
 @a := @b
 END;

 RULE r_affect_bool_1
 REFINES
 @a := @b
 WHEN
 (match(@b,TRUE) or
match(@b,FALSE))
 & bnot(B0EXPR(@a))
 IMPLEMENTATION
 #1 := @b
 @a := #1
 END;

END operation

 ELSE
 aa := FALSE
 END
END;

out <-- affect_true =
BEGIN
 out := TRUE
END

Figure 49 : Theories and operation for operation refinement example

For these rules and operations, refinement results are:

Operation Found rules Produced result
operation - Guarded substitution refinement

- structure.if_then_else
- LH refinement
- structure.default
- LH refinement
- structure.default

operation(val) =
VAR l_1 IN
 l_1 := bool(val > 0);
 IF l_1 = TRUE THEN
 operation1
 ELSE
 operation2
 END

Version: 1.0 Page : 58 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

END
affect_true - operation.r_affect_bool_2 out <-- affect_true =

BEGIN
 out := TRUE
END

operation1 =
BEGIN
 aa := TRUE
END

- operation.r_affect_bool_1
- operation.r_affect_bool_2

operation1 =
VAR l_1 IN
 l_1 = TRUE;
 aa := l_1
END

operation2 =
BEGIN
 aa := FALSE
END

- operation.r_affect_bool_1
- operation.r_affect_bool_2

operation2 =
VAR l_1 IN
 l_1 = FALSE;
 aa := l_1
END

Figure 50 : Operation refinement example

Here we supposed hypothesis stack did not contain any predicates
concerning aa variable, so that generated imported operation don’t have
preconditions.

VIII.7.2 Initialisation rules
For refining the initialisation of treated component, Bart uses special

substitution rules called initialisation rules, gathered in initialisation theories.
Initialisation rules are restricted substitution rules.

Initialisation rules syntax is presented hereafter:

InitialisationTheory
=

"THEORY_INITIALISATION" ident
"IS"

InitialisationRule { ";" InitialisationRule }
"END" ident

.

InitialisationRule
=

"RULE" ident
"REFINES" Substitution
["WHEN" Predicate]
"IMPLEMENTATION" Substitution
"END"

.

Syntax 13 : Initialisation theories

Bart refines the given component initialisation as it would refine an
operation body, but with using initialisation rules instead of structure and
operation rules.

Restrictions in initialisation rules in comparison to other substitution rules
are:

Version: 1.0 Page : 59 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

• Initialisation rule result can only be specified in an IMPLEMENTATION
clause. So an initialisation rule is always terminal

• Usage of subrefinements (SUB_REFINEMENT clause) is not allowed in
initialisation rules

• Introduction of new global variables is not allowed in initialisation rules
• Introduction of local variables is not allowed in initialisation rules

When Bart refines initialisation, it usually goes down in the substitution by
applying parallel predefined refinement behaviour, and searches for rules for
each atomic initialisation element. So result of initialisation refinement is often a
semicolon separated list of atomic substitutions.

When output components are generated, Bart splits initialisation in
elementary elements. Each elementary element is an initialisation for a given
variable. When a refinement variable is implemented in an output component, its
associated initialisation element is also written.

As it is split and dispatched along output components, initialisation of
given component to refine must be a parallel or semicolon separated list of
elementary elements, each elementary element initialising a unique abstract
variable.

Let’s consider following initialisation and rules:

Initialisation Rules
aa := 1 ||
bb :: INTEGER ||
cc :: BOOL

THEORY_INITIALISATION init IS
RULE scalar_ini1
REFINES

@a := @b
WHEN

SCALAR(@a) &
B0(@b)

IMPLEMENTATION
@a := @b

END;

RULE scalar_ini2
REFINES

@a :: @b
WHEN

SCALAR(@a) &
PR(0 : @b)

IMPLEMENTATION
@a := 0

END;

RULE scalar_ini3
REFINES

@a :: @b
WHEN

SCALAR(@a) &
PR(FALSE : @b)

IMPLEMENTATION
@a := FALSE

END
END init

Figure 51 : Substitution and theories for initialisation refinement example

Version: 1.0 Page : 60 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

where aa, bb, cc are abstract variables refined with a variable rule adding
SCALAR predicate. Following table shows the results:

Found rule Initialisation elementary element
Parallel refinement
 Parrallel refinement
 Init.scalar_ini1
 Init.scalar_ini2
 Init.scalar_ini3

aa := 1
bb := 0
cc := FALSE

Figure 52 : Initialisation refinement example

Version: 1.0 Page : 61 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

IX TAC T I C AN D U S E R PAS S T H E O R I E S

Tactics and user passes should be used in Bart rule files to control the rule
research process, and to avoid a processing of all rules from all theories. These
theories are local to their rule files. Bart processes each rule file to find rules. For
the rule file currently processed, it may use tactic or user pass to filter its
theories to use.

