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Abstract. We obtain an analog of the prime number theorem for a class of branched covering maps on
the 2-sphere S

2 called expanding Thurston maps, which are topological models of some non-uniformly
expanding rational maps without any smoothness or holomorphicity assumption. More precisely, we
show that the number of primitive periodic orbits, ordered by a weight on each point induced by a
non-constant (eventually) positive real-valued Hölder continuous function on S

2 satisfying some addi-
tional regularity conditions, is asymptotically the same as the well-known logarithmic integral, with an
exponential error term. In particular, our results apply to postcritically-finite rational maps for which
the Julia set is the whole Riemann sphere. Moreover, a stronger result is obtained for Lattès maps.
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1. Introduction

Complex dynamics is a vibrant field of dynamical systems, focusing on the study of iterations of poly-

nomials and rational maps on the Riemann sphere Ĉ. It is closely connected, via Sullivan’s dictionary
[Su85, Su83], to geometric group theory, mainly concerning the study of Kleinian groups.

In complex dynamics, the lack of uniform expansion of a rational map arises from critical points
in the Julia set. Rational maps for which each critical point is preperiodic (i.e., eventually peri-
odic) are called postcritically-finite rational maps or rational Thurston maps. One natural class of
non-uniformly expanding rational maps are called topological Collet–Eckmann maps, whose basic dy-
namical properties have been studied by S. Smirnov, F. Przytycki, J. Rivera-Letelier, Weixiao Shen,
etc. (see [PRLS03, PRL07, PRL11, RLS14]). In this paper, we focus on a subclass of topological
Collet–Eckmann maps for which each critical point is preperiodic and the Julia set is the whole Rie-
mann sphere. Actually, the most general version of our results is established for topological models
of these maps, called expanding Thurston maps. Thurston maps were studied by W. P. Thurston in
his celebrated characterization theorem of postcritically-finite rational maps among such topological
models [DH93]. Thurston maps and Thurson’s theorem, sometimes known as a fundamental theorem
of complex dynamics, are indispensable tools in the modern theory of complex dynamics. Expanding
Thurston maps were studied extensively by M. Bonk, D. Meyer [BM10, BM17] and P. Häıssinsky,
K. M. Pilgrim [HP09].

The investigations of the growth rate of the number of periodic orbits (e.g. closed geodesics) have
been a recurring theme in dynamics and geometry.

Inspired by the seminal works of F. Naud [Na05] and H. Oh, D. Winter [OW17] on the growth rate of
periodic orbits, known as Prime Orbit Theorems, for hyperbolic (uniformly expanding) polynomials and
rational maps, we establish in this paper the first Prime Orbit Theorems (to the best of our knowledge)
in a non-uniformly expanding setting in complex dynamics. On the other side of Sullivan’s dictionary,
see related works [MMO14, OW16, OP18]. For an earlier work on dynamical zeta functions for a class
of sub-hyperbolic quadratic polynomials, see V. Baladi, Y. Jiang, and H. H. Rugh [BJR02]. See also
related work of S. Waddington [Wad97] on strictly preperiodic points of hyperbolic rational maps.

Given a map f : X → X on a metric space (X, d) and a function φ : S2 → R, we define the weighted
length lf,φ(τ) of a primitive periodic orbit

τ := {x, f(x), · · · , fn−1(x)} ∈ P(f)

as

(1.1) lf,φ(τ) := φ(x) + φ(f(x)) + · · · + φ(fn−1(x)).

We denote by

(1.2) πf,φ(T ) := card{τ ∈ P(f) : lf,φ(τ) ≤ T}, T > 0,

the number of primitive periodic orbits with weighted lengths up to T . Here P(f) denotes the set of
all primitive periodic orbits of f (see Section 2).

Note that the Prime Orbit Theorems in [Na05, OW17] are established for the geometric potential
φ = log|f ′|. For hyperbolic rational maps, the Lipschitz continuity of the geometric potential plays
a crucial role in [Na05, OW17]. In our non-uniform expanding setting, critical points destroy the
continuity of log|f ′|. So we are left with two options to develop our theory, namely, considering

(a) Hölder continuous φ or

(b) the geometric potential log|f ′|.
Despite the lack of Hölder continuity of log|f ′| in our setting, its value is closely related to the size of
pull-backs of sets under backward iterations of the map f . This fact enables an investigation of the
Prime Orbit Theorem in case (b), which will be investigated in an upcoming series of separate works
starting with [LRL].

