PRIME ORBIT THEOREMS FOR EXPANDING THURSTON MAPS:
LATTES MAPS AND SPLIT RUELLE OPERATORS

ZHIQIANG LI AND TIANYI ZHENG

ABSTRACT. We obtain an analog of the prime number theorem for a class of branched covering maps on
the 2-sphere S? called expanding Thurston maps, which are topological models of some non-uniformly
expanding rational maps without any smoothness or holomorphicity assumption. More precisely, we
show that the number of primitive periodic orbits, ordered by a weight on each point induced by a
non-constant (eventually) positive real-valued Hélder continuous function on S? satisfying some addi-
tional regularity conditions, is asymptotically the same as the well-known logarithmic integral, with an
exponential error term. In particular, our results apply to postcritically-finite rational maps for which
the Julia set is the whole Riemann sphere. Moreover, a stronger result is obtained for Lattés maps.
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1. INTRODUCTION

Complex dynamics is a vibrant field of dynamical systems, focusing on the study of iterations of poly-
nomials and rational maps on the Riemann sphere C. It is closely connected, via Sullivan’s dictionary
[Su85, [Su83|, to geometric group theory, mainly concerning the study of Kleinian groups.

In complex dynamics, the lack of uniform expansion of a rational map arises from critical points
in the Julia set. Rational maps for which each critical point is preperiodic (i.e., eventually peri-
odic) are called postcritically-finite rational maps or rational Thurston maps. One natural class of
non-uniformly expanding rational maps are called topological Collet—Eckmann maps, whose basic dy-
namical properties have been studied by S. Smirnov, F. Przytycki, J. Rivera-Letelier, Weixiao Shen,
etc. (see [PRLS03, PRLO7, PRL11, [RLS14]). In this paper, we focus on a subclass of topological
Collet—Eckmann maps for which each critical point is preperiodic and the Julia set is the whole Rie-
mann sphere. Actually, the most general version of our results is established for topological models
of these maps, called expanding Thurston maps. Thurston maps were studied by W. P. Thurston in
his celebrated characterization theorem of postcritically-finite rational maps among such topological
models [DH93|]. Thurston maps and Thurson’s theorem, sometimes known as a fundamental theorem
of complex dynamics, are indispensable tools in the modern theory of complex dynamics. Expanding
Thurston maps were studied extensively by M. Bonk, D. Meyer [BM10, BM17] and P. Haissinsky,
K. M. Pilgrim [HP(9].

The investigations of the growth rate of the number of periodic orbits (e.g. closed geodesics) have
been a recurring theme in dynamics and geometry.

Inspired by the seminal works of F. Naud [Na05] and H. Oh, D. Winter [OW17] on the growth rate of
periodic orbits, known as Prime Orbit Theorems, for hyperbolic (uniformly expanding) polynomials and
rational maps, we establish in this paper the first Prime Orbit Theorems (to the best of our knowledge)
in a non-uniformly expanding setting in complex dynamics. On the other side of Sullivan’s dictionary,
see related works [MMO14, [(OW16| [OP18]. For an earlier work on dynamical zeta functions for a class
of sub-hyperbolic quadratic polynomials, see V. Baladi, Y. Jiang, and H. H. Rugh [BJR02]. See also
related work of S. Waddington [Wad97| on strictly preperiodic points of hyperbolic rational maps.

Given a map f: X — X on a metric space (X, d) and a function ¢: S — R, we define the weighted
length 7 4(7) of a primitive periodic orbit

=1z, f(x), -, [P 2)} € B(f)

(1.1) Lo(T) = ¢(x) + ¢(f(x)) + -+ o(f" (2)).
We denote by
(1.2) (1) == card{T € P(f) : Iy 4(7) < T}, T>0,

the number of primitive periodic orbits with weighted lengths up to 7. Here B(f) denotes the set of
all primitive periodic orbits of f (see Section [2)).

Note that the Prime Orbit Theorems in [Na05, [(OW17] are established for the geometric potential
¢ = log|f'|. For hyperbolic rational maps, the Lipschitz continuity of the geometric potential plays
a crucial role in [Na05, [OW17]. In our non-uniform expanding setting, critical points destroy the
continuity of log|f’|. So we are left with two options to develop our theory, namely, considering

(a) Holder continuous ¢ or
(b) the geometric potential log|f’|.

Despite the lack of Holder continuity of log|f’| in our setting, its value is closely related to the size of
pull-backs of sets under backward iterations of the map f. This fact enables an investigation of the
Prime Orbit Theorem in case (b), which will be investigated in an upcoming series of separate works
starting with [LRLJ.

The current paper is the second of a series of three papers (together with [LZhe23al, [LZhe23c|)
focusing on case (a), in which the incompatibility of Holder continuity of ¢ and non-uniform expansion
of f calls for a close investigation of metric geometries associated to f.

Lattes maps are rational Thurston maps with parabolic orbifolds (c.f. Definition [84]). They form a
well-known class of rational maps. We first formulate our theorem for Lattes maps.
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Theorem A (Prime Orbit Theorem for Lattes maps). Let f: C — C be a Lattes map on the Riemann

sphere C. Let ¢: C — R be eventually positive and continuously differentiable. Then there exists a
unique positive number so > 0 with P(f,—sop) = 0 and there exists Ny € N depending only on f such
that the following statements are equivalent:

(i) ¢ is not co-homologous to a constant in the space C(@) of real-valued continuous functions on
C.
(ii) For each n € N with n > Ny, we have npo(T) ~ Li(e*T) as T — +o0, where F := f" and
O =Y po fl.
(iii) For each n € N with n > Ny, there exists a constant § € (0, so) such that Tp,e(T) = Li(e®T) +
0(6(80_6)T) as T — 400, where F := f" and ® := E?:_ol do fl.
Here P(f,-) denotes the topological pressure, and Li(y) = f2y
integral function.

I Oé —du, y > 0, is the Eulerian logarithmic

See Definitions Bl and B.19] for the definitions of co-homology and eventually positive functions,
respectively.

The implication (i) == (iii) relies crucially on some local properties of the metric geometry of Lattes
maps, and is not expected (by the authors) in general. To establish the exponential error term similar
to that in (iii) for a class of more general rational Thurston maps, we impose a condition called a-
strong non-integrability condition (Definition [.1]), which turns out to be generic. The genericity of this
condition will be the main theme of the third and last paper [LZhe23c] of the current series. An analog
of this condition in the context of Anosov flows was first proposed by D. Dolgopyat in his seminal work
[Do9g].

The following theorem is an immediate consequence of a more general result in Theorem

Theorem B (Prime Orbit Theorems for rational expanding Thurston maps). Let f: C—Cobea
postcritz’cally—ﬁm’tg rational map without periodic critical points. Let o be the chordal metric on the
Riemann sphere C, and ¢: C — R be an eventually positive real-valued Holder continuous function.
Then there exists a unique positive number sy > 0 with topological pressure P(f, —so¢) = 0 and there
exists Ny € N depending only on f such that for each n € N withn > Ny, the following statement holds

for F = f" and ® ==Y} po fi:
(i) mpa(T) ~ Li(eSOT) as T — 400 if and only if ¢ is not co-homologous to a constant in C’(@)

(ii) Assume that ¢ satisfies the strong non-integrability condition (with respect to f and a visual
metric). Then there exists § € (0, o) such that mpe(T) = Li(e®”) + (’)(6(30_5)T) as T — +00.

Our strategy to overcome the obstacles presented by the incompatibility of the non-uniform expansion
of our rational maps and the Holder continuity of the weight ¢ (e.g. (a) the set of a-Hélder continuous
functions is not invariant under the Ruelle operator Ly, for each o € (0,1]; (b) the weakening of the
regularity of the temporal distance compared to that of the potential) is to investigate the metric
geometry of various natural metrics associated to the dynamics such as visual metrics, the canonical
orbifold metric, and the chordal metric. Such considerations lead us beyond conformal, or even smooth,
dynamical settings and into the realm of topological dynamical systems. More precisely, we will work
in the abstract setting of branched covering maps on the topological 2-sphere S? (c.f. Subsection [3.2)
without any smoothness assumptions. A Thurston map is a postcritically-finite branched covering map
on S2. Thurston maps can be considered as topological models of the corresponding rational maps.

Via Sullivan’s dictionary, the counterpart of Thurston’s theorem [DH93| in the geometric group
theory is Cannon’s Conjecture [Ca94]. This conjecture predicts that an infinite, finitely presented
Gromov hyperbolic group G whose boundary at infinity J,,G is a topological 2-sphere is a Kleinian
group. Gromov hyperbolic groups can be considered as metric-topological systems generalizing the
conformal systems in the context, namely, convex-cocompact Kleinian groups. Inspired by Sullivan’s
dictionary and their interest in Cannon’s Conjecture, M. Bonk and D. Meyer, along with others, studied
a subclass of Thurston maps by imposing some additional condition of expansion. Roughly speaking, we
say that a Thurston map is ezpanding if for any two points z, y € S?, their preimages under iterations
of the map get closer and closer. For each expanding Thurston map, we can equip the 2-sphere S? with
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a natural class of metrics called wvisual metrics. As the name suggests, these metrics are constructed
in a similar fashion as the visual metrics on the boundary d,,G of a Gromov hyperbolic group G. See
Subsection for a more detailed discussion on these notions. Various ergodic properties, including
thermodynamic formalism, on which the current paper crucially relies, have been studied by the first-
named author in [Lil7] (c.f. [Lil5l ILil6l Lil8]). Generalization of results in [Lil7] to the more general
branched covering maps studied by P. Haissinsky, K. M. Pilgrim [HP09] has drawn significant interest
recently [HRL19, DPTUZ19| [LZheH23]. We believe that our ideas introduced in this paper can be used
to establish Prime Orbit Theorems in their setting.

M. Bonk, D. Meyer [BM10, BM17] and P. Haissinsky, K. M. Pilgrim [HP09] proved that an expanding
Thurston map is conjugate to a rational map if and only if the sphere (52, d) equipped with a visual
metric d is quasisymmetrically equivalent to the Riemann sphere C equipped with the chordal metric.
The quasisymmetry cannot be promoted to Lipschitz equivalence due to the non-uniform expansion of
Thurston maps. There exist expanding Thurston maps not conjugate to rational Thurston maps (e.g.
ones with periodic critical points). Our theorems below apply to all expanding Thurston maps, which
form the most general setting in this series of papers.

Theorem C (Prime Orbit Theorems for expanding Thurston maps). Let f: S% — 52 be an expanding
Thurston map, and d be a visual metric on S? for f. Let ¢ € C%*(S2,d) be an eventually positive
real-valued Holder continuous function with an exponent a € (0,1]. Denote by sg the unique positive
number with topological pressure P(f, —so¢) = 0. Then there exists Ny € N depending only on f such

that for each n € N with n > Ny, the following statements hold for F' == f" and ® := E?:_ol o fi:

(i) mpa(T) ~ Li(eSOT) as T — +oo if and only if ¢ is not co-homologous to a constant in the space
C(S?) of real-valued continuous functions on S?.
(il) Assume that ¢ satisfies the a-strong non-integrability condition. Then there exists a constant
6 € (0,s0) such that mre(T) = Li(e*T) + 0(6(30_5)T) as T' — +oo0.
Here Li(+) is the Eulerian logarithmic integral function defined in Theorem [Al

Note that limy_, 4o Li(y)/(y/log y) = 1, thus we also get mp,e(T) ~ €% /(soT) as T — +oo0.

We remark that our proofs can be modified to derive equidistribution of holonomies similar to the
corresponding result in [OW17], but we choose to omit them in order to emphasize our new ideas and
to limit the length of this paper.

In view of Remark [3.10, Theorem [Blis an immediate consequence of Theorem [Cl

Remark 1.1. The integer Ny can be chosen as the minimum of N(f, CN) from Lemma [B.IT] over all
Jordan curves C with post f C CC 52, in which case N ¢ = 1 if there exists a Jordan curve C C 5?2
satisfying f(C) C C, post f C C, and no 1-tile in X!(f,C) joins opposite sides of C (see Definition [3.12).
The same number Ny is used in other results in this paper. We also remark that many properties of
expanding Thurston maps f can be established for f after being verified first for f" for all n > Ny.
However, some of the finer properties established for iterates of f still remain open for the map f itself;
see for example, [Mel3], Mel2].

Note that due to the lack of algebraic structure of expanding Thurston maps, even the fact that
there are only countably many periodic points is not apparent from the definition (c.f. [Lil6]). Without
any algebraic, differential, or conformal structures, the main tools we rely on are from the interplay
between the metric properties of various natural metrics and the combinatorial information on the
iterated preimages of certain Jordan curves C on S? (c.f. Subsection B.2).

By well-known arguments of M. Pollicott and R. Sharp inspired from number theory [PS98], the
counting result in Theorem [Cl follows from some quantitative information on the holomorphic extension
of certain dynamical zeta function (r _¢ defined as formal infinite products over periodic orbits. We
briefly recall dynamical zeta functions and define the dynamical Dirichlet series in our context below.
See Subsection B4] for a more detailed discussion.

Let f: S?2 — S2 be an expanding Thurston map and ¢ € C(S?,C) be a complex-valued continuous
function on S?. We denote by the formal infinite product

Cr,-w(s) = exp <Z Z e~ s5n¥(®@) >, seC,

n=1 xfn
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the dynamical zeta function for the map f and the potential 1). Here we write S, (z) = E?:_& P(f(x))
as defined in (2.4]). We remark that (¢ _ is the Ruelle zeta function for the suspension flow over f
with roof function ¢ if 1 is positive. We define the dynamical Dirichlet series associated to f and v
as the formal infinite product

D, -, deg, (5) = exp (Z Z e 5@ deg 1, (:n)), s€eC.

n=1"" a=fr(a)

Here degn is the local degree of f™ at = € S2.
Note that if f: S? — S? is an expanding Thurston map, then so is f" for each n € N.
Recall that a function is holomorphic on a set A C C if it is holomorphic on an open set containing

A.

Theorem D (Holomorphic extensions of dynamical Dirichlet series and zeta functions for expanding
Thurston maps). Let f: S? — S? be an expanding Thurston map, and d be a visual metric on S for f.
Fiz o € (0,1]. Let ¢ € C*(S?,d) be an eventually positive real-valued Hélder continuous function that
is not co-homologous to a constant in C(S?). Denote by so the unique positive number with topological
pressure P(f, —sop) = 0. Then there exists Ny € N depending only on f such that for each n € N with
n > Ny, the following statements hold for F' == f" and ® = Z?:_ol ¢o fi:

(i) Both the dynamical zeta function (r,_e(s) and the dynamical Dirichlet series Dp, ¢, deg, (5)
converge on {s € C : R(s) > so} and extend to non-vanishing holomorphic functions on {s €
C : R(s) > so} except for the simple pole at s = sg.

(i1) Assume in addition that ¢ satisfies the a-strong non-integrability condition. Then there exists a
constant o € (0,50) such that both (r,_a(s) and Dp, ¢, deg, (5) converge on {s € C: R(s) > so}
and extend to non-vanishing holomorphic functions on {s € C : R(s) > so — €o} except for the
simple pole at s = sy. Moreover, for each € > 0, there exist constants Cc > 0, a. € (0, €], and
be > 2s¢ + 1 such that

(1.3) exp (—Ce|3(s)[*7) < [Cr,-a(s)| < exp (CelS(s)*F)
(1.4) exp (—CE]%(S)]2+E) < |Dp, -, degp (5)| < exp (CelS (s)]2+5)
for all s € C with |R(s) — so| < ac and |I(s)| > be.

In order to get information about (r _s, we need to investigate the zeta function (, Ay —boTa of a
symbolic model of o4, : ZXA — EL of F.

Theorem E (Holomorphic extensions of the symbolic zeta functions). Let f: S? — S? be an expanding
Thurston map with a Jordan curve C C S? satisfying f(C) C C, post f C C, and no 1-tile in X'(f,C)
joins opposite sides of C. Let d be a visual metric on S? for f. Fiz a € (0,1]. Let ¢ € CO**(S2,d) be an
eventually positive real-valued Holder continuous function that is not co-homologous to a constant in
C(S?). Denote by sqg the unique positive number with P(f, —so$) = 0. Let (EXA, UAA) be the one-sided
subshift of finite type associated to f and C defined in Proposition [Z.21], and let mwp : EL — S? be the
factor map as defined in [(3.19).

Then the dynamical zeta function (s, | —gon,(8) converges on the open half-plane {s € C: R(s) > so},
and the following statements hold:

(i) The function (s, gon,(8) extends to a mon-vanishing holomorphic function on the closed half-
plane {s € C: R(s) > s} except for the simple pole at s = sg.

(ii) Assume in addition that ¢ satisfies the a-strong non-integrability condition. Then there exists
a constant €y € (0, 89) such that (5, gor, () extends to a non-vanishing holomorphic function
on the closed half-plane {s € C : R(s ) > so— €y} except for the > simple pole at s = so. Moreover,
for each € > 0, there exist constants Ce > 0, @ € (0, s0), and be > 250 + 1 such that

(1.5) exp(—CelS(5)*7) < [Gon,,-gom (5)] < exp(CelS(s)[**)
for all s € C with |R(s) — so| < @ and |S(s)| > be.
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We adapt D. Dolgopyat’s cancellation argument developed in his landmark work [Do98| (building
in part of work of Chernov [Ch98]) and arguments of M. Pollicott and R. Sharp [PS98] to establish a
symbolic version of Theorem [Dl as stated in Theorem [El The difficulties in adapting D. Dolgopyat’s
machinery in our metric-topological setting are purely technical, but overcoming these difficulties in any
context is the heart of the matter (c.f. [Na05, [OW17] as well as works on the decay of correlation and
counting in [Liv04, [AGY06l IOW16l [OW17, BDL18]|, etc.) We use the Hélder norm in the cancellation
argument instead of the C'-norm used in [Na05, [OW17]. Another major technical difficulty comes from
the fact that S? is connected and the usual Ruelle operator does not apply to characteristic functions on
proper subsets of S2, which is essential in Ruelle’s estimate (see (6.2)) in Proposition [6.1]). Our approach
is to adjust the definition of the Ruelle operator and to introduce what we call the split Ruelle operator
(see Section [). Such an approach should be useful in establishing Prime Orbit Theorems in other
contexts.

We will now give a brief description of the structure of this paper.

After fixing some notation in Section 2, we give a review of basic definitions and results in Section [3
In Section Ml we state the assumptions on some of the objects in this paper, which we are going to
repeatedly refer to later as the Assumptions. In Section [, we define the split Ruelle operator LL_g4 and
study its properties including spectral gap. Section [0l contains arguments to bound the dynamical zeta
function (, 4, —¢ors With the bounds of the operator norm of L_s4. We provide a proof of Theorem
in Subsection to deduce the holomorphic extension of Dp, _¢ qeg, from that of (, Ay, —Bomy, and
ultimately to deduce the holomorphic extension of (r,_¢ from that of D ¢, deg,.- In Section[7, we adapt
the arguments of D. Dolgopyat [Do98] in our metric-topological setting aiming to prove Theorem
at the end of this section, consequently establishing Theorems [D] [E] and [Cl Section Bl focuses on Lattes
maps (recalled in Definition B4). We include the proof of Theorem [Al at the end of this section.
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2. NOTATION

Let C be the complex plane and C be the Riemann sphere. For each complex number z € C, we
denote by R(z) the real part of z, and by (z) the imaginary part of z. We denote by D the open
unit disk D := {z € C : |z] < 1} on the complex plane C. For each a € R, we denote by H, the
open (right) half-plane H, = {z € C : R(z) > a} on C, and by H, the closed (right) half-plane
H, == {z € C: R(2) > a}. We follow the convention that N := {1, 2,3, ...}, Ny := {0} UN, and
N:=NuU {400}, with the order relations <, <, >, > defined in the obvious way. For = € R, we define
|| as the greatest integer < x, and [z] the smallest integer > 2. As usual, the symbol log denotes
the logarithm to the base e, and log, the logarithm to the base ¢ for ¢ > 0. The symbol i stands for
the imaginary unit in the complex plane C. For each z € C\ {0}, we denote by Arg(z) the principle
argument of z, i.e., the unique real number in (—, 7] with the property that |z|e!A8() = 2 The
cardinality of a set A is denoted by card A.

Consider real-valued functions w, v, and w on (0,400). We write u(T) ~ v(T) as T — +oo if
lmy 400 % =1, and write u(T) = v(T) + O(w(T)) as T — o0 if lim supT_,+oo|%| < +o0.

Let g: X — Y be a map between two sets X and Y. We denote the restriction of g to a subset Z of
X by glz. Consider a map f: X — X on a set X. The inverse map of f is denoted by f~1. We write
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f™ for the n-th iterate of f, and f~" := (f")_l, for n € N. We set f0 :=idyx, where the identity map
idx: X — X sends each x € X to x itself. For each n € N, we denote by

(2.1) Poy={zeX: f"(z)=ur, ffa)#x, ke{l,2, ..., n— 1}}
the set of periodic points of f with periodic n, and by
(2.2) Bn, f)={{fi(z):i€{0,1,....,n—1}} :z € P, ¢}

the set of primitive periodic orbits of f with period n. The set of all primitive periodic orbits of f is
denoted by

“+oo
(2.3) B = | B, £).
n=1

Given a complex-valued function ¢: X — C, we write
n—1
(2.4) Sup() = Shp(x) =Y o(f(x))
j=0

for x € X and n € Ny. The superscript f is often omitted when the map f is clear from the context.
Note that when n = 0, by definition, we always have Sgp = 0.

Let (X,d) be a metric space. For subsets A, B C X, we set d(A4, B) := inf{d(z,y) : x € A, y € B},
and d(A, z) = d(z, A) == d(A,{z}) for z € X. For each subset Y C X, we denote the diameter of Y by
diamy(Y') := sup{d(z,y) : z, y € Y}, the interior of Y by int Y, and the characteristic function of YV
by 1y, which maps each z € Y to 1 € R and vanishes otherwise. We use the convention that 1 = 1x
when the space X is clear from the context. For each r > 0 and each x € X, we denote the open (resp.
closed) ball of radius r centered at x by By(z,r) (resp. By(z,7)).

We set C'(X) (resp. B(X)) to be the space of continuous (resp. bounded Borel) functions from X to
R, M(X) the set of finite signed Borel measures, and P(X) the set of Borel probability measures on X.
We denote by C(X,C) (resp. B(X,C)) the space of continuous (resp. bounded Borel) functions from
X to C. We adopt the convention that unless specifically referring to C, we only consider real-valued
functions. If we do not specify otherwise, we equip C'(X) and C(X, C) with the uniform norm ||| co(x)
For a continuous map g: X — X, M(X, g) is the set of g-invariant Borel probability measures on X.

The space of real-valued (resp. complex-valued) Holder continuous functions with an exponent « €
(0,1] on a compact metric space (X,d) is denoted by C%*(X,d) (resp. C*%((X,d),C)). For each
Y € C%%((X,d),C), we denote

(25) W}‘a,(X,d) = SUP{WJ(UU) - w(y)’/d(%y)a ‘T, Y€ X7 T 7é y}a
and for b € R\ {0}, the normalized Hélder norm of 1 is defined as
(2.6) ||7/)||Coa(Xd = 1617 [Pl (xa) + 19l cox

while the standard Holder norm of ¢ is denoted by

(2.7) 19/l co.e(x,a) WHCOQ(Xd

For a Lipschitz map g: (X,d) — (X,d) on a metric space (X,d), we denote the Lipschitz constant
by

(2.8) LIP(g) = sup{d(g(z), g9(y))/d(z,y) : z, y € X with z # y}.

3. PRELIMINARIES

3.1. Thermodynamic formalism. We first review some basic concepts from dynamical systems. We
refer the readers to [LZhe23a), Subsection 3.1] for more details and references.

Let (X,d) be a compact metric space and g: X — X a continuous map. For each real-valued
continuous function ¢ € C(X), the measure-theoretic pressure P,(g,¢) of g for a g-invariant Borel
probability measure p and the potential ¢ is

(3.1) P.(g,9) /¢ dp.
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Here h,(g) denotes the usual measure-theoretic entropy of g for u.
By the Variational Principle (see for example, [PUL0, Theorem 3.4.1]), we have that for each ¢ €
C(X), the topological pressure P(g,¢) of g with respect to the potential ¢ satisfies

(32) P(g,9) =sup{Pu(g,9) : p € M(X, g)}.
In particular, when ¢ is the constant function 0, the topological entropy hiop(g) of g satisfies
(3.3) htop(9) = sup{hu(g) : p € M(X,g)}.

A measure p that attains the supremum in ([B2) is called an equilibrium state for the map g and the
potential ¢. A measure p that attains the supremum in ([B3) is called a measure of mazimal entropy
of g.

Definition 3.1. Let g: X — X be a continuous map on a metric space (X,d). Let £ C C(X,C)
be a subspace of the space C(X,C) of complex-valued continuous functions on X. Two functions
¢, Y € C(X,C) are said to be co-homologous (in K) if there exists u € K such that ¢ —¢ =uog—u.

One of the main tools in the study of the existence, uniqueness, and other properties of equilibrium
states is the Ruelle operator. We will postpone the discussion of the Ruelle operators of expanding
Thurston maps to Subsection

3.2. Thurston maps. In this subsection, we go over some key concepts and results on Thurston maps,
and expanding Thurston maps in particular. For a more thorough treatment of the subject, we refer
to [BM17].

Let S? denote an oriented topological 2-sphere. A continuous map f: S — S? is called a branched
covering map on S? if for each point x € S?, there exists a positive integer d € N, open neighborhoods
U of z and V of y = f(x), open neighborhoods U’ and V' of 0 in C, and orientation-preserving
homeomorphisms ¢: U — U’ and n: V — V' such that ¢(z) =0, n(y) =0, and

(no fop™)(z) =2
for each z € U’. The positive integer d above is called the local degree of f at x and is denoted by

deg ().
The degree of f is

(3.4) deg f = Z deg ()
zef~y)

for y € $? and is independent of y. If f: S? — S? and g: S? — S? are two branched covering maps on
52, then so is f o g, and

(3.5) deg . () = deg,(z) deg;(g(x)), for each z € 52,
and moreover,
(3.6) deg(f o g) = (deg f)(degg).