IX.1 User pass theory

IX.1.1 Syntax
UserPassTheory
= "
USER_PASS" "
IS"
[("VARIABLE"|"OPERATION"|"INITIALISATION") ":" "(" IdentList ")"]
{ ";" ("VARIABLE"|"OPERATION"|"INITIALISATION") ":" "(" IdentList ")" }
"END"

Syntax 14 : User pass theory

IX.1.2 Usage
User pass theory is used to specify, for different types of elements to be

refined, which theories must be considered by Bart. There must be at most one
user pass theory in a rule file.

Theories of a particular user pass element are considered from right to
left.

For example, if following user pass is used:

USER_PASS IS
VARIABLE : (tv1,tv2);
OPERATION : (to1)
INITIALISATION : (ti1, ti2)

END

Figure 53 : User pass theory example

, Bart will search variable rules only in theories tv1 and tv2, operation rules only
in theory to1, and initialisation rules in theories ti1 and ti2.

At least one element (variable, initialisation or operation pass) must be present
in user pass theory. At most one pass must be present for each kind of element.

Version: 1.0 Page : 62 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

If there are several user passes for a same kind of element, an error or a
warning will be raised.

IX.2 Tactic theory

IX.2.1 Syntax

TacticTheory
=

"THEORY" "TACTICS" "IS"
{ Tactic }

"END"
.

Tactic =
"VARIABLE" ":" VariableTactic { ";" VariableTactic }

| "INITIALISATION" ":" SubstitutionTactic { ";" SubstitutionTactic }
| "OPERATION" ":" SubstitutionTactic { ";" SubstitutionTactic }
.

SubstitutionTactic =
IdentList "=>" "(" Substitution ")"

.

VariableTactic =
IdentList "=>" "(" Predicate ")"

.

Syntax 15 : Tactic theory

IX.2.2 Usage
Tactics allow indicating which theories must be used for elements by using

patterns. There must be at most one tactic theory in a rule file.

There are several sections for different elements to refine (variables,
initialisation, and operations). At least one section must be present in the tactic,
and each section should be present at most one time.

Each section contains a list of tactic elements, each one containing a theory
list associated with a pattern. When an element must be refined by using the
tactic theory, Bart processes the suitable tactic section from bottom to top, and
tries to match the element with the pattern. If the variable or substitution to
refine matches a tactic element pattern, rules for refining it are searched in the
associated list of theories.

When a tactic pattern is selected, its theories are processed from right to
left.

For example, if following tactic is used:

Version: 1.0 Page : 63 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

THEORY TACTICS IS
VARIABLE :
 standard => (@a)
INITIALISATION :
 iterateur_i, standard_i => (@a)
OPERATION :
 assign_a_b, assign_a_b_2 => (@a := @b);
 assign_a_b_plus => (@a := @b + @c);
 assign_a_union_b_c => (@a := @b \/ @c);

END

Figure 54 : Tactic theory example

, when Bart must refine a variable, it will search for rules in theory standard.
When it must refine initialisation, it will search for rules in iterateur_i and
standard_i theories.

If aa := set1 \/ set2 must be refined in an operation, assign_a_union_b_c
theory will be used.

Note: If a pattern is selected and no rule is found (and no predefined
behaviour), there will be a refinement error. Bart won’t process the tactic further
to check if the element to refine matches with other patterns. For example, with
previous tactic, if aa := bb + cc must be refined, and no rule is found in
assign_a_b_plus, it won’t search for rules in assign_a_b and assign_a_b_2
theories.

IX.3 Priority of Tactic and User pass theories

This section presents which theory will be used for a rule file according to
the presence of tactic or user pass theories.

Figure 55 : Usage of tactics and user passes

This means that if tactic and user pass theory are both present, the tactic
will be used.

Version: 1.0 Page : 64 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

When Bart has determined which kind of rule research (tactic, user pass or
regular) will be used, it will only use this one, even if a refinement error occurs
because no rule and predefined behaviour could be found. For example, if Bart
uses user pass theory and a variable couldn’t be refined, it won’t try to find a
rule in variable theories that were not included in the variable user pass.