The current paper is the second of a series of three papers (together with [LZhe23a, LZhe23c])
focusing on case (a), in which the incompatibility of Hölder continuity of φ and non-uniform expansion
of f calls for a close investigation of metric geometries associated to f .

Lattès maps are rational Thurston maps with parabolic orbifolds (c.f. Definition 8.4). They form a
well-known class of rational maps. We first formulate our theorem for Lattès maps.
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Theorem A (Prime Orbit Theorem for Lattès maps). Let f : Ĉ → Ĉ be a Lattès map on the Riemann

sphere Ĉ. Let φ : Ĉ → R be eventually positive and continuously differentiable. Then there exists a
unique positive number s0 > 0 with P (f,−s0φ) = 0 and there exists Nf ∈ N depending only on f such
that the following statements are equivalent:

(i) φ is not co-homologous to a constant in the space C
(
Ĉ
)
of real-valued continuous functions on

Ĉ.
(ii) For each n ∈ N with n ≥ Nf , we have πF,Φ(T ) ∼ Li

(
es0T

)
as T → +∞, where F := fn and

Φ :=
∑n−1

i=0 φ ◦ f i.
(iii) For each n ∈ N with n ≥ Nf , there exists a constant δ ∈ (0, s0) such that πF,Φ(T ) = Li

(
es0T

)
+

O
(
e(s0−δ)T

)
as T → +∞, where F := fn and Φ :=

∑n−1
i=0 φ ◦ f i.

Here P (f, ·) denotes the topological pressure, and Li(y) :=
∫ y
2

1
log u du, y > 0, is the Eulerian logarithmic

integral function.

See Definitions 3.1 and 3.19 for the definitions of co-homology and eventually positive functions,
respectively.

The implication (i) =⇒ (iii) relies crucially on some local properties of the metric geometry of Lattès
maps, and is not expected (by the authors) in general. To establish the exponential error term similar
to that in (iii) for a class of more general rational Thurston maps, we impose a condition called α-
strong non-integrability condition (Definition 7.1), which turns out to be generic. The genericity of this
condition will be the main theme of the third and last paper [LZhe23c] of the current series. An analog
of this condition in the context of Anosov flows was first proposed by D. Dolgopyat in his seminal work
[Do98].

The following theorem is an immediate consequence of a more general result in Theorem C.

Theorem B (Prime Orbit Theorems for rational expanding Thurston maps). Let f : Ĉ → Ĉ be a
postcritically-finite rational map without periodic critical points. Let σ be the chordal metric on the

Riemann sphere Ĉ, and φ : Ĉ → R be an eventually positive real-valued Hölder continuous function.
Then there exists a unique positive number s0 > 0 with topological pressure P (f,−s0φ) = 0 and there
exists Nf ∈ N depending only on f such that for each n ∈ N with n ≥ Nf , the following statement holds

for F := fn and Φ :=
∑n−1

i=0 φ ◦ f i:
(i) πF,Φ(T ) ∼ Li

(
es0T

)
as T → +∞ if and only if φ is not co-homologous to a constant in C

(
Ĉ
)
.

(ii) Assume that φ satisfies the strong non-integrability condition (with respect to f and a visual

metric). Then there exists δ ∈ (0, s0) such that πF,Φ(T ) = Li
(
es0T

)
+O

(
e(s0−δ)T

)
as T → +∞.

Our strategy to overcome the obstacles presented by the incompatibility of the non-uniform expansion
of our rational maps and the Hölder continuity of the weight φ (e.g. (a) the set of α-Hölder continuous
functions is not invariant under the Ruelle operator Lφ, for each α ∈ (0, 1]; (b) the weakening of the
regularity of the temporal distance compared to that of the potential) is to investigate the metric
geometry of various natural metrics associated to the dynamics such as visual metrics, the canonical
orbifold metric, and the chordal metric. Such considerations lead us beyond conformal, or even smooth,
dynamical settings and into the realm of topological dynamical systems. More precisely, we will work
in the abstract setting of branched covering maps on the topological 2-sphere S2 (c.f. Subsection 3.2)
without any smoothness assumptions. A Thurston map is a postcritically-finite branched covering map
on S2. Thurston maps can be considered as topological models of the corresponding rational maps.

