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Abstract. Coarse expanding conformal systems were introduced by P. Häıssinsky
and K. M. Pilgrim to study the essential dynamical properties of certain rational
maps on the Riemann sphere in complex dynamics from the point of view of Sullivan’s
dictionary.

In this paper, we prove that for a metric coarse expanding conformal system
f : (X1, X) → (X0, X) with repellor X , the map f |X : X → X is asymptotically h-
expansive. Moreover, we show that f |X is not h-expansive if there exists at least one
branch point in the repellor. As a consequence of asymptotic h-expansiveness, for f |X
and each real-valued continuous potential on X , there exists at least one equilibrium
state. For such maps, if some additional assumptions are satisfied, we can further-
more establish a level-2 large deviation principle for iterated preimages, followed by
an equidistribution result.
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1. Introduction

1.1. Background and motivation. Expansiveness is a well-known condition in the
study of dynamical systems. In the context of continuous maps on compact metric
spaces, there are two weaker notions of expansion, namely h-expansiveness and as-
ymptotic h-expansiveness, introduced by R. Bowen and M. Misiurewicz, respectively.
Both notions play important roles in the study of dynamical systems (see for example,
[DN05, DM09, Bur11]). Moreover, any smooth map on a compact Riemannian manifold
is asymptotically h-expansive [Buz97].
In complex dynamics, the first-named author studied h-expansiveness and asymp-

totic h-expansiveness for expanding Thurston maps [Li15]. In this paper we consider
in a more general context in complex dynamics. The dynamical systems that we study
in this paper are called coarse expanding conformal (CXC) systems, introduced by
P. Häıssinsky and K. M. Pilgrim [HP09]. CXC systems are a class of topological systems
defined in an axiomatic way, generalizing a wide range of maps, including some non-

uniformly expanding rational maps on the Riemann sphere Ĉ and expanding Thurston
maps without periodic critical points studied by M. Bonk and D. Meyer [BM10, BM17]
dating back to W. P. Thurston’s topological characterization of postcritially finite ra-
tional maps. Other examples of metric CXC systems (see [HP10]) include

(1) hyperbolic, subhyperbolic, and semihyperbolic rational maps on the Riemann

sphere Ĉ, acting on their Julia sets (equipped with spherical metric);

(2) quasiregular maps on Riemannian manifolds whose iterates are uniformly quasireg-
ular;

(3) smooth expanding maps on smooth compact manifolds when equipped with
certain distance functions.

The study of CXC systems is motivated by complex dynamics and is devoted to
revealing the analogy between geometric group theory and complex dynamics. Vast
literature concerning analogies between Kleinian groups and rational maps is devoted
to Sullivan’s dictionary, and an enlargement of the dictionary is suggested in the study
of CXC systems (see [HP09]).
In this paper we establish the asymptotic h-expansiveness of each metric CXC system

f : (X1, X) → (X0, X) with repellor X , more precisely, of the map f |X . The motivation
to investigate asymptotic h-expansiveness comes from the theory of thermodynamic
formalism. Investigation on concepts such as topological entropy, measure-theoretic
entropy, topological pressure, and measure-theoretic pressure is a main theme in ther-
modynamic formalism. The maximizing measures of measure-theoretic entropy and
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measure-theoretic pressure are known as measures of maximal entropy and equilibrium
states, respectively. The existence, uniqueness, and various other properties of equilib-
rium states have been studied in many contexts (see for example, [Bo75, Ru89, Pr90,
KH95, MauU03, BS03, Ol03, Yu03, PU10, MayU10]).
M. Misiurewicz showed that asymptotic h-expansiveness of a map f guarantees that

the measure-theoretic entropy µ 7→ hµ(f) is upper semi-continuous [Mi76] with respect
to the weak∗ topology. It implies that for each real-valued continuous function φ, the
measure-theoretic pressure µ 7→ Pµ(f, φ) is upper semi-continuous, which guarantees
the existence of equilibrium states.
Once we obtain the existence of equilibrium states, it is natural to ask questions re-

garding uniqueness and other properties. In the context of CXC systems, the uniqueness
problem remains unsettled for general continuous potentials φ. However, thermody-
namic formalism is established in related systems for potentials under some mild regu-
larity assumptions by Das et al. [DPTUZ21] building upon prior works of P. Häıssinsky
and K. M. Pilgrim [HP09]. In such a context, they established the uniqueness of
equilibrium states for Hölder continuous potentials and CXC systems under additional
assumptions. The first-named author has been informed that similar results on equi-
librium states have also been obtained independently by P. Häıssinsky.
Based on the existence and uniqueness of equilibrium states, it is natural to investi-

gate how iterated preimages are distributed with respect to such measures. We estab-
lish a level-2 large deviation principle, and consequently, the equidistribution of iterated
preimages with respect to the unique equilibrium state. We use a variant of Y. Kifer’s
result [Ki90] formulated by H. Comman and J. Rivera-Letelier [CRL11], recorded in
Theorem 7.1. We refer the reader to [CRL11, Section 2.5] and the references therein
for a more systematic introduction to the theory of large deviation principles. The
equidistribution result follows from the corresponding level-2 large deviation principle.

1.2. Main results. In this paper, we study some weak expansion properties of metric
CXC systems and apply them to prove some statistical properties. The main results
are listed below.
First, we establish the asymptotic h-expansiveness for metric CXC systems (see Sub-

section 3.3 for the definition).

Theorem A (Asymptotic h-expansiveness). Let f : (X1, X) → (X0, X) be a metric
CXC system with repellor X. Then f |X : X → X is asymptotically h-expansive.

We also prove that if a metric CXC system has a branch point in its repellor, then
it is not h-expansive.

Theorem B. Let f : (X1, X) → (X0, X) be a metric CXC system. If there exists a
branch point x0 ∈ X, then f |X is not h-expansive.

Note that each expanding Thurston map f : S2 → S2 without periodic critical points
is a metric CXC system (if we equip the sphere with a visual metric) with all branch
points in X . So Theorems A and B strengthen Theorem 1.1 in [Li15] in the case where
f has no periodic critical points. In contrast, if an expanding Thurston map has a
periodic critical point, then it is not a metric CXC system (or even a topological CXC
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system, see Subsection 3.2), and is known to be not asymptotically h-expansive (see
[Li15, Theorem 1.1]).
One major difference between a Thurston map and a CXC system is that the former

is defined on a topological 2-sphere, while the latter considers more general topological
spaces, and that the former requires the set of forward iterated images of critical points
to be finite, while the latter does not require such a strong assumption. This so-called
postcritical finiteness assumption is crucial in the work of M. Bonk and D. Meyer
[BM10, BM17] for the construction of certain forward invariant Jordan curves that
induce Markov partitions for (sufficiently high iterations of) an expanding Thurston
map (see also the work of J. W. Cannon, W. J. Floyd, and W. R. Parry [CFP07]). The
proof of [Li15, Theorem 1.1] depends heavily on the combinatorial structures induced
by the forward invariant Jordan curves and the corresponding Markov partitions, which
are not available in the general setting of CXC systems. Our strategy in this paper
builds upon the construction of bouquets (see Definition 5.6) from the more flexible good
open covers.
As a consequence of Theorem A, we establish the existence of equilibrium states for

the map f |X and each continuous potential φ.

Theorem C (Existence of equilibrium states). Let f : (X1, X) → (X0, X) be a metric
CXC system with repellor X. Then for each real-valued continuous function φ : X → R,
there exists at least one equilibrium state for the map f |X and potential φ. In particular,
there exists at least one measure of maximal entropy for f |X .

Applying some additional assumptions, we furthermore establish a level-2 large de-
viation principle (see Subsection 7.1 for the definition) for metric CXC systems.

Theorem D (Level-2 large deviation principle). Let f : (X1, X) → (X0, X) be a metric
CXC system and denote fX := f |X. Assume that the following conditions are satisfied:

(1) X0 and X1 are strongly path-connected.

(2) The branch set Bf is finite.

For each n ∈ N, let Wn : X → P(X) be the continuous function defined by

Wn(x) :=
1

n

n−1∑

i=0

δf i(x),

and denote Snψ(x) :=
∑n−1

i=0 ψ(f
i(x)) for ψ ∈ C(X) and x ∈ X. Let φ be a real-valued

Hölder continuous function on X, and define

(1.1) Iφ(µ) :=

{
P (fX , φ)−

∫
φ dµ− hµ(fX) if µ ∈ M(X, fX);

+∞ if µ ∈ P(X) \M(X, fX).

Then for each sequence {xn}n∈N of points in X, the sequence {Ωn}n∈N of Borel proba-
bility measures on P(X) given by

Ωn :=
∑

y∈f−n(xn)

deg(fn; y) · exp (Snφ(y))∑
z∈f−n(xn)

deg(fn; z) · exp (Snφ(z))
δWn(y)
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satisfies a level-2 large deviation principle with rate function Iφ, and it converges in
the weak∗ topology to the Dirac measure supported on the unique equilibrium state for f
and potential φ. Furthermore, for each convex open subset G of P(X) containing some
invariant measure, we have

(1.2) lim
n→+∞

1

n
log(Ωn(G)) = lim

n→+∞

1

n
log(Ωn(G)) = − inf

G
Iφ = − inf

G

Iφ.

Under proper assumptions, there exists a unique equilibrium state for the map f |X
and each Hölder continuous potential. It follows from the level-2 large deviation prin-
ciple that iterated preimages are equidistributed with respect to the equilibrium state.

Theorem E (Equidistribution). Let f : (X1, X) → (X0, X) be a metric CXC system.
Assume that the following conditions are satisfied:

(1) X0 and X1 are strongly path-connected.

(2) The branch set Bf is finite.

Let φ be a real-valued Hölder continuous function on X, and µφ be the unique equilibrium
state.
Let {xn}n∈N be a sequence of points in X. Consider the following sequence of Borel

probability measures on X:

νn :=
∑

y∈f−n(xn)

deg(fn; y) · exp(Snφ(y))∑
z∈f−n(xn)

deg(fn; z) · exp(Snφ(z))

1

n

n−1∑

i=0

δf i(y),

where Sn is defined as in Theorem D. Then νn converges to µφ in the weak∗ topology as
n tends to infinity.

Our results in this paper partially extend results in [HP09, BM10, BM17, Li15].

1.3. Structure and strategies. We will now give a brief description of the structure
of this paper and our strategies.
In Section 2, we fix some notations in this paper.
In Section 3, we review the definitions of topological CXC systems and metric CXC

systems, along with some basic properties recorded from [HP09]. We direct the reader
to [HP09, Chapter 2] for a more detailed study.
In Section 4, we state the assumptions under which we establish our results. We

will repeatedly refer to the assumptions as the Assumptions in Section 4. Note that
the Assumptions in Section 4 serve as a summary of the assumptions adopted in the
definition of CXC systems. We summarize them for clarity and convenience.
In Section 5, we investigate the weak expansion properties of metric CXC systems.
We first introduce some basic concepts in Subsection 5.1. We review the notion

of topological conditional entropy h(g|η) of a continuous map g : Z → Z given an
open cover η of Z, and the notion of topological tail entropy h∗(g). We then define
h-expansiveness and asymptotic h-expansiveness using these notions.
In Subsection 5.2, we prove several lemmas that will be used in the proof of the asymp-

totic h-expansiveness. In particular, Lemma 5.9 gives a cover Em(U
m
0 , · · · , U

m
n−1;U

n
m) of

each set of the form
⋂n
i=0 f

−i(Um
i ∩X) by level-(m+n) good open sets, where m ∈ N0,
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n ∈ N, and each Um
i ∈ Um is a level-m good open set. In Lemma 5.10, we cover level-m

good open sets with level-(m+ k) good open sets, where m ∈ N0 and k ∈ N.
Subsections 5.3 consists of the proofs of Theorems A and B, respectively. To prove

Theorem A, for each set in the form
⋂n
i=0 f

−i(Um
i ∩ X), we give an upper bound for

card(Em(U
m
0 , · · · , U

m
n−1;U

n
m)) that depends only on m, n. Combining Lemma 5.10, we

get that for an arbitrary A ∈
∨n−1
i=0 f

−i(Wm) where Wm := {U ∩ X : U ∈ Um}, the

number of sets in the open cover
∨n−1
j=0 f

−j(Wl) needed to cover A can be bounded

from above, and such an upper bound leads to the conclusion that h∗(f) = 0. To
prove Theorem B, given a sufficiently large m ∈ N we construct recursively a sequence
{An}n∈N of subsets of X such that each An is contained in an element of

⋂n
i=0 f

−i(Um
i ∩

X). We prove by induction that for each sufficiently large l ∈ N, the number of elements
in

∨n−1
j=0 f

−j(Wl) needed to cover An is bounded from below, and such lower bound leads

to the conclusion that h(f |Wm) > 0.
In Section 6, we show the existence of equilibrium states for a metric CXC system

and a continuous potential, which is a consequence of the asymptotic h-expansiveness.
In Section 7, with some additional assumptions, we study a level-2 large deviation

principle and an equidistribution result for iterated preimages.
In Subsection 7.1, we briefly review a level-2 large deviation principle in our context,

and record in Theorem 7.1 a theorem of Y. Kifer [Ki90], reformulated by H. Comman
and J. Rivera-Letelier [CRL11], on level-2 large deviation principles. This result will
be applied later to our context.
In Subsection 7.2, we state the additional assumptions, which will be repeatedly

referred to as the Additional Assumptions in Subsection 7.2.
Subsection 7.3 consists of the proof of Theorem D. We first recall the geometric

coding tree and the semiconjugacy from a shift map to a CXC system. Then, with
this idea, we generalize some characterization of topological pressure in Lemma 7.18.
This characterization of topological pressure allows us to verify the conditions in The-
orem 7.1, and thus apply Theorem 7.1 to show a level-2 large deviation principle for
iterated preimages.
Subsection 7.4 includes a proof of Theorem E. In Corollary 7.19, we obtain a char-

acterization of the measure-theoretic pressure in terms of the infimum of certain limits
involving iterated preimages. Such a characterization is then used in the proof of the
equidistribution results.