Version: 1.0 Page : 65 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

X RE S U LT P R O D U C T I O N AN D W R I T I N G

X.1 Formatting the result

To refine an operation, Bart launches its recursive rule research process on
the operation substitution body.

At the end, the tool may apply a certain treatment on the produced result
to write it as an operation body of output components. Furthermore, formatting
process may also include introduction of a local variable substitution to declare
local variables from this operation refinement (declared with the # syntax).

Following table shows how refinement results are formatted depending on
the presence of new local variables. Generic elements are expressed with jokers
here.

Refinement result Declaration of local
variables

Formatted result

PRE
 @p
THEN
 @s
END

No PRE
 @p
THEN
 @s
END

Yes PRE
 @p
THEN
 VAR
 @v
 IN
 @s
 END
END

ASSERT
 @p
THEN
 @s
END

No ASSERT
 @p
THEN
 @s
END

Yes ASSERT
 @p
THEN
 VAR
 @v
 IN
 @s
 END
END

BEGIN
 @b
END

No BEGIN
 @b
END

Yes VAR
 @v
IN
 @b
END

VAR
 @l
IN

No VAR
 @l
IN

Version: 1.0 Page : 66 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

 @s
END
(local variables
directly introduced
by rules – not with
declaration)

 @s
END

Yes VAR
 @v
IN
 VAR
 @l
 IN
 @s
 END
END

@s (other
substitutions)

No BEGIN
 @s
END

Yes VAR
 @v
IN
 @s
END

Figure 56 : Bart refinement result formatting

Here are examples of Bart result formatting:

Operation Refinement result Declared local
variables

Formatted result

affect_sum(in1,in2)
=
PRE
 in1 : INTEGER &
 in2 : INTEGER
THEN
 abvar := in1 +
in2
END

BEGIN
 l_1 := in1 + in2;
 abvar := l_1
END

l_1 affect_sum(in1,in2)
=
VAR
 l_1
IN
 l_1 := in1 +
in2;
 abvar := l_1
END

out  lire_abvar =
 out := abvar

out := abvar - BEGIN
 out := abvar
END

Figure 57 : Refinement result formatting example

X.2 Implementing results

Once all variables, operations and initialisation have been successfully
refined, Bart must produce output components and implement variables,
operations and initialisation parts in these components.

Bart output splitting process is driven by operation refinement results and
by variables used by those. Once the tool has decided how operations must be
implemented along the output chain, variables and initialisations parts are
dispatched according to operation arrangement.

X.2.1 Splitting operations in output components

Version: 1.0 Page : 67 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

For each operation to implement, Bart considers two sets of variables:

• Variables to implement: This set contains all variables present in IMPLEMENT
clauses of substitution rules found for this operation. These are variables that
must be implemented in the machine for the operation to be implemented

• Exported variables: These are abstract variables used in specifications of
imported operations generated for this one refinement. These variables must
not be implemented as long as the operation is not implemented

In the following, exported(op) are variables exported by operation op, and
implement(op) are variables to implement for operation op. Term “before” and
“further” refers to the order of the output chain

Bart chooses operations arrangement by generating iteratively output
components with respect of following constraints:
• An operation must be implemented before imported operations defined for its

refinement
• If the operation op is implemented in current component, other operations

opX have to be implemented further if intersection of exported(op) and
implement(opX) is not empty

X.2.2 Resolving deadlocks

X.2.2.1 Bart splitting algorithm

This section presents the algorithm used by Bart to split operations with
respect for constraints exposed in X.2.1.

First, the set of operations to implement is filled with operations of original
component to refine. Then Bart repeats following process as long as no error
occurs and there are still operations to implement:

• The tool builds the set E containing variables exported by all operation that
must be currently implemented.