A point x € S? is a critical point of f if degs(z) > 2. The set of critical points of f is denoted by
crit f. A point y € S? is a postcritical point of f if y = f"(z) for some x € crit f and n € N. The set
of postcritical points of f is denoted by post f. Note that post f = post f™ for all n € N.

Definition 3.2 (Thurston maps). A Thurston map is a branched covering map f: S? — 52 on 52
with deg f > 2 and card(post f) < +o0.

We now recall the notation for cell decompositions of S? used in [BM17] and [Lil7]. A cell of
dimension n in S, n € {1, 2}, is a subset ¢ C S? that is homeomorphic to the closed unit ball B" in
R™. We define the boundary of ¢, denoted by Oc, to be the set of points corresponding to OB™ under
such a homeomorphism between ¢ and B™. The interior of c is defined to be inte(c) = ¢\ de. For each
point € S?, the set {z} is considered as a cell of dimension 0 in S2. For a cell ¢ of dimension 0, we
adopt the convention that dc = () and inte(c) = c.

We record the following three definitions from [BM17].

Definition 3.3 (Cell decompositions). Let D be a collection of cells in S2. We say that D is a cell
decomposition of S? if the following conditions are satisfied:
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(i) the union of all cells in D is equal to S?,
(ii) if ¢ € D, then Oc is a union of cells in D,
(iii) for ¢1, co € D with ¢; # co, we have inte(cp) Ninte(cg) = 0,
(iv) every point in S? has a neighborhood that meets only finitely many cells in D.

Definition 3.4 (Refinements). Let D’ and D be two cell decompositions of S?. We say that D’ is a
refinement of D if the following conditions are satisfied:

(i) every cell ¢ € D is the union of all cells ¢ € D’ with ¢ C ¢,
(ii) for every cell ¢ € D’ there exits a cell ¢ € D with ¢ C c.

Definition 3.5 (Cellular maps and cellular Markov partitions). Let D’ and D be two cell decomposi-
tions of S?. We say that a continuous map f: S? — 52 is cellular for (D', D) if for every cell ¢ € D’,
the restriction f|. of f to ¢ is a homeomorphism of ¢ onto a cell in D. We say that (D', D) is a cellular
Markov partition for f if f is cellular for (D’,D) and D’ is a refinement of D.

Let f: S? — S? be a Thurston map, and C C S? be a Jordan curve containing post f. Then the pair
f and C induces natural cell decompositions D™(f,C) of S2, for n € Ny, in the following way:

By the Jordan curve theorem, the set S2\C has two connected components. We call the closure of one
of them the white 0-tile for (f,C), denoted by X2 and the closure of the other the black 0-tile for (f,C),
denoted by Xbo. The set of 0-tiles is X°(f,C) == {X[?, Xg}. The set of 0-vertices is VO(f,C) = post f.
We set Vo(f,C) = {{z} : 2 € V(£,C)}. The set of 0-edges E°(f,C) is the set of the closures of the
connected components of C \ post f. Then we get a cell decomposition

D(f,C) =X (f,C) UE*(f,C) UV"(},C)

of S? consisting of cells of level 0, or 0-cells.

We can recursively define unique cell decompositions D™(f,C), n € N, consisting of n-cells such
that f is cellular for (D"*1(f,C),D"(f,C)). We refer to [BMIT7, Lemma 5.12] for more details. We
denote by X"(f,C) the set of n-cells of dimension 2, called n-tiles; by E™(f,C) the set of n-cells of
dimension 1, called n-edges; by V' (f,C) the set of n-cells of dimension 0; and by V"(f,C) the set
{z:{a} € Vn(f,C)}, called the set of n-vertices. The k-skeleton, for k € {0, 1, 2}, of D™(f,C) is the
union of all n-cells of dimension & in this cell decomposition.

We record Proposition 5.16 of [BM17] here in order to summarize properties of the cell decompositions
D"(f,C) defined above.

Proposition 3.6 (M. Bonk & D. Meyer [BM17]). Let k, n € Ny, let f: S? — S? be a Thurston map,
C C S? be a Jordan curve with post f C C, and m = card(post f).

(i) The map f* is cellular for (D"**(f,C),D"(f,C)). In particular, if ¢ is any (n + k)-cell, then
f¥(c) is an n-cell, and f*|. is a homeomorphism of ¢ onto f*(c).

(i) Let ¢ be an n-cell. Then f~*(c) is equal to the union of all (n + k)-cells ¢ with f*(c) = c.

(iii) The 1-skeleton of D"(f,C) is equal to f~™(C). The 0-skeleton of D"(f,C) is the set V"'(f,C) =
f~(post f), and we have V™ (f,C) C V"E(f.C).

(iv) card(X"(f,C)) = 2(deg f)™, card(E"(f,C)) = m(deg )", and card(V"(f,C)) < m(deg f)™.

(v) The n-edges are precisely the closures of the connected components of f~™(C)\ f~"(post f). The
n-tiles are precisely the closures of the connected components of S?\ f~"(C).

(vi) BEvery n-tile is an m-gon, i.e., the number of n-edges and the number of n-vertices contained in
its boundary are equal to m.

(vii) Let F := f* be an iterate of f with k € N. Then D"(F,C) = D"*(f,C).

We also note that for each n-edge e € E"(f,C), n € Ny, there exist exactly two n-tiles X, X’ €
X"(f,C) such that X N X' =e.
For n € Ny, we define the set of black n-tiles as

Xy(f,C) = {X e X"(£,C): f"(X) = X¢ },
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and the set of white n-tiles as

XL (£,C) = {X € X(£,€) : f"(X) = X0},
It follows immediately from Proposition that
(3.7) card (X2 (£,C)) = card(X3(f,C)) = (deg )"

for each n € Nj.

From now on, if the map f and the Jordan curve C are clear from the context, we will sometimes
omit (f,C) in the notation above.

We denote, for each z € S% and n € Z,

(3.8) U"(x) = U{Y" € X" : there exists X" € X" with x € X", X" NY" # 0}

if n > 0, and set U™(x) := S? otherwise.
We can now recall a definition of expanding Thurston maps.

Definition 3.7 (Expansion). A Thurston map f: S? — S? is called expanding if there exists a metric
d on S? that induces the standard topology on S? and a Jordan curve C C S? containing post f such
that
lim max{diamy(X) : X € X"(f,C)} = 0.
n——+00

P. Haissinsky and K. M. Pilgrim developed a notion of expansion in a more general context for
finite branched coverings between topological spaces (see [HP09) Sections 2.1 and 2.2]). This applies to
Thurston maps, and their notion of expansion is equivalent to our notion defined above in the context
of Thurston maps (see [BM17, Proposition 6.4]). Our notion of expansion is not equivalent to classical
notions such as forward-expansive maps or distance-expanding maps. One topological obstruction
comes from the presence of critical points for (non-homeomorphic) branched covering maps on S2.

For an expanding Thurston map f, we can fix a particular metric d on S? called a wvisual metric for
f. For the existence and properties of such metrics, see [BM17, Chapter 8|. For a visual metric d for f,
there exists a unique constant A > 1 called the expansion factor of d (see [BM17, Chapter 8] for more
details). One major advantage of a visual metric d is that in (52, d), we have good quantitative control
over the sizes of the cells in the cell decompositions discussed above. We summarize several results of
this type ([BM17, Proposition 8.4, Lemmas 8.10, 8.11]) in the lemma below.

Lemma 3.8 (M. Bonk & D. Meyer [BMI17]). Let f: S? — S? be an expanding Thurston map, and
C C S? be a Jordan curve containing post f. Let d be a visual metric on S? for f with expansion factor
A > 1. Then there exist constants C > 1, C' > 1, K > 1, and ng € Ny with the following properties:
(i) d(o,7) > C~'A=" whenever o and T are disjoint n-cells for n € Ny.

(i) C~'A=" < diamgy(7) < CA™™ for all n-edges and all n-tiles T for n € Ny.

(iii) By(x, K~'A™™) C U™(x) C By(x, KA™) for x € S? and n € Ny.

(iv) U™m0(x) C By(z,r) C U™ (z) where n = [—logr/log Al for r >0 and x € S2.

(v) For every n-tile X™ € X"(f,C), n € Ny, there exists a point p € X™ such that By(p, C~1A~") C

X™ C By(p, CA™™).

Conversely, if&vis a metric on S? satisfying conditions (i) and (ii) for some constant C > 1, then d
is a visual metric with expansion factor A > 1.

Recall that U™(x) is defined in (3.8).

In addition, we will need the fact that a visual metric d induces the standard topology on S?2
([BM17, Proposition 8.3]) and the fact that the metric space (S2, d) is linearly locally connected ([BMI7,
Proposition 18.5]). A metric space (X, d) is linearly locally connected if there exists a constant L > 1
such that the following conditions are satisfied:

(1) For all z € X, r > 0, and x, y € By(z,r) with x # y, there exists a continuum F C X with
x,y € EFand E C By(z,rL).

(2) Forall z € X, r>0,and z, y € X \ By(z,7) with = # y, there exists a continuum F C X with
z,y€ Eand E C X \ By(z,r/L).
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We call such a constant L > 1 a linear local connectivity constant of d.

In fact, visual metrics serve a crucial role in connecting the dynamical arguments with geometric
properties for rational expanding Thurston maps, especially Lattés maps.

We first recall the following notions of equivalence between metric spaces.

Definition 3.9. Consider two metric spaces (X1,d;) and (X2,ds). Let g: X7 — X5 be a homeomor-
phism. Then

(i) g is bi-Lipschitz if there exists a constant C' > 1 such that for all u, v € X7,
C Vi (u,0) < do(g(u), g(v)) < Cdi(u,v).

(ii) g is a snowflake homeomorphism if there exist constants & > 0 and C' > 1 such that for all
u, v € Xy,
O™y (u,v)* < da(g(u), 9(v)) < Cda(u,v).

(iii) g is a quasisymmetric homeomorphism or a quasisymmetry if there exists a homeomorphism
n: [0, +00) — [0, +00) such that for all u, v, w € X,

da(g(u), g(v)) _ (dl(u,v) >
d(g(w), g(w)) ~ "\ (w,w) )"
Moreover, the metric spaces (X1,d;) and (Xo,ds) are bi-Lipschitz, snowflake, or quasisymmetrically
equivalent if there exists a homeomorphism from (X3, d;) to (Xa,dy) with the corresponding property.
When X; = Xo = X, then we say the metrics di and dy are bi-Lipschitz, snowflake, or quasisym-
metrically equivalent if the identity map from (X, d;) to (X, dz) has the corresponding property.

Remark 3.10. If f: C — C is a rational expanding Thurston map (or equivalently, a postcritically-
finite rational map without periodic critical points (see [BM17, Proposition 2.3])), then each visual
metric is quasisymmetrically equivalent to the chordal metric on the Riemann sphere C (see [BM17,
Lemma 18.10]). Here the chordal metric o on C is given by o(z, w) = 2z —w|

= fOI‘ zZ,w &€ (C and
VIF2y 1+ w]? ’ ’
2

o(00,2) = 0(z,00) = WiFEE for z € C. We also note that quasisymmetric embeddings of bounded

connected metric spaces are Holder continuous (see [?, Section 11.1 and Corollary 11.5]). Accordingly,

the class of Holder continuous functions on C equipped with the chordal metric and that on S? = C
equipped with any visual metric for f are the same (up to a change of the Holder exponent).

A Jordan curve C C S?is f-invariant if f(C) C C. We are interested in f-invariant Jordan curves that
contain post f, since for such a Jordan curve C, we get a cellular Markov partition (D(f,C),D%(f,C))
for f. According to Example 15.11 in [BMI17], such f-invariant Jordan curves containing post f need
not exist. However, M. Bonk and D. Meyer [BM17, Theorem 15.1] proved that there exists an f"-
invariant Jordan curve C containing post f for each sufficiently large n depending on f. A slightly
stronger version of this result was proved in [Lil6, Lemma 3.11], and we record it below.

Lemma 3.11 (M. Bonk & D. Meyer [BMI17], Z. Li [Lil6]). Let f: S* — S? be an expanding Thurston

map, and C C 52 bea Jgrdan curve with post f C C. Then there exists an integer ]~V(f, CN) € N such

that for each n > N(f,C) there exists an f"-invariant Jordan curve C isotopic to C rel. post f such
that no n-tile in X"(f,C) joins opposite sides of C.

The phrase “joining opposite sides” has a specific meaning in our context.

Definition 3.12 (Joining opposite sides). Fix a Thurston map f with card(post f) > 3 and an f-
invariant Jordan curve C containing post f. A set K C S? joins opposite sides of C if K meets two
disjoint 0-edges when card(post f) > 4, or K meets all three 0-edges when card(post f) = 3.

Note that card(post f) > 3 for each expanding Thurston map f [BM17, Lemma 6.1].
The following lemma proved in [Lil8, Lemma 3.13] generalizes [BM17, Lemma 15.25].

Lemma 3.13 (M. Bonk & D. Meyer [BM17], Z. Li [Lil8]). Let f: S? — S? be an expanding Thurston
map, and C C S? be a Jordan curve that satisfies post f C C and fm¢(C) C C for some n¢ € N. Let
d be a visual metric on S? for f with expansion factor A > 1. Then there exists a constant Cy > 1,
depending only on f, d, C, and n¢, with the following property:
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If k,n € Ny, X"k ¢ XnHh(f,C), and x, y € X"t* then
(3.9) Co td(z,y) < A7"d(f™(x), f"(y)) < Cod(z,y).

We summarize the existence, uniqueness, and some basic properties of equilibrium states for expand-
ing Thurston maps in the following theorem.

Theorem 3.14 (Z. Li [Lil8]). Let f: S? — S? be an expanding Thurston map and d a visual metric on
S? for f. Let ¢, v € CY(S?,d) be real-valued Hélder continuous functions with an exponent o € (0, 1].
Then the following statements are satisfied:

(i) There exists a unique equilibrium state pi4 for the map f and the potential ¢.
(ii) For each t € R, we have SP(f, ¢+ 1) = [y dptpity-
(iii) If C C S? is a Jordan curve containing post f with the property that f*¢(C) C C for some
nc € N, then pugs (U5 f71(C)) = 0.

Theorem [3.14 (i) is part of [Lil8, Theorem 1.1]. Theorem B.I4] (ii) follows immediately from [LiI8],
Theorem 6.13] and the uniqueness of equilibrium states in Theorem B.I4] (i). Theorem B4 (iii) was
established in [Li18, Proposition 7.1].

The following distortion lemma serves as the cornerstone in the development of thermodynamic
formalism for expanding Thurston maps in [Lil8] (see |[Lil8, Lemmas 5.1 and 5.2]).

Lemma 3.15 (Z. Li [Lil8]). Let f: S?> — S? be an expanding Thurston map and C C S? be a Jordan
curve containing post f with the property that f¢(C) C C for some ne € N. Let d be a visual metric on
S? for f with expansion factor A > 1 and a linear local connectivity constant L > 1. Fiz ¢ € C%*(S?,d)
with o € (0,1]. Then there exist constants C1 = C1(f,C,d,¢,a) and Cy = Co(f,C,d,p,a) > 1
depending only on f, C, d, ¢, and o such that

(3.10) [Snop(x) — Sno(y)| < CLd(f"(x), [ (y)),

D vef-n(z) degpn (2') exp(Sne(2'))
Dowre - (w) degpn (W) exp(Sho(w'))
forn, m € Ng withn <m, X™ € X"(f,C), x,y € X™, and z, w € S?. We choose

(3.12) C1 = 0l4, 52,4y Co(1 = A~ oyt and Cy = exp(4Cy L(diamg(5%))%)

(3.11) <exp (4C1 Ld(z,w)") < Cy,

where Cy > 1 is a constant depending only on f, C, and d from [Lil8 Lemma 3.13].

Recall that the main tool used in [Lil8] to develop the thermodynamic formalism for expanding
Thurston maps is the Ruelle operator. We will need a complex version of the Ruelle operator in this
paper discussed in [Lil7]. We summarize relevant definitions and facts about the Ruelle operator below
and refer the readers to [Lil7, Chapter 3.3] for a detailed discussion.

Let f: S2 — S? be an expanding Thurston map and ¢ € C(S?,C) be a complex-valued continuous
function. The Ruelle operator /J¢ (associated to f and (b) acting on C(S2,C) is defined as the following

(3.13) Z deg s (y)ul(y) exp(4(y)),
yef~H(z)

for each u € C(S?,C). Note that L, is a well-defined and continuous operator on C(S?, C). The Ruelle
operator Ly: C(S%,C) — C(5?%,C) has an extension to the space of complex-valued bounded Borel
functions B(S?,C) (equipped with the uniform norm) given by ([B.I3) for each u € B(S?,C).

We observe that if ¢ € C(S?) is real-valued, then L£4(C(S?)) C C(S?) and L4(B(5?%)) C B(S?).
The adjoint operator £ : C*(S?) — C*(S?) of L, acts on the dual space C*(S?) of the Banach space
C(S?). We identify C*(S?) with the space M(S?) of finite signed Borel measures on S? by the Riesz
representation theorem.

When ¢ € C(S?) is real-valued, we denote
(3.14) b =¢— P(f,9)

We record the following three technical results on the Ruelle operators in our context.
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Lemma 3.16 (Z. Li [Li18]). Let f: S?* — S? be an expanding Thurston map and C C S? be a Jordan
curve containing post f with the property that f(C) C C for some nc € N. Let d be a visual metric on
S? for f with expansion factor A > 1. Let ¢ € C%*(S2,d) be a real-valued Hélder continuous function
with an exponent o € (0,1]. Then there exists a constant C3 = Cs(f,C,d, ¢, ) depending only on f, C,
d, ¢, and o such that for each z, y € S% and each n € Ny the following equations are satisfied

(3.15) L3(1)(2)/L5(1)(y) < exp (4C1Ld(z,y)*) < Co,
(3.16) oyt < LE(1)(x) < Ca,
(3.17) |L2(1)(2) = L5(1)(y)| < Ca(exp(4C1Ld(z, y)*) — 1) < Cad(z,y)”,

where C1,Cy are constants in Lemma [313 depending only on f, C, d, ¢, and «.
Lemma was proved in [Lil8| Lemma 5.15]. The next theorem is part of [Lil8, Theorem 5.16].

Theorem 3.17 (Z. Li [Lil8)]). Let f: S? — S? be an expanding Thurston map and C C S? be a Jordan
curve containing post f with the property that f¢(C) C C for some n¢ € N. Let d be a visual metric on
S? for f with expansion factor A > 1. Let ¢ € C%*(S2,d) be a real-valued Holder continuous function
with an exponent o € (0,1]. Then the sequence {% Z;-:& ﬁ%(]l)}neN converges uniformly to a function

uy € CO*(S%,d), which satisfies Ls(ug) = ug, and Cy' < wg(x) < Oy for each x € S, where Cy > 1
is a constant from Lemma 315

Let f: 5?2 — 52 be an expanding Thurston map and d be a visual metric on S? for f with expansion
factor A > 1. Let ¢ € C%%(S? d) be a real-valued Holder continuous function with an exponent
a € (0,1]. Then we denote

(3.18) ¢ = ¢ — P(f,¢) +loguy —log(ug o f),
where uy is the continuous function given by Theorem [B.17

A measure pu € P(S?) is an eigenmeasure of L3 if L3 (1) = cp for some ¢ € R. See [Lil8, Corol-
lary 6.10] for the uniqueness of the measure my. The reader is referred to the first paragraph of
Subsection [5.3] for the notion of an abstract modulus of continuity and the definition of C?(S2, d).

Lemma 3.18. Let f: S? — 52 be an expanding Thurston map and d be a visual metric on S* for f
with expansion factor A > 1. Let ¢ € C%(S?%,d) be a real-valued Hélder continuous function with an
exponent o € (0,1]. We define a map 7: R — C%*(52,d) by setting 7(t) = wis. Then T is continuous
with respect to the uniform norm || - [[co(g2y on CY(S2%,d).

Proof. Fix an arbitrary bounded open interval I C R. For each n € N, define T},: I — C(S%,d) by
To(t) = £%(]lsz) for t € I. Since tp = t¢ — P(f,t¢$), by (BI3) and the continuity of the topological
pressure (see for example, [PUIL0, Theorem 3.6.1]), we know that 7}, is a continuous function with
respect to the uniform norm || - [|co(s2y on C(S?,d). Applying [Lil8, Theorem 6.8 and Corollary 6.10],
we get that T),(t) converges to 7|7(t) in the uniform norm on C(S2,d) uniformly in t € I as n — +oo.
Hence 7(t) is continuous on I. Recall uyg € C%*(S? d) (see Theorem B.17). Therefore () is continuous
in t € R with respect to the uniform norm on C%%(S?, d). O

The potentials that satisfy the following property are of particular interest in the considerations of
Prime Orbit Theorems and the analytic study of dynamical zeta functions.

Definition 3.19 (Eventually positive functions). Let g: X — X be a map on a set X, and ¢: X — C
be a complex-valued function on X. Then ¢ is eventually positive if there exists N € N such that
Spe(x) > 0 for each x € X and each n € N with n > N.

Theorem [B.14] (ii) leads to the following corollary that we frequently use, often implicitly, throughout
this paper. See [LZhe23al, Corollary 3.29] for a proof.

Corollary 3.20. Let f: 5?2 — S? be an expanding Thurston map, and d be a visual metric on S? for f.
Let ¢ € C%*(S2 d) be an eventually positive real-valued Hélder continuous function with an exponent
a € (0,1]. Then the function t — P(f,—t¢), t € R, is strictly decreasing and there exists a unique
number so € R such that P(f, —so¢) = 0. Moreover, sy > 0.
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3.3. Subshifts of finite type. We give a brief review of the dynamics of one-sided subshifts of finite
type in this subsection. We refer the readers to [Ki9§]| for a beautiful introduction to symbolic dynamics.
For a discussion on results on subshifts of finite type in our context, see [PP90), Ba00].

Let S be a finite nonempty set, and A: S x S — {0, 1} be a matrix whose entries are either 0 or
1. For n € Ny, we denote by A™ the usual matrix product of n copies of A. We denote the set of
admissible sequences defined by A by

EX = {{:Ei}ieNo 1 x; € S, A(l‘i,JEH_l) =1, for each i € N(]}.

Given 6 € (0,1), we equip the set X with a metric dp given by dy({z;}ieny, {¥i}ien,) = 0V for
{x;i}ien, # {Yi}ien,, where N is the smallest integer with zx # yn. The topology on the metric space
(ZX, d@) coincides with that induced from the product topology, and is therefore compact.

The left-shift operator o4: X% — ¥} (defined by A) is given by

oa({zitieny) = {zit1}ien, for {@;}ien, € ZX-

The pair (EX, o A) is called the one-sided subshift of finite type defined by A. The set S is called the
set of states and the matrix A: S x S — {0, 1} is called the transition matriz.

We say that a one-sided subshift of finite type (Ejg, o A) is topologically mizing if there exists N € N
such that A™(z,y) > 0 for each n > N and each pair of z, y € S.

Let X and Y be topological spaces, and f: X — X and g: Y — Y be continuous maps. We say that
the topological dynamical system (X, f) is a factor of the topological dynamical system (Y, g) if there
is a surjective continuous map 7: Y — X such that wog = fonw. We call the map 7n: Y — X a factor
map.

The following proposition is established in [LZhe23al Proposition 3.31].

Proposition 3.21. Let f: S — S? be an expanding Thurston map with a Jordan curve C C S2

satisfying f(C) C C and post f C C. Let d be a visual metric on S? for f with expansion factor A > 1.
Fiz 0 € (0,1). We set Sy = X(f,C), and define a transition matriz A,: S, x S, — {0, 1} by

1 df f(X) 2 X,

0 otherwise

Ap(X, X7 :{

for X, X' € X}(f,C). Then f is a factor of the one-sided subshift of finite type (E:ZA,UAA) defined by
the transition matriz A, with a surjective and Holder continuous factor map mu : EL — 82 given by

(3.19) o ({Xitiew,) = @, where {z} = (| F7(Xy).
1€Np
Here EL is equipped with the metric dg defined in Subsection [3.3, and S? is equipped with the visual

metric d.
Moreover, (E:ZA,UAA) 1s topologically mizing and wa s injective on 7T51(S2 \ Uien, f_i(C)).

Remark 3.22. We can show that if f has no periodic critical points, then 7 is uniformly bounded-to-
one (i.e., there exists N € Ny depending only on f such that card (ng(x)) < N for each = € S?);if f
has at least one periodic critical point, then 7, is uncountable-to-one on a dense set. We will not use
this fact in this paper.

3.4. Dynamical zeta functions and Dirichlet series. Let g: X — X be a map on a topological
space X. Let ¥: X — C be a complex—valued function on X. We write

(3.20) Z(n Z e~ In¥(@) n € Nand s € C.
TEP) on g™

Recall that P g» defined in (2.1)) is the set of fixed points of g", and Sy is defined in (2.4]). We denote
by the formal infinite product

+o00 Z(”)
(3.21) Cg,—w(s) ==exp <Z %()> = exp <Z Z e~ o5n¥(@) > s e C,

n=1 = TEP; g™

the dynamical zeta function for the map g and the potential 1. More generally, we can define dynamical
Dirichlet series as analogs of Dirichlet series in analytic number theory.
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Definition 3.23. Let g: X — X be a map on a topological space X. Let v: X - C and w: X — C
be complex-valued functions on X. We denote by the formal infinite product

+00 1 n—1 '
(3.22) Dy —p,w(s) =exp <Z - Z o~ 85n(@) H w(gl(:p))), seC,

n=1" z€P 4n 1=0
the dynamical Dirichlet series with coefficient w for the map g and the potential .

The following result is obtained in [LZhe23al, Section 5.