Via Sullivan’s dictionary, the counterpart of Thurston’s theorem [DH93] in the geometric group
theory is Cannon’s Conjecture [Ca94]. This conjecture predicts that an infinite, finitely presented
Gromov hyperbolic group G whose boundary at infinity ∂∞G is a topological 2-sphere is a Kleinian
group. Gromov hyperbolic groups can be considered as metric-topological systems generalizing the
conformal systems in the context, namely, convex-cocompact Kleinian groups. Inspired by Sullivan’s
dictionary and their interest in Cannon’s Conjecture, M. Bonk and D. Meyer, along with others, studied
a subclass of Thurston maps by imposing some additional condition of expansion. Roughly speaking, we
say that a Thurston map is expanding if for any two points x, y ∈ S2, their preimages under iterations
of the map get closer and closer. For each expanding Thurston map, we can equip the 2-sphere S2 with
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a natural class of metrics called visual metrics. As the name suggests, these metrics are constructed
in a similar fashion as the visual metrics on the boundary ∂∞G of a Gromov hyperbolic group G. See
Subsection 3.2 for a more detailed discussion on these notions. Various ergodic properties, including
thermodynamic formalism, on which the current paper crucially relies, have been studied by the first-
named author in [Li17] (c.f. [Li15, Li16, Li18]). Generalization of results in [Li17] to the more general
branched covering maps studied by P. Häıssinsky, K. M. Pilgrim [HP09] has drawn significant interest
recently [HRL19, DPTUZ19, LZheH23]. We believe that our ideas introduced in this paper can be used
to establish Prime Orbit Theorems in their setting.

M. Bonk, D. Meyer [BM10, BM17] and P. Häıssinsky, K. M. Pilgrim [HP09] proved that an expanding
Thurston map is conjugate to a rational map if and only if the sphere (S2, d) equipped with a visual

metric d is quasisymmetrically equivalent to the Riemann sphere Ĉ equipped with the chordal metric.
The quasisymmetry cannot be promoted to Lipschitz equivalence due to the non-uniform expansion of
Thurston maps. There exist expanding Thurston maps not conjugate to rational Thurston maps (e.g.
ones with periodic critical points). Our theorems below apply to all expanding Thurston maps, which
form the most general setting in this series of papers.

Theorem C (Prime Orbit Theorems for expanding Thurston maps). Let f : S2 → S2 be an expanding
Thurston map, and d be a visual metric on S2 for f . Let φ ∈ C0,α(S2, d) be an eventually positive
real-valued Hölder continuous function with an exponent α ∈ (0, 1]. Denote by s0 the unique positive
number with topological pressure P (f,−s0φ) = 0. Then there exists Nf ∈ N depending only on f such

that for each n ∈ N with n ≥ Nf , the following statements hold for F := fn and Φ :=
∑n−1

i=0 φ ◦ f i:
(i) πF,Φ(T ) ∼ Li

(
es0T

)
as T → +∞ if and only if φ is not co-homologous to a constant in the space

C(S2) of real-valued continuous functions on S2.

(ii) Assume that φ satisfies the α-strong non-integrability condition. Then there exists a constant

δ ∈ (0, s0) such that πF,Φ(T ) = Li
(
es0T

)
+O

(
e(s0−δ)T

)
as T → +∞.

Here Li(·) is the Eulerian logarithmic integral function defined in Theorem A.

Note that limy→+∞ Li(y)/(y/ log y) = 1, thus we also get πF,Φ(T ) ∼ es0T
/
(s0T ) as T → +∞.

We remark that our proofs can be modified to derive equidistribution of holonomies similar to the
corresponding result in [OW17], but we choose to omit them in order to emphasize our new ideas and
to limit the length of this paper.

In view of Remark 3.10, Theorem B is an immediate consequence of Theorem C.