• Each operation “op” such as intersection of implement(op) and E is empty is
implemented in current component, and is removed of set of operations to
implement

• Operation of the set that could not be implemented in current component will
be promoted in the implementation

• Once every operation has been tried, imported operations eventually defined
by refinement of the ones implemented in current component are added to
the set of operations to implement

• If the set of operations to implement is not empty, process goes on with a
new generated output component

Version: 1.0 Page : 68 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Following figure shows some example operations and their generated
imported operations:

Figure 58 : Operations to implement for splitting example

For these operations, Bart may generate following machines:

Figure 59 : Result machines for splitting example

The generation process is as follow:

• Step 1, operations to implement are {OpA, OpB, OpC, OpD}
o Variables exported by all operations are {bb, cc}
o OpA and OpB don’t contain those in their variables to implement, they can be

implemented
o OpC and OpD can not be implemented, they will be promoted

• Step 2, operations to implement are {OpA1, OpA2, OpC, OpD}
o Exported variables are {cc}

Version: 1.0 Page : 69 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

o OpA1 and OpC can be implemented
o OpA2 and OpD are promoted

• Step 3, operations to implement are {OpA2, OpC1, OpD}
o There are no exported variables anymore, all operations can be implemented

Figure 60 : Splitting process example

X.2.2.2 What is a splitting deadlock?

A splitting deadlock is an error in the process previously described in
X.2.2.1.

It occurs when, at a certain splitting step, no operation can be
implemented by Bart in current component. It means that every operation has
one of its variables to implement contained in another one exported variables.

For example, following draw shows a deadlock case:

Figure 61 : Splitting deadlock example

Each operation to be implemented in current component needs another to
be implemented further. So no operation can be implemented at current step
and an error occurs.

X.2.2.3 Solving a deadlock case

When a deadlock occurs, Bart tries some processes to automatically solve
it. It checks whether splitting conflicting operation bodies in several parts and

Version: 1.0 Page : 70 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

putting them in imported operations may solve the problem. If so, the result is
generated and the operation is transparent to the user.

But it some cases, Bart is not able to solve automatically the problem.
Then it generates a deadlock.xml file in the component directory. This file
contains a XML description of the conflicting situation (operations, exported
variables and variables to implement). It can be provided to the Bart GUI, which
will display a draw representing the deadlock.

A deadlock is often caused by cycle as described in the example of X.2.2.2.
In this case, the user should modify used rules to split more operation bodies
and not have operations needing at the same time to implement and export
variables.

Version: 1.0 Page : 71 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

XI AP P E N D I X A – F I G U R E S TAB L E

Figure 1 : Bart command line parameters..7
Figure 2 : Example of Bart standard output...8
Figure 3 : Example of Bart verbose output mode..9
Figure 4 : Example of selection of operations to refine...................................10
Figure 5 : Refinement process order...11
Figure 6 : Examples of pattern-matching without previous instantiation...........13
Figure 7 : Examples of @a + @b pattern-matching with previous instantiation. 13
Figure 8 : Hypothesis stack for constraint checking examples.........................14
Figure 9 : Examples of constraint checking..14
Figure 10 : Bart testing rule process...15
Figure 11 : Hypothesis stack filling with environment....................................16
Figure 12 : Example of Bart output components...17
Figure 13 : Bart expression guards...19
Figure 14 : Bart predicate guards...20
Figure 15 : Bart substitution guards..20
Figure 16 : Predicate theory example..21
Figure 17 : Substitution for EMPILE_PRE and DEPILE_PRE example.................22
Figure 18 : Example of stack evolution with EMPILE_PRE and DEPILE_PRE.......23
Figure 19 : Processing variable theories to find rules.....................................28
Figure 20 : Searching variables refined by a particular rule............................28
Figure 21 : Theories and stack for variable rule research example...................29
Figure 22 : Variable rule research example..29
Figure 23 : Rules for type predicate example...30
Figure 24 : Example of type predicates adding...30
Figure 25 : Example of variable refinement rule with variable implementation. .31
Figure 26 : Variable refinement rule with concrete variable............................32
Figure 27 : Variable refinement rule with abstract variable.............................33
Figure 28 : Theories and stack for operation rule research.............................36
Figure 29 : Example of operation rule research...36
Figure 30 : Process of substitution refinement..38
Figure 31 : Substitution and theories for rule tree example............................39
Figure 32 : Example of refinement rule tree...40
Figure 33 : Bart predefined refinement behaviours..41
Figure 34 : Type iteration generated loop, without while parameter................43
Figure 35 : Type iteration generated loop, with while parameter.....................44
Figure 36 : Type iteration generated machine..44
Figure 37 : Invariant iteration generated loop..45
Figure 38 : Invariant iteration generated machine...46
Figure 39 : Concrete iteration generated loop...47
Figure 40 : Example of generated iterators..48
Figure 41 : Imported operation naming example..50