2. Notation

In this section, we set up some notations for this paper. Let Z be the set of integers,
N := {1, 2, 3, . . . } be the set of positive integers, and N0 := {0} ∪ N. The symbols log
and exp denote the logarithm and exponential function to the base e, respectively. The
symbol card(A) denotes the cardinality of a set A. For x ∈ R, define ⌈x⌉ := min{n ∈
Z : n ≥ x} and ⌊x⌋ := max{n ∈ Z : n ≤ x}.
For a map f : X → Y , we denote the restriction of f to a subset Z by f |Z .
For a metric space (X, d), the distance between a and b is denoted by |a−b| when the

metric is clear from the context. The diameter of a subset A is denoted by diamA :=
sup{d(a, b) : a, b ∈ A}. The closure of a subset A is denoted by A.
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Let C(X) be the space of continuous functions from X to R. For α ∈ (0, 1], C0,α(X)
is the space of α-Hölder continuous function from (X, d) to R. Let P(X) be the set of
Borel probability measures on X . For g : X → X , let M(g,X) be the set of g-invariant
Borel probability measures on X . For a point x ∈ X , we denote the Dirac measure
supported on {x} by δx.
Consider a map f : X → X on a set X . The inverse map of f is denoted by f−1. We

write fn for the n-th iterate of f , and f−n := (fn)−1, for n ∈ N. We set f 0, the identity
map on X . For a real-valued function ϕ : X → R, we write

(2.1) Snϕ(x) :=
n−1∑

j=0

ϕ
(
f j(x)

)

for x ∈ X and n ∈ N0.

3. Preliminaries

We review the definitions of finite branched covering (abbr: FBC) maps and met-
ric coarse expanding conformal (abbr: metric CXC) systems, and we give some basic
properties of metric CXC systems.

3.1. Finite branched covering maps. We define here the notion of finite branched
covering maps. FBC maps generalize some rational maps on the Riemann sphere,
capturing their essential topological properties. Here we refer to [HP09], where the
reader can find a more detailed introduction.
Suppose that X and Y are locally compact Hausdorff spaces, and let f : X → Y be

a finite-to-one continuous map. The degree of f is

(3.1) deg(f) := sup
{
card

(
f−1(y)

)
: y ∈ Y

}
.

For x ∈ X , the local degree of f at x is

(3.2) deg(f ; x) := inf
U

{
sup

{
card

(
f−1(z) ∩ U

)
: z ∈ f(U)

}}
,

where U ranges over all neighborhoods of x.

Definition 3.1 (Finite branched covering maps). Suppose that X and Y are locally
compact Hausdorff spaces, and let f : X → Y be a finite-to-one continuous map. The
map f is a finite branched covering (abbr: FBC) map if deg(f) < +∞ and the following
conditions are satisfied.

(i) The identity ∑

x∈f−1(y)

deg(f ; x) = deg(f)

holds for all y ∈ Y .

(ii) For every x0 ∈ X , there are compact neighborhoods U and V of x0 and f(x0),
respectively, such that the identity

∑

x∈U, f(x)=z

deg(f ; x) = deg(f ; x0)

holds for all z ∈ V .
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Remark. We note two consequences of (ii):

(a) Let W := f−1(V ) ∩ U . The restriction f |W : W → V is proper and surjective.

(b) f−1 (f(x0)) ∩ U = {x0}.

Here are some basic concepts related to FBC maps.

Definition 3.2 (Principal value, branch set, and branch value). For an FBC map
f : X → Y , a point y ∈ Y is a principal value if card (f−1(y)) = deg(f). The branch
set is defined as Bf := {x ∈ X : deg(f ; x) > 1}. The set of branch values is defined as
Vf := f(Bf).

We give some basic properties of FBC maps below. Further details can be found in
Section 2.1 of [HP09].
The composition of two FBC maps is a FBC map. The degrees and local degrees

multiply under composition. Condition (ii) in Definition 3.1 implies that if a sequence
of points {xn} converges to x0, then deg(f ; xn) ≤ deg(f ; x0) for all sufficiently large
n ∈ N. It follows that the branch set Bf is closed. The set of principal values is Y \Vf .
We record two properties of FBC maps below. See [HP09, Lemmas 2.1.2 and 2.1.3].

Proposition 3.3 (Häıssinsky & Pilgrim [HP09]). Let X and Y be locally compact
Hausdorff spaces, and f : X → Y be an FBC map of degree d. Then f is open, closed,
surjective, and proper. Furthermore, Bf and Vf are nowhere dense.

Remark. Recall that a map f : X → Y is called proper if, for each compact subset V
of Y , the inverse image f−1(V ) is compact.

Proposition 3.4 (Häıssinsky & Pilgrim [HP09]). Suppose that X and Y are connected,
locally connected, locally compact Hausdorff spaces. Let f : X → Y be an open, closed,
surjective FBC map. Then the following statements hold:

(i) If V ⊆ Y is open and connected, and U ⊆ X is a connected component of
f−1(V ), then f |U : U → V is also an FBC map.

(ii) If y ∈ Y and f−1(y) = {x1, x2, . . . , xk}, then there exist arbitrarily small con-
nected open neighborhood V of y and mutually disjoint connected open neighbor-
hoods Ui of xi for each i ∈ {1, 2, . . . , k}, such that f−1(V ) = U1 ∪ U2 ∪ · · · ∪ Uk
and that f |Ui

: Ui → V is an FBC of degree deg(f ; xi).

(iii) If f(x) = y, {Vn}n∈N is a sequence of nested open connected sets with
⋂
n∈N Vn =

{y}, and if Ṽn is the component of f−1(Vn) containing x, then
⋂
n∈N Ṽn = {x}.

Here we prove two technical properties of finite-to-one, open, closed, and surjective
continuous maps.

Proposition 3.5. Let X and Y be topological spaces, and f : X → Y be a finite-to-one,
open, closed, and surjective continuous map. If V ⊆ Y is open, and U = f−1(V ), then
f |U : U → V is finite-to-one, open, closed, and surjective.

Proof. Since V is open in Y , U is open in X . Then, by the assumption on f , it can be
checked that f |U is finite-to-one, open, and surjective.
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Next, we show that f |U is closed. Let A ⊆ U be closed in U , then

A = A ∩ U = A ∩ f−1(V ),

where A is the closure of A in X . It follows that f(A) = f(A) ∩ V . Since f is closed,
f(A) is closed in Y , then f(A) is closed in V . Thus f |U is closed. �

Proposition 3.6. Let X and Y be locally connected Hausdorff spaces, and f : X →
Y a finite-to-one, open, closed, and surjective continuous map. If V ⊆ Y is open
and connected, and U ⊆ X is a connected component of f−1(V ), then U is open and
f |U : U → V is finite-to-one, open, closed, and surjective.

Proof. Since f is continuous, f−1(V ) open in X . Then since X is locally connected,
for each x ∈ U , there exists a connected neighborhood Ux of x such that Ux ⊆ f−1(V ),
hence Ux ⊆ U . So U is open in X . Then it can be checked that f |U is finite-to-one and
open. To show that f |U is closed, let A ⊆ U be closed in U , then

A = A ∩ U = A ∩ f−1(V ),

where A is the closure of A in X . It follows that f(A) = f(A) ∩ V . Since f is closed,
f(A) is closed in V . Since f(U) is open and closed in V , f(U) = V . Thus f |U is
surjective. �

3.2. Topological CXC systems. In this subsection, we recall topological CXC sys-
tems. We refer the reader to Section 2.2 in [HP09] for more details.

3.2.1. Basic assumptions and the definition. Let X0 and X1 be topological spaces sat-
isfying the following assumptions:

(i) X0 and X1 are Hausdorff, locally compact, locally connected spaces, each with
finitely many connected components.

(ii) X1 is a open subset of X0 and X1 is compact in X0.

Let f : X1 → X0 be an FBC map of degree deg(f) = d ≥ 2. For each n ∈ N0 we
define

Xn+1 := f−1(Xn)

and the repellor is defined as

X := {x ∈ X1 : fn(x) ∈ X1 for all n ∈ N0 }.

In addition, we make the following technical assumption

(iii) f |X : X → X is an FBC map of degree d. For convenience, we denote fX := f |X .

Referring to Section 2.2 of [HP09], the following properties hold for X and Xn, n ∈ N.

(1) f |Xn+1 : Xn+1 → Xn is an FBC map of degree d.

(2) Xn+1 ⊆ Xn, and Xn+1 is compact in Xn since f is proper.

(3) X is totally invariant, i.e., f−1(X) = X = f(X).

(4) For each k ∈ N, X =
⋂
n∈N

Xn =
⋂
n∈N

Xkn, and as a consequence f and fk|Xk
: Xk →

X0 have the same repellor X .
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(5) The definition of the repellor X and the compactness of X1 implies that given
any open set Y ⊇ X , Xn ⊆ Y for all n ∈ N sufficiently large.

Remark. In this paper, following the terminology in [HP09], a preimage under f of a
connected set A is defined as a connected component of f−1(A).

The following is the essential part of the definition of topological CXC systems.
Let U0 be a finite cover of X by open connected subsets of X1. We assume that for

each U ∈ U0, U ∩X 6= ∅. Inductively, we define, for each n ∈ N0,

Un+1 := {Ũ : there exists U ∈ Un such that Ũ is a preimage of U}.

The elements of Un are connected components of f−n(U), where U ranges over U0. We

note that, by Proposition 3.6, for each Ũ ∈ Un+1 and U ∈ Un, if Ũ is a preimage of U ,

then f |U : Ũ → U is surjective, and that fk(U) ∈ Un−k for all k ∈ N0 with k ≤ n. We
can see that Un is a finite open cover of X by connected open sets in Xn+1. Note that
since X1 is compact in X0, each U in

⋃
n∈N0

Un is bounded.
We say that f : (X1, X) → (X0, X) is a topological coarse expanding conformal system

(abbr: topological CXC) with repellor X if there exists a sequence of finite open cover
{Un}n∈N0 of X constructed as above, such that the following axioms hold:

1. Expansion Axiom (abbr: [Expans]): For each finite open cover V of X by
open sets of X0, there exists N ∈ N such that for each integer n ≥ N and each
U ∈ Un, there exists V ∈ V with U ⊆ V .

2. Irreducibility Axiom (abbr: [Irred]): For each x ∈ X and each neighborhood
W of x in X0, there exists some n ∈ N with fn(W ) ⊇ X .

3. Degree Axiom (abbr: [Deg]): The set of degrees of maps of the form fk|Ũ : Ũ →

U , where U ∈ Un, Ũ ∈ Un+k and n, k ∈ N are arbitrary, has a finite maximum,
denoted by p.

The cover Un will be referred to as the level-n good open cover (induced by U0). The
elements of Un will be referred to as level-n good open sets.

3.2.2. Elementary properties. Below, we give some properties of topological CXC sys-
tems.

Proposition 3.7. Let f : X1 → X0 be an FBC map with deg(f) ≥ 2. Suppose that
fX := f |X is an FBC map such that deg(fX) = deg(f). Then for each x ∈ X, we have
deg(f ; x) = deg(fX ; x). Furthermore, deg(fn; x) = deg(fnX ; x) holds for all x ∈ X and
n ∈ N.

Proof. Fix an arbitrary x ∈ X and let y := f(x) = fX(x). By the definition of FBC
maps, we have

(3.3)
∑

z∈f−1(y)

deg(f ; z) = deg(f) = deg(fX) =
∑

z∈f−1
X (y)

deg(fX ; z).

By the total invariance of X , we have f−1(y) = f−1
X (y). Since deg(fX ; z) ≤ deg(f ; z)

holds for each z ∈ X , we get from (3.3) that deg(f ; z) = deg(fX ; z) holds for each
z ∈ f−1(y). Thus deg(f ; x) = deg(fX ; x).
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Since local degrees multiply under composition and deg(f ; z) = deg(fX ; z) holds for
each z ∈ X , it follows that deg(fn; x) = deg(fnX ; x) holds for all x ∈ X and n ∈ N. �

The following proposition shows that the repellor X has fractal properties (see [HP09,
Proposition 2.4.2]).