Proposition 3.24. Let f: S — S? be an expanding Thurston map with a Jordan curve C C S2
satisfying f(C) C C and post f C C. Let d be a visual metric on S? for f with expansion factor A > 1.
Let ¢ € C%*(S2,d) be an eventually positive real-valued Hélder continuous function with an exponent
a € (0,1]. Denote by so the unique positive number with P(f,—so¢) = 0. Let (ZXA,JAA) be the one-
sided subshift of finite type associated to f and C defined in Proposition [3.21], and let mx: EL — 52 be
the factor map defined in (Z.19). Denote by degy(-) the local degree of f. Then the following statements
are satisfied:

(i) P(oa,,poms) = P(f,¢) for each ¢ € C*¥(S%,d) . In particular, for an arbitrary number
t € R, we have P(o4,,—tpoms) =0 if and only if t = so.
(i) All three infinite products Cf, ¢, Cony,—gomns aNd Dy ¢, deg, COnveErge uniformly and absolutely to

respective non-vanishing continuous functions on H, = {s € C : R(s) > a} that are holomorphic
on H, = {s € C: R(s) > a}, for each a € R satisfies a > s¢.

(iii) For all s € C with R(s) > so, we have

(3.23) o) = 1] <1 - exp<—sZ¢<y>>>_l,

TEB(S) yer
-1
(3.24) Dy, -, deg, (5) = H <1 - eXp<—SZ gb(y)) H degf(z)> ,
TEB(f) YET ZET
-1
(3.25) onoms) = IT (1-ew(-s X oomm)) -
TEB (oA, ) yeT

Recall that 9B(g) denotes the set of all primitive periodic orbits of g (see ([2.3])). We recall that an
infinite product of the form exp Y a;, a; € C, converges uniformly (resp. absolutely) if > a; converges
uniformly (resp. absolutely).

4. THE ASSUMPTIONS

We state below the hypotheses under which we will develop our theory in most parts of this paper.
We will repeatedly refer to such assumptions in the later sections. We emphasize again that not all
assumptions are assumed in all the statements in this paper.

The Assumptions.

(1) f: S? — S? is an expanding Thurston map.

(2) C C 8% is a Jordan curve containing post f with the property that there exists nc € N such
that f¢(C) C C and f™(C) € C for each m € {1, 2, ..., n¢c — 1}.

(3) d is a visual metric on S? for f with expansion factor A > 1 and a linear local connectivity
constant L > 1.

(4) a € (0,1].

(5) ¥ € C%((S?,d),C) is a complex-valued Holder continuous function with an exponent a.

(6) ¢ € C%*(S2,d) is an eventually positive real-valued Hélder continuous function with an expo-
nent «, and sp € R is the unique positive real number satisfying P(f, —so¢) = 0.

(7) e is the unique equilibrium state for the map f and the potential ¢.
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Note that the uniqueness of sy in (6) is guaranteed by Corollary For a pair of f in (1) and ¢
in (6), we will say that a quantity depends on f and ¢ if it depends on sp.

Observe that by Lemma B.II] for each f in (1), there exists at least one Jordan curve C that
satisfies (2). Since for a fixed f, the number n¢ is uniquely determined by C in (2), in the remaining
part of the paper, we will say that a quantity depends on f and C even if it also depends on n¢.

Recall that the expansion factor A of a visual metric d on S? for f is uniquely determined by d and
f. We will say that a quantity depends on f and d if it depends on A.

Note that even though the value of L is not uniquely determined by the metric d, in the remainder of
this paper, for each visual metric d on S? for f, we will fix a choice of linear local connectivity constant
L. We will say that a quantity depends on the visual metric d without mentioning the dependence on
L, even though if we had not fixed a choice of L, it would have depended on L as well.

In the discussion below, depending on the conditions we will need, we will sometimes say “Let f, C,
d, 1, « satisfy the Assumptions.”, and sometimes say “Let f and d satisfy the Assumptions.”, etc.

5. RUELLE OPERATORS AND SPLIT RUELLE OPERATORS

In this section, we define appropriate variations of the Ruelle operator on the suitable function
spaces in our context and establish some important inequalities that will be used later. More precisely,
in Subsection [5.1] for an expanding Thurston map f with some forward invariant Jordan curve C C S?
and a complex-valued Hélder continuous function v, we “split” the Ruelle operator Ly: C(S%,C) —
C(52%,C) into pieces ﬁz(anE C(E,C) — C(X?,C), for ¢ € {b, w}, n € Ny, and a union E C S? of
an arbitrary collection of n-tiles in the cell decomposition D"(f,C) of S? induced by f and C. Such
construction is crucial to the proof of Proposition where the images of characteristic functions

supported on n-tiles under Efpnz p are used to relate periodic points and preimage points of f. We then

define the split Ruelle operators 1L, on the product space C(XE?, (C) x C (X‘%,(C) by piecing together
1) _ @

Edf,cl,cz N Ew,cl,X%’ ‘1

among them the basic inequalities in Lemma [5.12], that are indispensable in the arguments in Section [7

In Subsection 5.3} we verify the spectral gap for LL,, that is essential in the proof of Theorem

co € {b, wv}. Subsection is devoted to establishing various inequalities,

5.1. Construction.

Lemma 5.1. Let f, C, d, A, « satisfy the Assumptions. Fiz a constant T > 0. Then for alln € N,
X" e X"(f,C), z, 2’ € X", and ¢ € CO*((S?,d),C) with (R, 52,0y < T, we have

(5.1) 11— exp(Sntp(x) — Spip(a)] < Cho [Yy, (52,0 A" (), f" ()7,
where the constant

(5.2) Cio = C1o(f.C,d, 0, T) = % exp(%(dimd(%)“) > 1

depends only on f, C, d, a, and T. Here Cy > 1 is a constant from Lemma[313 depending only on f,
C, and d.

Proof. Fix T > 0,n € N, X" € X"(f,C), z, 2’ € X", and ¢ € C**((5%,d), C) with [R(¢)],, (s2,0) < T
By Lemma [BI5] for each ¢ € C%%(S? d),

(5.3) [Sud(@) — Sud(a’)] < %dw(wx @),

Then by (5.3) and the fact that |1 — e¥| < |ylel¥! and |1 — €l¥| < |y| for y € R, we get
1 — Sn¥(@)=Snv(@)| < ‘1 — SnRW)(@)=SnRW)(@") | 4 oSnRW)(@)=SnR(W)(2') |1 _ oiSnS(¥)(2)—iSn () (2')

Co |R 2
< P52y g, griaryye oxp (s (omats™)°

Co | 2
+oxp s (dma(2)") = S50 4 ), (e

< Cho [y, (s2,0) A" (), f7(2"))"
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Here the constant Cig = Cho(f,C,d,«,T) is defined in (5.2)). O

Fix an expanding Thurston map f: S? — S? with a Jordan curve C C S? satisfying post f C C. Let
d be a visual metric for f on S%, and ¢ € C%((52,d), C) a complex-valued Holder continuous function.

Let n € N, ¢ € {b, w}, and € inte(X?), where X (resp. X{) is the black (resp. white) 0-tile. If
E C 82 is a union of n-tiles in X"(f,C), u € C((E,d),C) a complex-valued continuous function defined
on E, and if we define a function v € B(S?,C) by

(5.4 o) = {“(y) e

0 otherwise,

then by Proposition 3.6l (i) and (ii), the Ruelle operator associated to f and 9 (recalled in ([B13])) acting
on B(S% C) can be written in the following form:

(5.5) L)) = Y u((f"xn)" (@) exp(Suto((f"|xn) 7" (2)))-
Xnexn
X"CE
Note that by default, a summation over an empty set is equal to 0. We will always use this convention
in this paper. Inspired by (5.5]), we give the following definition.

Definition 5.2. Let f: S? — S? be an expanding Thurston map, C C S? a Jordan curve containing
post f, and 1 € C(S?,C) a complex-valued continuous function. Let n € Ny, and E C S? be a union

of n-tiles in X"(f,C). We define a map ﬁfsz C(E,C) — C(X?,C), for each ¢ € {b, tv}, by

(5.6) L0 s = S u((f )" W) exp(Sat ((F1x) 7 W),
XneXn
X"CE

for each complex-valued continuous function v € C(E, C) defined on E, and each point y € X?. When
E = X0 for some ¢ € {b, w}, we often write

(n) ._ pn)
Ed},c,c’ . £w,c,XS,'

u ifXOCFE
0 otherwise
of the equation makes sense.

Note that 51(1?7)@ plu) = { , for ¢ € {b, w}, whenever the expression on the left-hand side

Lemma 5.3. Let f, C, d, a satisfy the Assumptions. Let ) € C(S?,C) be a comples-valued continuous
function. Fiz numbers n, m € Ny and a union E C S? of an arbitrary collection of n-tiles in X" (f,C)
(i.e., E = |J{X" € X"(f,C) : X™ C E}). Then for each ¢ € {b, w} and each u € C(E,C), we have
£ p(u) € C(X9,C), and

(5.7) Lrw =30 £ (£ pw).

ce{b, 0}
If, in addition, v € C%*((S?,d),C) and u € C**((E,d),C) are Hélder continuous, then
(5.8) £5) 5(u) € C¥((X?,d),C).

Remark 5.4. In the above context, L} (v) € B(S?,C) may not be continuous on S? if E # S2, where
v is defined in (5.4) extending u to S2. If E = S2, then it follows immediately from (5.6]) that for each
¢ € {b, 0}, ﬁfﬁan(u) = (/Lg(u)) |X9. Hence by (5.8) and the linear local connectivity of (S2,d), it can
be shown that EZJ(C’QO‘((S2, d),C)) C C%*((S?%,d),C). We will not use this fact in this paper.

Proof. Fix arbitrary ¢ € {b, w} and u € C(E,C).
The cases of Lemma [5.3] when either m = 0 or n = 0 follow immediately from Definition Thus,
without loss of generality, we can assume m, n € N.

The continuity of £$27 p(u) follows trivially from (5.6)) and Proposition (1).
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By (5.6]), Proposition (i) and (ii), and the fact that f~"(x) NC # 0, we get

> Ll (ﬁi’nz Bl ) = 2 D W T E)
ce{b, o} de{b,w} ycf- m(x)ng zef~n(y)NE

_ Z Z smw(y)-;-snzp(z)u(z) _ Z 65n+m¢(z)u(z) = ngj:gn) (u)(x).

yef~m(z) z€f 7" (y)N zef~ (M) ()NE
Identity (5.7) is now established by the continuity of two sides of the equation above.
Finally, to prove (5.8), we first fix two distinct points z, 2’ € X?. Denote yxn = (f"|xn) 1 (z) and
Ysn = (f"|xn)"1(a’) for each X" € X"
By Lemmas B.13] B.I5, and .11 we have

15 o) (@) = £57) pu) ()] |
U, B U, B < Sntp(yxn) ) Snth(¥en) /n
d(w,x")* = d(z, ") Z e ulyxn) — e uly)|
Xnexr
X"CE

1 Sn n Sn n Sn /. n

< G Z (‘e x| |u(yxn) — u(yyn)| + [eSmP@xm) — Snblxn)
Xnexrn
X"CE

[u(y)!)

Z eSn an) |u|a’ (E,d) d(yX”,y/X'n)a
X"GX"
X”CE
1 Sntb(yxcn)—Sntb(Wyn) | SR Wsn ) ) (21
T e D |1 e e e [ S (g )
XneXy
X"CFE

- SR n SR ! o
< |U|a,(E,d) CoA—on Z S R(Y) (yx )+010|¢|a7(527d) Z SR (W )|u(y§(n)|
XnexXn XneXn
X"CE

< CoA™" |ul,, L (E,d) Hﬁé)%(zp Lg2) HCO(S2 +Cio ¥, , (52,d) Hﬁéﬁ(df cE(‘ D‘

o(s2)’

where Cy > 1 is a constant depending only on f, C, and d from Lemma[313] and Cig > 1 is a constant
depending only on f, C, d, a, and ¢ from Lemma [5.Il Therefore (5.8]) holds. O

Definition 5.5 (Split Ruelle operators). Let f: S? — S? be an expanding Thurston map with a
Jordan curve C C S? satisfying f(C) C C and post f C C. Let d be a visual metric for f on S?, and
Y € C%((S?,d),C) a complex-valued Hélder continuous function with an exponent o € (0,1]. Let
Xbo, X0 € X9(f,C) be the black 0-tile and the while O-tile, respectively. The split Ruelle operator
Ly: C(X[?,(C) X C(X‘%,(C) — C(X[?,(C) X C(X‘%,(C) on the product space C(X[?,(C) X C(X‘%,(C) is
given by

L (g, te) = (£33 (06) £ t0): L0 1 (006) + L5, 1 (1))

for uy € C’(X[?,(C) and uy € C’(Xg,(C).

Note that by Lemma [5.3] the operator L, is well-defined. Moreover, by (5.8) in Lemma [5.3] we have
(5.9) Ly (C™((Xy,d),C) x C**((X2.d),C)) € C**((X},d),C) x C**((X2,d),C).

Note that it follows immediately from Definition [5.2]that L, is a linear operator on the Banach space
C’O’O‘((X[?,d),(C) X C’Ovo‘((XO d),(C) equipped with a norm given by

I Ca, u)| = masc{ ugll b e o gy Itmllbe o o}

for each b € R\ {0}. See (2.6]) for the definition of the normalized Hélder norm ||u||[g0,a( B.d)

For each ¢ € {b, o}, we define the projection 7.: C(X?,C) x C(X9,C) — C(X?2,C) by
(5.10) Te(Up, U) = U, for (up, up) € C(X¢,C) x C(X2,C).
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Definition 5.6. Let f: S? — S? be an expanding Thurston map with a Jordan curve C C S? satisfying
f(C) C C and post f C C. Let d be a visual metric for f on S2, and ¢ € C%*((52%,d),C) a complex-
valued Holder continuous function with an exponent o € (0,1]. For all n € Ny and b € R\ {0}, we
write the operator norm

b
I = sup e s, ) Bz
- ¢ € {b, m} e € 0% ((X0,d),C), o e C0((X0, d), C)
(5.11) with el % o < 100 [P g < 1 }
we wite L], = L

Lemma 5.7. Let f, C, d, «, ¢ satisfy the Assumptions. We assume, in addition, that f(C) C C.
Let X[?, X2 € XY(f,C) be the black O-tile and the while 0-tile, respectively. Then for all n € N,
up € C’(Xbo,(C), and Uy € C’(X‘%,(C),

(5.12) L (1t o) = (L5700 () + L5 (1), £ 1) + L5, 1 (1) ).

Consequently,

{ H w,c,b +£1(pcm (tro) H[cb*]oaXOd)

X{Hubuco,a(){g’d) 9 Hum||co,a(xg7d)}

¢ € {b, w}, uy € C**((Xy,d),C), up € C**((Xy,d),C)
with [uellcoxoyluwllco(xa) # 0 '

(el

(5.13)

Proof. We prove (5.12) by induction. The case where n = 0 and the case where n = 1 both hold by
definition. Assume now (5.12)) holds when n = m for some m € N. Then by (5.7) in Lemma [5.3] for
each ¢ € {b, v}, we have

7 (Lt (e, ) = (L (L5704 (1) + L5 (1), £570 (1) + £570  (10) ))
= Z ‘chc’< nt’b( )+‘ch’ (um))

e{b,w}
_ ) (m) 1 (m)
= > e (el + Y el (20 ()
ce{b,w} ce{b,w}
m+1 m+1
= £V (up) + L (u),
for up € C(XY,C) and uy € C (XY, C). This completes the inductive step, establishing (5.12).
Identity (5.13]) follows immediately from Definition [£.6] and (5.12]). O

5.2. Basic inequalities. Let f: S? — S? be an expanding Thurston map, and d be a visual metric on
S? for f with expansion factor A > 1. Let ¢ € C%*((S2,d),C) be a complex-valued Hélder continuous
function with an exponent o € (0,1]. We define

(5.14) = R() +iS(W) = ¢ — P(f,R(®)) + log up(y) — log (uy) © f),

where ug(y) is the continuous function given by Theorem B.I7 with ¢ := R(¢)). Then for each u €
C(8%,C) and each € S?, we have

L~(u)(z) = Z degf(y)u(y)ew(y)—P(f,%(df))Hogumw(y)—log(umw(f(y)))

P
yef~H(z)
(5.15) = exp(u Z degf () () exp((y))
R( w yef—t
_ exp(—P(f, (w))ﬁw(u%(iﬁ)u) (2).

U (y) (2)
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Given a Jordan curve C C S? with post f C C, then for each n € Ny, each union E of n-tiles in X"(f,C),
each v € C(E,C), each ¢ € {b, w}, and each z € X?,

ﬁgiE(’U)(Z) = Z <UeS”(w_P(f’§R(w))+10gu%(w)_bg(umw)of))) ((f"’Xn)—l(Z))
X"eXe(£.0)
X"CE

exp(—nP(f, R(¥)) ) 3
5.16 _ o e
( ) u%w)(Z) X"E;;(f,(j)(vug}e( eXp( ))(( | xn) (Z))

X"CE
—nP(f,R .
_ exp(—nP(f (¢))£;727E(u%w)v)(z)'

Ug () (2)

Definition 5.8 (Cones). Let f: S? — S? be an expanding Thurston map, and d be a visual metric
on S? for f with expansion factor A > 1. Fix a constant a € (0,1]. For each subset £ C S? and each
constant B € R with B > 0, we define the B-cone inside C**(E, d) as

Kp(E,d) ={ue CO(E,d) :u(z) > 0, |u(z) —u(y)| < B(u(z) + u(y))d(z,y)® for z, y € E}.

It is essential to define the B-cones inside C%%(E,d) in the form above in order to establish the
following lemma, which will be used in the proof of Proposition [Z.13]

Lemma 5.9. Let (X,d) be a metric space and o € (0,1]. Then for each B > 0 and each u € Kp(X,d),
we have u? € Kop(X,d).

Proof. Fix arbitrary B > 0 and u € Kp(X,d). For any z, y € X,
|u?(2) — u?(y)| = |u(z) +uy)lu(z) — uly)| < Blu(z) +uly)Pd(z,y)* < 2B (u*(z) +u’(y))d(z, y)*.
Therefore u? € Kop(X,d). O

Lemma 5.10. Let f, d, o, ¢ satisfy the Assumptions. Let ¢ € C%*(S?,d) be a real-valued Hélder
continuous function with an exponent o. Then the operator norm of Eg acting on C(S?) is given by

125l cog2y = 1- In addition, L3(1g2) = Ls2.

Moreover, consider a Jordan curve C C S? satisfying post f C C. Assume in addition that f(C) C C.
Then for alln € Ny, ¢, ¢ € {b, w}, up € C(XP,C), and up € C(X2,C), we have

(5.17) H 5’@) ooy S Mellcacey — and
(5.18) ) + 257 )| oy < maclluelloniag), e ooy}

Proof. The fact that HE(pHcO g2y =1 and 55(1152) = 1 g2 is established in [Lil7, Lemma 5.25].

To prove (18], we first fix arbitrary n € Ny, ¢ € {b, w}, up € C(X?), and uy € C(X2). Denote
M = max{||uh||00(xg), \|um||CO(Xg)}. Then by Definition (.2, (5.14)), and the fact that £%(]132) =

g2, for each y € inte(X?),

28

<M Z |exp nw((f |xn)” ()))‘

Pye,o Cco(x9) Xexn
This establishes (5.I8). Finally, (5.I7) follows immediately from (5.I8]) and Definition by setting
one of the functions up and uy to be 0. O

Lemma 5.11. Let f, C, d, L, o, A satisfy the Assumptions. Then there exist constants Ci3 > 1 and
C14 > 0 depending only on f, C, d, and « such that the following is satisfied:
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For all K, M, T,a € R with K > 0, M >0, T > 0, and |a| < T, and all real-valued Hélder
continuous function ¢ € C¥(S? d) with |¢|, 52,0y S K and [|¢]|co(g2y < M, we have

(5.19) Hc«zﬁHCO g2y < Cis(K + M)T + [log(deg f)],

(5.20) ‘aqzﬂ (52.) < C13KTeCET,

(5.21) [tagll o (se.q) < ATECo(1 = A=) 'L + 1),

(5.22) exp(—C1s) < uap(z) < exp(Cls)

for x € S?%, where the constant Cq > 1 depending only on f, d, and C is from Lemma[313, and the
constant

(5.23) Ci5 = C15(f.C,d, o, T, K) == ATKCy(1 — A=*) "' L(diam4(5?))" > 0

depends only on f, C, d, a, T, and K.

Proof. Fix K, M, T, a, ¢ that satisfy the conditions in this lemma.

Recall ap = ap — P(f,a¢) + loguss — log(uge o f), where the function uqe is defined as ug in
Theorem 317

By Theorem 317 and (3:12) in Lemma [B.15] we immediately get (5.22]).

By Lemma 3.25 in [LZh623a] B4), and B35, for each z € S?,

P(f,ap) = lim log Z deg n (y )e®I o) < lim log Z deg n (y e"TM

n—4oo n n—4+oo N
yef ™ (z) yef(z)

~TM+ lim L1 (y) = TM +1 .
+ lim —~log efz( )degf + log(deg f)
Yy

Similarly, P(f,a¢) > —TM + log(deg f). So |P(f,a¢)] < TM + |log(deg f)].
Thus by combining the above with (5.22)) and (5.23]), we get

(5.24) a6 co(g2) < TM +TM + [log(deg f)| +2C15 < Cr6T(K + M) + [log(deg /)],

where Cig == 2 + 81 A aL(diamd(S2))a is a constant depending only on f, C, d, and «.
Note f is Lipschitz with respect to d (see [Lil8, Lemma 3.12]). Thus by (5.22)) and the fact that

[logt; —logts| < % for all t1,t9 > 0, we get

|a¢‘a7 (52.,d) < "1(25‘(1,(52,[1) + [log Ua(b’m (s2,d) T |log(uge © f)‘a (S2,d)
(5.25) S TK + 9 (1+ LIPa(f)) [tagl o (52.a -

Here LIP,4(f) denotes the Lipschitz constant of f with respect to the visual metric d (see (2.8])).
By Theorem 317 (817)) in Lemma 316, (312) in Lemma BI85 (5:23)), and the fact that |1 —e™f| < ¢

for t > 0, we get

n—1

1 ‘ -
o (@) = tas(y)] = | lim = 2:0(%(132)@) - Efw,(llsz)(y)ﬂ
‘]:
<y 1 leL (10000 - 45 015)0)

TKCy
< 2015 (1 _ _ a)) < 2C15 a
<e <1 exp< 41_A_aLd(x,y) >) <e 71_A_aLd(x,y) )

for all z, y € S%. So
TKC,

L 2015
— A«

(526) ]uad)\m (52,d) S < 4
Thus by (5.25), (5.26), and (5.23]), we get

|a<b| (52,d) < TK0136014TK,
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where the constants Ci3 = max{Clﬁ, 1 +4Co(1 — A=)~ 1L(1 + LIPd(f))} and Cyy = 12CH(1 —
A=) 1L (diamg(S?))® depend only on f, C, d, and a. Since C13 > C1g, (519) follows from (5.24)).

Finally, (521)) follows from (5.22)) and (5.20). O
Lemma 5.12 (Basic inequalities). Let f, C, d, «, ¢, sg satisfy the Assumptions. Then there exists a
constant Ag = Ao(f,C,d,|¢|, (S2,d) ,a) > 2Co > 2 depending only on f, C, d, |¢|, [(s2,4)» and o such
that Ag increases as ||, (g2 4y increases, and that for all ¢ € {b, w}, , e X% n € N, union E C §?
of n-tiles in X"(f,C), B € R with B > 0, and a, b € R with |a| < 2sg and |b] € {0} U [1,+00), the
following statements are satisfied:

(i) For each u € Kp(E,d), we have

(5.27)

(n) (n) , .
‘ﬁgf’ L _£<~¢> Tkl < A0< = 9l (i’ld)>d(33,x/)a.
£c’u€>,c, (u)(z )+£ @, E (u)($/) A 1—-A

<,

(ii) Denote s := a + ib. Fiz an arbitrary v € CO*((E,d),C). Then

(5:28)  |£Z )@) - LY ()

Vo, (5.a) . .
s( i 4+ Agmax(L, \b\}ﬁéﬁgﬂ\v\)(m))d(a:,a;’),

where Cy > 1 is a constant from Lemma[3.13 depending only on f, d, and C.
If, in addition, there exists a non-negative real-valued Hélder continuous function h € C%%(E, d)
such that

[v(y) — () < B(h(y) + h(y')d(y,y')*
when y, y' € E, then

LY W)@ -2 (@)
< 4o <A]jn (£ @)+ LD () +max{l, |b|}££)’c’E(|v|)(:p)> A7)

Proof. Fix ¢, n, E, B, a, and b as in the statement of Lemma
(i) Note that by Lemma [5.11]

(5.29)

(5.30) sup{!mﬁ! (s2a) T E R,|7| < 2s0+1} < Ty,
where the constant
(5.31) To =1Tp (f,c d, |9, ,(52,d) ) (250 + 1)C13 | 9|, ,(52,d) exp((230 +1)Ci4 9|, ,(S2,d) ) >0

depends only on f, C, d, |¢|, (82,d)> and «. Here Ci3 > 1 and Cj4 > 0 are constants from Lemma [5.11]
depending only on f, C, d, and a.

Fix u € Kp(E,d) and z, 2’ € X2. For each X" € X?, denote yxn = (f"|xn) }(x) and y, =
(f"xn) (@),

Then by Definition [£.8]

2 @@ - £ ()

€57 [ulae eSO )

Xrexr
XnCE
< 3 (Julyxn) = ulpie)| €T 4wy 5o _ o))
XmreX?

S Z B <u(an)eS7La¢(an)e|Sna¢(ylxn)_sna¢(yXTb)‘ + u(y—g{n)eS'rLa(b(yl)(n)) d(any y;{n)a

)1 — eSnad(yin) =Snadlyxn) | oSnadlyxn).