Version: 1.0 Page : 72 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

Figure 42 : Simple imported operation example..50
Figure 43 : Imported operation example with parameters adding....................51
Figure 44 : Example of imported operation precondition adding......................52
Figure 45 : Substitution and rule for LH example..53
Figure 46 : Example of stack filling with LH substitutions...............................54
Figure 47 : Local variable declaration example...55
Figure 48 : Usage of structure and operation rules..57
Figure 49 : Theories and operation for operation refinement example..............58
Figure 50 : Operation refinement example...59
Figure 51 : Substitution and theories for initialisation refinement example.......60
Figure 52 : Initialisation refinement example...61
Figure 53 : User pass theory example...62
Figure 54 : Tactic theory example...64
Figure 55 : Usage of tactics and user passes...64
Figure 56 : Bart refinement result formatting...67
Figure 57 : Refinement result formatting example..67
Figure 58 : Operations to implement for splitting example.............................69
Figure 59 : Result machines for splitting example...69
Figure 60 : Splitting process example..70
Figure 61 : Splitting deadlock example..70

Version: 1.0 Page : 73 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

XII AP P E N D I X B – SY N TAX E L E M E N T S TAB L E

Syntax 1 : Predicate theory...21
Syntax 2 : Rule files...25
Syntax 3 : Variable rule theories..27
Syntax 4 : Operation rule theories..35
Syntax 5 : Type iteration...43
Syntax 6 : Invariant iteration syntax...45
Syntax 7 : Concrete iteration...47
Syntax 8 : Seen operation...48
Syntax 9 : Imported operation...49
Syntax 10 : Implement...52
Syntax 11 : LH...53
Syntax 12 : Structure theories...56
Syntax 13 : Initialisation theories...59
Syntax 14 : User pass theory...62
Syntax 15 : Tactic theory..63

Version: 1.0 Page : 74 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

XII I AP P E N D I X C – RU L E F I L E S C O M P L E T E S Y N TAX

This section presents the complete Bart rule files syntax.

XIII.1Rule files
RuleFile = [Theory { "&" Theory }].

Theory
=

VariableTheory
| OperationTheory
| StructureTheory
| InitialisationTheory
| UserPassTheory
| TacticTheory
| PredicateTheory

.

XIII.2Variables refinement rules
VariableTheory
=

"THEORY_VARIABLE" ident
"IS"

VariableRule { ";" VariableRule }
"END" ident

.

VariableRule
=

"RULE" ident
["(" JokerList ")"]
"VARIABLE" JokerList
["TYPE" ident "(" JokerList ")"]
["WHEN" Predicate]
"IMPORT_TYPE" Predicate
(VariableImplementation | VariablesRefinement)
"END"

.

VariableImplementation =
"CONCRETE_VARIABLES" JokerList
["DECLARATION" Predicate]
"INVARIANT" Predicate

.

VariablesRefinement =
"REFINEMENT_VARIABLES"

VariableRefinement { "," VariableRefinement }
"GLUING_INVARIANT" Predicate

Version: 1.0 Page : 75 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

.

VariableRefinement =
"CONCRETE_VARIABLE" joker
"WITH_INV" Predicate
"END"

| "ABSTRACT_VARIABLE" joker
"REFINED_BY" ident “.” ident "(" Expression ")"
"WITH_INV" Predicate
"END"

.

XIII.3Initialisation refinement rules
InitialisationTheory
=

"THEORY_INITIALISATION" ident
"IS"

InitialisationRule { ";" InitialisationRule }
"END" ident

.

InitialisationRule
=

"RULE" ident
"REFINES" Substitution
["WHEN" Predicate]
"IMPLEMENTATION" Substitution
"END"

.

XIII.4Operation refinement rules
OperationTheory
=

"THEORY_OPERATION" ident
"IS"

OperationRule { ";" OperationRule }
"END" ident

.

OperationRule
=

"RULE" ident
"REFINES" Substitution
["WHEN" Predicate]
["SUB_REFINEMENT" SubRefinementRule { "," SubRefinementRule }]
("REFINEMENT" | "IMPLEMENTATION")

 { RefinementVarDecl }
Substitution

["IMPLEMENT" IdentOrJokerList]
"END"

.

RefinementVarDecl =

Version: 1.0 Page : 76 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

("VARIABLE" | “ABSTRACT_VARIABLE” | “CONCRETE_VARIABLE”) joker
["REFINED_BY" ident "(" Expression ")"]
"WITH_INV" Predicate
"WITH_INIT" Substitution
"IN"

.