Proposition 3.8 (Häıssinsky & Pilgrim [HP09]). Let f : (X1, X) → (X0, X) be a topo-
logical CXC system, and {Un}n∈N0 be a sequence of good open covers.
Fix an arbitrary x ∈ X and a neighborhood W of x. Then for each n ∈ N0 and each

U ∈ Un, there exist m ∈ N and Ũ ∈ Un+m such that the following statements hold:

(i) fm
(
Ũ
)
= U and Ũ ⊆W .

(ii) deg(fm|Ũ) ≤
p

deg(fn|U )
, where p is the constant from [Deg].

For a topological CXC system f : (X1, X) → (X0, X), the post-branch set is defined
to be

Pf := X ∩
⋃

n∈N

Vfn ,

and we denote

post(f) := X ∩
⋃

n∈N

Vfn .

The following property of the post-branch set is established in [HP09, Proposi-
tion 2.4.3].

Proposition 3.9 (Häıssinsky & Pilgrim [HP09]). Let f : (X1, X) → (X0, X) be a topo-
logical CXC system, and {Un}n∈N0 be a sequence of good open covers. Then the post-
branch set Pf is a nowhere dense subset of X.

3.3. Metric CXC systems.

3.3.1. The definition. With topological CXC systems recalled above, we give a brief
introduction to metric CXC systems. We refer the reader to Section 2.5 in [HP09] for
more details.
First, we recall the notion of roundness. Let Z be a metric space and A be a bounded

proper subset of Z with a nonempty interior. For each a ∈ int(A), denote

L(A, a) := sup{|b− a| : b ∈ A},

l(A, a) := sup{r ∈ (0,+∞) : B(a, r) ⊆ A}.

Then the roundness of A is defined as

Round(A, a) := L(A, a)/l(A, a).

Note that Round(A, a) ∈ [1,+∞).
For a number K > 0, we say that A is K-almost round if Round(A, a) ≤ K for

some a ∈ A. If A is K-almost round, then there exists a real number s > 0 such that
B(a, s) ⊆ A ⊆ B(a,Ks).
Suppose that we have a topological CXC system f : X1 → X0 with repellor X and

a sequence of good open covers {Un}n∈N0 . Assume that X0 is endowed with a metric
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compatible with its topology. Then f is called a metric CXC system if it satisfies the
following two axioms:

4. Roundness Distortion Axiom (abbr: [Round]): There exist continuous
increasing embeddings ρ+ : [1,+∞) → [1,+∞) and ρ− : [1,+∞) → [1,+∞)

such that for all n, k ∈ N0, U ∈ Un, Ũ ∈ Un+k, y ∈ U , and ỹ ∈ Ũ , if fk
(
Ũ
)
= U

and fk(ỹ) = y, then

Round(Ũ , ỹ) < ρ−(Round(U, y)),

Round(U, y) < ρ+(Round(Ũ , ỹ)).

5. Diameter Distortion Axiom (abbr: [Diam]): There exist increasing homeo-
morphisms δ+ : [0, 1] → [0, 1] and δ− : [0, 1] → [0, 1] such that for all n0, n1, k ∈

N0, U ∈ Un0 , U
′ ∈ Un1 , Ũ ∈ Un0+k, and Ũ ′ ∈ Un1+k, if Ũ ′ ⊆ Ũ , U ′ ⊆ U ,

fk
(
Ũ
)
= U , and fk

(
Ũ ′

)
= U ′, then

diam Ũ ′/diam Ũ < δ−(diamU ′/diamU),

diamU ′/diamU < δ+(diam Ũ ′/diam Ũ).

3.3.2. Regularity of metric CXC systems. In this subsection, we recall some properties
of metric CXC systems. The results are recorded below, and more details can be found
in Section 2.6 of [HP09].

Proposition 3.10 (Häıssinsky & Pilgrim [HP09]). Let f : (X1, X) → (X0, X) be a
metric CXC system, and {Un}n∈N0 be a sequence of good open covers. Then there exists
a constant K > 1 and non-increasing sequences {cn}n∈N0 and {dn}n∈N0 of positive real
numbers converging to 0 such that the following statements hold for all n ∈ N0 and
x ∈ X:

(i) 0 < cn ≤ inf{diamU : U ∈ Un} ≤ sup{diamU : U ∈ Un} ≤ dn.

(ii) There exists U ∈ Un such that U is K-almost round with respect to x.

(iii) If U ∈ Un, then there exists x̃ ∈ X such that Round(U, x̃) < K.

(iv) If 0 < r < cn
2K

, then there exist U ∈ Un and s > r such that

B(x, r) ⊆ B(x, s) ⊆ U ⊆ B(x,Ks).

In particular, let δn be the Lebesgue number of Un, then δn ≥ cn
2K

.

Proposition 3.11 (Häıssinsky & Pilgrim [HP09]). Let f : (X1, X) → (X0, X) be a
metric CXC system, and {Un}n∈N0 be a sequence of good open covers. Then there exist
constants λ, θ ∈ (0, 1), and C ′ > 0 such that for all n, k ∈ N0, U

′ ∈ Un+k, U ∈ Un, if
U ∩ U ′ ∩X 6= ∅, then the following statements hold:

(i) diamU ′/ diamU ≤ C ′θk.

(ii) λ < diamU ′/ diamU < λ−1 if k = 1.

In particular, we may assume that dn = C ′d0θ
n, where dn is given in Proposition 3.10.



WEAK EXPANSION PROPERTIES 13

4. The Assumptions

We state below the assumptions under which we will develop our theory in most
parts of this article. We will repeatedly refer to such assumptions later.

The Assumptions.

(1) X0 and X1 are Hausdorff, locally compact, locally connected spaces, each of
which has finitely many connected components. X0 is endowed with a metric
compatible with its topology.

(2) X1 is an open subset of X0 and X1 is compact in X0.

(3) f : X1 → X0 is an FBC map of degree deg(f) =: d ≥ 2 with repellor X , and
f |X : X → X is an FBC map of degree d.

(4) U0 is a cover of X by open, connected subsets of X1 whose intersection with
X is nonempty. {Un}n∈N0 is the sequence of open covers of X , where Un is the
collection of preimages of elements in Un−1. Axioms [Expans], [Irred], [Deg],
[Round], and [Diam] hold.

Assumptions (1) through (5) reformulate the definition of metric CXC systems.
We note that, in this article, the terminology preimage under f of a connected set A

refers to a connected component of f−1(A).

5. Asymptotic h-expansive

5.1. Basic concepts. In this part, we review some concepts from dynamical systems.
We refer the reader to [PU10, Chapter 3], [Wa82, Chapter 9] or [KH95, Chapter 20] for
more detailed studies of these concepts.
Let Z be a compact metric space and g : Z → Z a continuous map.
Let ξ = {Aj : j ∈ J} and η = {Bk : k ∈ K} be two covers of Z. We say that ξ is

a refinement of η if for each Aj ∈ ξ, there exists Bk ∈ η such that Aj ⊆ Bk. For two
covers ξ and η, the common refinement ξ ∨ η of ξ and η is defined as

ξ ∨ η := {Aj ∩ Bk : j ∈ J, k ∈ K},

which is also a cover of Z. Note that if ξ and η are both open covers, then ξ ∨ η is also
an open cover. Define g−1(ξ) := {g−1(Aj) : j ∈ J}, and we denote for each n ∈ N,

ξng :=
n−1∨

j=0

g−j(ξ) = ξ ∨ g−1(ξ) ∨ · · · ∨ g−(n−1)(ξ).

Definition 5.1 (Refining sequences of open covers). A sequence of open cover {ξi}i∈N0

of a compact metric space Z is a refining sequence of open covers if the following
conditions are satisfied:

(i) ξi+1 is a refinement of ξi for each i ∈ N0.

(ii) For each open cover η of Z, there exists j ∈ N such that for each integer i ≥ j,
ξi is a refinement of η.
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The topological tail entropy was first introduced by M. Misiurewicz under the name
of “topological conditional entropy” in [Mi73, Mi76]. Here we adopt the terminology
in [Do11] (see [Do11, Remark 6.3.18]).

Definition 5.2 (Topological conditional entropy and topological tail entropy). Let Z
be a compact metric space and g : Z → Z be a continuous map. For each pair of open
covers ξ and η of Z, we denote

(5.1) H(ξ|η) = log
(
max
A∈η

{
min

{
card ξA : ξA ⊆ ξ, A ⊆

⋃
ξA

}})
.

For a given open cover η, the topological conditional entropy h(g|η) of g is defined as

(5.2) h(g|η) := lim
l→+∞

lim
n→+∞

1

n
H

(n−1∨

i=0

g−i(ξl)

∣∣∣∣
n−1∨

j=0

g−j(η)

)
,

where {ξl}l∈N0 is an arbitrary refining sequence of open covers.
The topological tail entropy h∗(g) of g is defined by

(5.3) h∗(g) := lim
m→+∞

lim
l→+∞

lim
n→+∞

1

n
H

(n−1∨

i=0

g−i(ξl)

∣∣∣∣
n−1∨

j=0

g−j(ηm)

)
,

where {ξl}l∈N0 and {ηm}m∈N0 are two arbitrary refining sequences of open covers.
We note that the limits in (5.2) and (5.3) always exist, and both quantities do not

depend on the choices of the refining sequences of open covers.

It should be noted that h∗ is well-behaved under iterations, as it satisfies

(5.4) h∗(gn) = nh∗(g)

for each n ∈ N and each continuous map g : Z → Z on compact metric space Z.
The concept of h-expansiveness was introduced by R. Bowen in [Bo72]. We adopt

the formulation in [Mi76] (see also [Do11]).

Definition 5.3 (h-expansive). A continuous map g : Z → Z on compact metric space
Z is h-expansive if there exists a finite open cover η of Z such that h(g|η) = 0.

A weaker property called “asymptotic h-expansiveness” was then introduced by
M. Misiurewicz in [Mi73] (see also [Mi76, Do11]).

Definition 5.4 (Asymptotic h-expansive). A continuous map g : Z → Z on a compact
metric space Z is asymptotically h-expansive if h∗(g) = 0.

5.2. Technical lemmas. In this subsection, we state and prove some technical lem-
mas.

Lemma 5.5. Assume that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assumptions
in Section 4. Then there exists a constant C ′′ > 0 such that for each n ∈ N,

inf
U∈Un

diamU ≥ C ′′λn.

Here λ ∈ (0, 1) is a constant from Proposition 3.11. In particular, we may let cn = C ′′λn

in Proposition 3.10.
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Proof. Fix arbitrary n ∈ N0 and U
′ ∈ Un+1, there exists U ∈ Un such that U∩U ′∩X 6= ∅.

Thus by Proposition 3.11 (i),

λ < diamU ′/diamU.

Thus we have
diamU ′ > λ diamU ≥ λ inf

V ∈Un

diamV.

Since U ′ ∈ Un+1 is arbitrary, we have

inf
V ′∈Un+1

diamV ′ ≥ λ inf
V ∈Un

diamV.

Thus, by induction, we get

inf
V ∈Un

diamV ≥ λn inf
V 0∈U0

diam
(
V 0

)
.

Define C ′′ := λ−1 · infV 0∈U0
diam

(
V 0

)
, and the proof is complete. �

Remark. It should be noted that since cn ≤ dn, we have 0 < λ ≤ θ < 1, where the
constant θ ∈ (0, 1) is from Proposition 3.11.

Now we define the notion of (m, k)-bouquet, which is the union of some elements in
Um and Um+k, and we show that the diameter of a bouquet can be bounded from above
exponentially.

Definition 5.6 (Bouquet). Assume that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy
the Assumptions in Section 4. For each pair of m, k ∈ N0 and each Um ∈ Um, we denote

(5.5) Bkm(U
m) := {Um} ∪

{
Um+k ∈ Um+k : U

m+k ∩ Um ∩X 6= ∅
}
.

The (m, k)-bouquet centered at Um is defined as

(5.6)
Bkm(U

m) :=
⋃

Bkm(U
m)

=Um ∪
⋃{

Um+k ∈ Um+k : U
m+k ∩ Um ∩X 6= ∅

}
.

Lemma 5.7 (An upper bound for the diameter of bouquet). Assume that f : (X1, X) →
(X0, X) and {Un}n∈N0 satisfy the Assumptions in Section 4. Then for each pair m, k ∈
N0, and each U ∈ Um, we have

(5.7) diam
(
Bkm(U)

)
< 2(C ′ + 1)2d0θ

m.

Here the constants d0 > 0, C ′ > 0, and θ ∈ (0, 1) are the constants from Proposi-
tions 3.10 and 3.11.

Proof. Fix arbitrary m, k ∈ N0, U ∈ Um, and a, b ∈ Bkm(U). Then the following
statements hold:

(i) If a, b ∈ U , then |a− b| ≤ diamU .

(ii) If there exists U ′ ∈ Um+k with U ∩U ′ ∩X 6= ∅ such that a ∈ U , b ∈ U ′, then by
Proposition 3.11 (i),

diamU ′/diamU ≤ C ′θk,

and consequently |a− b| ≤
(
C ′θk + 1

)
diamU .
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(iii) If there exist U ′, U ′′ ∈ Um+k with U ∩ U ′ ∩ X 6= ∅ and U ∩ U ′′ ∩ X 6= ∅, such
that a ∈ U ′, b ∈ U ′′, then by a similar argument as in (ii), we get |a − b| ≤
2
(
C ′θk + 1

)
diamU .