+ Z u(yxn)
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Combining the above with Lemmas B.15] B.13 .11 (5.30), and (B.31]), we get

(n)
‘ a¢,c,E N &E,c,E( )(a:’)\
(n) (n)
L. E(U)(fﬂ) +Lo @)
|a¢‘ 52 d) CO(diamd(Sz))a d(a;,a;’)o‘Ca -~ o
S BeXp< 1_ A—a > Aan 0 + Clo‘a¢‘a7 (S2,d)d($7$l)
B ‘;L;Zg‘a (52,d)
< A ) 5 N\o
< (o + D Yo,y
where
2 T a
(5.32) Cio =Cio(f,C,d, o, Tp) = ] _(io_a exp<1 (jOA(ia (diam,(S?)) >

is a constant from Lemma [5.1], and
(533) Al = (1 — A_Q)Clo(f C d,Oé,TO).

Both of these constants only depend on f, C, d, |¢|, (52.d) and a.
Define a constant
(1+ 2Th) A

(5.34) Ao = Ao(f,C,d, |9l (52,4)» @) = T i
depending only on f, C, d, [¢], (s2 ), and o By (6.34), (5.31), and (£.32)), we see that Ay increases as

|¢la, (52,4) increases. Now (IBZZI) follows from the fact that Ay > A;.

(11) Fix z, 2’ € X?. For each X™ € X7, denote yxn = (f"|x») " (z) and yn = (f"|xn) "1 (2').
Note that by (B18) and (5.30), we have

= (1 + 2T0)010(f,c,d,0é,T0) > 2

(5.35) ‘S(ﬁ‘m (52,d) < ‘a(ﬂa,(g{d) + ‘b(b‘a,(S?,d) <Tp+ 0] “b‘a, (S2,d) < 2Ty max{1, [b|},
since Ty > ||, (s2,4) by (6-31) and the fact that C13 > 1 from Lemma B5.111
Note that
L8 @)~ L3 0] £ 37 Jolyxn)e™20x0) oy )eseotie)
” ” Xrexp
XnCE
(5.36) < Z (‘,U(an) o U(y;(n)‘ ‘eSns¢(y/Xn) + |’U(an)|‘eS"8¢(yX") _ eSn8¢(y'Xn) )
Xnexr
XnCE

We bound the two terms in the last summation above separately.

By Lemmas B.15] 5.1] (5.33)), and (5.33),

Z [v(yxn)| ‘ES";E(Z’X") _ Snsd(yyn)

XnexXn
X"CE
Z [v(yxn |‘1 Sns0(yxn) = Snsd(yxn)| Snad(yxn)
XneXp
X"CE
(5.37) < Caolf,C.d, 0, To)|56),, (g2 g A, a)"LE) (0]} (@)
2Ty max{1, b} (Jo])()
< Al = d(x7x,)a

1—-A«
= Apmax{1, L2 (o)) (@)d(x, 2')",

where the last inequality follows from (5.34)).
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By (5.14)), Lemma [3.13] and (5.17)) in Lemma [5.10]

S7 Joluxn) = oly)] |50 <7 ol (g0 dlyxn, ye) €S0
Xrexp Xrexy
XnCE XnCE

d(z,2")*Cg ab(y Vo, (.4 N
(5.38) < |U|a,(E,d) % Z eSnad(xn) < Co%d(:n,:p’) ‘
Xnexp

Thus (5.28)) follows from (5.36), (5.37) and (5.38]).

If, in addition, there exists a non-negative real-valued Holder continuous function h € C%%(E,d)
such that |v(y) —v(y')| < B(h(y) + h(y"))d(y,y')* when y, ¢’ € E, then by Lemmas B.15, BI3 (5.30)),
(E.33), and (.32,

> ulyxn) — v(yxa)
Xnexr
X"CFE

‘esﬁq’s(y;{w

S Z B(h(an)eSn;fE(an)e|Sng($(ylxn)_5ng(g(yX")‘ + h(y/)(n)esn%(ylxn)>d(an’y/)(n)a

X’!LeX’él
X"CE
|C/L\(-Z;‘a s2.d Co(diamd(52))a d(z,2)*C8 1 (n n
< Bexp< d ’1)_ e ( Aal 0 (ciﬁcﬂ(m(w) +£%${C7E(h)(x’))

< A BA™" (cg;w(h)(x) + cg;cﬂ(h)(x')) d(z, ).

Therefore, (5.29]) follows from (G.36]), (5.37), the last inequality, and the fact that Ay > A; from
(6.34). O

5.3. Spectral gap. Let (X,d) be a metric space. A function h: [0,400) — [0,4+00) is an abstract
modulus of continuity if it is continuous at 0, non-decreasing, and h(0) = 0. Given any constant
7 € [0, +00], and any abstract modulus of continuity g, we define the subclass C7 ((X, d), C) of C(X,C)
as

C’;((X, d),C) = {u € C(X,C): ||u||Co(X) <7 and for z, y € X, |u(x) —u(y)| < g(d(x,y))}.

We denote Cg (X, d) = C7((X,d),C) N C(X).

Assume now that (X,d) is compact. Then by the Arzela-Ascoli Theorem, each C7((X,d),C) (resp.
C7(X,d)) is precompact in C(X,C) (resp. C(X)) equipped with the uniform norm. It is easy to see
that each C7 ((X,d),C) (resp. C7(X,d)) is actually compact. On the other hand, for u € C'(X,C), we
can define an abstract modulus of continuity by

(5.39) 9(t) = sup{[u(z) —u(y)| : z, y € X, d(z,y) <t}
for t € [0, +00), so that u € Cg((X,d),C), where ¢ == [Jul| .

The following lemma is easy to check (see also [Lil7, Lemma 5.24]).

Lemma 5.13. Let (X, d) be a metric space. For each pair of constants 11, 7o > 0, each pair of abstract

moduli of continuity g1, g2, and each real number ¢ > 0, we have
{urug 1wy € CH((X,d),C), ug € C2((X,d),C)} cC1'2,  ((X,d),C) and

{1/u:ue CH(X,d),C), u(z) > c for each x € X} C C’g:;gl((X, d),C).
The following corollary follows immediately from Lemma 513l We leave the proof to the readers.

Corollary 5.14. Let (X, d) be a metric space, and o € (0, 1] a constant. Then for all Hélder continuous
functions u, v € C%*((X,d),C), we have u, v € C%*((X,d),C) with
||UU||co,a(X7d) < HUHCO’&(X,d) HUHCO’&(X,d)’

and if, in addition, |u(z)| > ¢, for each x € X, for some constant ¢ > 0, then 1/u € C**((X,d),C)
with |[1/ullcoe(x,a < ¢+ e 2 [ullcon(xa)-
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Lemma 5.15. Let f, C, d, « satisfy the Assumptions. Assume in addition that f(C) C C. Let
¢ € CY(S2% d) be a real-valued Hélder continuous function with an exponent o, and ie denote the
unique equilibrium state for f and ¢. Fiz arbitrary ¢ € {b, w} and u € C(X°). Then for each n € N,

/ udlu’¢ - Z / ¢,t’, dlu’¢

o e{b, 0}

Proof. We define a function v € B(S?) by setting v(z) = u(z) if z € inte(X?) and v(z) = 0 otherwise.
We choose a pointwise increasing sequence of continuous non-negative functions 7; € C (52), 1 € N
such that lim;_, o0 75(2) = Liye(xoy for all z € S2. Then {v7;}ien is a bounded sequence of continuous

functions on S?, convergent pointwise to v.
Fix n € N. Since p4(C) = 0 by [Lil7, Proposition 5.39], then by (5.6]), Proposition (i) and (ii),
and the Dominated Convergence Theorem, we get

2 /X = 30 [ (S (e @) dnele)

e{b,w} ce{b, o} ’X"EX”
X"CXO
— li Sné : nl. )1 d
c/e%:m}iﬁl?w ime(xg)xn;m(e o7i) ((f"x0) ™ (@) dpg(x)
X'rLch?
= lim L% (vr;)(x) dpg(x) =  lim L- (’UTZ) dpug
:i_lggloo Szvnd(ﬁg) (ko) :i_lggloo Szvn d,u¢:/szvd,u¢:/xpud,u¢. O

Lemma 5.16. Let f, C, d satisfy the Assumptions. Assume in addition that f(C) C C. Fiz an abstract
modulus of continuity g. Then for each o € (0,1], K € (0,+00), and §; € (0,+00), there exist constants
d2 € (0,400) and N € N with the following property:

For all ¢ € {b, w}, uy € CF*(X0,d), up € C; (X3, d), and ¢ € CO*(5%,d), if |fl| co(sz.a) < K
max{”uhHCO(Xg), [tnllcoxoy} > 61, and fxgub dug + fXgum dug = 0 where pg denotes the unique
equilibrium state for f and ¢, then

(up) + L) (ugy)

gt + £5C )

o (x) < maX{HubHCO(XS)v [uwllco(xg) } — 92

Proof. Fix arbitrary constants a € (0,1], K € (0,+00), and 4; € (0,400). Choose € > 0 small
enough such that g(e) < % Let ng € N be the smallest number such that fro (inte(Xg)) =52 =

2
fro (inte(Xg)).

By Lemma B8 (iv), there exists a number N € N depending only on f, C, d, g, and ¢; such that
N > 2ng and for each z € S%, we have UVN™"0(2) C By(z,¢) (see (B.8)).

Fix arbitrary ¢ € {b, w}, ¢ € C%%(S?, d) with [l co.a(s2,49) < K, and functions up € C’;OO(X[?,CZ)
and up € Cf*(XQ,d) with max{HubHCO(Xg), [unllco(xo)} > 61 and fxgub dpg + fxgum dpy = 0.
Without loss of generality, we assume that [ oup dpg < 0 and S 0 U dptg > 0. So we can choose points

b o
y1 € XP and y2 € X2 in such a way that up(y1) < 0 and uy(y2) > 0.
We denote

M = maX{HUb”CO(Xg)v ”UmHCO(Xg)}-

We fix a point z € X?. Since fN(UN"0(y;) N XY) = 52, there exists y € f~V(2) N XY such that
y € UN=™(y;) € By(y1,¢€). Since M > 61, up(y) < up(y1) + gle) < 6—21 <M — %1. Choose Xév c XV
such that y € X C X{. Denote wy~ = (f|x~)"!(z) for cach X € X¥. So by Lemma 510, we
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have
(N) (N)
£ () @) + £8%) (1) (@)
= up()eSW 1 ST () eV £ 3T g (wy )eSN )
XNeXM\{XY} XNeXN
XNexy XNCxy
o ~ -
< <M - %) exp(SN(b(y)) +M Z exp(SN(b(wXN))
XNeXM\{XN}

~ 1) ~ ) ~

=M Z exp(Sno(wyn)) — éexp(SNgb(y)) - M — Elexp(Swa)).

XNexXN

Similarly, there exists z € £~V (z) N X such that z € UN=0(ys) C By(y2,¢) and

5 -
£57) () (@) + £57) (uw)(@) > ~M + T exp(Sxa(2).
Hence we get Hﬁg\z up) + ﬁfb )m( m)‘ o (x9) < M — % inf{exp(Syé(w)) : w € S?}.

By (5.19) in Lemma 51T with T := 1, the definition of M above, and (2.7)), we have

et + £

pony < M llsloncxgys lrmmloncgy § = 62
with g = %1 exp(—N(C13K + |log(deg f)|)), where C3 is a constant from Lemma [5.1T] depending only
on f, C, d, and a. Therefore the constant do depends only on f, C, d, «, g, K, and §;. O

Theorem 5.17. Let f: S — S? be an expanding Thurston map with a Jordan curve C C S? satisfying
f(C) C C and post f C C. Let d be a visual metric on S? for f with expansion factor A > 1 and

€ (0,1] be a constant. Let H, Hy, and Hy be bounded subsets of C%%(S?,d), Co’a(Xg,d), and
Co« (X,%,d), respectively (with respect to Holder norms). Then for all ¢ € {b, w}, ¢ € H, up, € Hy,
and uy, € Hy, we have

(@) + L% () =

(5.40) lim Hﬁ o AN ‘

n—-4o0o

9

CO(X?)

where the pair of functions w, € C%% (X[?,d) and Ty, € OO (Xg,d) are given by

Up = Up —/ ubdu¢—/ U dptg and Ty = Uy —/ ubdu¢—/ U dfig
X0 X9 X0 X0

b o b

with pg denoting the unique equilibrium state for f and ¢.
Moreover, the convergence in ([5.40) is uniform in ¢ € H, up € Hp, and uy € Hy.

Proof. Without loss of generality, we assume that H # 0, H, # 0, and Hy, # (). Define constants
K = SUP{”‘ﬁHcO&(s{@ :¢ € H} € [0,+00) and K, = sup{HuCHCo,a(X&d) t uc € He} € [0,400) for
¢ € {b, w}. Define for each n € Ny,

oni=sup{ 22, @)+ £2) @) o

Note that by Definition £.2], ag < 2K} + 2K, < +0co.

By (5.7) in Lemma 5.3 and (5.I8)) in Lemma EI0, for all n € Ny, ¢ € H, ¢ € {b, w0}, v, € C(XY),
and vy, € C(X2), we have

:ce{b,m},¢€H,ub€Hb,um€Hm}.

AR ALY

77m

D0 L (50w + £ (o)

e{b, 0} "

< max{Hﬁ(

CO(X?.d)

) (00) + L2, (o)

: ¢ € {b, m}}.

CO(X5,.d)

So {an }nen, is a non-increasing sequence of non-negative real numbers.
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Suppose now that lim, - a, = a, > 0. By Lemma (10, (528) in Lemma with a =1
and b := 0, (534)), (531), and ([&.2)), we get that ﬁ(n) ( )+£(n) (_ ) € C2(K"+K“’)(X0 d), for each

¢ € {b, v} and each pair of u, € Hy and uy € Hy, Wlth an abstract modulus of continuity g given by
g(t) == 2(Co(Kp + Ky) + 2(Kp + Ky)A)t*, t € [0, +00), where the constant A > 1 is given by

A= (1 20) 20 e (U (dinmg(5%)).

and T = (250 + 1)C13K exp(2s9C14K). Here the constant Cy > 1 depending only on f, d, and C comes
from Lemma B3] and Ci3 > 1, C14 > 0 are constants from Lemma [5.11] depending only on f, C, d,
and a. So g and A both depend only on f, C, d, o, H, Hy, and Hy,. By Lemma [5.15]

> (W @)+ (m)>du¢=/ ﬂbdﬂ¢+/ U dpig = 0.
cefo oy /X T X o

By (5.7) in Lemma 5.3 (5.1I8]) in Lemma [5.10] and applying Lemma [5.16] with f, C, d, g, a, K, and
01 = “—* > 0, we find constants N € N and d5 > 0 such that

Co(x0) H 2 'Cqs,c c'<£(nc'b( "Hﬁgzcm(ﬂ‘“))‘

ce{b,w}

e )+ g )

CO(X?)

e o+ 22, 50

. _ < _
—_— ¢ e {b, m}} 8y < ap — 0,

for all n € Ny, ¢ € {b, w}, ¢ € H, up € Hy, and uy, € Hy, satisfying

(5.41) max{Hcgj,b( 0+ L8 (am)‘

/
: >
oy € € {0, m}} > a,/2.

Since lim;,,—, 1 oo G, = a4, We can fix m > 1 large enough so that a,, < a,+ %2. Then for each ¢ € {b, o},
each ¢ € H, and each pair up € Hy and uy € Hy satisfying (5.41]) with n := m, we have

e @)+ €5 )

< ay, — 09 < ay — 27109,
coxey =TS ’

On the other hand, by (B.I8)) in Lemmal5.I0] for all ¢ € H, up € Hy, and uy € Hy, with max{ Hﬁg’? b(ﬂb)—i-

ﬁgz,)m(ﬂm)HCo(Xo) : ¢ € {b, w}} < a,/2, the following holds for each ¢ € {b, r}:
(N+m) (N+m) ‘
Hﬁm Lo (o) cox?) ax/2.

Thus ant+m < max{a* F, %5 } < as, contradicting the fact that {ay }nen, is a non-increasing sequence
and the assumption that lim,_, . a, = ax > 0. This proves the uniform convergence in (5.40). O

Theorem 5.18. Let f: 5% — S? be an expanding Thurston map with a Jordan curve C C S? satisfying
f(C) C C and post f C C. Let d be a visual metric on S* for f with expansion factor A > 1. Let
a € (0,1] be a constant and H be a bounded subset of C%*(S?, d) with respect to the Hélder norm.
Then there exists a constant p1 € (0,1) depending on f, C, d, a, and H such that the following property
is satisfied:

For all g € H, n € Ny, ¢ € {b, w}, up € Co’a(Xg,d), and uy € Co’a(Xg,d), we have

(5.42) | > £ (@)

e{b, o}

< 6p} ma { U o }
CO(X?) - pl c’E{b,}ria} ” ¢ ”CO’ (X?/7d) ’

where Uy € C%(X9,d) for ¢ € {b, w} are given by Uy = ugs — [yous dug — [youw dpg, with pg
b v
denoting the unique equilibrium state for f and ¢. In particular,

o4 H L5 (e = / d / dpg| + 67 { /Nl oo }
(5.43) ue%:m} FAACD < Xgub figp + g U0 0 0P max el o (x9,.)

CO(XY)
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Proof. Without loss of generality, we assume that H # (). Define a constant
(5.44) K = Sup{\|¢\|00,a(327d) :¢ e H} €[0,400).
Denote, for each ¢ € {b, w},

He = {ve € C™(X{,d) : vell go.a(x0.q) < 3}-

Inequality (5.43)) follows immediately from (5.42]), the triangle inequality, and the fact that E((Zl) ) (]l Xg) +
Y (]lxg) = L yo by (5.6) and Lemma B0l So it suffices to establish (5.42]).

@10
We first consider the special case where up, € Hy and up € Hy,.

By (5:28) in Lemma [5.12] with s := 1, (5.17) in Lemma [5.10] and (5.44]), for all j € N, ¢ € {b, to},
¢ € H, uy € Hy, and uy € Hy, we have

Co

@) = —
PONNC IO IS D DI NP RE D Wil 17 ()]
¢’e{b,w} o, (Xd,d) ¢’e{b,w} ¢/e{b,w} ‘
6C
(5.45) < A—a;) +40 Y e llcoxoy < Car,

e{b,w}

where the constant Cy7 is given by Cyi7 = 6Cy + 124,, the constant Ag = Ao(f,C,d, K, a) > 2
defined in (534]) from Lemma [512] depends only on f, C, d, H, and «, and the constant Cy > 1 from
Lemma 313 depends only on f, C, and d. Thus Cy7 > 1 depends only on f, C, d, and H.

So by (5.7) in Lemma 5.3, (5:28) in Lemma with s := 1, (545), and (5I7) in Lemma B.I0, we
get that for all k € N,

(5.46)
k), (k+9) < G (o
"C¢>, oo (@) + L5 ‘ (X0.d) > |£ ¢,cc ( fero ) TLEL (u“’))‘m (X9.d)
ce{b,w}
< 3 (52, @)+ L2, (@) +a40l|e® (|2, @)+ 22, @)
- Aok | "o é,¢/ 1w o, (X9,d) byc,¢! ¢>,’,b b,¢' Co(X9)
e{b, o} ¢
2COC17 (j Y @
= T Aok + Ao Z Hﬁqﬁ, Y é ’,m(um)‘ CO(X9)
e{b,w} ¢
By Theorem 517, we can choose Ny € N with the property that
200Cy7 1 G) G (o <1
. — < —
(5.47) U< and (L4 Ag) Hc% ) () + £¢7c7m(um)‘ ooy < §

for all j € N with j > Ny, ¢ € {b, w}, ¢ € H, up € Hy, and up € Hy. We set Ny € N to be the smallest
integer with this property. So Ny depends only on f, C, d, o, and H.

For each m € N, each ¢ € {b, w}, each ¢ € H, and each pair of functions u, € Hp and uy € Hy, we
denote

(5.48) Umc —cf%m)( )+£<2N;’”>(um).

Then by (5.40) and (5:47), the function vy, € C%*(X?,d) satisfies ||Umvc||cova(x9 9 < 3/8. S0 2uy, €
H.. We also note that by Lemma [5.15]

2Nm
S fmetno= 3N [ b= 3 [ wedus=o
ce{b, 0} ce{b,m} ’e{b,w} o e{b, 0}

Next, we prove by induction that for each m € N, each ¢ € H, and each pair of functions uy € Hy
and up € Hyp, we have

(5.49) max{ [m sl oo - [ommllcoecxe o} < 30/2)7

We have already shown that (5.49) holds for m = 1.
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Assume that (5.49) holds for m = j for some j € N, then 2/v;, € Hy, and 2/vj € Hy. By (5.0) in
Lemma [5.3] for each ¢ € {b, w}, 27vj = E( )( Vj b )+£(2N0)(23 Vjw). Thus ||27v;11|| <
38 < 1/2. S0 0+l gon o g < (/294 < 30/260.

The induction is now complete

Then by (67)) in Lemma (.3, (518) in Lemma (510, (548), and (5.49), the following holds for all
jeN, meNgy, ce{b, w}, p € H, uy € Hy, and uy € Hy:

CO(XP,d)

j+2N0m (j+2Nom) . €)) (2Nom) (2Nom)
H ,c,b +£¢>,, (T >\CO(X9>—H Z £¢7,c,c'<£¢>,'b (o )+£¢>,, (u“’))‘m(xp)
ce{b, o}
(2Nom) (2Nom) / m
< : <
max{H.c 0 (@) + L3 (T )‘CO(X?,) ¢ e {o, m}} < 3(1/2)
Hence, for each n € Ny,
(5.50) H% (@) + £ (am)( oo, < 3(1/2) 7% ) < 6,7,

where the constant p; := 271/(2No) depends only on f, C, d, o, and H.

Finally, we consider the general case. For each pair of functions w, € C%® (X[?,d) and wy €
CO*(Xy,d), we denote M = max{”wbHco,a(X&d), meHCO)a(Xg,d)} and Wy = wy — fng[, dpg —
fxgwm dpg for each ¢ € {b, w}. Let up = ﬁwb and up = %wm. Then clearly up € Hp, Uup € Hy,
Up = ﬁwb, and Ty = ﬁwm. Therefore, by ([5.50), for each n € Ny, each ¢ € H, and each ¢ € {b, to},

o (T 4 g (To)| gy
H£¢,c,b< ) E%cm( M) CO(X9) ~ Ot
Now (5.42) follows. This completes the proof. O

Remark 5.19. For ¢ € C%%(S? d), the existence of the spectral gap for the split Ruelle operator
Lz on CO(XP,d) x C%*(XY,d) follows immediately from (5.I12) in Lemma 5.7, Theorem (.18, and
Lemma (i).

Finally, we establish the following lemma that will be used in Section

Lemma 5.20. Let f, C, d, o, ¢, so satisfy the Assumptions. Assume in addition f(C) C C. Then for
alln € N and s € C satisfying |R(s)| < 2s9 and |S(s)| > 1, we have

(551 Lo < 40

and more generally,

[S(s)]

(5.52) H(ﬁ@ () + £ (u) )m‘cwx?,d)

8¢7c7b ¢7 )

(3m+1)Ap

for allm € N, ¢ € {b, w}, up € C’O’O‘((X[?,d),(C), and Uy € C’O’a((X,%,d),C) satisfying

(5.53) B <1 and

Coa(XD,d) <1

lumllGoeixo o) <
Here Ag = Ag (f,C d,|él, (52,d) ) > 2Cy > 2 is a constant from Lemmal5.12 depending only on f, C,
d, 9|, (52,d)7 and o, and Co > 1 s a constant depending only on f, C, and d from Lemma[3 13

Proof. Fix n,m € N, ¢ € {b, w}, and s = a + ib with a, b € R satisfying |a| < 2sp and [b] > 1.
Choose arbitrary up, € C’Ovo‘((Xg,d),(C) and uy, € C’O"’((X‘%,d),@) satisfying (B.53]). We denote

M = Hﬁ%}c up) + £i’;)cm um)HCO(XQ)' By (518) in Lemma [5.10] we have M < 1.
We then observe that for each Holder contlnuous function v € C%*((X,dp),C) on a compact metric

space (X,dp), we have [v™|, (x 4.y < mlv]|Zo \v\ (X,do)- Thus we get from (5.28) in Lemma 512
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(5I7) in Lemma 5.10] (5.53]), and the observation above that

(n) (n) 1) _ o Lo (n) "
H (£ ¢,c,b )+ L ¢,c,m(um)> ‘ Coe(X0d) M || ‘ <£§<E,c,b(ub) * £g¢7c7m(um)> a, (X0,d)
<1+ mMm_llb’_l‘ﬁgzc’b(ub) T ﬁg?c,m(um)‘a (X9,d)
—an b
<1+ mCA Z ”uC'H[C}O»Q(XO,,d)—i_mAO Hﬁawc’ ‘ U ’)‘CO(XO)
e{b,w} ‘ ¢'€{b, w} ‘

<14 2mCp+ mAO(HUbHCO(XS) + ||um||CO(Xg)) < (3m+1)A,,

where Cy > 1 is a constant depending only on f, C, and d from Lemma [BT3] and the last inequality
follows from the fact that Ay > 2Cy > 2 (see Lemma [5.12]). The inequality (5.52)) is now established,
and (B.51)) follows from (5.13)) in Lemma 5.7 and (5.52]). O

6. BOUND THE ZETA FUNCTION WITH THE OPERATOR NORM

In this section, we bound the dynamical zeta function (5, gor, using some bounds of the operator
norm of IL_,4, for an expanding Thurston map f with some forward invariant Jordan curve C and an
eventually positive real-valued Hélder continuous potential ¢.

Subsection focuses on Proposition [6.1], which provides a bound of the dynamical zeta function
Coa,,—gom, for the symbolic system (EL,J A A) asscociated to f in terms of the operator norms of IL", &
n € N and s € C in some vertical strip with |3(s)| large enough. The idea of the proof originated from
D. Ruelle [Ru90]. In Subsection [6.2] we establish in Theorem [6:3] an exponential decay bound on the
operator norm ‘HIL”S ¢H‘ of L™ o N E N, assuming the bound stated in Theorem [6.21 Theorem [6.2] will

be proved at the end of Subsection [733l Combining the bounds in Proposition [6.1] and Theorem [6.3] we
give a proof of Theorem [E]l in Subsection [6.3l Finally, in Subsection [6.5, we deduce Theorem [6.5] from
Theorem [D] following the ideas from [PS98| using basic complex analysis.