SubRefinementRule =
"(" Substitution ")" "->" "(" Substitution ")"

.

XIII.5Structural refinement rules
StructureTheory
=

"THEORY_STRUCTURE" ident
"IS"

OperationRule { ";" OperationRule }
"END" ident

.

XIII.6User pass theory
UserPassTheory
=

"USER_PASS" "
IS"
[("VARIABLE"|"OPERATION"|"INITIALISATION") ":" "(" IdentList ")"]
{ ";" ("VARIABLE"|"OPERATION"|"INITIALISATION") ":" "(" IdentList ")" }
"END"

.

XIII.7Tactic theory
TacticTheory
=

"THEORY" "TACTICS" "IS"
{ Tactic }

"END"
.

Tactic =
"VARIABLE" ":" VariableTactic { ";" VariableTactic }

| "INITIALISATION" ":" SubstitutionTactic { ";" SubstitutionTactic }
| "OPERATION" ":" SubstitutionTactic { ";" SubstitutionTactic }
.

SubstitutionTactic =
IdentList "=>" "(" Substitution ")"

.

VariableTactic =
IdentList "=>" "(" Predicate ")"

Version: 1.0 Page : 77 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

.

XIII.8Predicate synonyms theory
PredicateTheory
=

"THEORY_PREDICATES”
"IS"
 PredicateDefinition { "|" PredicateDefinition}
 "END"

.

PredicateDefinition
=

ident "(" JokerList “)” “<=>” Predicate
.

XIII.9Substitutions
Substitution = SimpleSubstitution { ("||"|";") SimpleSubstitution }.

SimpleSubstitution
=

"skip"
| "BEGIN" Substitution "END"
| "PRE" Predicate

 "THEN" Substitution
 "END"

| "ASSERT" Predicate
"THEN" Substitution
"END"

| "CHOICE" Substitution
{ "OR" Substitution }
"END"

| "IF" Predicate
"THEN" Substitution
{ "ELSIF" Predicate
"THEN" Substitution }
["ELSE" Substitution]
"END"

| "SELECT" SelectContent ["ELSE" Substitution] "END"
| "CASE" Expression "OF"

"EITHER" PrimaryExpression
"THEN" Substitution
{ "OR" PrimaryExpression
"THEN" Substitution }
["ELSE" Substitution]
"END"

| "ANY" IdentOrJokerList
"WHERE" Predicate
"THEN" Substitution
"END"

| "LET" IdentOrJokerList "BE"
Predicate
"IN" Substitution

Version: 1.0 Page : 78 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

"END"
| "VAR" IdentOrJokerList

"IN" Substitution
"END"

| "WHILE" Predicate
"DO" Substitution
"INVARIANT" Predicate
"VARIANT" Expression
"END"

| "LH" Predicate
"THEN" Substitution
"END"

| joker
| ident
| AffectSubstitution
| Iteration
| ImportedOperation
| ImplementSubstitution
.

SelectContent =
Predicate
"THEN" Substitution
{ "WHEN" Predicate
"THEN" Substitution }

.

ImplementSubstitution = "IMPLEMENT" "(" Substitution ")".

ImportedOperation
=

"IMPORTED_OPERATION" "("
["name" "=>" ident ","]
"out" "=>" "(" [IdentJokerVardeclList] ")" ","
"in" "=>" "(" [IdentJokerVardeclList] ")" ","
"pre" "=>" "(" Predicate ")" ","
"body" "=>" "(" Substitution ")"
")"

| "SEEN_OPERATION" "("
"name" "=>" IdentOrJoker ","
"out" "=>" "(" [IdentJokerVardeclList] ")" ","
"in" "=>" "(" [IdentJokerVardeclList] ")" ","
"body" "=>" "(" Substitution ")"
")"

.

Iteration
=

"INVARIANT_ITERATION" "("
[("tant_que"|"while") "=>" IdentOrJokerOrVarDecl ","]
"1st" "index" "=>" BinaryExpression115 ","
"2nd" "index" "=>" BinaryExpression115 ","
"constant" "=>" BinaryExpression115 ","
"1st" "type" "=>" BinaryExpression115 ","
"2nd" "type" "=>" BinaryExpression115 ","
"body" "=>" "(" Substitution ")" ","
"invariant" "=>" "(" Predicate ")"
")"

| "TYPE_ITERATION" "("
[("tant_que"|"while") "=>" IdentOrJokerOrVarDecl ","]