Therefore, diam
(
Bkm(U)

)
≤ 2

(
C ′θk + 1

)
diamU < 2(C ′ + 1)2d0θ

m. �

Assume that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assumptions in Sec-
tion 4. We consider a sequence of open covers {Wn}n∈N0 of X , defined as

(5.8) Wn := {U ∩X : U ∈ Un},

and show some properties of subsets of the form

(5.9) A =
n⋂

i=0

f−i
X (Wm

i ) =
{
x ∈ Wm

0 : f iX(x) ∈ Wm
i , i ∈ {1, 2, . . . , n}

}
,

where Wm
i ∈ Wm for each i ∈ {0, 1, . . . n}. The lemma below is a straightforward

consequence of the definitions.

Lemma 5.8 (Inverse images ofW n). Assume that f : (X1, X) → (X0, X) and {Un}n∈N0

satisfy the Assumptions in Section 4. Denote fX := f |X . Then for each n ∈ N0 and
each W n ∈ Wn, if W

n = Un ∩X for some Un ∈ Un, then

(5.10) f−1
X (W n) = f−1(Un) ∩X = X ∩

⋃{
Un+1 ∈ Un+1 : f

(
Un

)
= Un+1

}
.

The lemma below shows that the subsets of the form

A =

n⋂

i=0

f−i
X (Wm

i ) =
{
x ∈ Wm

0 : f iX(x) ∈ Wm
i , i ∈ {1, 2, . . . , n}

}

can be covered by certain elements in Wm+n.
First, for all m ∈ N0, n ∈ N, and for an arbitrary choice of Um

i ∈ Um for each
i ∈ {0, 1, . . . , n}, we denote

(5.11)

Em(U
m
0 , . . . , U

m
n−1;U

m
n )

:=
{
Um+n ∈ Um+n : fn(Um+n) = Um

n and f i(Um+n) ∩ Um
i ∩X 6= ∅

for each i ∈ {0, . . . , n− 1}
}
.

Then the following lemma holds.

Lemma 5.9. Assume that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assumptions
in Section 4. Denote fX := f |X . Then for all m ∈ N0, n ∈ N, and an arbitrary choice
of Um

i ∈ Um for each i ∈ {0, 1, . . . , n}, we have

(5.12)
n⋂

i=0

f−i
X (Um

i ∩X) ⊆
⋃

Um+n∈Em(Um
0 ,...,Um

n−1;U
m
n )

Um+n ∩X.

Proof. For each x ∈
⋂n
i=0 f

−i
X (Um

i ∩ X) =
{
z ∈ Um

0 ∩ X : f iX(z) ∈ Um
i ∩ X for each

i ∈ {1, 2, . . . , n}
}
, there exists Um+n ∈ Um+n such that x ∈ Um+n and fn(Um+n) = Um

n .
It follows immediately that f i(x) ∈ f i(Um+n)∩Um

i ∩X and thus f i(Um+n)∩Um
i ∩X 6= ∅

for each i ∈ {1, 2, · · · , n}. Therefore Um+n ∈ Em(U
m
0 , . . . , U

m
n−1;U

m
n ) and the proof is

now complete. �
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The lemma below gives an upper bound for the number of elements in Wn+k needed
to cover an element in Wn.

Lemma 5.10. Assume that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assump-
tions in Section 4. Denote Wn := {U ∩ X : U ∈ Un} for each n ∈ N0. Then there
exists a constant T0 ≥ 1 such that for all n ∈ N0, k ∈ N, and W n ∈ Wn, there exists
I ⊆ Wn+k with card(I) ≤ (pT0)

k such that

W n ⊆
⋃

I,

where p is the constant from [Deg].

Proof. By Lemma 5.7 there exists N ∈ N such that for each UN ∈ UN , there exists
U0 ∈ U0 such that B1

N

(
UN

)
⊆ U0.

Fix arbitrary integer n ≥ N and Un ∈ Un, and consider B1
n(U

n). We have

fn−N
(
B1
n(U

n)
)
⊆ B1

N

(
fn−N(Un)

)
⊆ U0

for some U0 ∈ U0. Since Un is a preimage under fn−N of fn−N(Un), there exists a
preimage under fn−N of U0, denoted by Un−N ∈ Un−N , such that Un ⊆ Un−N . For
each Un+1 ∈ B1

n(U
n) ∩ Un+1, there exists U ′ ∈ Un−N such that Un+1 ⊆ U ′. Since

Un+1 ∩ Un 6= ∅ and different preimages of U0 are disjoint, we have U ′ = Un−N , thus
B1
n(U

n) ⊆ Un−N .
Consider f |Un−N : Un−N → U0. By [Deg], this map is at most p to 1, thus we have

card
(
B1
n(U

n)
)
≤ p · card

(
B1
N(f

n−N(Un)
))
.

Let T ′
0 := max

0≤i≤N
sup

{
card

(
B1
i (U)

)
: U ∈ Ui

}
, then we have

card
(
B1
n(U

n)
)
≤ pT ′

0.

Define W n := Un ∩X . Then we have

W n ⊆X ∩
⋃{

Un+1 ∈ Un+1 : U
n+1 ∈ B1

n(U
n)
}

=
{
X ∩ Un+1 ∈ Wn+1 : U

n+1 ∈ B1
n(U

n)
}
.

Thus each element of Wn can be covered by at most pT ′
0 many elements in Wn+1.

Inductively, for every k ∈ N, each element in Wn can be covered by (pT ′
0)
k many

elements in Wn+k. We have established the lemma under the additional assumption
that n ≥ N .
Finally, it is now easy to check that the lemma holds for general n ∈ N0 by setting

T0 := 1 + dN+1 since T0 ≥ max
0≤i≤N+1

cardUi ≥ T ′
0. �

5.3. Proof of Theorems A and B. In this subsection, we will establish the asymp-
totic h-expansiveness of the map f |X : X → X . Our strategy is to prove the result under
slightly stronger assumptions, then we show that for some N ∈ N, (f |X)N satisfies the
stronger assumptions, resulting in h∗

(
(f |X)

N
)
= Nh∗(f |X) = 0.

First, we note that X is indeed a compact metric space. By X =
⋂
nXn, X is closed

in X1. Since X1 is compact, X is compact in X1, thus compact with respect to its own
subspace topology.
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Lemma 5.11. Let f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assumptions in
Section 4. Assume that for each n ∈ N0, Un+1 is a refinement of Un. Then {Wm}m∈N0

is a refining sequence of open covers of X.

Here Wn := {U ∩X : U ∈ Un} for each n ∈ N0 is defined (5.8).

Proof. By the hypothesis on Un, Wn+1 is a refinement of Wn for each n ∈ N0. For each
open cover Y of X , set Y = {V ∩X : V ∈ V} where V is a cover of X by open subsets
of X1. Since X is compact, we may assume V to be a finite cover. Then by [Expans],
when n ∈ N is sufficiently large, for each U ∈ Un there exists V ∈ V such that U ⊆ V .
Thus for each W ∈ Wn, there is Y ∈ Y such that W ⊆ Y . So Wn is a refinement of Y .
By Definition 5.1, therefore, {Wm}m∈N0 is a refining sequence of open cover of X . �

Theorem 5.12. Let f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assumptions in
Section 4. Denote fX := f |X . Assume that for each n ∈ N0, Un+1 is a refinement of
Un. Then f |X : X → X is asymptotically h-expansive.

Proof. By Lemma 5.11, {Wm}m∈N0 (defined in (5.8)) is a refining sequence of open
cover of X .
Fix arbitrary m, l, n ∈ N, and A ∈

∨n
i=0 f

−i
X (Wm) with m < l < n. We construct an

upper bound for the set

min

{
card ξA : ξA ⊆

n∨

j=0

f−j
X (Wl), A ⊆

⋃
ξA

}
,

Step 1. Cover elements in
∨n
i=0 f

−i
X (Wm) with elements in Wm+n.

Choose Wm
i ∈ Wm for each i ∈ {0, 1, . . . n} such that

A =
n⋂

i=0

f−i
X (Wm

i ) =
{
x ∈ Wm

0 : f iX(x) ∈ Wm
i , i ∈ {1, 2, . . . , n}

}
.

Then for each i ∈ {0, 1, . . . , n}, Wm
i = Um

i ∩X for some Um
i ∈ Um.

By Lemma 5.9, we get

(5.13) A ⊆
⋃

Um+n∈Em(Um
0 ,...,Um

n−1;U
m
n )

Um+n ∩X.

Then we give an upper bound of the cardinality of the set Em(U
m
0 , . . . , U

m
n−1;U

m
n ). For

each k ∈ {0, 1, . . . , n} let

Lk :=
{
fk(U) : U ∈ Em(U

m
0 , . . . , U

m
n−1;U

m
n )

}
.

By the definition of the set Em(U
m
0 , . . . , U

m
n−1;U

m
n ) in (5.11), we know that Lk ⊆ Um+n−k,

and in particular, L0 = Em(U
m
0 , . . . , U

m
n−1;U

m
n ) and Ln = {Um

n }. By Definition 5.6 and
the definition of the set Em(U

m
0 , . . . , U

m
n−1;U

m
n ) in (5.11), we have

⋃
Lk ⊆ Bn−km (Um

k )

for each k ∈ {0, 1, . . . , n− 1}.
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Put

(5.14) Mm :=

⌊
m logλ θ + logλ

(
4K(C ′ + 1)2d0

C ′′

)
− 1

⌋
,

where the constants K > 1 and d0 > 0 are from Proposition 3.10, λ, θ ∈ (0, 1), and
C ′ > 0 are from Proposition 3.11, and C ′′ > 0 is from Proposition 5.5.
We can check that {Mm}m∈N0 is increasing to +∞ and that

(5.15) 2(C ′ + 1)2d0θ
m < C ′′λMm/(2K).

By Lemma 5.7, Proposition 3.10 (iv), and cMn = C ′′λMn (see Lemma 5.5), for each
k ∈ {0, 1, . . . n} we have

diamBn−km (Um
k ) < C ′′λMn/(2K) ≤ δMm ,

where δMm is the Lebesgue number of UMm , which is from Proposition 3.10 (iv). Thus

there exists Ûk ∈ UMm such that
⋃

Lk ⊆ Bn−km (Um
k ) ⊆ Ûk.

For each 0 ≤ k ≤ n and each 0 ≤ t ≤ min{n− k,Mm}, consider f
t|Ûk

: Ûk → f t(Ûk).

By [Deg], the map is at most p to 1, so card(Lk) ≤ p · card(Lk+t).
Inductively we have card(L0) ≤ p

n
Mm

+1 · card(Ln), which is equivalent to

(5.16) card
(
Em(U

m
0 , . . . , U

m
n−1;U

m
n )

)
≤ p

n
Mm

+1.

Define IA := {U ∩X : U ∈ Em(U
m
0 , . . . , U

m
n−1;U

m
n )} ⊆ Wm+n. Then card(IA) ≤ p

n
Mm

+1,
and A ⊆

⋃
IA.

Step 2. Cover elements in IA with elements in Wl+n.
By Lemma 5.10, for eachWm+n ∈ IA there exists IWm+n ⊆ Wl+n with card(IWm+n) ≤

(pT0)
l−m such that Wm+n ⊆

⋃
IWm+n, where p is the constant in [Deg] and T0 is from

Lemma 5.10.

Step 3. Each element in Wl+n can be covered by some element in
∨n
j=0 f

−j
X (Wl).

For each W l+n ∈ Wl+n, suppose that W l+n = U l+n ∩ X , U l+n ∈ Ul+n. By the
hypothesis in the statement of Theorem 5.12, that {Un}n∈N0 is refining, for each j ∈
{0, 1, . . . , n}, there exists U l+j ∈ Ul+j such that U l+n ⊆ U l+j . Since U l+j ⊆ f−j

(
U l
j

)
for

some U l
j ∈ Ul, we have U l+n ⊆ U l+j ⊆ f−j

(
U l
j

)
. As a consequence

(5.17)

W l+n = X ∩ U l+n ⊆X ∩
n⋂

j=0

f−j
(
U l
j

)

=
n⋂

j=0

(X ∩ f−j
(
U l
j)
)
=

n⋂

j=0

f−j
(
X ∩ U l

j

)
∈

n∨

j=0

f−j(Wl).

By Steps 1 through 3, there exists JA ⊆
∨n
j=0 f

−j
X (Wl) with card(JA) ≤ p

n
Mm

+1(pT0)
l−m,

such that A ⊆ JA. It follows that

min

{
card ξA : ξA ⊆

n∨

j=0

f−j
X (Wl), A ⊆

⋃
ξA

}
≤ p

n
Mm

+1(pT0)
l−m.
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Since A is an arbitrary element of
∨n
i=0 f

−i
X (Wm), by (5.1) in Definition 5.2 we have

H

( n∨

j=0

f−j
X (Wl)

∣∣∣∣
n∨

i=0

f−i
X (Wm)

)

= log

(
max

A∈
∨n

i=0 f
−i
X (Wm)

{
min

{
card ξA : ξA ⊆

n∨

j=0

f−j
X (Wl), A ⊆

⋃
ξA

}})

≤ log
(
p

n
Mm

+1(pT0)
l−m

)
.