6.1. Ruelle’s estimate.

Proposition 6.1. Let f, C, d, A, «, ¢, sg satisfy the Assumptions. We assume, in addition, that
f(C) C C and no 1-tile in X (f,C) joins opposite sides of C. Let (EA ,O'AA) be the one-sided subshift

of finite type associated to f and C defined in Proposition [3.21], and let mx: EL — S? be defined in
(319). Then for each 6 > 0 there exists a constant Ds > 0 such that for all integers n > 2 and k € N,
we have

(6.1) Z Elﬂ{"lfﬁ}H ,sm o (Lxk) HCOQ x0.q) < Ds[S(8)[A™ exp(k(0 + P(f, —R(s)9)))
XkeXk(f,0) "

and

(6.2) 20 = Y Y £ Q)

ce{b, w} X1eX!(£,C)
xtex?

< DsI3(s)| 2L (5 exo(6 + PLF—R(s)6)) "

for any choice of a point xx1 € inte(X?!) for each X' € X1(f,C), and for all s € C with |3(s)| > 2s¢+1
and |R(s) — so| < so, where Zc(TZ)Aﬁdmn (s) is defined in (3.20).

Proof. Fix the integer n > 2.

We first choose xx»n € X" for each n-tile X" € X" in the following way. If X" C f*(X"™), then
let xx» be the unique point in X™ N P ¢n (see [Lil6, Lemmas 4.1 and 4.2]); otherwise X™ must be a
black n-tile contained in the white 0-tile, or a white n-tile contained in the black O-tile, in which case
we choose an arbitrary point zx» € inte(X"™). Next, for each i € Ny with i <n — 1, and each X’ € X',
we fix an arbitrary point xy: € inte(X?).
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By (5.8 and our construction, we get that for all s € C, ¢ € {b, v}, and X" € X" with X" C X7,

exp(—sSpp(zxn)) if X" C fr(X"),
0 otherwise.

(63) EEZZb,C,Xn(]]'X7L)($X7L) = {

It is easy to check that by (6.3)), the function Z(SZ) _gom, (8) defined in (B.20)) satisfies
A

(6.4) 2 = > Y £ () ().
ce{b, m}X"e)}({’S

Thus, by the triangle inequality, we get

ZC(::\A, ¢07TA Z Z E—sd)ch ]le)($X1)

ce{b,w} X1ex!

xXtcx?
n
(65) S Z Z E(:;Zz)’c’Xm,1(]].mel)(iUmel) - Z E(I;Zb’c’Xm(]le)(iUXm)
m=2c¢ { } Xxm— 1€X'm 1 Xmexm
Xm— 1CX0 XmgXP
n
S Z Z E(:;Zz)’c’Xm,1(]].mel)(iﬂxmfl) - Z E(:éZb,t,Xm(]]'Xm)(:UXm) .
m=2 CE{[) } xm—lgxm—1 XmeXm
Xxm— 1CXO xm ng,1

Note that for all s € C, 2 <m < mn, ¢ € {b, o}, and X" ! € X" ! with X"~ C X0, by (58],

£ o (Lxm)@xm) = > exp (=586 (" xn) " (wxm-1)))
XneXn
X7Lng71

(6.6) = > D> exp (=5Snd ((f"xn) " (wxm-)))
X’HL Xm X?’L X’!L
XmCxX™m— 1chxm

= Y L% ey (@xmo).

XmeXxm
xm ng71

Hence by (6.9), (6.6]), and (5.8]), we get

ZSZ)N*@WA (S) o Z Z ’C—s¢cX1 ]le)(xXl)

ce{b,w} Xlex!
Xcx?

S Y e ) (o) = £ (L) ()|

m=2ce{b, w} xm-lexm-1 XmeXm
xXm— 1CX0 X””CX"L 1

3

IN

Z Z H‘C—sgb,c Xm(]le)Hco,a(ng)d(mefl,xxm)a.

=2 ce{b,w} X" leXm—1 X"eX™
Xxm— 1CXO chxm 1

3

Note that by (&), £™)  (n(lxm) € C*((X9,d),C) for s € C, m € N, ¢ € {b, w}, X™ € X",
and that by Lemma B.8 (i), d(zxm-1,zxm) < diamg(X™™!) < CA™™F!. Here C > 1 is a constant
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from Lemma B.§ depending only on f, C, and d. So by (5.7)) in Lemma 5.3 and (5.13) in Lemma [5.7]

(
ZJZA,,@M Z Z Efs(b,ch ]le)(x)(l)

ce{b,w} XleX!

S

m=2 Xme

(6.7)

(1-m)
Lo (e 120 o ()l gm0 €740

We now give an upper bound for ) yxmexm maxc’e{b,m}“ﬁEqu,c’,XM(]le)Hco,a(xq,d)'

Fix an arbitrary point y € C \ post f.

Consider arbitrary s € C with |R(s) — so| < so, m € N, Xi" € XP, X' € X', X™ € X™,
Ty, Ty € XD, T, Th € X3, and ¢, ¢ € {b, w} with ¢ # ¢. By (5.6]), Lemmas B.I3] and B3 (i), we have
(6.8) £ o e (Lxp) (@) =0,

and

\ﬁf?&a,xy(]lxy)(m

= [exn (- 85m¢((f xp) ™ (@)

xp(— (S)Sm¢((fm| m)_1(:1%/)))
< exp(—%(s)Sm(ﬁ((fm]X:;z)_l(y))) exp( (s)Cy (dlamd(Xo))a)
< exp(=R(5)Smd((f"|x7) (1)) exp(R(s)C“Ch),

where C7 > 0 is a constant from Lemma depending only on f, C, d, ¢, and «.
Hence by (6.8) and ([6.9]), we get

(6.9)

6.10) |29 0 n Qx| (o) < P RESO((7 )™ (1)) exp (R()C7Ch)
By (5.6),
(6.11) £ o (Lxp ) (@) = £ o e (Lxr) (al) = 0.

By (6.6) and Lemma I with 7' := 2s¢ ||, ($2.d)
1- (—sqz,cﬁX:?(]lXZV)(xC’)/ﬁ(ﬁg,c/,Xg(]lxgb)(xif)
= |1—exp(—S(qub((fmlxm)‘1(@))) = Sud (™) @)

< Cio |s9l, ,(S2,d) d(xe, )" = Chols] 9]0 ,(52,d) d(xe, x0)”,
where the constant C'g = Clo(f,C, d,a,T) > 1 depends only on f, C, d, o, and ¢ in our context.

Thus by (69),
£33 e (L) (o) = L5 o e (L) (@)
1= £ e (L)) [ L9 0 s (L) @£V o s () ()
<470y |sld(ze, 2l)™ exp(_gﬁ(s)sm(b((fm‘X?)—1(y)))7

where we define the constant

(6.12) 011 = maX{Z 4010 |¢| S2 d) }eXp 2800 01)
depending only on f, C, d, a, and ¢.
So we get
(6.13) £ o o () (0.0 < 47 Cals| exp (= R() S (™ L) T ()
d)’ el ¢ 7( /7) 3

Thus by (6.I1) and (GI3), we have
(614) |ﬁ(,n;(;’c/’Xm(]]-Xm)|O¢7 (X?”d) < 4_16(11 ’S’ exp(—?}%(s)quﬁ((fm\Xm)_l(y)))
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Hence by (6.10) and (6.14), for all m € N, X™ € X", s € C, and ¢’ € {b, tvo} satisfying |S(s)| >
250 + 1 and |R(s) — so| < sg, we have

(6.15) 12720 ¢ (L) o x5,y < CrlS(s) @3 (—R(5) S (7)™ (9)))-

So by (6.I5]) and the fact that y € C, we get

X e e 0 ey

(6.16) <CulS(s)) Y exp(=R(8)Sme((f™xm) "' (¥)))

XmeXm

We construct a sequence of continuous functions p,,: R - R, m € N, as

(6.17) pla) = (L7 (Lg2) () /™.

By Lemma 3.25 in [LZhe23a), the function a — p,,(a) — e’ converges to 0 as m tends to +oo,
uniformly in a € [0,2sg]. Recall that a — P(f, —a¢) is continuous in a € R (see for example, [PUIL0,
Theorem 3.6.1]). Thus by (6.16]), there exists a constant Cy > 0 depending only on f, C, d, «, ¢, and
d such that for all m € N and s € C with |3(s)| > 2s¢9 + 1 and |R(s) — so| < so,

(6.18) >, max }Hﬁ,sqﬁ,c/ xm (1x) | o (x0,.0
XmeXm

< 2011|S(8)|(pm (R()))™ < Cra|S(s)|em O+ =R(5)9))

Combining (6.7)) with the above inequality, we get for all s € C with |3(s)| > 259+ 1 and |R(s) —so| <
50,

<(TT,:A, d)o7rA Z Z £(—2¢ch ]le)(ﬂfxl)

ce{b,w} Xlex?

xXtcxd
< Ds[S(s |Z H

where D := C*C12A* > (192 > 0 is a constant depending only on f, C, d, ¢, «, and 4.
Inequality (6.I) now follows from (6.18) and DsA™% > Cjs. O

L

(5= 03 + P(f,—R()) "

«

6.2. Operator norm. The following theorem is one of the main estimates we need to prove in this
paper.

Theorem 6.2. Let f: S? — S? be an expanding Thurston map with a Jordan curve C C S? satisfying
f(C) C C and post f C C. Let d be a visual metric on S* for f with expansion factor A > 1, and
¢ € C¥(S% d) be an eventually positive real-valued Hélder continuous function with an exponent
a € (0,1] that satisfies the a-strong non-integrability condition. Let sg € R be the unique positive real
number satisfying P(f, —sop) = 0.

Then there exist constants v € N, ag € (0, sol, by € [2s0 + 1,+00), and p € (0,1) such that for each
¢ € {b, w}, each n € N, each s € C with |R(s) — so| < ap and |I(s)| > by, and each pair of functions

up € Co’a((Xg,d),(C) and Uy € Co’a((Xg,d),(C) satisfying HubH[CO(S <1 and HumH(jo(i(Xo ) <1,
we have

(6.19) /X :

Here p_g,4 denotes the unique equilibrium state for the map f and the potential —so@.

)]
*(Xg,d)

(n2) (n2) 2
£ )+ £2) ()| dp g <

—s¢,c,b —S¢,c,t0

We will prove the above theorem at the end of Section [[l Assuming Theorem B.2] we can establish
the following theorem.
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Theorem 6.3. Let f: S? — S? be an expanding Thurston map with a Jordan curve C C S? satisfying
f(C) C C and post f C C. Let d be a visual metric on S? for f with expansion factor A > 1, and
¢ € C(S% d) be an eventually positive real-valued Hélder continuous function with an exponent
a € (0,1] that satisfies the a-strong non-integrability condition. Let sy € R be the unique positive real
number satisfying P(f, —sop) = 0.

Then there exists a constant D' = D'(f,C,d,«, ) > 0 such that for each € > 0, there exist constants
de € (0, sp), be > 250+ 1, and pe € (0,1) with the following property:

For each n € N and all s € C satisfying |R(s) — so| < de and |I(s)| > be, we have

(620 Il < DSt

Proof. Fix an arbitrary number € > 0. Let « € N, ag € (0, s0], bo € [250 + 1,+00), and p € (0,1) be
constants from Theorem [6.2] depending only on f, C, d, «, and o.

We choose ¢y € N to be the smallest integer sat1sfy1ng s <€ 122, and ¢ € N.

Denote

(6.21) = logmax{pbo/ (20) pi/z, AT} >0,
where p; = pl(f,C,d,a,H) € (0,1), with H = {—t(b cteR, |t —s0| < ao} a bounded subset of

C%(S% d), is a constant from Theorem .18 depending only on f, C, d, and « in our context here.
We define

(6.22) pe = e~/ B320) ¢ (0, 1),
(6.23) b, = max{e'?, (21A43)%°, 259 + 1} > e.

Here Ay = Ag (f,C d, |9, (S2,) a) > 2 is a constant from Lemma depending only on f, C, d,
|9, (52,0)» and .

Moreover, note that by (BIS), [|~a¢— —300]|ogse, < la— solléllcogse) + [P, ~a6) — P(f, ~s06) +
2|/ log u_ag¢ —logu_sogllco(s2)- Since the function t — P(f,t¢) is continuous (see for example, [PUIL0,
Theorem 3.6.1]), P(f,—so¢) = 0, and the map ¢ — uy is continuous on C%*(S?%, d) equipped with

the uniform norm || - [[co(g2) by Lemma B8, we can choose é. € (0,ap) sufficiently small so that if
a € [sg — de, So + O, then

~1/2
(6.24) |P(f,—ad)| < —log p. and H—aqﬁ— 50(25“00(52 <logm1n{p 1/ ,p / }.

Fix an arbitrary number s = a + ib € C with a, b € R satisfying |a — so| < . and |b| > be,
and fix an arbitrary pair of complex-valued Hoélder continuous functions up, € CO"J‘((X[?,d),(C) and

€ CO((XY,d), C) satisfying [us||"h., 0

We denote by m € N the smallest integer satisfying
(6.25) meoy > 2log|b| > 0.

Then m > 2 by ([6.23)).
We first note that by (5.6), the Cauchy-Schwartz inequality, Lemma B.I0, (5.43) in Theorem G.I8],

Theorem [6.2] (5.52]) in Lemma [5.20], and (6.24)), and by denoting L. = ‘ﬁ(mbol b(ub) + ﬁ%oc)/ m(um)|,
we have for each ¢ € {b, o} and each z € X?,

2
(meo) (meo) (meo)
( > e (160 o) + 255 m<“m)|)<”f>>

e{b, o}

(XN (e ) () @) )

e{b,w} xex 0
XeXx§,

< < Z E%(’)c)’c/ (embo||—“¢——30¢||co(s2)> (:E)) < Z £(}:BL/;)C7C/ (L?;) (:E))

ce{b,w} oe{b, 0}

<1 and Hum”COa(XO ,d) =L
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(JOa(XOdJr Z / chdﬂ so¢>

< emm”%_%”co(ﬁ) <6p7m0 max || /|
- cefb,w}! et )

< 4240970 2 || 4 2pme0/(20),

Combining the above with ([6.25])), (6.21]), and the fact that .o > 2 and Ay > 2, we get for each ¢ € {b, w},

(6.26)

>t (letme) )+ £ (u))

7(1(1),(,( ¢7C, b - ¢)7C o
ce{b,w}

< (42A0|b|—2+1+2|b|—2/L0)1/2 §7A0|b|_1/bo-

CO(X?)

Thus by (B10), (512), (57), and (6:26]), we get that for each ¢ € {b, w},

‘wc 3 c&"l‘”,(.c@o) (up) + £T0) (um)>

L2 (4 ,U ‘ =
< -5 (o “’)> co(x?) ¢/€{b, w} —50,6,¢/ \ —s,,b 59, Co(x?)
oo | 5 e e o
c/e%,:m} *a¢,c,c< ~5¢,¢/,b —spe ) CO(X?)
< TAglb| V.

By GI0), (12), (528) in Lemma 512, Lemma (20) (6:26), (6:25), and (G.2I)), we have for each
c € {b, o},

1 2mug
|b] °<]L’sv¢ (ub,um)> a, (X0,d)
1 (mwo) [ p(meo) (mao)
= > L) (LM (up) + LT (u)
’b’ W —s¢h,c,c ( —s¢h,¢’,b —s,¢/ o ) a, (X0,d)
Co (meo) (meo) (6]
(6'28) — o }Aomuo ﬁjsac’,b( )+£—sq§,c’ (um)‘ Coa (X9 d)
de{b, ¢
muo (mL()) (meo)
+ Z Ao Hﬁfatb,cc ( AS—(Z;,C’,b(ub)+£jsa>,c’,m(uln)‘>‘ Cco(Xx?)
e{b,w}

< 8AgCoAT™0 1 Ag(TAg|b| 7/ *0) < TAZ|b| 72 + TAZ|b] =0 < 1443|110,

where Cy > 1 is a constant depending only on f, C, and d from Lemma B.I3] and Ag > 2Cy > 2 (see

Lemma [5.12]).

Hence, for each n € N, by choosing k € Ng and r € {0, 1, ..., 2my — 1} with n = 2mugk + 7, we get
from ([6.27), (6:28]), Definition (.6, and (.51)) in Lemma [5.20] that since |b| > b, and m > 2,

mu o me (] b
el < ezt < ol (fezme ) e )
(6.29) < 4Aofb|(7Ao|b| /10 + 1443 b /)" < 440l T

2megk+r

< 44b| L g = = s < 4A0‘b‘1+zbo‘b‘ 4mL0
n log|b|

< 4A0‘b‘1+66_m02_ < 4A0’b’1+6p§n,

where the last inequality follows from (6.22]) and the fact that m is the smallest integer satisfying (6.25]).

n

We now turn the upper bound for H‘IL m in (6.29)) into a bound for L

«
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By (.13), (5.16), (5:22) in Lemma EIT] and Corollary 5.14] we get

[ {”ZCE“”“’} E(Z"“M”covws,,co}
fS(]S o

max{”vc”co,a(xﬁ)’d) ice {b, m}}
HZce{b,m} £%7c/7c(vc/ufa¢) HCO""(X?,,d) }

maX{HUcHCO,Q(xp,d) cce{b, m}}

< nP(fi—ad) |t ag H(jw (S2,d) sup{

max{||ve/u_ag | co.axo g : € € {b, w}}
< nP(f,—ad) " . L (X¢,d)
<e 1u-asllcoa(sz g mH!ﬂP{ max{[[velcoaxo g : € € {b, W0} ]
< P9 ||y asllco.a(s2,0) HUL,S(AH 11/u-agllco.(s2,a)

< 7 gl oo sz g 1755 M€ (1 sl o o2, )

S H‘L?%maezcw (1 + ||u7a¢||CO,a(S2’d))2 eXp(?’LP(f, —aqb)),

where the suprema are taken over all v, € CO’O‘((Xg,d),(C), Vyp € CO’O‘((X‘%,d),(C), and ¢ € {b, o}
With HvaCO(Xo [vrllco(xgy # 0. Here the constant Ci5 = Ci5(f,C,d, o, T, K), with T' := 2s¢ and

= |lq, 52,0y > 0, s deﬁned in (5.23) in Lemma[B.11land depends only on f, C, d, o, and 9], (g2 q)
in our context

Combining the above inequality with (6.29)), (6.23), (6.24), and (5.2I) in Lemma 5.1} we get that if
a € (so — de, So + Oc) and |b] > be, then

Mgl < 440lbl 20625 (1t ol oz ) < DYBIH0E,

s C
where D’ == 4A4e?C15 (SWL + 2)2(62015)2 > 1, which depends only on f, C, d, a, and ¢. [

6.3. Bound the symbolic zeta function. Using Proposition and Theorem [6.3] we can get the
following bound for the zeta function (s, gor, (c.f. B.21).

Proposition 6.4. Let f, C, d, A, «, ¢, sg satisfy the Assumptions. We assume, in addition, that
¢ satisfies the a-strong non-integrability condition, and that f(C) C C and no 1-tile in X'(f,C) joins
opposite sides of C. Then for each € > 0 there exist constants Ce > 0 and ae € (0, sg) such that

< CelS(s)*

(6.30)

Z UAA, ~@oTa )

for all s € C with |R(s) — so| < @ and |S(s)| > be, where be > 2s + 1 is a constant depending only on
f,C,d, a, ¢, and € defined in Theorem [6.3

Recall Z((TZ) _pom, (8) defined in (3.20).

Proof. Let § := % log(A%) > 0.

Since t — P(f,—t¢) is continuous on R (see for example, [PUL0, Theorem 3.6.1]), we fix a. €
(0,6¢) C (0,50) such that |P(f, —t$)| < 1 log(A®) for each t € R with |t — so| < G, where &, € (0, s¢) is
a constant defined in Theorem depending only on f, C, d, «, ¢, and e.



PRIME ORBIT THEOREMS FOR EXPANDING THURSTON MAPS 37

Fix an arbitrary point zx1 € inte(X!) for each X! € X!. By Lemmas 5.3l 5.7 and (6.1 in
Proposition [6.1], for each n > 2 and each s € C with |R(s) — so| < @, we have

>y ﬁ,w,ch 1x1)(zx1)

ce{b,w} Xlex!?
xXtcx?

(6.31) < > >

Z ﬁ(lqﬁ,lc)c (EEEL,CI,X1(1X1))($X1)

ce{b 1o} X16X1 e{b,w}
XlcxP
< H‘]Lfscb m Z Z cg{lgﬁ}\\ﬁw,uw Lx1)| co.e (X0,d)
ce{b, o
X1CX0

< H‘IL" lm Ds|S(s)|A™ % exp(d + P(f, —R(s)9)),

where Ds > 0 is a constant depending only on f, C, d, «, ¢, and ¢ from Proposition
Hence by (3.20), Proposition [6.1] (6.31), Theorem [6.3] and the choices of § and a, above, we get that
for each s € C with |R(s) — so| < @ and |(s)| > b,

+oo
SCTCUREIES SF1([D DD DR AN

n=2 n=2 ce{b,w} XleX1
xXtcx?

H2 - XY £ ) )
ce{b,w} Xlex!?
xXlcx)?

< g%(WL (AT + Dy|S(s)| i (i

A s
(07
—+o0

e 2+¢€ D, n— mA 2+e DD5 2+€
<SP = DaZp s)| Ze_l S ()77,

n=2

where the constant p. = max{pe, A_O‘/3} < 1 depends only on f, C, d, o, ¢, and €. Here constants
D’ € (0,50) and p € (0,1) are from Theorem [6.3] depending only on f, C, d, «, ¢, and e.
Therefore, by Proposition A.1 (i) in [LZhe23a] and ([B.20]), we have

+oo

1 1) ~ €
Eh%;%u@s%%@m\+z 20 gna(9)] < ISP
n=1
for all s € C with |R(s) — so| < @c and |3(s)| > b, where the constant
Ce = D'Ds(1 — pe) ™ + 2 deg f exp (2506 ]l cos2))
depends only on f, C, d, «, ¢, and e. O

It follows immediately from the above proposition that ¢, Ay —boTa (s) has a non-vanishing holomorphic
extension across the vertical line R(s) = sg for high frequency. In order to get a similar theorem for
Cony,—doma (s) as Theorem [D] we just need to establish its holomorphic extension for low frequency.

Proof of Theorem [E. Statement (i) of Theorem [El has been established in [LZhe23al Theorem EJ.

To verify statement (ii) in Theorem [E] we assume, in addition, that ¢ satisfies the a-strong non-
integrability condition. N B

Fix an arbitrary € > 0. Let C. > 0 and a, € (0, s9) be constants from Proposition [6.4], and b > 2s9+1
be a constant from Theorem [6.3] all of which depend only on f, C, d, «, ¢, and e. The inequality (LX)
follows immediately from (6.30) in Proposition
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Therefore, by the compactness of [—ge,ge], we can choose €y € (0,a.) C (0,s0) small enough such
that (5 ,,, gor,(s) extends to a non-vanishing holomorphic function on the closed half-plane {s € C :
R(s) > sp — €y} except for a simple pole at s = 5. O

6.4. Proof of Theorem In this subsection, we give a proof of Theorem [D] assuming Theorem [El

Proof of Theorem [D. Statement (i) is established in [LZhe23al, Theorem D].

To verify statement (ii), we continue with the proof of [LZhe23a, Theorem D] and assume in addition
that ¢ satisfies the a-strong non-integrability condition. By statement (ii) in Theorem [E] and the proof
of Claim 1 (in the proof of [LZhe23a, Theorem D] in [LZhe23al Section 8]), Dy ¢, deg, extends to a
non-vanishing holomorphic function on ﬁ50_66 except for the simple pole at s = sg. Moreover, for each
€ > 0, there exists a constant C! > 0 such that

exp (—C’é|%(8)|2+6) < ‘QL ,¢7degf(s)| < exp (C’é|%(8)|2+6)

for all s € C with [R(s) — so| < €, and |S(s)| > be, where b := b > 0 is a constant from Theorem [E]
depending only on f, C, d, ¢, and e. N

Therefore, statement (ii) in Theorem [D] holds for a. := min{eg, @} > 0, b = b > 0, and some
constant C, > C! > 0 depending only on f, C, d, ¢, and e. O

6.5. Proof of Theorem We first state the following theorem on the logarithmic derivative of the
zeta function, which will be proved at the end of this subsection.

Theorem 6.5. Let f: S? — S? be an expanding Thurston map, and d be a visual metric on S? for f.
Let ¢ € C%%(S2,d) be an eventually positive real-valued Hélder continuous function with an exponent
a € (0, 1] that satisfies the a-strong non-integrability condition. Denote by sg the unique positive number
with P(f, —so¢p) = 0.

Then there exists Ny € N depending only on f such that for each n € N with n > Ny, the following
statement holds for F:= f™ and ® := E?:_ol do fi:

There exist constants a € (0,50), b > 2s9 + 1, and D > 0 such that

CE?, o(5)
Cr,-a(s)

for all s € C with |R(s) — so| < a and |J(s)| > b.

N

(6.32) < DIS(s)|

Statement (i) in Theorem [C] is established in |[LZhe23a]. Once Theorem [D] and Theorem are
established, statement (ii) in Theorem [C] follows from standard number-theoretic arguments. More
precisely, a proof of statement (ii) in Theorem [Cl] relying on Proposition .24 Theorem [6.5 and
statement (ii) in Theorem [D] is verbatim the same as that of [PS98, Theorem 1] presented in [PS98,
Section 3]. We omit this proof here and direct the interested readers to the references cited above.

To prove Theorem [6.5] following the ideas from [PS98], we convert the bounds of the zeta function
for an expanding Thurston map from Theorem [Dl to a bound of its logarithmic derivative.

We first record a standard result from complex analysis (see [EE85, Theorem 4.2]) as in [PS98,
Section 2].