Version: 1.0 Page : 79 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

"index" "=>" BinaryExpression115 ","
"type" "=>" BinaryExpression115 ","
"body" "=>" "(" Substitution ")" ","
"invariant" "=>" Predicate
")"

| "CONCRETE_ITERATION" "("
"init_while" "=>" "(" Substitution<out Substitution init> ")" ","
("tant_que"|"while") "=>" BinaryExpression115<out Expression e> ","
"body" "=>" "(" Substitution<out Substitution body> ")" ","
"invariant" "=>" "(" Predicate<out Predicate invariant> ")" ","
"variant" "=>" BinaryExpression115<out Expression variant> ","
"flag" "=>" IdentOrJoker<out Expression flag>
")"

.

AffectSubstitution
=

IdentJokerVardeclList
(":" "(" Predicate ")"
| "::" Expression
| ["(" Expression ")"]
":=" Expression
| "<--" IdentOrJoker ["(" Expression ")"]
)

.

XIII.10 Predicates
Predicate = ConjunctionPredicates { "=>" ConjunctionPredicates }.

ConjunctionPredicates
=

EquivalencePredicate { ("&"|"or"|"cand") EquivalencePredicate }
.

EquivalencePredicate = SimplePredicate { "<=>" SimplePredicate }.

SimplePredicate
=

"(" Predicate ")"
| "bnot" "(" Predicate ")"
| joker
| ident "(" Expression ")"
| Expression ComparisonOperator Expression
| "not" "(" Predicate ")"
| ("!"|"#") QuantifiedList "." "(" Predicate ")"

.

ComparisonOperator =
"="|"/="|":"|"/:"|"<:"|"<<:"|"/<:"|"/<<:"|"<="|">="|">"|"<"

.

Version: 1.0 Page : 80 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

XIII.11 Expressions
Expression = BinaryExpression20.

// Expression that can occur between operators of priority 20
BinaryExpression20 = BinaryExpression115 { "," BinaryExpression115 }.

// Expression that can occur between operators of priority 115
BinaryExpression115 =

BinaryExpression125 { Operator115 BinaryExpression125 }
.

Operator115 = "<->"|"+->"|"+->>"|">->"|"-->"|">+>>"|">+>"|"-->>"|">->>".

// Expression that can be located between operators of priority 125
BinaryExpression125 =

BinaryExpression160 { Operator125 BinaryExpression160 }
.

Operator125 =
"<-"|"><"|"<<|"|"|>>"|"<|"|"\/"|"/\"|"^"|"->"|"\|/"|"<+"|"/|\"|"|>"|"|->"

.

 // Expression that can occur between operators of priorty 160
BinaryExpression160
=

BinaryExpression170 { ".." BinaryExpression170 }
.

BinaryExpression170
=

BinaryExpression180 { ("+"|"-") BinaryExpression180 }
.

BinaryExpression180
=

BinaryExpression190 { ("*"|"/"|"mod") BinaryExpression190 }
.

BinaryExpression190
=

Expression200 { "**" Expression200 }
.

Expression200
=

Expression210
| "-" Expression210
.

Expression210
=

PrimaryExpression
{

"~"
| ("[" Expression "]")
| ("(" Expression ")")
}

.

Version: 1.0 Page : 81 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

BART – USER MANUAL

PrimaryExpression
=

ident
| number
| joker
| vardecl
| "(" Expression { (";"|"||") Expression } ")"
| "MAXINT"
| "MININT"
| "{}"
| "[]"
| FuncOperator "(" Expression ")"
| "{" Expression ["|" Predicate] "}"
| "[" Expression "]"
| "TRUE"
| "FALSE"
| "bool" "(" Predicate ")"
| "%" QuantifiedList "." "(" Predicate "|" Expression ")"
.

QuantifiedList
=

IdentOrJokerList
| "(" IdentOrJokerList ")"
.

FuncOperator =
"max"|"min"|"card"|"dom"|"ran"|"POW"|"POW1"|"FIN"|"FIN1"|"union"|"inter"

.

XIII.12 Diverse
JokerList = joker { "," joker }.

IdentOrJokerList = IdentOrJoker { "," IdentOrJoker }.

IdentOrJoker = ident | joker.

IdentJokerVardeclList =
IdentOrJokerOrVardecl { "," IdentOrJokerOrVardecl }

.

IdentOrJokerOrVardecl = ident | joker | vardecl.

IdentList = ident { "," ident }.