Thus by (5.3) in Definition 5.2, we have

(5.18)

h∗(fX) = lim
m→+∞

lim
l→+∞

lim
n→+∞

1

n
H

(n−1∨

j=0

f−j
X (Wl)

∣∣∣∣
n−1∨

i=0

f−i
X (Wm)

)

≤ lim
m→+∞

lim
l→+∞

lim
n→+∞

1

n
log

(
p

n−1
Mm

+1(pT0)
l−m

)

= lim
m→+∞

log p

Mm

= 0.

The theorem follows, therefore, from (5.18) and Definition 5.4. �

Lemma 5.13. Let f : (X1, X) → (X0, X) and {Uk}k∈N0 satisfy the Assumptions in
Section 4. Assume n ∈ N. Then fn|Xn : (Xn, X) → (X0, X) and {Ukn}k∈N0 satisfy
the Assumptions in Section 4. Moreover, there exists N ∈ N such that U(k+1)N is a
refinement of UkN for each k ∈ N0.

Proof. We first verify the last statement. By [Expans], there exists N ∈ N such that
for each V ′ ∈ UN there exists V ∈ U0 such that V ′ ⊆ V . Then for each k ∈ N0 and
each U ′ ∈ U(k+1)N , there exists U0 ∈ U0 such that fkN(U ′) ⊆ U0. Since U

′ is connected,
there exists U ∈ UkN such that U is a connected component of f−kN(U0) and U

′ ⊆ U .
Thus U(k+1)N is a refinement of UkN .
Next, we check the Assumptions in Section 4 for fn|Xn : (Xn, X) → (X0, X) and

{Ukn}k∈N0 one by one.

(1) Xn is Hausdorff since X0 is Hausdorff.
For each x ∈ Xn, choose a compact neighborhood Ux of x in X0. Since f is proper,

f−n(Ux) is a compact neighborhood of x in Xn, so Xn is locally compact.
Since Xn = f−n(X0) is open, for each x ∈ Xn and each neighborhood U of x in Xn,

U is an open subset of X0. By the local connectivity of X0, there exists a connected
neighborhood V of x such that V ⊆ U ⊆ Xn, thus Xn is locally connected.
Let Cn be an arbitrary connected component in Xn and C0 be the connected compo-

nent in X0 which contains fn(Cn). Then Cn is a connected component of f−n(C0). By
Proposition 3.5, fn|Xn : Xn → X0 is finite-to-one, open, closed and surjective. Since X0

is locally connected, C0 is open. Then by Proposition 3.6, fn|Cn : Cn → C0 is surjective.
Since X0 has finitely many connected components and deg(fn) < +∞, we get that Xn

has finitely many connected components.
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(2) Since f is continuous, Xn = f−(n−1)(X1) is open. Since Xn is compact in Xn−1,
Xn is compact in X0.

(3) Let deg(f) = d > 1. The composition of two FBC maps is an FBC map, and the
degree multiplies, so deg(fn) = dn.
Since for each k ∈ N, f |Xk

: Xk → Xk−1 is an FBC map of degree d, fn|Xn is an FBC
map of degree dn. The repellor of fn|Xn : Xn → X0 is X =

⋂
k∈N Xk =

⋂
k∈NXkn. Since

f |X : X → X is an FBC map of degree d, fn|X = (f |X)
n is an FBC map of degree dn.

(4) By definition Un is a finite cover of X by connected open subsets of Xn and for
each k ∈ N0 the elements of U(k+1)n are preimages under fn of elements in Ukn. Axioms
[Expans], [Irred], [Deg], [Round], and [Diam] hold for the sequence {Ukn}k∈N, which
is a straightforward consequence of the definitions. �

Finally, we give a proof of Theorem A.

Proof of Theorem A. Let f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assumptions
in Section 4.
Since h∗((f |X)

n) = nh∗(f |X) for each n ∈ N (see (5.4)), by Definition 5.4 it suffice
to prove h∗

(
(f |X)

N
)
= 0 for some N ∈ N.

By Lemma 5.13, there exists N ∈ N such that fN |XN
: (XN , X) → (X0, X) and

{UkN}k∈N0 satisfy the Assumptions in Section 4, and moreover, {UkN}k∈N satisfies the
property that for each U ′ ∈ U(k+1)N there exists U ∈ UkN such that U ′ ⊆ U .
Then by Theorem 5.12, (f |X)

N = fN |X is asymptotically h-expansive. By Defini-
tion 5.4, h∗

(
(f |X)

N
)
= 0. Therefore h∗(f |X) = 0 by (5.4), and the theorem follows

from Definition 5.4. �

Next, we prove that a metric CXC system is not h-expansive if there exists at least
one branch point in the repellor.
We recall the following lemma about h-expansiveness; see [Li15, Lemma 5.12].

Lemma 5.14. Let g : Z → Z be a continuous map on a compact metric space (Z, d).
If g is h-expansive then so is gn for each n ∈ N.

Proof of Theorem B. Let f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assumptions
in Section 4, and x0 ∈ X ∩Bf . Denote fX := f |X .
First, without loss of generality, we make some assumptions.

(i) By Lemma 5.14, it suffice to prove that (f |X)
n is not h-expansive for some

n ∈ N. By Lemma 5.13, for each n ∈ N, fn : (Xn, X) → (X0, X) and {Unk}k∈N0

satisfy the Assumptions in Section 4, and when n is sufficiently large, Un(k+1)

is a refinement of Unk for each k ∈ N0. Thus, we can assume that Un+1 is a
refinement of Un for each n.

(ii) By [Deg], for each x ∈ X , the forward orbit {fn(x)}n∈N0 contains at most
⌈log2 p⌉ many branch points. So we can assume that for each n ∈ N and each
x ∈ f−n(x0), deg(f ; x) = 1.

Denote Wn := {U ∩ X : U ∈ Un} for each n ∈ N0. By Lemma 5.11, {Wn}n∈N0

is a refining sequence of open covers of X . Thus it follows from (5.1) and (5.2) in
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Definition 5.2 that it suffices to prove that

h(fX |Wm) = lim
l→+∞

lim
n→+∞

1

n
H

(n−1∨

i=0

f−i
X (Wl)

∣∣∣∣
n−1∨

j=0

f−j
X (Wm)

)
> 0

for each m ∈ N sufficiently large.
Let k := deg(f ; x0). Then k > 1. By [Expans], for sufficiently large m ∈ N, there

exists Um
0 ∈ Um such that x0 ∈ Um

0 and that f |Um
0
: Um

0 → Um−1
0 is an FBC map of

degree k. Fix such m and Um
0 , and denote Um−1

0 := f(Um
0 ).

Fix y0 ∈ Um−1
0 such that y0 ∈ X \ post(f). Such y0 exists since post(f) is nowhere

dense in X (see Proposition 3.9). Since
∑

y∈Um
0 , f(y)=y0

deg(f ; y) = k,

there exists k inverse images of y0 under f in Um
0 . We enumerate f−1(y0) ∩ Um

0 =
{z1, z2, · · · , zk}. By Proposition 3.10 (i), we can choose a sufficiently large integer
m′ ∈ N and a level m′ good open set Um′

0 ∈ Um′ such that the following properties hold:

(1) y0 ∈ Um′

0 and Um′

0 ⊆ Um−1
0 .

(2) For all U, U ′ ∈ Um′+1, if f(U) = f(U ′) = Um′

0 and zi ∈ U , zj ∈ U ′ for some
i, j ∈ {1, 2, · · · , k} with i 6= j, then d(U, U ′) := inf{d(x, y) : x ∈ U, y ∈ U ′} >
0.

For each i ∈ {1, 2, · · · , k}, choose Ũi ∈ Um′+1 such that f
(
Ũi
)
= Um′

0 and that

zi ∈ Ũi. Then d
(
Ũi, Ũj

)
> 0 for all 1 ≤ i < j ≤ k. We denote

(5.19) δ := min
{
d
(
Ũi, Ũj

)
: 1 ≤ i < j ≤ k

}
> 0.

Fix an arbitrary number

l > logθ
δ

C ′d0
,

where C ′ > 0, d0 > 0, and θ ∈ (0, 1) are the constants from Proposition 3.11.
By Proposition 3.8, there exists t ∈ N and V m+t ∈ Um+t, such that f t(V m+t) = Um

0 ,
and that V m+t ⊆ Um′

0 . We denote V m+r := f t−r(V m+t) for each r ∈ {0, 1, . . . , t− 1}.
In particular, V m = Um

0 .
We will construct a sequence {An}n∈N0 of subsets of X such that the following con-

ditions hold for each n ∈ N0:

(1) An ⊆ A for some A ∈
∨n
i=0 f

−i(Um).

(2) f(An) = An−1 if n > 0.

(3) card(An) = k⌊
n

t+1
⌋.

(4) An ⊆ V m+r if n = (t + 1)s+ r, where s ∈ N0 and r ∈ {0, 1, . . . , t}.

(5) For B ∈
∨n
i=0 f

−i(Ul) and x, y ∈ An with x 6= y, we have {x, y} * B.

We now construct An recursively.
Let A0 = {x0}. Clearly A0 satisfies conditions (1) through (5).
Make the induction hypothesis that An is defined and satisfies conditions (1) through (5)

for each n ∈ {0, 1, . . . , (t+1)s+ r}, where s ∈ N0 and r ∈ {0, 1, . . . , t}. We construct
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A(t+1)s+r+1 in the following cases depending on r, and show that A(t+1)s+r+1 satisfies
conditions (1) through (5) (with n := (t+ 1)s+ r + 1).
Case 1. Assume 0 ≤ r < t.
By our induction hypothesis, A(t+1)s+r ∈ V m+r. For each x ∈ An, choose one point

x′ ∈ V m+r+1 such that f(x′) = x. Define A(t+1)s+r+1 to be the collections of all such x′

corresponds to x ∈ A(t+1)s+r.
Clearly, conditions (2) and (4) are satisfied by definition. Now we verify condi-

tions (1), (3), and (5).
We first verify condition (1). By our induction hypothesis, A(t+1)s+r ⊆ A for some

A ∈
∨n
i=0 f

−i(Um). Suppose that A =
⋂(t+1)s+r
i=0 f−i(Ûm

i ) for some Ûm
i ∈ Um for each

i ∈ {0, 1, . . . , (t + 1)s + r}. Since A(t+1)s+r+1 ⊆ V m+r+1, and {Un}n∈N0 is a refining

sequence, there exists Ûm ∈ Um such that A(t+1)s+r+1 ⊆ V m+r+1 ⊆ Ûm. Thus

A(t+1)s+r+1 ⊆ Ûm ∩

(t+1)s+r+1⋂

i=1

f−i(Ûm
i−1) ∈

(t+1)s+r+1∨

i=0

f−i(Um).

So, condition (1) is verified.
Next, we verify condition (3). By definition, card(A(t+1)s+r+1) = card(A(t+1)s+r).

When 0 ≤ r < t, we have
⌊ (t+1)s+r+1

t+1

⌋
= s =

⌊ (t+1)s+r
t+1

⌋
, and condition (3) is verified.

Then we verify condition (5). Suppose that there are x, y ∈ A(t+1)s+r+1 with

x 6= y, such that {x, y} ⊆ B for some B ∈
∨(t+1)s+r+1
i=0 f−i(Ul). Suppose B =⋂(t+1)s+r+1

i=0 f−i(Û l
i ) for some Û l

i ∈ Ul for each i ∈ {0, 1, · · · , (t + 1)s + r + 1}. By
definition f(x), f(y) ∈ A(t+1)s+r and f(x) 6= f(y). However,

{f(x), f(y)} ⊆

(t+1)s+r⋂

i=0

f−i(Û l
i+1) ∈

(t+1)s+r∨

i=0

f−i(Ul),

which contradicts the induction hypothesis. So, condition (5) is verified.

Case 2. Assume r = t, then (t+ 1)s+ r + 1 = (t+ 1)(s+ 1).
By our induction hypothesis A(t+1)s+t ⊆ V m+t ⊆ Um′

0 . Fix an arbitrary number

i ∈ {1, 2, . . . , k}. For each x ∈ A(t+1)s+t, choose one point x
′ ∈ Ũi such that f(x′) = x.

Define Ai(t+1)(s+1) to be the collection of all such x′ corresponding to some x ∈ A(t+1)s+t.

Then we define A(t+1)(s+1) :=
⋃k
i=1A

i
(t+1)(s+1).

Clearly, conditions (2) and (4) are satisfied by definition, and condition (1) can be
verified by the same process as in Case 1. It suffice to verify conditions (3) and (5).
First, we verify condition (3). By construction, card

(
Ai(t+1)(s+1)

)
= card

(
A(t+1)s+t

)
.

Since Ai(t+1)(s+1) ⊆ Ũi for each i ∈ {1, 2, . . . , k}, and Ũi ∩ Ũj = ∅ for each pair i, j ∈

{1, 2, . . . , k} with i 6= j, we have

card
(
A(t+1)(s+1)

)
= k · card

(
A(t+1)s+t)

)
= k⌊

(t+1)s+t
t+1

⌋+1 = ks+1,

and condition (3) is verified.
Next, we verify condition (5). Suppose that there are x, y ∈ A(t+1)(s+1) with x 6= y

such that {x, y} ⊆ B for some B ∈
∨(t+1)(s+1)
a=0 f−a(Ul). Suppose B ⊆ U l for some
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U l ∈ Ul. By Proposition 3.11 (i), diam(U l) ≤ C ′d0θ
l, so d(x, y) < δ since l > logθ

δ
C′d0

.