Lemma 6.6. Consider z € C, R > 0, and 6 > 0. Let F': A — C is a holomorphic function on the
closed disk A == {s € C:|s—z| < R(1+46)%}. Assume that F satisfies the following two conditions:

(i) F(s) has no zeros on the subset
{seC:|s—z <R(1+6)*R(s)>R(z) — R(1+6)} CA.
(ii) There exists a constant U > 0 depending only on z, R, 0, and F such that
log|F'(s)| < U + log|F(2)]
for all s € A with |s — z| < R(1 4+ 6)3.
Then for each s € A with |s — z| < R, we have

'F’(s) 240 (‘F’(z)

(24 (146)72)(1+6) U>

F(s) ) F(z) R$?
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We will also need a version of the well-known Phragmén—Lindel6f theorem recorded below. See [T139)
Section 5.65] for the statement and proof of this theorem.

Theorem 6.7 (The Phragmén-Lindelof Theorem). Consider real numbers 61 < 3. Let h(s) be a
holomorphic function on the strip {s € C: §; < R(s) < d2}. Assume that the following conditions are
satisfied:

1 or each o > 0, there exist real numbers Cy, > 0 and 1, > 0 such that
i) F h 0, th ) ) b C 0 and T, 0 h th
|h( +it)| < Cyealt!
for all §, t € R with 61 < 0 < dy and |t| > T,.
1 ere exist real numbers Co > 0, 1y > 0, and k1, ko € R such that
(ii) Th ) { b C 0, T 0 dky, k R h th
\h(81 +it)] < Colt|**  and  |h(y +it)| < Cplt|*2
for allt € R with |t| > Tp.
Then there exist real numbers D > 0 and T > 0 such that
|h(5 +it)| < C|t[F®)

for all 0, t € R with 61 < § < and |t| > T, where k(J) is the linear function of 6 which takes values
k1, ko for 6 = 61, 0o, respectively.

Assuming Theorem [D], we establish Theorem as follows.

Proof of Theorem [6.5. We choose Ny € N as in Remark[[.1l Note that P(fi, —soSl-fqﬁ) = iP(f,—sp¢) =
0 for each i € N (see for example, [Wal82, Theorem 9.8]). We observe that by Lemma [B11] it suffices
to prove the case n = Ny = 1. In this case, I' = f, & = ¢, and there exists a Jordan curve C C 5?2
satisfying f(C) C C, post f C C, and no 1-tile in X!(f,C) joins opposite sides of C.

Let C¢, ac € (0,s0), and be > 2s9 + 1 be constants from Theorem [Dl depending only on f, C, d, «, ¢,
and e. We fix € := 1 throughout this proof.

Define R = %, 8 :=bc + %, and ¢ = (%)1/3 — 1. Note that R(1+0)* = %.

Fix an arbitrary z € C with R(z) = so + % and [3(z)| > . The closed disk

A::{sEC:\s—z[SR(l—i—é)g}:{sEC:]s—z\§a6/2}

is a subset of {s € C : |R(s) — so| < ae, |S(s)| > be}. Thus by Theorem [D inequality (I.3]) holds for all
s € A, and the zeta function (f, _4 has no zeros in A.
For each s € A, by (L3)) in Theorem [D and the fact that [3(z)| > 8 = be + 5,

_ 3
[log|Cr, o ()] —log|¢r, o (2)|| < 2Ce(I3(2) + 27 a)” < 2'Ce[ (=) = U.
Claim. For each a € R with a > sg, there exists a real number K(a) > 0 depending only on f, C, d,

¢, and a such that [(} ,(a+it)/(s ¢(a+it)] < K(a) for all £ € R.

To establish the claim, we first fix an arbitrary a € R with a > so. By Corollary B.20] the topological
pressure P(f, —a¢) < 0. It follows from [Lil5l Proposition 6.8] that there exist numbers N, € N and
7o € (0,1) such that for each integer n € N with n > N,,

> exp(—aSnp(x)) < 77

Z‘EPLfTL

Since the zeta function (y,_, converges uniformly and absolutely to a non-vanishing holomorphic func-
tion on {s € C : R(s) > 25} (see Proposition B.24), we get from (B2I)), Theorem 3.20 (i) in
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[LZhe23al, and (B.6) that

¢ a+ it)
“57‘ ) exp(—(a + ) S6(z)
fi) a+it —
xEPl fn
< l|9llco(sz) Z > exp(—aSné(x))
n=1z€P; yn
+0o0o Na,
< “¢|’00(32)< Z T[:L + anrdPLf") < ]C(CL),
n=Ng+1 n=1

for all t € R, where K(a) = [|#]|co(s2) (2 -
C, d, ¢, and a. This establishes the claim.

Hence by Lemmal[6.6] the claim with a = so + %, and the choices of U, R, and § above, we get that
for all s € A with S(s) = S(2) and [R(s) — (so+ % )| < R =%, we have

+ N, + z ,(deg f)") is a constant depending only on f,

Cho(8)| 2+ a 2406(2+(1+5) DN(A+0) . 3

. ) _6 < (% 3

(6.33) o) S T <IC(30 + 4> + T2 |3(2)] > < CholS(s)°,
where Cig = 2+5( (80 + “5) + 2406(2+(1+g)72)(1+6)) is a constant depending only on f, C, d, «, and

Ré
¢. Recall that the only restriction on (z) is that |3(z)| > 8. Thus (633]) holds for all s € C with
[R(s) = (s0+ F)| < % and [S(s)] > B.

By Theorem [D] h(s) = Cf "’8 + = SO is holomorphic on {s € C : |R(s) — so| < ac}. Applying

the Phragmén—Lindelof theorem (Theorem [6.7)) to h(s) on the strip {s € C : 61 < R(s) < do} with
01 = s0 — 15 and 3 = s + 555. It follows from (6.33) that condition (i) of Theorem holds. On
the other hand, (6.33)) and the claim above guarantees condition (ii) of Theorem with k1 == 3 and
ko := 0. Hence by Theorem [6.7], there exist constants D >0 andb> 2sg + 1 depending only on f, C,
d, a, and ¢ such that |h(s)| < D|S(s)|/2 for all s € C with [R(s) — so| < s6g and [3(s)| > b.
Therefore inequality (6.32) holds for all s € C with [R(s) — so| < 55 = a and [J(s)| > b, where
a€ (0,s9), b>2s9+ 1, and D := D + 1 are constants depending only on f, C, d, a, and ¢. O

7. THE DOLGOPYAT CANCELLATION ESTIMATE

We adapt the arguments of D. Dolgopyat [Do98] in our metric-topological setting, aiming to prove
Theorem at the end of this section. In Subsection [Z.1], we first give a formulation of the «a-strong
non-integrability condition, o € (0, 1], for our setting and then show its independence on the choice
of the Jordan curve C. In Subsection [[.2] a consequence of the a-strong non-integrability condition
that we will use in the remaining part of this section is formulated in Proposition We remark
that it is crucial for the arguments in Subsection [7.3] to have the same exponent « € (0,1] in both the
lower bound and the upper bound in (Z.25]). The definition of the Dolgopyat operator M 4 in our
context is given in Definition [77] after important constants in the construction are carefully chosen.
In Subsection [T.3, we adapt the cancellation arguments of D. Dolgopyat to establish the [2-bound in
Theorem

7.1. Strong non-integrability.

Definition 7.1 (Strong non-integrability condition). Let f: S? — S? be an expanding Thurston map
and d be a visual metric on S? for f. Fix o € (0,1]. Let ¢ € C%*(S?,d) be a real-valued Holder
continuous function with an exponent c.

(1) We say that ¢ satisfies the (C, a)-strong non-integrability condition (with respect to f and d), for
a Jordan curve C C S? with post f C C, if there exist numbers Ny, My € N, € € (0,1), and M,-
tiles YbM0 IS Xéwo(f,C), Yy Mo ¢ X%O(f,C) such that for each ¢ € {b, w}, each integer M > My,
and each M-tile X € XM (f,C) with X C Y Mo, there exist two points z1(X), x2(X) € X with
the following properties:

(1) min{d(z1(X),S?\ X), d(z2(X), 5%\ X),d(z1(X),22(X))} > ediamy(X), and
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(ii) for each integer N > Ny, there exist two (N + Mj)-tiles XC’NIJFMO, X%JFMO e XN+Mo(f 0)
such that YMo = N (XngJrMO) =N (XgN;'MO), and that

[Sné(s1(21(X))) = Sné(a(@1(X))) = Sne(ai(x2(X))) + Snolea(z2(X)))] .
d(z1(X), z2(X))* 7

(7.1)

where we write ¢; == (f |XN+M0) Dand ¢ == (f ‘XN+M0)_1.

(2) We say that ¢ satisfies the a-strong non-integrability condition (with respect to f and d) if ¢
satisfies the (C, a)-strong non-integrability condition with respect to f and d for some Jordan
curve C C S? with post f C C.

(3) We say that ¢ satisfies the strong non-integrability condition (with respect to f and d) if ¢
satisfies the o/-strong non-integrability condition with respect to f and d for some o' € (0, a].

For given f, d, and « as in Definition [} if ¢ € C%%(S?, d) satisfies the (C, a)-strong non-integrability
condition for some Jordan curve C C S? with post f C C, then we fix the choices of Ny, Moy, ¢, YhMO,
Ytéwo, x1(X), x2(X), XéVl+M°, Xﬁf’M‘) as in Definition [.I], and say that something depends only on f,
d, a, and ¢ even if it also depends on some of these choices.

We will see in the following lemma that the strong non-integrability condition is independent of the
Jordan curve C.

Lemma 7.2. Let f, d, a satisfies the Assumptions. Let C and C be Jordan curves on S? with post f C
CNC. Let ¢ € C**(S?,d) be a real-valued Hélder continuous function with an exponent o.. Fix arbitrary
integers n, n € N. Let F':= f™ and F= f™ be iterates of f. Then ® = Sf¢ satisfies the (C «)-strong
non-integrability condition with respect to F and d if and only if P = quﬁ satisfies the (C a)-strong
non-integrability condition with respect to F and d.

In particular, if ¢ satisfies the a-strong non-integrability condition with respect to f and d, then it
satisfies the (C, «)-strong non-integrability condition with respect to f and d.

Proof. Let A > 1 be the expansion factor of the visual metric d for f. Note that post f = post F' =
post ﬁ and that it follows immediately from Lemma [B.8] that d is a visual metric for both F' and F.

By LemmaBBI (ii) and (v), there exist numbers Cy € (0, 1) and [ € N such that for each m € Ny, each
X € X™(F,C), there exists X € XI™/n1+(F C) such that X C X and diamg(X) > Cyo diamg(X).

By symmetry, it suffices to show the forward implication in the first statement of Lemma

We assume that ® satisfies the (C, a)-strong non-integrability condition with respect to F' and d. We
use the choices of numbers Ny, My, ¢, tiles YbM0 € Xé‘/IO(F,C), yMo ¢ X,]I\?O(F,C), Xc]YlJrMO,Xc{V;MO €
XN+Mo(F C), points 21(X), 22(X), and functions 1, ¢ as in Definition [l (with f and ¢ replaced by
F and @, respectively).

It follows from Lemma [B.8 (ii) and (v) again that we can choose an integer My € N large enough
such that the following statements hold:

(1) [Mon/n] +1> My.
(2) There exist Mo-tiles ?bﬁo € Xéﬁo (ﬁ, A) and }A/];MO € X‘;Mo(ﬁ, A) such that ?bﬂo - inte(YbMO) and
57‘117\/10 C inte(Y‘.f,V[O).

We define the following constants:

~ 1 2 ‘Qﬁ‘ ,(52,d) COC
7.2 Ny = 1
(72 o= [ =g |
(7.3) g:=¢eCy € (0,¢).
For each ¢ € {b, w}, each integer M > ]\70, and each M-tile X € Xﬁ(ﬁ, A) with X C ACM\O, we

denote M = M/Zﬁ/?ﬂ +1 > My, and choose an M-tile X € XM (F,C) with

(7.4) XcX and diamg(X) > Cao diamg(X).
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Define, for each i € {1, 2},
(7.5) Zi(X) = zi(X).

We need to verify Properties (i) and (ii) in Definition [Z1] for the (CA, a)-strong non-integrability
condition of ® with respect to F and d.
Fix arbitrary ¢ € {b, w}, MeN, and X € XM( ,C) with M > My and X C 21‘70.
Property (i). By (C4), (T5), (Z.3]), and Property (i) for the (C, a)-strong non-integrability condition
of ® with respect to F' and d, we get
d(@1(X), 72(X))/ diamg(X) > d(21(X), 22(X))/(Cqp' diamg(X)) > eCag = &,
and for each i € {1, 2},

d(@;(X), 8%\ X)/ diamg(X) > d(z;(X), S? \ X)(Cqp! diamg(X)) > eCy = &.

Property (ii). Fix an arbitrary integer N > ]Vo. Choose an integer N > Ny large enough so that
Nn > Nn.
By Proposition (i) and (vii), for each i € {1, 2}, since F'N maps XCJEJFMO injectively onto Y Mo
and 37;M0 C inte (YcMO), we have
G (VM) € XM (. €),
where ¢; = (FN‘XNfMO)_l. Define, for each i € {1, 2},

RN o iz pNn=NA (G (Vo)) & XN 1) = XN+ (7 €),
|

C,2

-1

and write & = (F | AN+]WO) = (fﬁﬁ Aﬁ+ﬂo)_1‘ Note that fN"_]%\ oG =G

By (4), (75), Propertles (i) and (iic)’ for the (C, «)-strong non-integrability condition of ® with
respect to F' and d, Lemmas B.13] (ii), (7.2), and (7.3]), we have

SEBEi(@1(X)) - SEB(@(@1(X))) — SEB@ @(R))) + SEB(@(@2(X))
d(@1(X), 32(X))°
) = SE_ 6 (22(X)) + SL_6Ga(2(X))

— 51 o dlsi(a(X)))

Nn—N Nn—Nn
{Z} d(w1(X), 22(X))°
. S5 (21(X))) — S5@(2(21(X))) — S5 (22(X))) + S5@(a(22(X)))|
- d(x1(X), 22 (X))>

oy Paisa G d((FY N 0 ) (@1 (X)), (FY~ N7 0 ) (22(X))

i) 1—A-@ £ (diamgy (X))
S -
ie{1,2}
2[0l, 2 Co CA-e(Mn+ Nn—(Nn-F)
=f T T oA eaC—aA—adn
2[4, (52,0 CoC**

AN > o g1 — Cy) =5,

> o
=° (1—A a)ee
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where C' > 1 is a constant from Lemma B.8 and Cy > 1 is a constant from Lemma B.I3] both of which
depend only on f, C, and d.

The first statement of Lemma is now established. The second statement is a special case of the
first statement. O

Proposition 7.3. Let f, d, a satisfy the Assumptions. Fiz ¢ € C%*(S2,d). If ¢ satisfies the a-strong
non-integrability condition (in the sense of Definition[7.1]), then ¢ is non-locally integrable (in the sense

of Definition[8.3).

Proof. We argue by contradiction and assume that ¢ is locally integrable and satisfies the a-strong
non-integrability condition.

Let A > 1 be the expansion factor of d for f. We first fix a Jordan curve C C S? containing post f.
Then we fix Ny, My, YhMO, and Ynj,w0 as in Definition [ Il We choose M := Mj and consider an arbitrary
M-tile X € XM(f,C) with X C YbMO. We fix z1(X), x2(X) € X satisfying Properties (i) and (ii) in
Definition [1] (1). By Theorem F in [LZhe23al, ¢ = K + o f — /3 for some constant K € C and some
Hélder continuous function 3 € C%((S2,d),C).

Then by Property (ii) in Definition [7.1] (1), for each N > Nj,

1B(s1(z1(X))) — Blea(z1(X))) — Bla(z2(X))) 4 Bl2(x2(X)))] /d(21(X), 22(X))* = € >0,
where ¢ = ( ‘XN+J\/IO) ! and = ( |XN+J\/IO)_1. Combining the above with Property (i) in
Definition [7.1] and Proposition B8] 0l (i), we get
218, (s2.a) (max{diamy (Y N+Mo) . yN+Mo ¢ XN+Mo(f c)})"

>e>0.
o (diamg (X))@ =€
Thus by Lemma B.8 (ii), 2(6],, (52,4 éA;le;LfO > glt® > 0, where C > 1 is a constant from
Lemma [3.8] depending only on f , C and d. This is impossible since N > Ny is arbitrary. O

7.2. Dolgopyat operator. We now fix an expanding Thurston map f: S? — S2, a visual metric d
on S? for f with expansion factor A > 1, a Jordan curve C C S? with f(C) C C and post f C C,
and an eventually positive real-valued Hélder continuous function ¢ € C%%(S?% d) that satisfies the
(C, «)-strong non-integrability condition. We use the notations from Definition [.T] below.

We set the following constants that will be repeatedly used in this section. We will see that all these
constants defined from (7.6)) to (Z.I2]) below depend only on f, C, d, «, and ¢.

(7.6) mo = max{ [a ' log, (8C1e* )], [log, (10e71C?)]} > 1.
(7.7) 8o = min{(2Cy)", £2C72/20} € (0,1
(78) bo = max{2so + 1, CoTQ/(l — A_a), 2A0|:;&ﬁ‘a7 (Sz,d)/(l — A_a)}.
(79) A= max{3C10To, 4A0}.
(7.10) e1 = min{mdy/16, (44)TA~M0} € (0,1).
(7.11) N1 == max{ Ny, [oz_l logA(max{QloA, 1280AAC?/(e6y), 4 A, 4C0}) 1}
2
= —12 65061 Aelga —2amg—1 —alNy
(7.12) n = mln{2 <1280 1 C?) ' 3300 CQA (LIP4(f)) }

Here the constants My € N, Ny € N, and ¢ € (0,1) depending only on f, d, C, and ¢ are from
Definition [TI} the constant sy is the unique positive real number satisfying P(f, —so¢) = 0; the
constant C' > 1 depending only on f, d, and C is from Lemma 3.8 the constant Cy > 1 depending only
on f, d, and C is from Lemma B.I3l the constant C7 > 0 depending only on f, d, C, ¢, and « is from
Lemma [BT5} the constant Ag > 2 depending only on f, C, d, |¢|, (s2,q)> and «a is from Lemma B.12}
the constant C9 = Cio(f,C,d, a, Tp) > 1 depending only on f, C, d a, and ¢ is defined in (5.2)) from
Lemma 5. and the constant Ty > 0 depending only on f, C, d, ¢, and « is defined in (5.31]), and
according to Lemma [5.17] satisfies

(7.13) Sup{‘aqﬂ (52 @€ R, |a| < 230} <Tp.
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We denote for each b € R with [b] > 1,

(7.14) ¢ = {X e X"O(f,C): X cyMuydl,
where we write
(7.15) m(b) = [oz_l log A (Cb|/e1)].

Note that by (Z.10)),
(b) > IOgA(l/El) > M(],

and if X € €, then diamy(X) < (‘b‘)l/a by Lemma 3.8 (ii).

For each X € €, we now fix choices of tiles X1(X), X2(X) € X"®O+mo(f C) and X, (X), X5(X) €
Xmb)+2mo(f C) in such a way that for each i € {1, 2},

(7.16) zi(X) € X(X) C Xi(X).

By Property (i) in Definition [Z.1], (7.6]), and Lemma [3.§] (ii) and (v), it is easy to see that the constant
mgo we defined in (7.6)) is large enough so that the following inequalities hold:

7.7 d(X;(X 752 X) > ic«—lA—m(b)7

10
7.18 diamg(X;(X)) < —C—1A=™®)

10
(7.19) d(X5(X), S%\ %(X)) > f_oc—lA—m(b)—m07
(7.20) diam,(X}(X)) < 1%0—1 A—m()=mo
for i € {1, 2}, and that
(721) d(%l(X)7%2(X)) > f_oc—lA—m(b)‘

For each X € €, and each i € {1, 2}, we define a function 1; x: S* — R by
d(z, S\ X;(X))”

(7.22) VX (0) = G X))+ d(r, 82\ E(X))e
for € S%. Note that
(7.23) Yix(r)=1ifz € X;(X), and ¢ x(z)=0ifz¢ X;(X).

Definition 7.4. We say that a subset J C {1, 2} x {1, 2} x &, has a full projection if m3(J) = &,
where m3: {1, 2} x {1, 2} x €, — &, is the projection m3(j,7,X) = X. We write F for the collection of
all subsets of {1, 2} x {1, 2} x &, that have full projections.

For a subset J C {1, 2} x {1, 2} x &, we define a function 3;: S? — R as

1= 32 eney 2 Yix (fM(z) ifze inte(XéYllJrMO) U inte(Xg’llJrMO),
Xee
(1,i,§<)beJ
(724)  By(2)=q1=3 g > ix(fV(2) if z € inte(X3Y0) Uinte(X57),
’ Xee ’ ’
(2,z',X)beJ
g otherwise,

for x € S2.
The only properties of potentials that satisfy a-strong non-integrability used in this section are
summarized in the following proposition.

Proposition 7.5. Let f, C, d, o, ¢ satisfy the Assumptions. We assume, in addition, that f(C) C C
and that ¢ satisfies the a-strong non-integrability condition. Let b € R with |b| > 1. Using the notation
above, the following statement holds:

For each ¢ € {b, w}, each X € €, each x € X{(X), and each y € X,(X),
(7.25)  dod(z,y)* < |Sn9(11(2)) — Sny (72(2)) — Sy S(71(y)) + Sy (T2 (y))| < &g ()7,

where we write T = ( ‘XN1+]\/IO)_1 and T = ( |XN1+M0)_1.
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Proof. We first observe that the second inequality in (T.25]) follows immediately from the triangle
inequality, Lemma .15 and (Z.7).
It suffices to prove the first inequality in (7.25]). Fix arbitrary ¢ € {b, w}, X € &, z € X|(X), and
y € X4(X). By (TI6), (.21), Lemmas BF (ii), BI5, and (Z.I9),
[Sn,0(71(2)) = Sny @(72(2)) = Sny (11 (y)) + Sny @(72()| /dl(, y)*
o 1M o(m1(x)) = Sny d(72(2)) = S (T1(y)) + Snid(2(y))] (X1 (X), X (X))"

d(21(X), z2(X))* T (diamg(X))e
o (. 2C (diamg (X (X))™ + 2C (diamg(X5(X))™ 10— @eaC—a A —am(b)
=\° (diamg (X)) (diamgy (X))
4011020~ A—am(b)—amo \ 1-agaC—a A —am(b) clta
Z(e- el > 507
C—a\—am(d) C'o A—am(b) 2012a1Q

where the last two inequalities follow from (.6 and (7).

Lemma 7.6. Let f,C, d, A, a, ¢, so satisfy the Assumptions. We assume, in addition, that f(C) C C
and that ¢ satisfies the a-strong non-integrability condition. We use the notation in this section.

Fiz b € R with |b| > 2s¢ + 1. Then for each X € &, and each i € {1, 2}, the function 1; x: S* — R
defined in (7.22) is Holder with an exponent o and

(7.26) [Vix|, (52,0) = 20e~C A« (mb)+2mo)

Moreover, for each subset J C {1, 2} x {1, 2} x &, the function B;: S* — R defined in (7.24) satisfies
(7.27) 1>85()>1-—n>1/2
for z € S2. In addition, B; € C%*(S?,d) with |8y, (s2.4) S Lg, where

(7.28) Lg:= 405‘0‘0A0‘(m(b)+2m0)(LIPd( )Ny
s a constant depending only on f, C, d, o, ¢, and b. Here C > 1 is a constant from Lemma
depending only on f, C, and d.

Proof. We will first establish (Z.26]). Consider distinct points z, y € S2.
If z, y € S\ X;(X), then (¢ x(x) — 15 x (y))/d(z,y)* = 0.
If v € S2\ X;(X) and y € X;(X), then by (Z.I9),
< d(X)(X), 8%\ X;(X)) " < 10% 720 AmBFmo) < gpemapmb)F2mo),

Similarly, if y € S?\ X;(X) and € X;(X), then [¢); x (z) — ;. x (y)|/d(x,y)* < 20e~*CA¥(mE)+2mo),
If z, y € X;(X), then by (ZI8]), (7.16), and (7.19),
i x () = ix (y)|/d(z, y)*
< d(x, 8%\ Xi(X))*|d (=, X{(X))* — d(y, X{(X))“|
~ d(2,y)* (d(z, X(X)* + d(x, 2\ X:(X))*) (d(y, X (X)) + d(y, $2 \ Xi(X))*)
N jd(z, 5%\ X;(X))* — d(y, 5%\ %i(X))*|d(=, X[(X))*
d(a, y)* (d(z, X (X))* + d(z, 5%\ X:(X))*) (d(y, X;(X)* + d(y, 52 \ Xi(X))*)
d(z, §? \ Xi(X))*d(z,y)* + d(z,y)*d(z, X} (X))
- d(w,y)*d(X;(X), 5%\ Xi(X))*
< (10722 C~oA=m0) 4 1072 CmoA—em D) (10e I CATOHM0) 2 < 90— C AP +2mo)

Hence |vi x|, (2.4 < 20e~*CAXmb)+2m0) - establishing (7.286).

In order to estabhsh ([727), we only need to observe that for each j € {1, 2}, and each x €
inte(Xé\ngMo) U inte (Xﬁ 1j+M0), at most one term in the summations in (.24) is nonzero. Indeed,
we note that for each pair of distinct tiles X1, Xy € €, X;, (X1) N X4, (X2) = 0 for all i1, i3 € {1, 2} by
([TI7), and %1 (X1) N X2(X1) = 0 by (T2I). Hence, by (7.23)), at most one term in the summations in
([C24)) is nonzero, and (7.27)) follows from (T.12]).
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We now show the continuity of ;. Note that for each i € {1, 2} and each X € &, by (TI17), (.23)),
and the continuity of 1; x, we have

v x (fN (aXC{VjHMO)) = x (YM0) = {0}
for c € {b, w} and j € {1, 2}. It follows immediately from (7.24)) that 5; is continuous.