Remark 1.1. The integer Nf can be chosen as the minimum of N(f, C̃) from Lemma 3.11 over all

Jordan curves C̃ with post f ⊆ C̃ ⊆ S2, in which case Nf = 1 if there exists a Jordan curve C ⊆ S2

satisfying f(C) ⊆ C, post f ⊆ C, and no 1-tile in X1(f, C) joins opposite sides of C (see Definition 3.12).
The same number Nf is used in other results in this paper. We also remark that many properties of
expanding Thurston maps f can be established for f after being verified first for fn for all n ≥ Nf .
However, some of the finer properties established for iterates of f still remain open for the map f itself;
see for example, [Me13, Me12].

Note that due to the lack of algebraic structure of expanding Thurston maps, even the fact that
there are only countably many periodic points is not apparent from the definition (c.f. [Li16]). Without
any algebraic, differential, or conformal structures, the main tools we rely on are from the interplay
between the metric properties of various natural metrics and the combinatorial information on the
iterated preimages of certain Jordan curves C on S2 (c.f. Subsection 3.2).

By well-known arguments of M. Pollicott and R. Sharp inspired from number theory [PS98], the
counting result in Theorem C follows from some quantitative information on the holomorphic extension
of certain dynamical zeta function ζF,−Φ defined as formal infinite products over periodic orbits. We
briefly recall dynamical zeta functions and define the dynamical Dirichlet series in our context below.
See Subsection 3.4 for a more detailed discussion.

Let f : S2 → S2 be an expanding Thurston map and ψ ∈ C(S2,C) be a complex-valued continuous
function on S2. We denote by the formal infinite product

ζf,−ψ(s) := exp

(
+∞∑

n=1

1

n

∑

x=fn(x)

e−sSnψ(x)

)
, s ∈ C,
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the dynamical zeta function for the map f and the potential ψ. Here we write Snψ(x) :=
∑n−1

j=0 ψ(f
j(x))

as defined in (2.4). We remark that ζf,−ψ is the Ruelle zeta function for the suspension flow over f
with roof function ψ if ψ is positive. We define the dynamical Dirichlet series associated to f and ψ
as the formal infinite product

Df,−ψ, degf (s) := exp

(
+∞∑

n=1

1

n

∑

x=fn(x)

e−sSnψ(x) degfn(x)

)
, s ∈ C.

Here degfn is the local degree of fn at x ∈ S2.

Note that if f : S2 → S2 is an expanding Thurston map, then so is fn for each n ∈ N.
Recall that a function is holomorphic on a set A ⊆ C if it is holomorphic on an open set containing

A.

Theorem D (Holomorphic extensions of dynamical Dirichlet series and zeta functions for expanding
Thurston maps). Let f : S2 → S2 be an expanding Thurston map, and d be a visual metric on S2 for f .
Fix α ∈ (0, 1]. Let φ ∈ C0,α(S2, d) be an eventually positive real-valued Hölder continuous function that
is not co-homologous to a constant in C(S2). Denote by s0 the unique positive number with topological
pressure P (f,−s0φ) = 0. Then there exists Nf ∈ N depending only on f such that for each n ∈ N with

n ≥ Nf , the following statements hold for F := fn and Φ :=
∑n−1

i=0 φ ◦ f i:
(i) Both the dynamical zeta function ζF,−Φ(s) and the dynamical Dirichlet series DF,−Φ,degF (s)

converge on {s ∈ C : ℜ(s) > s0} and extend to non-vanishing holomorphic functions on {s ∈
C : ℜ(s) ≥ s0} except for the simple pole at s = s0.