Then by (5.19) there is some i ∈ {1, 2, . . . , k} such that {x, y} ⊆ Ũi, and by construc-

tion f(x) 6= f(y). However, since {x, y} ⊆ B and B ∈
∨(t+1)(s+1)
a=0 f−a(Ul), we have

{f(x), f(y)} ⊆ S for some S ∈
∨(t+1)s+t
a=0 f−a(Ul), which contradicts condition (5) for

A(t+1)s+t in the induction hypothesis.
The recursive construction and the inductive proof of the conditions are now com-

plete. We note that An is a subset of X for each n ∈ N0.

The following properties straightforwardly follow from conditions (1), (3), and (5).

(i) An ⊆ A for some A ∈
∨n
i=0 f

−i
X (Wm).

(ii) card(An) = k⌊
n

t+1
⌋.

(iii) For all B ∈
∨n
i=0 f

−i
X (Wl) and x, y ∈ An with x 6= y, we have {x, y} * B.

So for such A ∈
∨n
i=0 f

−i
X (Wm) that contains An, if B ⊆

∨n
i=0 f

−i
X (Wl) satisfies A ⊆⋃

B, then card(B) ≥ card(An) = k⌊
n

t+1
⌋.

As a consequence, for each sufficiently large m ∈ N, there exists tm ∈ N, such that
for each sufficiently large l ∈ N and each n ∈ N, by (5.1) in Definition 5.2, we have

(5.20) H

(n−1∨

i=0

f−i
X (Wl)

∣∣∣∣
n−1∨

j=0

f−j
X (Wm)

)
≥ log k⌊

n−1
tm+1

⌋.

Thus for each sufficiently large m ∈ N, by (5.2) in Definition 5.2 and (5.20), we have

h(fX |Wm) = lim
l→+∞

lim
n→+∞

1

n
H

(n−1∨

i=0

f−i
X (Wl)

∣∣∣∣
n−1∨

j=0

f−j
X (Wm)

)

≥ lim inf
l→+∞

lim inf
n→+∞

1

n
log k⌊

n−1
tm+1

⌋ =
log k

tm + 1
> 0.

Therefore, the map f |X is not h-expansive. �

6. Equilibrium states for metric CXC systems

In this section, we will establish the existence of an equilibrium state for a metric
CXC system and a continuous potential.

6.1. Basic concepts. We start with a brief review of some concepts from dynamics.
We refer the reader to [PU10] for a more detailed study of these concepts.
Let (Z, d) be a compact metric space and g : Z → Z a continuous map. For each

n ∈ N the dynamical distance is defined as

dng (x, y) := max
{
d
(
gk(x), gk(y)

)
: k ∈ {0, 1, . . . , n− 1}

}
,

for x, y ∈ Z. We can check that dng is a metric on Z. A set F ⊆ Z is (n, ǫ)-separated
for n ∈ N and ǫ > 0 if for each pair of distinct points x, y ∈ F , we have dng (x, y) > ǫ.
For n ∈ N and ǫ > 0, we use Fn(ǫ) to denote a maximal (in the sense of inclusion)
(n, ǫ)-separated set.
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For each real-valued continuous function ψ ∈ C(Z), the following limits exist

P (g, ψ) := lim
ǫ→0

lim sup
n→+∞

1

n
log

∑

x∈Fn(ǫ)

exp (Snψ(x)),

where Snψ(x) =
∑n−1

j=0 ψ(g
j(x)). Note that P (g, ψ) above is independent of the choices

of Fn(ǫ) and is independent of d as long as the topology defined by d remains the
same. We call P (g, ψ) the topological pressure of g with respect to potential ψ, and the
quantity htop(g) := P (g, 0) is called the topological entropy of g.
A measurable partition A of Z is a finite or countably infinite collection A = {Aj :

j ∈ J} of mutually disjoint Borel sets with
⋃

A = Z, where J is a finite or countably
infinite index set. For x ∈ Z we denote by A(x) the unique element of A such that
x ∈ A(x). Let A = {Aj : j ∈ J} and B = {Bk : k ∈ K} be measurable partitions of
Z, we say A is a refinement of B if for each Aj ∈ A there exist Bk ∈ B with Aj ⊆ Bk.
The common refinement of A and B is defined as A ∨ B := {Aj ∩ Bk : Aj ∈ A, Bk ∈
B}, which is also a measurable partition. For a continuous map g : Z → Z, we set
g−1(A) := {g−1(Aj) : Aj ∈ A}, and denote for n ∈ N,

An
g :=

n−1∨

j=0

g−j(A) = A ∨ g−1(A) ∨ · · · ∨ g−(n−1)(A).

Let P(Z) denote the set of Borel probability measures and M(Z, g) denote the
set of g-invariant Borel probability measures on Z, by Krylov–Bogolyubov theorem
M(Z, g) 6= ∅. The entropy of a measurable partition A is

Hµ(A) :=
∑

j∈J

−µ(Aj) log(µ(Aj))

where 0 log 0 is defined to be 0. IfHµ(A) < +∞, then the limit hµ(g,A) := lim
n→+∞

1
n
Hµ(A

n
g )

exists, and the measure-theoretic entropy of g for µ is given by

hµ(g) := sup{hµ(g,A)},

whereA ranges over all measurable partitions with hµ(g,A) < +∞. For each ψ ∈ C(Z),
the measure-theoretic pressure Pµ(g, ψ) of g for the measure µ and potential ψ is

Pµ(g, ψ) := hµ(g) +

∫
ψ dµ.

By the Variational Principle, we have for each ψ ∈ C(Z)

(6.1) P (g, ψ) = sup{Pµ(g, ψ) : µ ∈ M(Z, g)}.

In particular, when ψ is the constant function 0, we have

(6.2) htop(g) = sup{hµ(g) : µ ∈ M(Z, g)}.

A measure µ ∈ M(Z, g) that attains the supremum in (6.1) is called an equilibrium
state for the transformation g and potential ψ. A measure µ ∈ M(Z, g) that attains
the supremum in (6.2) is called a measure of maximal entropy for g.
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6.2. Existence of equilibrium states. In this subsection, we show that equilibrium
states exist for metric CXC systems and continuous potentials.
Let Z be a compact metric space and g : Z → Z a continuous map. First, we recall

that M(Z, g) is weak∗ compact. We refer the reader to [PU10] for more details.
The following proposition gives a consequence of the asymptotic h-expansiveness. We

refer the reader to [Mi76] for more details.

Proposition 6.1. Let g : Z → Z be a continuous map on a compact metric space Z.
If g is asymptotically h-expansive, then the map

h�(g) : M(Z, g) → R, µ 7→ hµ(g)

is upper semi-continuous with respect to the weak∗ topology.

Finally, we establish the existence of equilibrium states for metric CXC systems.

Proof of Theorem C. Let f : (X1, X) → (X0, X) and {U0}n∈N0 satisfy the Assumptions
in Section 4, and ψ ∈ C(X). Note that X is compact. Denote fX := f |X .
By Proposition 6.1 the map h�(fX) : M(X, fX) → R, µ 7→ hµ(fX) is upper semi-

continuous. Then since ψ ∈ C(X), the map

P�(fX , ψ) : M(X, fX) → R, µ 7→ Pµ(X, fX) = hµ(fX) +

∫
ψ dµ

is upper semi-continuous. SinceM(X, fX) is weak
∗ compact, there exists ν ∈ M(X, fX)

that attains the supremum in sup{Pµ(fX , ψ) : µ ∈ M(X, fX)}. By the Variational
Principle, such ν ∈ M(X, fX) is an equilibrium state. �

In particular, let ψ be the constant function 0, then we obtain the existence of
measures of maximal entropy.

Corollary 6.2. Let f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assumptions in
Section 4, then there exists at least one measure of maximal entropy for the map f |X.

7. Level-2 large deviation principle and equidistribution

In this section, we show a consequence of our previous results, namely, a level-2 large
deviation principle for iterated preimages under additional assumptions, from which we
obtain an equidistribution result.

7.1. Level-2 large deviation principle. Let Z be a compact metric space, and P(Z)
be the set of Borel probability measures on Z equipped with the weak∗ topology. Note
this topology is metrizable (see for example, [Co85, Theorem 5.1]). Let I : P(Z) →
[0,+∞] be a lower semi-continuous function.
A sequence {Ωn}n∈N of Borel probability measures on P(Z) is said to satisfy a level-2

large deviation principle with rate function I if for each closed subset F of P(Z) and
each open subset G of P(Z) we have

lim sup
n→+∞

1

n
log(Ωn(F)) ≤ − inf{I(x) : x ∈ F},

lim inf
n→+∞

1

n
log(Ωn(G)) ≥ − inf{I(x) : x ∈ G}.
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We state a theorem due to Y. Kifer [Ki90, Theorem 4.3], reformulated by H. Comman
and J. Rivera-Letelier [CRL11, Theorem C].

Theorem 7.1 (Kifer [Ki90], Comman & Rivera-Letelier [CRL11]). Let Z be a compact
metrizable space, and g : Z → Z be a continuous map. Fix φ ∈ C(Z), and let H be
a dense vector subspace of C(Z) with respect to the uniform norm. Let Iφ : P(Z) →
[0,+∞] be the function defined by

Iφ(µ) :=

{
P (g, φ)−

∫
φ dµ− hµ(g), if µ ∈ M(Z, g);

+∞, if µ ∈ P(Z) \M(Z, g).

We assume the following conditions are satisfied:

(i) The function h�(g) : M(Z, g) → R, µ 7→ hµ(g), is finite and upper semi-contin-
uous.

(ii) For each ψ ∈ H, there exists a unique equilibrium state for g and potential φ+ψ.

Let {Ωn}n∈N be a sequence of Borel probability measures on P(Z) with the property that
for each ψ ∈ H,

lim
n→+∞

1

n
log

∫

P(Z)

exp

(
n

∫
ψ dµ

)
dΩn(µ) = P (g, φ+ ψ)− P (g, φ).

Then {Ωn}n∈N satisfies a level-2 large deviation principle with rate function Iφ, and it
converges in the weak∗ topology to the Dirac measure supported on the unique equilibrium
state for g and potential φ. Furthermore, for each convex open subset G of P(Z)
containing some invariant measure, we have

lim
n→+∞

1

n
log(Ωn(G)) = lim

n→+∞

1

n
log(Ωn(G)) = − inf

G
Iφ = − inf

G

Iφ.

7.2. The Additional Assumptions. We state below the assumptions under which
we will establish a level-2 large deviation principle. We will repeatedly refer to such
assumptions later.
Before we state these assumptions, we recall the notion of strongly path-connectedness.

See [DPTUZ21, Definition 2.3].

Definition 7.2 (Strongly path-connected). A topological space X is strongly path-
connected if, for any finite or countably infinite subset S of X, the space X \ S is
path-connected.

The Additional Assumptions.

(1) X0,X1 are strongly path-connected.

(2) the branch set Bf is finite.

These additional assumptions were adopted in [DPTUZ21].
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7.3. Proof of Theorem D. The goal of this subsection is to establish Theorem D.
We first recall the notion of geometric coding tree from [DPTUZ21] and then use it to
establish some characterizations of the topological pressure before proving Theorem D
at the end of this subsection.
In the following context, we assume that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy

the Assumptions in Section 4 and the Additional Assumptions in Subsection 7.2, and
let φ be a real-valued Hölder continuous function on X . We denote fX := f |X for
convenience.
For each x ∈ X and each n ∈ N, put

Wn(x) :=
1

n

n−1∑

i=0

δf i(x).

For a given sequence {xn}n∈N of points in X , consider the following sequence {Ωn}n∈N
of Borel probability measures on P(X).
Iterated Preimages:

Ωn :=
∑

y∈f−n(xn)

deg(fn; y) · exp (Snφ(y))∑
z∈f−n(xn)

deg(fn; z) · exp (Snφ(z))
δWn(y),

where Snφ(x) =
∑n−1

i=0 φ(f
i(x)).

Remark 7.3. It is clear that the quantities
∑n−1

i=0 φ(f
i(x)) and

∑n−1
i=0 φ(f

i
X(x)) are

identical. By Proposition 3.7, the quantities deg(fn; x) and deg(fnX ; x) are identical.
Thus, we do not distinguish these quantities in the following context.

Our goal in this section is to establish a level-2 large deviation principle for {Ωn}n∈N
with rate function Iφ given in Theorem 7.1. We do this by applying Theorem 7.1. It
suffices to verify that the conditions in Theorem 7.1 are satisfied.
We first verify that for each ψ ∈ H ,

(7.1) lim
n→+∞

1

n
log

∫

P(X)

exp

(
n

∫
ψ dµ

)
dΩn(µ) = P (fX , φ+ ψ)− P (fX , φ).