Version: 1.0 Page : 82 / 82
Ce document est la propriété de ClearSy - TOUTE REPRODUCTION OU UTILISATION PARTIELLE OU TOTALE DE CELUI-CI EST INTERDITE SANS SON ACCORD PRÉALABLE.

	Revisions
	Index
	I Introduction
	II Usage
	II.1 Command usage
	II.2 Input files
	II.3 Visibility for loaded components
	II.4 Bart standard output verbosity
	II.5 Bart rule trace

	III Automatic refinement principles
	III.1 Refined elements
	III.1.1 Abstract variables
	III.1.2 Operations
	III.1.3 Initialisation
	III.1.4 Process

	III.2 Pattern-Matching
	III.2.1 Jokers syntax
	III.2.2 Pattern matching

	III.3 Refinement rules
	III.3.1 Introduction
	III.3.2 Constraints
	III.3.3 Guards
	III.3.4 Rule checking process
	III.3.5 Jokers use in result

	III.4 Hypothesis stack – Environment analysis
	III.5 Result production and writing

	IV Bart guards – Predicate synonyms
	IV.1 Guards
	IV.1.1 Expression guards
	IV.1.2 Predicate guards
	IV.1.3 Substitution guards

	IV.2 Predicate synonyms

	V Pragmas and comments
	V.1 EMPILE_PRE, DEPILE_PRE
	V.2 Magic
	V.2.1 For variables
	V.2.2 For substitutions

	V.3 CAND

	VI Rule files
	VI.1 Syntax
	VI.2 Using rule files
	VI.2.1 Providing rule files on command line
	VI.2.2 Rule file associated to the component
	VI.2.3 Bart refinement rule base

	VII Variables refinement
	VII.1 Variable theories syntax
	VII.2 Variable rule research
	VII.3 Storing information predicates about found variable rules
	VII.4 Invariant for refined abstract variables
	VII.5 Specifying variable refinement results
	VII.5.1 Using CONCRETE_VARIABLES clause
	VII.5.2 Using REFINEMENT_VARIABLES clause

	VIII Substitution refinement
	VIII.1 Rule syntax
	VIII.2 Rule research
	VIII.3 Refinement process
	VIII.4 Default refinement behaviours
	VIII.5 Special refinement substitutions
	VIII.5.1 Iterators
	VIII.5.1.1 TYPE_ITERATION
	VIII.5.1.2 INVARIANT_ITERATION
	VIII.5.1.3 CONCRETE_ITERATION
	VIII.5.1.4 Iteration components

	VIII.5.2 Using operations from seen machines - SEEN_OPERATION
	VIII.5.3 Defining imported operations - IMPORTED_OPERATION
	VIII.5.3.1 Naming new operations
	VIII.5.3.2 Operation parameters
	VIII.5.3.3 Imported operation preconditions
	VIII.5.3.4 Imported operations refinement

	VIII.5.4 Controlling the refinement process
	VIII.5.4.1 IMPLEMENT
	VIII.5.4.2 LH

	VIII.5.5 Local variable declarations

	VIII.6 Declaring operation refinement variables
	VIII.7 Usage of substitution rules
	VIII.7.1 Structural and operation rules	- Operation refinement
	VIII.7.1.1 Structural rules	
	VIII.7.1.2 Operation refinement process

	VIII.7.2 Initialisation rules

	IX Tactic and user pass theories
	IX.1 User pass theory
	IX.1.1 Syntax
	IX.1.2 Usage

	IX.2 Tactic theory
	IX.2.1 Syntax
	IX.2.2 Usage

	IX.3 Priority of Tactic and User pass theories

	X Result production and writing
	X.1 Formatting the result
	X.2 Implementing results
	X.2.1 	Splitting operations in output components
	X.2.2 Resolving deadlocks
	X.2.2.1 Bart splitting algorithm
	X.2.2.2 What is a splitting deadlock?
	X.2.2.3 Solving a deadlock case

	XI Appendix A – Figures table
	XII Appendix B – Syntax elements table
	XIII Appendix C – Rule files complete syntax
	XIII.1 Rule files
	XIII.2 Variables refinement rules
	XIII.3 Initialisation refinement rules
	XIII.4 Operation refinement rules
	XIII.5 Structural refinement rules
	XIII.6 User pass theory
	XIII.7 Tactic theory
	XIII.8 Predicate synonyms theory
	XIII.9 Substitutions
	XIII.10 Predicates
	XIII.11 Expressions
	XIII.12 Diverse