Finally, for arbitrary z, y € S? with  # y, we will establish W < Lg by considering the

following two cases.
Case 1. z, y € XM+m0) for some XN +mb) ¢ XNi+m(b) ¢

m Ni+Mp . ;
xNtm®) g | JxNtMo e e {b, w}, j € {1, 2}},
then 8;(x) — B;(y) =1—-1=0. If

xNAmb) | X[+ s ¢ e {b, w}, j € {1, 2}},

then by (.23)),
Bs(@) = Bs(y)] _ (1= Vieqr, 2y Yox. (@) = (1= 3 Xicqr 9 Yix. (7 0))
d(z, y) d(z,y)*

aN
< 77!1/%,)(*!&,(52@) (LIPq(f))™™ < Lg,

where we denote X, = fM (XN1+m(b)).

Case 2. card({z, y} N XN1+m(b)) < 1 for all XM+m®) ¢ XN+mb)  We assume, without loss of
generality, that 8;(z)— B;(y) # 0. Then by (T2Z3) and (TI7), d( ' (z), fM (y)) > 5C~ A=), Thus
d(w,y) > HCTAO(LIPy(£))~™. Hence by (T27), BLIBIWL < jpe—acpm®) (LIPy(f)) Ny <

x,y)*
Lg. O

Definition 7.7. Let f, C, d, «a, ¢ satisfy the Assumptions. We assume, in addition, that f(C) C C
and that ¢ satisfies the a-strong non-integrability condition. Let a, b € R satisfy |b| > 1. Denote
s = a+ib. For each subset J C {1, 2} x {1, 2} x &, the Dolgopyat operator M ;4 4 on CO’O‘((X[?, d) ) (C) X
C’O"’((X,%, d),(C) is defined by

(7.29) M js,¢(tp, U ) = L%JrMo (Ubﬂﬂxgvumﬂﬂxg)
for up € Co’a((X[?,d),(C) and up € Co’a((X,%,d),(C).

Here €, is defined in (ZI4]), 8 is defined in (T24), My € N is a constant from Definition [7.],
and Nj is given in (ZII)). Note that in (Z29), since B; € C%(S2%,d) (see Lemma [7.6), we have
ucﬁJ|X9 c Co’a((Xg,d),(C) for ¢ € {b, m}.

7.3. Cancellation argument.

Lemma 7.8. Let f, C, d satisfy the Assumptions. Let p € C*%(S? d) be a real-valued Hélder contin-
uous function with an exponent o € (0,1]. Then there ewists a constant C,,, > 1 depending only on f,
d, and ¢ such that for all integers m, n € Ny, and tiles X™ € X"(f,C), X™t" € X"t (f C) satisfying
X™tn C X" we have

(7.30) 1e(X™) (X4 < G exp(m([[@lleo(s2) + P(f,9))),

where ., is the unique equilibrium state for the map f and the potential ¢, and P(f,¢) denotes the
topological pressure for f and .

Proof. By |Lil8, Theorems 5.16, 1.1, and Corollary 5.18], the unique equilibrium state i, is a Gibbs
state with respect to f, C, and ¢ as defined in Definition 5.3 in [Lil§]. More precisely, there exist
constants P,, € R and C},, > 1 such that for each n € Ny, each n-tile X" € X", and each z € X", we

-1 o (X™)
have Cﬂw < oxp(Sn;(m)—nPw,) < C/W’
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FIGURE 7.1. Proof of (7.32)) of Lemma [7.9l

B A

FIGURE 7.2. Proof of (7.33)) of Lemma [7.0

We fix arbitrary integers m, n € Ny, and tiles X" € X", X" ¢ X" gatisfying X" C X",
Choose an arbitrary point z € X™*". Then
frp(X™) <2 exp(Snp(x) — nby,)
o) = O (B () — (1 m)
Inequality (Z.30) follows immediately from the fact that P,, = P(f,¢) (see [Lil8, Theorem 5.16 and

7 < G epm(lelonsn + P )

Proposition 5.17]). O
Lemma 7.9. For all z1, zo € C\ {0}, the following inequalities hold:

(7.31) |Arg(2122)| < [Arg(z1)] + |Arg(22)],

(7.32) |21 + 22| < |z1] + |22] — (Arg(21/22))? min{|z1], |22]}/16,

(7.33) |Arg(z1/22)| < 2021 - 2l /min{|za], [2]}.

Proof. Inequality (7.31]) follows immediately from the definition of Arg (see Section [2]).
We then verify (.32]). Without loss of generality, we assume that |z1| < |z2| and 6 = Arg(i—;) > 0.

Using the labeling in Figure [[.1] we let @ = 29 and Q? = z1. Then
|21 4+ 22| = |OA| + |AC| < |23]| + |BC| = |22| + |21] cos(6/2)

62 o 62
<lal+lal(1- 5 + 1) < fal+ (1- 55 )l

Inequality (.33]) follows immediately from the following observation in elementary Euclidean plane
geometry. As seen in Figure [[.2] assume A = z; and B = z3. Then |21 — 23| = |AB| > |AC| >
FOA|LAOC = L]z ||Arg(21/22)]. O

Lemma 7.10. Let f, C, d, «, ¢, so satisfy the Assumptions. We assume, in addition, that f(C) C C
and that ¢ satisfies the a-strong non-integrability condition. Fix b € R with |b| > 2s9+1. Fizc € {b, to}
and he € K (X0,d). For each m > m(b) — My and each m-tile X™ € X"(f,C) with X™ C X0, we
have

sup{h¢(z) :x € X"} < 2inf{h(x) : x € X"}
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Recall that the cone K 4, (X?,d) is defined in Definition 5.8

Proof. Fix arbitrary z, 2’ € X™. By Definition 5.8, Lemma B.8 (ii), (Z.I5]), and (7.10),
|he(@) = he(2')| < APl(he() + he(a”))d(x, )" < AJb|(he(x) + he(2'))(diamg(X ™))
< Al (he(2) + () CAMO=0m® < Ap|(er/[p) A*M0 (he(@) + he(2')) < (he(x) + he(a')) /4,

where C' > 1 is a constant from Lemma [B.8] depending only on f, C, and d. The lemma follows
immediately. U

Lemma 7.11. Let f, C, d, «, ¢, so satisfy the Assumptions. We assume, in addition, that f(C) C C
and that ¢ satisfies the a-strong non-integrability condition. Fiz b € R, m € N, ¢ € {b, w}, u, €
C%((X?2,d),C), and he € K a4 (X?,d) such that [b] > 259 +1, m > Ny +m(b), Juc(y)| < he(y), and
[uc(y) —uc(y')] < Alb|(he(y) +he(y'))d(y, y')* whenever y, y' € XO. Then for each X™ € X™(f,C) with
X™ C X0 at least one of the following statements holds:

(1) |uc(2)| < 3he(z) for allz € X™.

(2) |uc(z)| = he(z) for all z € X™.

Proof. Assume that |uc(zo)| < $he(2o) for some 2o € X™. Then by Lemmas B8 (ii), 710, and (ZI5),
for each z € X™,

ue)| < () — (o) + 3helo) < AB|(he() + he(ao)) (dinma(X™))* + Thelo)

1 1
< <2A|b|C’A_O‘N1_am(b) + Z) sup{h.(y) :ye X™} < <4A51A_0‘N1 + 5)1%(:17) < zhc(:n),
where C' > 1 is a constant from Lemma 3.8 The last inequality follows from (7.I1]) and the fact that
€1 € (0,1) (see (ZI00)). O

Lemma 7.12. Let f, C, d, «, ¢, sg satisfy the Assumptions. We assume, in addition, that f(C) C C and
that ¢ satisfies the a-strong non-integrability condition. Fiz arbitrary s = a+ib with a, b € R satisfying
la—so| < so and [b| > bg. Given arbitrary hy € K g, (X[?,d), b € K ) (Xg,d), up € C’O’O‘((X[?,d),(C),
and uy, € C%*((X3,d),C) satisfying the property that for each ¢ € {b, w}, we have |uc(y)| < he(y) and
luc(y) — ue(y)] < Alb|(he(y) + he(y))d(y, y')* whenever y, y' € X7.

Define the functions Q. ;: YMo — R for j € {1, 2} and ¢ € {b, w} by

‘ Zke{l, 2} Ue(e ) (Tk (:E))ele —so (T () ‘

Q@) = 1 Sn, —ao(j(x)) Sny —ad(i(z))’
—gnhe(e ) (Tj(z))e™™ ! +Eke{1,2} R (e, (Tie() ) €™M *

for x € YMo where we write Ty, := (fN1|XN1+JWO)_1 for k € {1, 2}, and we set s(c,j) € {b, w} in such
¢,k

a way that 7;(YM0) C X?(cj) for j € {1, 2}.
Then for each ¢ € {b, w} and each X € &, with X C Y Mo we have

Proof. Fix arbitrary ¢ € {b, o} and X € ¢, with X C YM0. For typographic reasons, we denote in
this proof

(7.34) Uiz = Ug(e,i) (Ti (), hiw = hees) (Ti(T)), g = eSNljsa(”(m))
for i € {1, 2}3and r e X.
Leiﬁ’& L;i;],.ca(zlai,ui); :E;IEG Jj € {1, 2}, then HQCJ”CO(xi(X)) < 1 for all i € {1, 2}. Thus, by
(7.35) Uk 2| > hiz/4 for all x € X and k € {1, 2}.
We define a function ©: X — (—m, 7| by setting
(7.36) O(x) = Arg<m> for x € X.

U2 2€2
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We first claim that for all z, y € X, we have

(7.37) Arg<w>' <1646, AN < 71/16 and
ul,y/u2,y
(7.38) |b]|=Sn, ¢(71(2)) + Sny d(Ta()) + Sny d(T1(y)) — SNy ¢(12(y))| < 7/16.

Indeed, by (Z31)) and (Z.33) in Lemma [Z.9] (Z34)), (Z35), Lemmas B.8 (ii), 10, (Z.14), and (ZI5),
Ul /U2 z U1,z U2,z 2|ujm _ujy|
Arg| —L =2 Ar d Ar d < - d d
g(ULy/W,y)‘ ‘ g<u1,y> g<u2,y>‘ P> inf{lu;.|: 2 € X}

Jje{1,2}
8A|b|(h],m + hj,y) . ' N
Z inf{hj,z S X} d(T] (x),TJ (y))

IN

+

J€e{1,2}

Sup{hjZ 1z € X} —aNi—am(b) —aN

< : 1 < <

< 16Alb| E{El ; {2 € X} CA < 64Ab|(e1/|b])A < /16,
] )

where C' > 1 is a constant from Lemma B8] The last inequality follows from the fact that Ny >
[Llogy (2'°4)] (see (ZII)) and the fact that e; € (0,1) (see (ZI0O)). We have now verified (Z37). To
show (7.38]), we note that by Lemma [3.§] (i), (7.14])), (7.I3]), and (710,
(b =Sn ¢(11(2)) + Sn, d(72()) + SNy ¢(T1(y)) — Snvy D(72(y))]
< b6 td(z, y)® < [b]oy  (diamg(X )™ < [b|dy LCYAT™E) < §5te; < 7/16.
The claim is now verified.

We will choose iy € {1, 2}, by separate discussions in the following two cases, in such a way that

(7.39) |©(z)| > 16n'/? for all z € X;,(X).

Case 1. |O(y)| > w/4 for some y € X. Then by (3] in Lemma [(.9] (7.34), (Z36]), (C37), (Z.39),
and the fact that n € (0,27'2) (see (ZI2)), for each z € X,

1O(y)| — ‘Arg< (u1ye1,y)/(uzye2y) >

(u1,2€1,0)/ (U2,0€2.2)
U1,y /U2 e1y/e2 T T T 7 12
4 Ul /U2, e12/Co 16~ 8 "

We can choose ig = 1 in this case.

Case 2. |O(z)| < w/4 for all z € X. Then by (Z31)) in Lemma [[9] (T34]), (Z36), (T.37), (7T.39),
|b| > by > 1 (see (T8)), (Z.25), (Z.21)), and (Z.I5)), for each = € X¥1(X) and each y € Xo(X),

Ul,z€1,2)/ \U2,2€2 2 €l,x/€2,2 U2,/ U1
(=) ~ 6wl = ‘Arg<((ullyel:y;%u;y@:y))) ' = Arg(‘fl:y;e?:y) ' B Arg(“liful:i) ‘
> [b]|—=Sn, ¢(71(x)) + Sy ¢(72()) + Sn, 8(71(y) — SN, B(72(y))| — 1646 AN
> [bldod(w,y)* — 16Ae; A= > [b|do (107 LeCTIAT™P) — 1646 A7N
> £6p(10A) "' C %6 — 1646, AN > edger / (20AC?),

©()]

v

Y

where the last inequality follows from the observation that 16AA =M < 2% gince N; > [é log 5 (wﬂ

— 20AC?2 edo
(see ((T.ITI)).

We now claim that at least one of the following statements holds:

(1) |9(z)| > 850‘3382 for all z € X;(X).

(2) 16(y)] > £k for all y € Xa(X).

Indeed, assume that statement (1) fails, then there exists xy € X1(X) such that |©(zg)| < 8%6;&’82.
Hence for all y € X5(X),

O(y)] = [6(y) — O(x0)| — |O(x0)| =

The claim is now verified.

65061 _ 65061 65061
20AC2  80AC? ~ 80AC?’




50 ZHIQIANG LI AND TIANYI ZHENG

Thus we can fix iy € {1, 2} such that |©(x)| > 8%‘3282 > 16n"/? (see (TIZ)) for all z € X;,(X) in this
case.

By (C34)), Lemmas B.15] [[.10] B8 (ii), ((.I14), and (CI5), for arbitrary =, y € X;,(X) and j € {1, 2},

hj . exp (SN1 @(Tj (33)) )
hjy exp(Sn, —ad(7;(y)))

i | 15x, “ad(r; (2))~ S, ~ad(r; )

hj,y

<

d CaA—am(b)
(7.40) < 2exp (C’o| a@‘ (52.4) (z, /Z\}z ) < 2exp (Co‘ a¢| (52d) ] _ Ao >
< 2exp(er|b] 1 Co|—ag| (521 —ATT) <8,

where the last inequality follows from (7.8), (7.I3]), the condition that [b] > by, and the fact that
€1 € (0,1) (see ([ZI0)).

We fix kg € {1, 2} such that
(7.41) inf{h;zlej | @ € Xiy(X), j € {1, 2}} = inf{hy, zlen, o] : ¢ € Xy (X)}.

Hence by (Z32) in Lemma [Z9 (Z38), (Z36), (Z34), (€39), (Z41), (5.14), and (Z40), for each
x € X;,(X), we have

0%(x

\_/

‘ul,xel,x + u2,xe2,x’ < - 16 kél{lin {’Uk €k m’} + Z ’u]‘@e]‘,x‘
je{1,2}
6% ()

< ——a kn{lin}{hkx|ekx|} + Y hjalejal
je{1,2}

< —4n mf{hko ye Ny ~ad (7o (1) y € X, (X)} + Z hj7xeSN1 ~ag(r;(x))

je{l, 2}
< - 17]hk0 we a(i)(TkO(:B + Z h] xe CL(i)(Tj(IE)).
je{1,2}
Therefore, we conclude that [|Qck llcox,, (x)) < 1- O

Proposition 7.13. Let f, C, d, «, ¢, sg satisfy the Assumptions. We assume, in addition, that
f(C) C C and that ¢ satisfies the a-strong non-integrability condition. We use the notation in this
section.

There exist numbers ag € (0,s0) and p € (0,1) such that for all s := a + ib with a, b € R satisfying
la —so| < ap and |b| > by, there exists a subset Es C F of the set F of all subsets of {1, 2} x {1, 2} x &,
with a full projection such that the following statements are satisfied:

(i) The cone K (X[?,d) X K App| (X‘g,d) is invariant under My _s 4 for all J € F, i.e.,

My (K ap (X5, d) x K (X3, d)) € K ) (X5, d) x K (X0, d).

(ii) For all J € F, hy € K ap (Xg,d), and hy € K ) (X‘%,d), we have

(7.42) ) / 7y s pes h)) 2 i s < p 3 / he2dit s

ce{b, w0} ce{b, 0}

(ili) Given arbitrary hy € K Ay (Xg,d), he € Kap (X,%,d), up € CO’O‘((X[?,d),(C), and uy, €
C*((Xg,d),C) satisfying the property that for each ¢ € {b, w}, we have |uc(y)| < he(y)
and |uc(y) — uc(y')| < Ab|(he(y) + he(y'))d(y,y')* whenever y, y' € XU. Then the following
statement 1s true:
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There exists J € E such that
e <L%+MO(U117 um)) (w)‘ < me(My,_s,¢(he, hw)) () and
N1+Mog . N1+Mo /
e (LM g ) ) () = e (LY g, ) ) )|
< AD|(me(M s, ¢ (o, hw)) () + Te(M .6 (ho, Pro)) (2”))d (2, ")

for each ¢ € {b, w} and all x, 2’ € X?.

(7.43)

(7.44)

Proof. For typographical convenience, we write ¢ := N1 + My in this proof.
We fix an arbitrary number s = a + ib with a, b € R satisfying |a — so| < sg and |b| > bg.

(i) Without loss of generality, it suffices to show that for each J € F,
o (M0 (K ajpl (Xy,d) > Kajpy (X, d))) © Ko (X, d).

Fix J € F, functions hy € K 4 (X2,d), hy € K gy (X2, d), and points z, 2’ € X with = # 2. For
each X* € X!, denote yx. == (f*|x:) " (z) and vy, == (f*|x) " (2)).
Then by Definition [7.7, (5.12]) in Lemma [5.7], Definition 5.2} and (5.14)),

70 (M 5.0 (s o)) () = 76 (M s, (B ) (o)
>0 Ll (heblxo) @) = Y0 L (hebilxo) (@)

;;(/ﬁ,b,c
ce{b,w} ce{b, 0}

> > ‘ht(yXL)ﬁJ(yXL)eS““‘i’(yXL’—hc(ykl)ﬂj(ykl)esrad%y’xd
ce{b,w} X*eXj
xXrcx?
Z Z |he(yx ) Ba(yxe) — he(yly) Byl ) |22 W)
ce{b,w} X eX|
xXrcx?

+ > D heyx)Bilyx:)

cefb,w} X*€X}
xX+cx?

< Z Z he(yx:)

ce{b, w} X*€X}
xcxy

+ Y D Jhelyxe) = ey

ce{b, w} X*€X}
xexy

DI he(yx) By (yx: )eSaoxo)

ce{b,w} X*€X}
xexy

By Lemmas [3.15] [7.6] 313}, and [5.1], the right-hand side of the last inequality is

IN

IN

eSL:lE(yXL) _ esb%(ylxb)

Si—ad(yly.)—S.—ap(yx:)

Biyx:) — ﬁJ(y%LHeSL%(yXL)e

ﬂJ(y%L)eSL%(y’XL)

1 — Si-ad(y)—Si-ad(yx.) |

T i 2))¢ o
Sexp< OCO(dlamd(S )) )( Z Z hc(yXL)Lﬁcg‘A_md(x,x’)aesﬁadyw)

1-A« —
ce{b,w} X eX}
Xcx?

DI Arbr(hxyxoe&a¢<yXL>+hc<ys<L>esbm(y%b’)CS"A—Md(x,xf)a)

ce{b, w} X*€X}
xcxy

+ CuTod(x,a)* Y LY (heBslxo) (@),
ce{b, w} v
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where Cp > 1 is a constant from Lemma [3.13] depending only on f, C, and d; Lg is a constant defined in
(Z28) in Lemma [Z.6 T > 0 is a constant defined in (5.3I)) giving an upper bound for |— a<;5| (s2.) DY

Lemma [5.17] (c.f. (5:30); and Cyg := Cio(f,C,d,a, Ty) > 1 is a constant defined in (5.2]) in Lemma|5:|1
Both Ty and Cyg depend only on f, C, d, ¢, and a. Thus by (5.2)), (7.27) and (7.28]) in Lemma [7.6]
Definition [.7 (7.I5]), and the calculation above, we get

|6 (Mg, s,6(Po, Pw)) (@) — 6 (M g5 6 (o, o)) ()]
Ab|(me (M., 5,6 (o, hw)) () + 6 (Mg, 5,6 (R, P ) ) (27))d (2, )
C1o C10To

< ——— (Lg+ Alb))A™* +

AL — gy Lo ARD Al

< Clo 40e™ acAQ(xmo—l—l%(LIPd(f))a]\hn_i_1 A—Ol(Nl-l—Mo) ClOTO < 1.
Alp| €1 Alp|

The last inequality follows from the observations that % < % (see (7.9)), that

0™ CyoCPpA oM m et 2amo L LI, (1)) /(Aer (1 — 1)) < 1/3

(by (ZI2)), and that by (ZII) and (ZI2), A~ +M0) < - <

1

3
(ii) Fix J € F and two functions hy € K 4 (Xg, d), hyw € K gpp (X‘%, d).
We first establish that

(7.45) (e (M 0(his h)) () <7Tc<]LL (h2,h2))( ) - FC(JL ((BJ!Xo) ,(ﬂJ\XgP))(x)

for ¢ € {b, w} and = € X?. Indeed, fix arbitrary ¢ € {b, w} and z € X?. For each X* € X!, denote

yx. = (f*|x)" (). Then by Definition [.7] (5.12) in Lemmal5.7, and the Cauchy-Schwartz inequality,
we have

(e (Mo p(ho, haw)) ()

:<Z £%7C7C,(huﬂﬂx§) ) < > Y (heBrexp(S %))(?JXL))z

e{b, o} de{b,w} XeXi
XLQX?,

<Z Z (he exp( S—aqb yx)( Z Z (87 exp(S, agb))(yxb)>

¢ E{b m} XLEXL ¢ E{b m} XLGXL
XLQXO, XLQX?,

= (L (08, 12) ) (@) - me (L, ((Balxg) s (B 1xg)?) ) (@):

IN

—

We will focus on the case where the potential is —sg¢ for now, and only consider the general case at
the end of the proof of statement (ii).
Next, we define a set

(7.46) wy= | ~MEx)).
(4,5, X)eJ

We claim that for each ¢ € {b, o} and each x € W; N X7, we have

(7.47) me(L (851x0) % (831xg)?) ) @) < 1 = e (o 500l o)
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Indeed, we first fix arbitrary ¢ € {b, v} and z € W; N X?. Let X € € denote the unique m(b)-tile in
¢, with z € fM(X). By (5.12) in Lemma [5.7] Definition 5.2, and (7.24)),

me (L ((Bs1x0) % (Bile)?) ) @)
B Z ﬁ(f%aﬁ,c,c’((ﬂ‘]‘ ) Z Z B3 (yx) exp(S —/;E)?é(yxb))

e{b, o} de{b,w} X'eX!
ngxf,
1 — 1 —
< E%: }£30¢,c y ]l S)(x) - anix,x (le (y*)) exp(SL—squ(y*)) <1- Znexp(—LH—soquco(Sg)),
¢ 1o

where ix, jx € {1, 2} are chosen in such a way that (jx,ix,X) € J (due to the fact that J € F
has a full projection (see Definition [T4])), and we denote yx. == (f*|x.)"!(x) for X* € X!, and write
Yx = YN +mp. The last inequality follows from (B.I8]) in LemmaB.I0, (T23), and (Z46). The claim is

¢IX
now verified.

Next, we claim that for each ¢ € {b, w},
(7.48) me(L— (hE.h3) ) € Ky (X2, d).
Indeed, by (512) in Lemma 5.7 Lemmas 5.9 and (i), for all z, y € XD,
me(Li (0, 12) ) (@) = me (L (0, 12) ) )
< Y e )@ - (02

ce{b,w}

2A|b| - 50¢| , (52,d)
< AO( Aot + A « Z Z 750¢,c,c’ )(Z)
e{b,m} ze{z,y}
< Apld(zy)* Y (L5;;¢(h2,hi>)<z>,
z€{z,y}
where Ay = Ao(f,C.d,|¢|, (52,) ,a) > 2 is a constant from Lemma depending only on f, C, d,
|®],, (82,d)> and «a; and C 2 1 is a constant from Lemma [38] depending only on f, C, and d. The last
Ao|-s00
inequality follows from W < 1 (see (ZII)) and W < by < $Aby < FAJb| (see (TR)
and ([.9)). The claim now follows immediately.
We now combine (Z48]), Lemmas [Z10] [Z.8] (Z46), and |b] > by > 259 + 1 (see (Z8))) to deduce that
for each ¢ € {b, 0}, we have

(7.49) /X Om<]L‘ (h2,h2) )du w< Y /

me(L o (R, 12) ) it s

Xe€ Mo (X)
xcyM
1i-soe (FM° (X) sup 7w h h2)) (2)

)g;b O¢( )SCEfMO(X){ c( ( m)) }

xcyMo
M . L 9 9

5 00 2 st (U, 05180}

xcyMo
< 018 Z N—S()(ﬁ(fMo( Z]X(X))) inf {77(<]I‘igov¢(hg,h2m))(:n)}
X€eg, z€fMo (x;]X(X))
xcyMo

L 2 12
(X)) Tre <L§5¢(h ’h"’)> dp-so0
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2 2
< Cis /megm( (R 12) ) i

where iy x € {1, 2} can be set in such a way that either (1,i;x,X) € J or (2,i5x,X) € J due
to the assumption that J € F has a full projection, and the constant C1g can be chosen as Cig =
202 exp(2m0(||—80¢||(;0(52 + P(f,—s()(;S))) > 1, which depends only on f, C, d, and ¢. Here the
constant Cu_,,, = 11is from Lemma [I.§ depending only on f, d, and ¢.

We now observe that by (5.12)) in Lemma 5.7 and Lemma 515

(7.50) Z /xom ]LL hzjh >du s0b = Z /;ﬂdu s00-

ce{b, w0} ce{b,w}

Combining (Z50), (Z45), Lemma 610, (Z27) in Lemma [76] (Z47), and (Z49]), we get
(7.51) Z / h d,u s0¢ Z / ‘71'(-_ MJ So,fi) hb,hm )| d/L S0

ce{b, 0} ce{b, w}
= Z / e | L™ ¢ h27h2 >du s0b — Z / |7Tc My 50,6 hb,hm )‘ dp_soe
ce b, w} 7 X7 ce{b, w}
> > /07& EA hﬁ,)) <1—Wc<L~((5J|x0) ,(ﬁJlxg)2)))dM780¢
ce{b, 0} Xe
2
5 [ ) (i (O 1) o
> exp< I =sbllosn) 0 [ me(, (802)) dic
e{b w} WinXe
> o (o) 2 e (L 0. 3)) e
> < exp (1)) =500l cugse ce{%jm} [

We now consider the general case where the potential is —T(ﬁ Fix ¢ € {b, w} and an arbitrary
point z € X9. For each X* € X!, denote yx. := (f*|x:)”'(x). Then by Definition [.7] and (5.12) in
Lemma [5.7]

T (My,_s.6(he, b)) Z Z he(yx+)Bs(yx:)exp( L:avcb(yXL))
ce{b,w} XX,
XLgX?