By results in [DPTUZ21] that, under the Additional Assumption in Subsection 7.2,
the topological pressure of a metric CXC system and the shift map on a space of one-
sided sequences can be related through a semiconjugacy. We will use this idea to verify
(7.1).

7.3.1. Geometric coding tree and semiconjugacy. We construct a semiconjugacy from a
shift map to f as in [DPTUZ21]. The construction is based on the idea of “geometric
coding tree.” We refer the reader to [DPTUZ21] for more details.
Let Σ := {1, . . . , d}N be the space of infinite one-sided sequences on d symbols,

and σ : Σ → Σ the shift map. We equip Σ with the standard metric ρ(ξ, η) :=
2−min{k≥0 : ξk 6=ηk} for distinct ξ = (ξ0, ξ1, . . . , ) and η = (η0, η1, . . . ) in Σ.
Suppose that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assumptions in Sec-

tion 4 and the Additional Assumptions in Subsection 7.2. Pick w ∈ X \ post(f), let
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w1, w2, . . . , wd be all of its preimages under f . For each wi, choose a path γi in X0 con-
necting w to wi and avoiding post(f). Such paths exist since X1 and X0 are strongly
path-connected. Here, by a path γ in X0 we mean a continuous map γ : [0, 1] → X0.
We recall the path-lifting property (see for example, [DPTUZ21, Lemma 2.15]). Such

path-lifting property will be used in the construction of the geometric coding tree.

Proposition 7.4. Let h : Y → Z be a finite branched covering map, and γ be a con-
tinuous path in Z that is disjoint from the set of branch values Vh. Let x = γ(0),
and x̃ ∈ h−1(x). Then there exists a continuous path γ̃ in Y such that h(γ̃) = γ and
γ̃(0) = x̃.

Actually, such lifts are unique, which is well-known to experts. We include a proof
for the convenience of the reader.

Lemma 7.5. Let h : Y → Z be a finite branched covering map, and γ be a continuous
path in Z that is disjoint from the set of branch values Vh. Let x = γ(0), and x̃ ∈ h−1(x).
Let γ̃1 and γ̃2 be two paths in Y such that h(γ̃i) = γ and γ̃i(0) = x̃, i ∈ {1, 2}, then
γ̃1 = γ̃2.

Proof. Consider J := {t ∈ [0, 1] : γ̃1(t) = γ̃2(t)}. Then 0 ∈ J . It suffices to prove that
J is an open and closed subset of [0, 1].
Fix an arbitrary t0 ∈ J , and denote x̃0 := γ̃1(t0) = γ̃2(t0). Since γ is disjoint from Vh,

we get deg(h; x̃0) = 1. Hence, there exists a neighborhood U of x̃0 such that h|U : U →
h(U) is a homeomorphism. Choose a small neighborhood Nǫ(t0) := (t0−ǫ, t0+ǫ)∩ [0, 1]
of t0 such that γ̃i(Nǫ(t0)) ⊆ U , i ∈ {1, 2}. Then since h(γ̃1(t)) = h(γ̃2(t)) = γ(t) for
each t ∈ Nǫ(t0), and h|U is injective, we get that γ̃1(t) = γ̃2(t) for each t ∈ Nǫ(t0). Since
t0 is arbitrary, we know that J is open.
Fix an arbitrary sequence {tn}n∈N of points in J such that limn→+∞ tn = t∗ ∈ [0, 1].

Then γ̃1(tn) = γ̃2(tn) for each n ∈ N. Since γ̃1 and γ̃2 are continuous, we have γ̃1(t
∗) =

γ̃2(t
∗). Thus t∗ ∈ J . Since the sequence {tn}n∈N is arbitrary, J is closed.

Since J is open and closed, and J 6= ∅, we have J = [0, 1]. Now the proof is
complete. �

For each sequence ξ = (ξ0, ξ1, . . . ) ∈ Σ, we define a sequence {zn(ξ)}n∈N0 of points
in X inductively as follows. Put z0(ξ) := wξ0 and γ0(ξ) := γξ0 . For each n ∈ N, suppose
that zn−1(ξ) is defined, let γn(ξ) be a curve which is the branch of f−n(γξn) such that
one of its ends is zn−1(ξ). Such lifts exist by Proposition 7.4, and are well-defined by
Lemma 7.5. Define zn(ξ) as the other end of γn(ξ).
By the proof of [DPTUZ21, Proposition 2.16], we have the following proposition,

which gives a semiconjucacy from the shift map to f .

Proposition 7.6. Suppose that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the As-
sumptions in Section 4 and the Additional Assumptions in Subsection 7.2. For each
ξ ∈ Σ, let zn(ξ) be the sequence in X defined as above. Then the following statements
hold:

(i) The limit limn→+∞ zn(ξ) exists in X. Define π(ξ′) := limn→+∞ zn(ξ
′) for each

ξ′ ∈ Σ.
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(ii) f ◦ π = π ◦ σ.

(iii) The map π : Σ → X is surjective and Hölder continuous.

By [DPTUZ21, Lemma 4.2], we have the following proposition.

Proposition 7.7 (Das, Przytycki, Tiozzo, Urbański, and Zdunik [DPTUZ21]). Suppose
that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assumptions in Section 4 and the
Additional Assumptions in Subsection 7.2. Denote fX = f |X . Let φ : X → R be
a Hölder continuous function, and π be the semiconjugacy given in Proposition 7.6.
Then

P (fX , φ) = P (σ, φ ◦ π).

The following proposition follows from [DPTUZ21, Theorem 1.1].

Proposition 7.8 (Das, Przytycki, Tiozzo, Urbański, and Zdunik [DPTUZ21]). Suppose
that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assumptions in Section 4 and the
Additional Assumptions in Subsection 7.2. Let φ be a real-valued Hölder continuous
function on X. Then there exists a unique equilibrium state µφ for the map f |X and
potential φ.

Then we establish some technical lemmas.

Lemma 7.9. Suppose that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assumptions
in Section 4 and the Additional Assumptions in Subsection 7.2. Let ξ ∈ Σ. Then for
each pair of m, k ∈ N with k ≤ m, we have fk(zm(ξ)) = zm−k

(
σk(ξ)

)
.

Proof. We prove f(zm(ξ)) = zm−1(σ(ξ)) for all m ∈ N by induction.
First, consider the case where m = 1. Then γ1(ξ) is the branch of f−1(γξ1) such that

one of its ends is z0(ξ) = wξ0. Then

f(z1(ξ)) = f(γ1(ξ)(1)) = γξ1(1) = wξ1 = z0(σ(ξ)).

For an integerm > 2, we make the induction hypothesis that f(zm−1(ξ)) = zm−2(σ(ξ)).
Since γm(ξ) is the branch of f−m(γξm) such that one of its end is zm−1(ξ), we know
that f(γm(ξ)) is the branch of f−(m−1)(γξm) such that one of its ends is f(zm−1(ξ)) =
zm−2(σ(ξ)). Thus f(γm(ξ)) is identical to γm−1(σ(ξ)), and f(zm(ξ)) is identical to
zm−1(σ(ξ)).
By induction, f(zm(ξ)) = zm−1(σ(ξ)) holds for all m ∈ N. Then it follows immedi-

ately that fk(zm(ξ)) = zm−k

(
σk(ξ)

)
holds for each pair of m, k ∈ N with k ≤ m, and

the proof is complete. �

Lemma 7.10. Suppose that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assump-
tions in Section 4 and the Additional Assumptions in Subsection 7.2. Let ξ = (ξ0, ξ1, · · · )
and η = (η0, η1, · · · ) be in Σ. If ξn 6= ηn for some n ∈ N0, then zm(ξ) 6= zm(η) for each
m ∈ N with m ≥ n.

Proof. Assume that ξn 6= ηn for some n ∈ N0. We prove that zm(ξ) 6= zm(η) for all
m ≥ n by induction.
First, consider the case where m = n. Since fn(zn(ξ)) = wξn , f

n(zn(η)) = wηn and
ξn 6= ηn, it is clear that zn(ξ) 6= zn(η).
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For an integer m > n, we make the induction hypothesis that zm−1(ξ) 6= zm−1(η).
Suppose zm(ξ) = zm(η). Then wim = fm(zm(ξ)) = fm(zm(η)) for some im ∈ {1, 2, . . . , d}.
Then γm(ξ) and γm(η) are two paths such that fm(γm(ξ)) = fm(γm(η)) = γim and
γm(ξ)(1) = zm(ξ) = zm(η) = γm(η)(1). By Lemma 7.5, γm(ξ) = γm(η). Thus
zm−1(ξ) = zm−1(η), which contradicts to our induction hypothesis. So zm(ξ) 6= zm(η).
By induction, zm(ξ) 6= zm(η) holds for all m ≥ n. �

Lemma 7.11. Suppose that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assump-
tions in Section 4 and the Additional Assumptions in Subsection 7.2. Let π be the
semiconjugacy given in Proposition 7.6. Then for all x0 ∈ X \ post(f), ω0 ∈ Σ, and
n ∈ N with x0 = π(ω0), the map π|σ−n(ω0) : σ

−n(ω0) → f−n(x0) is bijective.

Proof. Fix arbitrary x0 ∈ X \ post(f), ω0 ∈ Σ, n ∈ N, and ξ, η ∈ σ−n(ω0) with ξ 6= η
and x0 = π(ω0) (see Proposition 7.6). By Lemma 7.9, for each integer m ≥ n, it
holds that fn(zm(ξ)) = zm−n(ω0) = fn(zm(η)). On the other hand, since ξ 6= η, there
exists k ∈ {0, 1, · · · , n − 1} such that ξk 6= ηk. Then by Lemma 7.10, we know that
zm(ξ) 6= zm(η) holds for each integer m ≥ n.
If π(ξ) = π(η) = x ∈ X , then the following statements hold:

(1) zm(ξ) 6= zm(η) for each m ≥ n;

(2) lim
m→+∞

zm(ξ) = lim
m→+∞

zm(η) = x;

(3) fn(zm(ξ)) = zm−n(ω0) = fn(zm(η));

(4) lim
m→+∞

zm−n(ω0) = x0 = fn(x).

Thus we know that deg(fn; x) ≥ 2, which contradicts to x ∈ X \ post(f). Since ξ, η are
arbitrary, the map π|σ−n(ω0) : σ

−n(ω0) → f−n(x0) is injective. Since x0 ∈ X \ post(f),
we have card(f−n(x0)) = dn = card(σ−n(ω0)), and we get that the map π|σ−n(ω0) is
bijective. �

The following two lemmas are standard for the full shifts; see for example, [PU10].

Lemma 7.12. Let Σ be the space of infinite one-sided sequences of d symbols, and
σ : Σ → Σ the shift map. Let φ be a real-valued Hölder continuous function on Σ. Then
for each ω0 ∈ Σ, we have

P (σ, φ) = lim
n→+∞

1

n
log

∑

ω∈σ−n(ω0)

exp(Snφ(ω)).

Lemma 7.13. Let Σ be the space of one-sided infinite sequences on d symbols, and
σ : Σ → Σ the shift map. Let φ be an α-Hölder continuous function on Σ. Then there
exists C0 > 1 such that for any ξ0, η0 ∈ Σ and n ∈ N,

1

C0
≤

∑
ξ∈σ−n(ξ0)

exp(Snφ(ξ))∑
η∈σ−n(η0)

exp(Snφ(η))
≤ C0.

7.3.2. Characterizations of topological pressure. We first give some technical lemmas
regarding the topological pressure of CXC maps and Hölder continuous potentials.
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Lemma 7.14. Suppose that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assump-
tions in Section 4 and the Additional Assumptions in Subsection 7.2. Denote fX := f |X.
Let φ be a real-valued Hölder continuous function on X. Then for each x0 ∈ X\post(f),
we have

P (fX , φ) = lim
n→+∞

1

n
log

∑

x∈f−n(x0)

exp(Snφ(x)).

Proof. Fix an arbitrary point x0 ∈ X \ post(f). Since the semiconjugacy π in Proposi-
tion 7.6 is surjective, there exists ω0 ∈ Σ such that x0 = π(ω0).
By Lemma 7.11, π|σ−n(ω0) is bijective, so we can calculate P (fX , φ) using Proposi-

tion 7.7 and Lemma 7.12 as follows:

P (fX , φ) =P (σ, φ ◦ π)

= lim
n→+∞

1

n
log

∑

ω∈σ−n(ω0)

exp(Sn(φ ◦ π)(ω))

= lim
n→+∞

1

n
log

∑

x∈f−n(x0)

exp(Snφ(x)).

The lemma is now verified. �

Lemma 7.15. Suppose that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assump-
tions in Section 4 and the Additional Assumptions in Subsection 7.2. Let φ be an
α-Hölder continuous function on X. Then there exists a constant C1 > 0 such that for
each n ∈ N and each U ∈ Un, the inequality

|Snφ(x)− Snφ(y)| ≤ C1

holds for all x, y ∈ X ∩ U .

Proof. Fix arbitrary n ∈ N, U ∈ Un, and x, y ∈ U .
By Proposition 3.11 (i), for each integer i ∈ [0, n − 1], we have |f i(x) − f i(y)| ≤

C ′d0θ
n−i since f i(x), f i(y) ∈ f i(U) ∈ Un−i. Since φ is α-Hölder continuous, there exists

a constant C > 0, such that |φ(x1) − φ(x2)| ≤ C|x1 − x2|
α for all x1, x2 ∈ X . So for

each integer i ∈ [0, n− 1],
∣∣φ
(
f i(x)

)
− φ

(
f i(y)

)∣∣ ≤ C
(
C ′d0θ

n−i
)α
.