ST 03 helyx)Bi(yxe) exp(S,—sod(yx+)) exp(|S,—ad(yx:) — S, —s0d(yx)
ce{b, w} X*eX!,
x+cx?

)

< 10 (Mg (o, b)) () (om0l o s2) P mad)=P(fms0) 2] log s —log ugolleogs)

Since the function ¢t — P(f,t¢) is continuous (see for example, [PU10, Theorem 3.6.1]) and the map
t — g is continuous on C**(S%,d) equipped with the uniform norm || - [|co(s2y by Lemma BI8] we
can choose ag € (0, s9) small enough, depending only on f, C, d, o, and ¢ such that if s = a + ib with
a, b € R satisfies |a — sg| < ap and |b| > 2s¢ + 1, then

exp(¢(la = solllpllco(s2y + [P(f, —ad) — P(f, —s0¢)| + 2] log u_ag — log u_spplco(s2)))
< (14 (4018)_177eXp(_LH_/S\(;bHCO(S?)))lﬂa
and consequently

exp(— ]| =500l co(s2)) \ 2
(752) T/ (MJ7,S7¢(hb,hm))($) < <1 + ( 4018 = ))> 7TC’(H\AJ,fso,(b(hb)ht’o))($)‘
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Therefore, if s = a +ib with a, b € R satisfies |a — so| < ag and |b] > by > 259+ 1 (see (T.8))), we get
from (T.52) and (Z51) that

Z / ‘ﬂ'c MJ s¢ h[nhm))’ dp- 809

ce{b, o}
< <1+Uexp(_LH—80¢”CO(s2 > Z / (Mg sy hb,hm))\ dp_seg
4018
ce{b, w0}
2 -2 :V
< <1_?7 exp (—2u|| §0<Z5H00(52 > Z /\h 2 dp g
16CTs ce{b,w}

We finish the proof of (ii) by choosing

p=1-16" 1C’ s exp( 2L||%||CO(52)) € (0,1),
which depends only on f, C, d, «, and ¢.
(iii) Given arbitrary hp, hy, up, and uy satisfying the hypotheses in (iii), we construct a subset
J C {1, 2} x {1, 2} x &, as follows: For each X € &,

(1) if HQCleHCO(xl(X)) < 1, then include (1,1, X) in J, otherwise
(2) if HQCXvQHCO(xl(X)) < 1, then include (2,1, X) in J, otherwise
(3) if HQWJHCO X)) < 1, then include (1,2, X) in J, otherwise
(4) if HQCX72HCO X)) < 1, then include (2,2, X) in J,

where we denote c¢x € {b, w} with the property that X C Ycﬂfo Here functions Q. ;: VM0 — R,
c € {b, v} and j € {1, 2}, are defined in Lemma [T.12]

By Lemma [[12] at least one of the four cases above occurs for each X € ¢,. Thus, the set J
constructed above has a full projection (c.f. Definition [T.]).

We finally set & = [ J{J}, where the union ranges over all hy, hy, up, and uy, satisfying the hypotheses
in (iii).

We now fix such hy, hy, up, Uy, and the corresponding J constructed above. Then for each ¢ € {b, to}
and each z € X?, we will establish (Z.43) as follows:

(1) e ¢ Uxee, f'(X1(X)UX2(X)), then by (T.23) and ([T24), B;(y) = L forally € f~NHMo)(z),
Thus (7.43]) holds for = by Definition [.7] (5.12]) in Lemma [5.7], and Definition

(2) If x € fMo(X;(X)) for some X € € and i € {1, 2}, then one of the following two cases occurs:

(a) (1,i,X) ¢ J and (2,i,X) ¢ J. Then by (Z24), Bs(y) = 1 for all y € f~(M+Mo) (). Thus
((C43) holds for = by Definition [Z.7, (5.12) in Lemma [5.7, and Definition
(b) (4,4, X) € J for some j € {1, 2}. Then by the construction of J, we have (j',i', X) € J if

-1
and only if (j',4¢") = (j,7). We denote the inverse branches 73 = ( 1 XN1+MO> for k €
{1, 2}. Write z := (fN1+MO‘XN M) "(z). Then B;(y) = 1 for each y € f~M1+Mo)(z)\

7 (Xi(X)) = f-MNitMo) (g )\{z} In particular, 8;(7j, (f'(2))) = 1, where j, € {1, 2}
and j, # j. By the construction of J, we get Q. ; (f 1(z )) <1,ie.,

Z(mw%%WWWmﬂ

ke{1,2}

< _%Uhc(c,j)( )eS2 ) 3T (e (e (1(2)))

ke{1,2}

< (Brheteqye™ ) (2) + (Brhegegne™ ) (. (17 ().

where ¢(c, k) is defined as in the statement of Lemma [[. 121 Hence (7.43]) holds for = by
Definition [.7] (5.12]) in Lemma [5.7] and Definition
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We are going to establish (7.44) now. By (512) in Lemmal[5.7, (5:29) in Lemma [5.12] Definition [5.2]
and (Z.27), for all ¢ € {b, w} and z, 2’ € X with x # 2/,

T e (L g 1)) ) = e (L ) ) )
1

< -
~ d(z,x")e

J(ue)(@) = LY (o) (@)

—so,c,¢’

‘ﬁ
e{b,w}

<a Y (B X 29 00e)+bet ko)

ze{z, z'}

<<ia’?+A0>|b| ooy £(L e ,(2heB1x0)(2)

de{b,w} ze{z, 2’}

78(]5

240A
< 0 1 24, ) |b| Te(My_s.(ho, hw)) (2) < Alb| Te(M,s,6(hos hw))(2),
A
ze{x,x'} ze{x,x'}
where the last inequality follows from iﬁ? < 3 (see (ZII)) and A > 44, (see (T9)). O

Proof of Theorem[6.2. We set ¢ := Nj+ My, where N € Z is defined in (Z.I1]) and My € N is a constant
from Definition [T.Il We take the constants ag € (0,s9) and p € (0,1) from Proposition [T.I3], and by as
defined in (7.8).

Fix arbitrary s := a + ib with a, b € R satisfying |a — so| < ag and |b| > by. Fix arbitrary up, €
Co’a((X[?,d),(C) and up € CO’O‘((XO,d),(C) satisfying

<1 and  fup|BW ., <1

(753) o, a(XO ) —

||ub||co (X0,d)
We recall the constant A € R defined in (7.9]) and the subset & C F constructed in Proposition [Z.13
We will construct sequences {hmk}:?il in K 4 (X[?,d), {hm,k};gil in K g (X‘,Oo,d), {ubk};ig in
CO’O‘((X[?,CZ),(C), {umk}:;’% in Co’a((X‘g,d),(C), and {Jk}z;’g in & recursively so that the following
properties are satisfied for each k € Ny, each ¢ € {b, tv}, and all x, 2’ € XCO:
(1) uep =m <]L'3€a)(ub,um)).
(2) |uen(@)] < heg(x) and Juep(z) = ue ()] < Albl( k(@) + he(2”))d(z, ).
(3) 2o 'e{b,w} onh 1 Ahoso < P 'e{b,w} fXO o k— 1d/‘ s00°
) ™

(4) m (L <ubk,umk>)<x>sm(MJk,,s,qj(hb,k,hm,k»(x) and

Te <]L%;H)(ub’k, um,k)) (LZ') — T (]Lé;sgﬁ(ub’k’ um,k)) (1’/)
< A‘b‘ (7‘(} (MJk7,s7¢(h[]7k, hm,k)) (a:) + . (MJk,fs,(j)(hb,ky hm,k)) (x'))d(a;, a;')a.

We first set he_1 == 1/p, hep = HUCH[Cb'}O,a()Q,d) € [0,1], and wc = u, for each ¢ € {b, w}. Then
clearly, Properties (1), (2), and (3) are satisfied for k¥ = 0. By Property (2) for k = 0, we can choose
Jo € & according to Proposition [T.I3] (iii) such that Property (4) holds for k = 0.

We continue our construction recursively as follows. Assume that we have chosen up ; € Coe ( (X [?, d) , (C),
U, € Co’a((X‘g,d),(C), hei € K (Xg,d), hwi € Kap (X‘%,d), and J; € & for some i € Ng. Then
we define, for each ¢ € {b, w},

Ucitl = T <IL ¢(Ub i> Uro 7,)) and heiv1 i =mc(My, _s¢(hpis i)

Then for each ¢ € {b, o}, by (59) we get ucit1 € C’O"’((X?, d),(C), and by Proposition [[.I3] (i) we have
heiv1 € Kap (Xco,d). Property (1) for k =i+ 1 follows from Property (1) for k = i. Property (2) for
k = i+1 follows from Property (4) for k = i. Property (3) for k = i+1 follows from Proposition [.T3] (ii).
By Property (2) for k = i+ 1 and Proposition [T.I3] (iii), we can choose J;11 € & such that Property (4)
for k = i+ 1 holds. This completes the recursive construction and the verification of Properties (1)
through (4) for all k£ € Ny.



PRIME ORBIT THEOREMS FOR EXPANDING THURSTON MAPS 57

By (5.12) in Lemma [5.7, Properties (1), (2), (3), and Theorem [3.I4] (iii), we have

£09 () + L7 ()| iy =
(o) + £ .
X0 x?

—so,c,b —S¢,c,10

= /X O‘uc,n‘2dluf—so¢ < /X Oh?,n Api_sgp < p" ( /X Ohﬁ,o At sep + /X i he o duso¢> <",
¢ ¢ b 0

for all ¢ € {b, w} and n € N. O

2
e (L, tm) )| it 00

8. LATTES MAPS AND SMOOTH POTENTIALS

8.1. Non-local integrability. We briefly recall the notion of non-local integrability discussed in
[LZhe23al, Section 7].

Let f: S? — S? be an expanding Thurston map, d be a visual metric on S? for f, and C C S? be a
Jordan curve satisfying f(C) C C and post f C C. We define

(81) E;,C = {{X—i}iENo . X—i S Xl(f,C) and f(X—(H-l)) D) X,Z', for i € N(]}

For each X € X!(f,C), since f is injective on X (see Proposition (i), we denote the inverse branch
of f restricted on X by f)zlz f(X) = X, ie, f)}l = (flx)""

Let ¢ € C%((52,d), C) be a complex-valued Holder continuous function with an exponent o € (0, 1].
For each £ = {& ;}ien, € EJI’C, we define the function

“+o00
(82) AL, y) =D (o floofa) @) — (Yo fitorofl)w)
=0
for each (z,y) e U X xX.
XeX!(f.0)
XCf(&o)

The following lemma is verified in [LZhe23al Section 7).

Lemma 8.1. Let f, C, d, ¢, o satisfy the Assumptions in Section [{} We assume, in addition, that
f(C) € C. Let & = {&itieny € X . Then for each X € X(f,C) with X C f(&), we get that

Ai’cg(a:,y) as a series defined in (82) converges absolutely and uniformly in x, y € X, and moreover,
for each triple of x, y,z € X, the identity

(8.3) AL, y) = ALz ) — AL S (2 2)

holds with ‘Ai%(:n,y)‘ < Chd(z,y), where Cy = C1(f,C,d, ¢, ) is a constant depending on f, C, d,
¥, and a from Lemma 313

Definition 8.2 (Temporal distance). Let f, C, d, ¢, « satisfy the Assumptions in Section [ We
assume, in addition, that f(C) € C. For & = {& ;}lien, € YXicand n = {n_itien, € X7 ¢ with

f(&) = f(no), we define the temporal distance zbgg as ngg(:n,y) = Ai%(x,y) - Afzf](:n,y) for each
(x,y)e U XxX
XeX!(£.0)
XCf(o)
Recall that f™ is an expanding Thurston map with post f® = post f for each expanding Thurston
map f: S? — S? and each n € N.

Definition 8.3 (Local integrability). Let f: S? — S? be an expanding Thurston map and d a visual
metric on S? for f. A complex-valued Hélder continuous function ¢ € C%%((S?,d),C) is locally in-
tegrable (with respect to f and d) if for each natural number n € N, and each Jordan curve C C S?

satisfying f™(C) C C and post f C C, we have (S,{qﬁ)?:?’c(x,y) =0 for all £ = {&_;}ien, € Yn ¢ and

n={n-itien, € E}n ¢ satisfying f"() = f"(mo), and all (z,y) € U X xX.
xXex(f,0)
XCf™(éo)
The function 1 is non-locally integrable if it is not locally integrable.
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8.2. Characterizations. In this section, we show that for Latteés maps, in the class of continuously dif-
ferentiable real-valued potentials, the weaker condition of non-local integrability implies the (stronger)
1-strong non-integrability for some visual metric d for f. This leads to a characterization of the Prime
Orbit Theorems in this context (Theorem [A]). The proof relies on the geometric properties of various
metrics in this context and does not generalize to other rational expanding Thurston maps. However,
we are able to show the genericity of the a-strong non-integrability condition in C%%(S52,d) in the next
section.

In order to carry out the cancellation argument in Section [7], it is crucial to have both the lower bound
and the upper bound in (7.25]). As seen in the proof of Proposition [(.5] the upper bound in (7.25)) is
guaranteed automatically by the Holder continuity of the potential ¢ with the right exponent a. If we
could assume in addition that the identity map on S? is a bi-Lipschitz equivalence (or more generally,
snowflake equivalence) from a visual metric d to the Euclidean metric on S?, and the temporal distance
qﬁg g, is nonconstant and continuously differentiable, then we could expect a lower bound with the same
exponent as that in the upper bound in (7.25]) near the same point.

However, for a rational expanding Thurston map f: C— (@, the chordal metric o (see Remark B.10]
for the definition), which is bi-Lipschitz equivalent to the Euclidean metric away from the infinity,
is never a visual metric for f (see [BM17, Lemma 8.12]). In fact, (S2,d) is snowflake equivalent to
((@,a) if and only if f is topologically conjugate to a Latteés map (see [BMI17, Theorem 18.1 (iii)] and
Definition 8.4] below).

Recall that we call two metric spaces (X1,d;) and (X2, ds) are bi-Lipschitz, snowflake, or quasisym-
metrically equivalent if there exists a homeomorphism from (X1,d;) to (X2, ds) with the corresponding
property (see Definition B.9)).

We recall a version of the definition of Lattes maps.

Definition 8.4. Let f: C — C be a rational Thurston map on the Riemann sphere C. If f is expanding
and the orbifold Oy = (52, ) associated to f is parabolic, then it is called a Lattés map.

See [BM17, Chapter 3] and |[Mi06] for other equivalent definitions and more properties of Lattes
maps.

The special phenomenon mentioned above is not common in the study of Prime Orbit Theorems for
smooth dynamical systems, as we are endeavoring out of Riemannian settings into general self-similar
metric spaces. We content ourselves with the smooth examples of strongly non-integrable potentials
for Lattes maps in Proposition below.

Remark 8.5. For a Lattes map f: C — @, the universal orbifold covering map ©: C — C of the
orbifold Oy = (@,af) associated to f is holomorphic (see [BM17, Theorem A.26, Definition A.27, and
Corollary A.29]). Let dy be the Euclidean metric on C. Then the canonical orbifold metric wy of f is
the pushforward of dy by ©, more precisely,

wr(p,q) = inf{do(z,w) iz € @_l(p), w e @_1(q)}
for p, g € C (see Section 2.5 and Appendices A.9 and A.10 in [BM17] for more details on the canonical
orbifold metric). Let o be the chordal metric on C as recalled in Remark B.I0. By [BMIT, Proposi-
tion 8.5], wy is a visual metric for f. By [BMI7, Lemma A.34], ((C,wf) and ((C,J) are bi-Lipschitz

equivalent, i.e., there exists a bi-Lipschitz homeomorphism h: C — C from ((E, w f) to (@, J). Moreover,
by the discussion in [BM17, Appendix A.10], h cannot be the identity map.

Proposition 8.6. Let f: C — C be a Lattes map, and d = wy be the canonical orbifold metric of f
on C (as recalled in Remark[8.3). Let ¢: C — R be a continuously differentiable real-valued function
on the Riemann sphere C. Then ¢ € CO’I((C, d), and the following statements are equivalent:

(i) ¢ is not co-homologous to a constant in C’(@, (C).
(ii) ¢ is non-locally integrable with respect to f and d (in the sense of Definition [8.3).
(ili) ¢ satisfies the 1-strong non-integrability condition with respect to f and d (in the sense of

Definition [7.1)).

See Definition [B.1] for the notion of co-homologous functions.
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Proof. We denote the Euclidean metric on C by dy. Let o be the chordal metric on C as recalled in
Remark .10l By [BM17, Proposition 8.5], the canonical orbifold metric d = wy is a visual metric for
f- Let A > 1 be the expansion factor of d for f.

Let Oy = (52, ) be the orbifold associated to f (see Subsection 7.2 in [LZhe23a]). Since f has

no periodic critical points, the ramification function a¢(z) < +oo for all z € C (see Definition 7.4 in
[LZhe23al).
By inequality (A.43) in [BM17, Appendix A.10],

(8.4) sup{o(z1,22)/d(z1,22) : 21, 22 € C, 2 # 22} < 4o00.

By (84) and the assumption that ¢ is continuously differentiable, we get ¢ € C%1 (@, a) c Ccot (@, d).
We establish the equivalence of statements (i) through (iii) as follows.
(i) <= (ii): The equivalence follows immediately from Theorem F in [LZhe23al.

(ii) <= (iii). The backward implication follows from Proposition [[3l To show the forward im-
plication, we assume that ¢ is non-locally integrable. We observe from Lemma [B.I1l Theorem F in
[LZhe23a], and Lemma [T.2] that by replacing f with an iterate of f if necessary, we can assume without
loss of generality that there exists a Jordan curve C C S? such that post f C C, f(C) C C, and that
there exist £ = {& ;}ien, € e and n = {n_i}ien, € P X! e XI(f,C), and ug, vg € X' with

X' C f(&) = f(m), and
(8'5) (ﬁg:g(UQ,’Uo) £ 0.

By the continuity of ¢5’S (see Lemma Bl and Definition B2]), we can assume that ug, vy € inte(X1).
Without loss of generality, we can assume that oo ¢ X'. We use the usual coordinate z = (z,y) € R?
on X1. We fix a constant Coz > 1 depending only on f and C such that

(8.6) 02_210(7:1, z9) < dp(z1,22) < Caad(21, 22) for all 21, 20 € X .

Note that af(z) = 1 for all z € C \ post f (see Definition 7.4 in [LZhe23a]). Recall the notion
of singular conformal metrics from [BMI17, Appendix A.1]. By Proposition A.33 and the discussion
proceeding it in [BM17, Appendix A.10], the following statements hold:

(1) The canonical orbifold metric d is a singular conformal metric with a conformal factor p that
is continuous and positive everywhere except at the points in supp(« f) C post f.

(2) d(z1,22) = inf fvp do, where the infimum is taken over all o-rectifiable paths v in C joining 2
v
and zy.
(3) For each z € C\ supp(ay), there exists a neighborhood U, C C containing z and a constant
C, > 1 such that C;1 < p(u) < C, for all u € U,.
Choose connected open sets V and U such that ug, vg € V CV C U C U C inte(Xl). By
compactness and statement (3) above, there exists a constant Cy3 > 1 such that
(8.7) Oyt < p(2) < Co3 for all z € U.

Thus by (8.6), (8.4), and a simple covering argument using statement (2) above, inequality (8.1), and
the fact that V' C U, there exists a constant Cs4 > 1 depending only on f, C, d, ¢, and the choices of
U and V such that
(8.8) 02_41(1(7:1, z9) < do(z1,22) < Cogd(z1, 22) for all z1, 20 € V.

We denote, for each i € N,
(8'9) Ti = (f‘fki)_l Or--0 (f‘i—l)_l © (f‘ﬁo)_l and Ti/ = (f’nlfi)_l Or--0 (f’n—l)_l © (f’ﬁo)_l'

We define a function ®: X! — R by ®(z) := gbg”g(uo, z) for z € X (see Definition B2 and Lemma [B.]).

Claim. ® is continuously differentiable on V.
By Definition[8.2] it suffices to show that the function D(-) := Aé’g(uo, -) is continuously differentiable

on V. By Lemma BT the function D(2) = ;"% ((¢ o 7:)(uo) — (¢ o 7:)(2)) is the uniform limit of a
series of continuous functions on V. Since V' C inte(X?!), by (83) and Proposition (i), the function
¢ o 7; is differentiable on V for each ¢ € N.
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We fix an arbitrary integer i € N. For each pair of distinct points z1, 2 € inte(X!), we choose the
maximal integer m € N with the property that there exist two m-tiles X", X" € X™(f,C) such that
z1 € XJ, 29 € X', and X" N X5 # (). Then by Proposition B.6] (i) and Lemma B.8 (i) and (ii),

|(¢om)(21) — ((bOTi)(zQ)\ H¢||Co1 dlamd(TZ(Xl U X))
d(Zl,ZQ) - C 1A—(m+1)

2C A~ (mH) 2 1
< H¢”Co,1(@d) C A D) <20 H(ﬁHCo,l(@d)A ;

where C' > 1 is a constant from Lemma [B.8 depending only on f, C, and d. Thus by (8.3]),
s V} < Sup{|(¢07i)(z1) — (pom)(22)] eV, 2 #zz}

do(z1, 22)

sup{ | 2602

{ [(poTi)(21) — (¢ 07i)(22)]
d(zl,zg)

< (o4 8up 121, 20 €V, 21 # 2’2} < 2C24C2 “¢“Covl(@,d) A

Hence 3 D exists and is continuous on V. Slmllarly, D exists and is continuous on V. Therefore,
D is contmuously differentiable on V', establishing the clalm
By the claim, (83]), and the simple observation that ng n(uo, ug) = 0, there exist numbers My € N,
€ (0,1), and Co5 > 1, and My-tiles YbMO € Xé\/fo(f,C) and Y, Mo ¢ X,]I\,/Io(f,C) such that Cos > Coy,
YhM0 UYal C V Cinte(X'), and at least one of the following two inequalities holds:

a) inf{| Z®(2)] : z € A (VM UYR)} > 2055,
b) inf{|Z®(2)| : z € A (VO UYR™)} > 209se.

We assume now that inequality (a) holds and remark that the proof in the other case is similar.

Without loss of generality, we can assume that & € (0, (2C25C)~2).

Then by Lemma 38 (v), for each ¢ € {b, o}, each integer M > My, and each M-tile X € XM(f,C)
with X C Y Mo there exists a point ui(X) = (21(X),y0(X)) € X such that By(ui(X),C~'A™M) C X.
We choose x2(X) € R such that |z1(X) — 22(X)| = (4C25C) "' A=M . Then by (88) and Cas > Cay, we
get

us(X) = (22(X), y0(X)) €Bao (u1(X), (2C25C) T A™Y)
(8.10) C By(u1(X), (20)"'A™M) C By(ui (X),C~A™M) C X.

In particular, the entire horizontal line segment connecting u1(X) and wug(X) is contained in inte(X).

By (81I0), Lemma B8 (ii), (8], and Ca5 > Ca4, we get
(8.11) min{d(ui(X),C\ X), d(uz(X),C\ X), d(us (X),us(X))}
> min{ (2C) A, CoH(4C5C) T ATM Y > e diamg (X).

On the other hand, by (8S]), Ca5 > Cb4, Definition B2 inequality (a) above, and the mean value
theorem,

|94y (1 (X), uz(X)| . |6 (i (X),u2(X))| | (ur(X)) — B(ua(X))]

|
d(u1(X),uz(X)) Caosdo(ur(X),ua(X))  Coslwi(X) — z2(X)| =%

We choose
(8.12) No = [logs (2077 [@l, @4 Co/ (1 = A71))].

where Cy > 1 is a constant depending only on f, C, and d from Lemma [3.13]
Fix arbitrary N > Nj. Define XC’N1+MO =75 (YM) and XC’N2+MO =75 (YM) (c.f. (8)). Note that
G = TN\YMO and ¢ = T]’V]YMO.
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Then by Definition B2, (8.11]), Lemmas 8.1} B.15, B.8 (i) and (ii), and Proposition B.6 (i),

|SN@(s1(u1 (X)) — Sn(sa(ur(X))) — Snd(s1(u2(X))) + Sne(sz(ua(X)))|
d(u1(X), u2(X))

00 wO] s ot (X)) = Sa (X))
d(u1 (X), uz(X)) n—+00 e diamg(X)
/ _ ’
— lim sup ‘Sn—N(Zs(Tn(ul (X))) Sn—N¢(Tn(u2(X)))‘
n—s4o00 e diamg(X)
g PhEaC0 dirw (X)), T (ua(X) + diryy (wn (X)), 7 (ua(X))
- 1— A1 e diamg(X)
g Phea @ diamg(ry (X)) + diamg(ryy (X))
= 1—A1 e diamg(X)
1911, .0 C ~(M+N) 2C% 4], @ C
> 2 — 1Cd 0 2CA > 2 — L(C.d) OA_N0 > e,
1—-A-1 eC—IA—M 1—-A-1
where the last inequality follows from (812]).
Therefore, ¢ satisfies the 1-strong non-integrability condition with respect to f and d. O

Proof of Theorem [4l By Proposition B8], ¢ € CO® (@,d). So the existence and uniqueness of sy > 0
follows from Corollary

The implication (i) = (iii) follows from Proposition and Theorem [Cl The implication (iii) =
(ii) is trivial. The implication (ii) = (i) follows immediately by a contradiction argument using
[LZhe23al, Theorem F and Proposition 8.1]. O
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