Thus

|Snφ(x)− Snφ(y)| ≤
n−1∑

i=0

∣∣φ
(
f i(x)

)
− φ

(
f i(y)

)∣∣ ≤
n−1∑

i=0

C(C ′d0)
α · (θα)n−i ≤

C(C ′d0θ)
α

(1− θα)
.

By putting C1 := C(C ′d0θ)
α/(1− θα), we complete the proof of this lemma. �

Lemma 7.16. Suppose that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assump-
tions in Section 4 and the Additional Assumptions in Subsection 7.2. Let φ be an α-
Hölder continuous function on X. Then there exists C2 > 1 such that for all U0 ∈ U0,
x0, y0 ∈ X ∩ U0, and n ∈ N,

C−1
2 ≤ Sn(x0)/Sn(y0) ≤ C2,
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where

(7.2) Sn(z) :=
∑

z′∈f−n(z)

deg(fn; z′) · exp(Snφ(z
′))

for each z ∈ X.

Proof. Fix arbitrary U0 ∈ U0, x0, y0 ∈ X ∩ U0, and n ∈ N. For each z ∈ X and each
V ⊆ X1, write

Sn(z, V ) :=
∑

z′∈f−n(z)∩V

deg(fn; z′) · exp(Snφ(z
′)).

Then Sn(z) =
∑

U∈Un,fn(U)=U0
Sn(z, U) for each z ∈ {x0, y0}. For each U ∈ Un with

fn(U) = U0, we have
∑

x∈f−n(x0)∩U

deg(fn; x) = deg(fn|U) =
∑

y∈f−n(y0)∩U

deg(fn; y),

since fn|U : U → U0 is an FBC map. Then by Lemma 7.15, there exists C1 > 0 such
that

exp(−C1) ≤ Sn(x0, U)/Sn(y0, U) ≤ exp(C1).

Thus we get

exp(−C1) ≤

∑
U∈Un,fn(U)=U0

Sn(x0, U)∑
U∈Un,fn(U)=U0

Sn(y0, U)
≤ exp(C1).

By putting C2 := exp(C1), we complete the proof of this lemma. �

Lemma 7.17. Suppose that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assump-
tions in Section 4 and the Additional Assumptions in Subsection 7.2. Let φ be an α-
Hölder continuous function on X. Then there exists C3 > 1 such that for all x0, y0 ∈ X
and n ∈ N,

C−1
3 ≤ Sn(x0)/Sn(y0) ≤ C3,

where Sn(·) is defined in (7.2) in Lemma 7.16.

Proof. Fix arbitrary x0, y0 ∈ X , n ∈ N, and U, V ∈ U0 such that x0 ∈ U , y0 ∈ V .
Since post(f) is nowhere dense in X , there exist u0, v0 ∈ X \ post(f) with u0 ∈ U and
v0 ∈ V .
By Lemma 7.16, we have C−1

2 ≤ Sn(x0)/Sn(u0) ≤ C2 and C
−1
2 ≤ Sn(v0)/Sn(y0) ≤ C2

where C2 > 1 is the constant from Lemma 7.16.
Choose ξ0, η0 ∈ Σ such that π(ξ0) = u0 and π(η0) = v0, where π is given in Proposi-

tion 7.6. By Lemma 7.11, we have

Sn(u0) =
∑

u∈f−n(u0)

exp(Snφ(u)) =
∑

ξ∈σ−n(ξ0)

exp(Snφ ◦ π(ξ)),

Sn(v0) =
∑

v∈f−n(v0)

exp(Snφ(v)) =
∑

η∈σ−n(η0)

exp(Snφ ◦ π(η)).

Then by Lemma 7.13, we have C−1
0 ≤ Sn(u0)/Sn(v0) ≤ C0. Combining the inequalities

above, we have
C−1

0 · C−2
2 ≤ Sn(x0)/Sn(y0) ≤ C0 · C

2
2 .
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By putting C3 := C0 · C
2
2 we complete the proof of this lemma. �

A characterization of topological pressure is obtained in the following lemma.

Lemma 7.18. Suppose that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the Assump-
tions in Section 4 and the Additional Assumptions in Subsection 7.2. Denote fX := f |X.
Let φ be a real-valued Hölder continuous function on X. Then for each sequence {xk}k∈N
of points in X,

P (fX , φ) = lim
n→+∞

1

n
log

∑

x∈f−n(xn)

deg(fn; x) · exp(Snφ(x)).

Proof. By Lemma 7.17, there exists C3 > 1 such that for all x′, x′′ ∈ X ,

C−1
3 ≤ Sn(x

′)/Sn(x
′′) ≤ C3,

where Sn(·) is defined in (7.2) in Lemma 7.16. Fix an arbitrary x0 ∈ X \post(f). Then
for each n ∈ N, we have

1

n
log

∑

x∈f−n(x0)

eSnφ(x) −
logC3

n
≤

1

n
log(Sn(xn)) ≤

1

n
log

∑

x∈f−n(x0)

eSnφ(x) +
logC3

n
.

So, by Lemma 7.14 the limit limn→+∞
1
n
log(Sn(xn)) exists and is equal to P (fX , φ). �

Now we are ready to prove our level-2 large deviation principle.

Proof of Theorem D. Suppose that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the
Assumptions in Section 4 and the Additional Assumptions in Subsection 7.2. We denote
fX := f |X for clarity.
We apply Theorem 7.1 with Z := X , g := fX , and H := C0,α(X). By [He01,

Theorem 6.8], the set of Lipschitz functions on X is dense in C(X), thus H is dense in
C(X).
By Theorem A, fX is asymptotically h-expansive, thus h�(fX) is upper semi-continuous.

Condition (i) in Theorem 7.1 is satisfied. By Proposition 7.8, for each ψ ∈ H , there ex-
ists a unique equilibrium state for f and potential φ+ψ. Condition (ii) in Theorem 7.1
is satisfied.
By Lemma 7.18, for each ψ ∈ H , we have

lim
n→+∞

1

n
log

∫

P(X)

exp

(
n

∫
ψ dµ

)
dΩn(µ)

= lim
n→+∞

1

n
log

( ∑

y∈f−n(xn)

deg(fn; y) · eSnφ(y)

∑
z∈f−n(xn)

deg(fn; z) · eSnφ(z)
e
∑n−1

i=0 ψ(f i(y))

)

= lim
n→+∞

1

n

(
log

∑

y∈f−n(xn)

eSn(φ+ψ)(y) − log
∑

y∈f−n(xn)

eSnφ(y)

)

= P (fX , φ+ ψ)− P (fX , φ).

Now that all conditions in Theorem 7.1 are satisfied, the result follows from Theo-
rem 7.1. �
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7.4. Equidistribution with respect to the equilibrium state. We finish this sec-
tion with an equidistribution result as a consequence of our level-2 large deviation
principle.
First, we show a corollary of Theorem D, which gives a characterization of the

measure-theoretic pressure.

Corollary 7.19. Suppose that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the As-
sumptions in Section 4 and the Additional Assumptions in Subsection 7.2. We denote
fX := f |X . Let φ : X → R be Hölder continuous, and µφ be the unique equilibrium
state.
Let {xn}n∈N be a sequence of points in X. Then the following identity holds for each

µ ∈ M(X, fX) and each convex local basis Gµ of P(X) at µ:

hµ(fX) +

∫
φ dµ = inf

{
lim

n→+∞

1

n
log

( ∑

y∈f−n(xn),
Wn(y)∈G

deg(fn; y) · eSnφ(y)

)
: G ∈ Gµ

}
.

Proof. Fix arbitrary µ ∈ M(X, fX) and a convex local basis Gµ at µ. By the upper
semi-continuity of hµ(fX) and the definition of Iφ(·) in (1.1) in Theorem D, we get

(7.3) −Iφ(µ) = inf
G∈Gµ

(
sup
G

(
−Iφ

))
= inf

G∈Gµ

(
− inf

G
Iφ
)
.

Then by (1.2) in Theorem D and (7.3), we have

−Iφ(µ) = inf
G∈Gµ

{
lim

n→+∞

1

n
log

∑
y∈f−n(xn),Wn(y)∈G

deg(fn; y) · eSnφ(y)

Zn(φ)

}
,

where Zn(φ) :=
∑

y∈f−n(xn)
deg(fn; y) exp(Snφ(y)). Then since limn→+∞

1
n
Zn(φ) =

P (fX, φ) (see Lemma 7.18), the proof is complete. �

We now prove the equidistribution result.

Proof of Theorem E. Suppose that f : (X1, X) → (X0, X) and {Un}n∈N0 satisfy the As-
sumptions in Section 4 and the Additional Assumptions in Subsection 7.2. We denote
fX := f |X for clarity. Let φ : X → R be Hölder continuous, and µφ be the unique
equilibrium state.
We denote

Z+
n (G) :=

∑

y∈f−n(xn),
Wn(y)∈G

deg(fn; y) · exp(Snφ(y)),

Z−
n (G) :=

∑

y∈f−n(xn),
Wn(y)/∈G

deg(fn; y) · exp(Snφ(y))

for each n ∈ N and each open set G ⊆ P(X).
Let Gµφ be a convex local basis of P(X) at µφ. Fix an arbitrary convex open set

G ∈ Gµφ.



36 ZHIQIANG LI AND HANYUN ZHENG

By the uniqueness of the equilibrium state in Proposition 7.8, for each µ ∈ P(X) \
{µφ}, we get that

hµ(fX) +

∫
φ dµ < P (fX , φ).

Then by Corollary 7.19, there exists an open neighborhood Uµ ⊆ P(X)\{µφ} of µ such
that

lim
n→+∞

1

n
Z+
n (Uµ) < P (fX , φ).

Thus there exist numbers aµ < P (fX , φ) and Nµ ∈ N, such that for each n > Nµ,

Z+
n (Uµ) ≤ exp(naµ).

Since P(X) is weak∗ compact, so is P(X) \G. Thus there exists a finite set {µi : i ∈
I} ⊆ P(X) \G, where I is a finite index set, such that

P(X) \G ⊆
⋃

i∈I

Uµi .

Put a := max{aµi : i ∈ I}. Note that a < P (fX , φ). Then we have

(7.4) Z−
n (G) ≤

∑

i∈I

Z+
n (Uµi) ≤ card(I) exp(na)

for each n > max{Nµi : i ∈ I}.
Applying Corollary 7.19 with µ = µφ, we get that

P (fX , φ) ≤ lim
n→+∞

1

n
log

(
Z+
n (G)

)
.

On the other hand, by Lemma 7.18, we have

P (fX , φ) = lim
n→+∞

1

n
log

(
Zn(φ)

)
≥ lim

n→+∞

1

n
log

(
Z+
n (G)

)
,

so we get that

P (fX , φ) = lim
n→+∞

1

n
log

(
Z+
n (G)

)
.

Choose numbers b ∈ (a, P (fX, φ)) and N ≥ max{Nµi : i ∈ I} such that for each integer
n > N ,

(7.5) Z+
n (G) ≥ exp(nb).

Combining (7.4) with (7.5), we get

(7.6) lim
n→+∞

Z−
n (G)

Z+
n (G)

≤ lim
n→+∞

card(I) exp(na)

exp(nb)
= 0.

Put

ν ′n :=
∑

y∈f−n(xn),
Wn(y)∈G

deg(fn; y) · exp(Snφ(y))

Z+
n (G)

Wn(y),
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where Wn(y) :=
1
n

∑n−1
i=0 δf i(y). Then for each n ∈ N, we have

νn =
Z+
n (G)

Z+
n (G) + Z−

n (G)
ν ′n +

∑

y∈f−n(xn),
Wn(y)/∈G

deg(fn; y) · exp(Snφ(y))

Z+
n (G) + Z−

n (G)
Wn(y).

By (7.6) we know that limn→+∞
Z+
n (G)

Z+
n (G)+Z−

n (G)
= 1 and that the total variation

∥∥∥∥
∑

y∈f−n(xn),
Wn(y)/∈G

deg(fn; y) · exp(Snφ(y))

Z+
n (G) + Z−

n (G)
Wn(y)

∥∥∥∥

≤

∑
y∈f−n(xn),Wn(y)/∈G

deg(fn; y) · exp(Snφ(y))‖Wn(y)‖

Z+
n (G) + Z−

n (G)

≤
Z−
n (G)

Z+
n (G) + Z−

n (G)
−→ 0

as n tends to 0. Thus a measure is a subsequential limit of {νn}n∈N if and only if it is
a subsequential limit of {ν ′n}n∈N. Note that for each n ∈ N, ν ′n is a convex combination
of measures in the convex set G, so ν ′n ∈ G. Hence each subsequential limit of {νn}n∈N
lies in G.
Since G ∈ Gµφ is arbitrary, we get that each subsequential limit of {νn}n∈N is µφ.

Therefore νn converges to µφ in the weak∗ topology as n tends to infinity. �
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