(ii) Assume in addition that φ satisfies the α-strong non-integrability condition. Then there exists a
constant ǫ0 ∈ (0, s0) such that both ζF,−Φ(s) and DF,−Φ,degF (s) converge on {s ∈ C : ℜ(s) > s0}
and extend to non-vanishing holomorphic functions on {s ∈ C : ℜ(s) ≥ s0 − ǫ0} except for the
simple pole at s = s0. Moreover, for each ǫ > 0, there exist constants Cǫ > 0, aǫ ∈ (0, ǫ0], and
bǫ ≥ 2s0 + 1 such that

exp
(
−Cǫ|ℑ(s)|2+ǫ

)
≤ |ζF,−Φ(s)| ≤ exp

(
Cǫ|ℑ(s)|2+ǫ

)
,(1.3)

exp
(
−Cǫ|ℑ(s)|2+ǫ

)
≤
∣∣DF,−Φ,degF (s)

∣∣ ≤ exp
(
Cǫ|ℑ(s)|2+ǫ

)
(1.4)

for all s ∈ C with |ℜ(s)− s0| < aǫ and |ℑ(s)| ≥ bǫ.

In order to get information about ζF,−Φ, we need to investigate the zeta function ζσA△
,−φ◦π△ of a

symbolic model of σA△
: Σ+

A△
→ Σ+

A△
of F .

Theorem E (Holomorphic extensions of the symbolic zeta functions). Let f : S2 → S2 be an expanding
Thurston map with a Jordan curve C ⊆ S2 satisfying f(C) ⊆ C, post f ⊆ C, and no 1-tile in X1(f, C)
joins opposite sides of C. Let d be a visual metric on S2 for f . Fix α ∈ (0, 1]. Let φ ∈ C0,α(S2, d) be an
eventually positive real-valued Hölder continuous function that is not co-homologous to a constant in
C(S2). Denote by s0 the unique positive number with P (f,−s0φ) = 0. Let

(
Σ+
A△
, σA△

)
be the one-sided

subshift of finite type associated to f and C defined in Proposition 3.21, and let π△ : Σ
+
A△

→ S2 be the
factor map as defined in (3.19).

Then the dynamical zeta function ζσA△
,−φ◦π△(s) converges on the open half-plane {s ∈ C : ℜ(s) > s0},

and the following statements hold:

(i) The function ζσA△
,−φ◦π△(s) extends to a non-vanishing holomorphic function on the closed half-

plane {s ∈ C : ℜ(s) ≥ s0} except for the simple pole at s = s0.

(ii) Assume in addition that φ satisfies the α-strong non-integrability condition. Then there exists
a constant ǫ̃0 ∈ (0, s0) such that ζσA△

,−φ◦π△(s) extends to a non-vanishing holomorphic function

on the closed half-plane {s ∈ C : ℜ(s) ≥ s0− ǫ̃0} except for the simple pole at s = s0. Moreover,

for each ǫ > 0, there exist constants C̃ǫ > 0, ãǫ ∈ (0, s0), and b̃ǫ ≥ 2s0 + 1 such that

(1.5) exp
(
−C̃ǫ|ℑ(s)|2+ǫ

)
≤
∣∣ζσA△

,−φ◦π△(s)
∣∣ ≤ exp

(
C̃ǫ|ℑ(s)|2+ǫ

)

for all s ∈ C with |ℜ(s)− s0| < ãǫ and |ℑ(s)| ≥ b̃ǫ.
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We adapt D. Dolgopyat’s cancellation argument developed in his landmark work [Do98] (building
in part of work of Chernov [Ch98]) and arguments of M. Pollicott and R. Sharp [PS98] to establish a
symbolic version of Theorem D as stated in Theorem E. The difficulties in adapting D. Dolgopyat’s
machinery in our metric-topological setting are purely technical, but overcoming these difficulties in any
context is the heart of the matter (c.f. [Na05, OW17] as well as works on the decay of correlation and
counting in [Liv04, AGY06, OW16, OW17, BDL18], etc.) We use the Hölder norm in the cancellation
argument instead of the C1-norm used in [Na05, OW17]. Another major technical difficulty comes from
the fact that S2 is connected and the usual Ruelle operator does not apply to characteristic functions on
proper subsets of S2, which is essential in Ruelle’s estimate (see (6.2) in Proposition 6.1). Our approach
is to adjust the definition of the Ruelle operator and to introduce what we call the split Ruelle operator
(see Section 5). Such an approach should be useful in establishing Prime Orbit Theorems in other
contexts.

We will now give a brief description of the structure of this paper.
After fixing some notation in Section 2, we give a review of basic definitions and results in Section 3.

In Section 4, we state the assumptions on some of the objects in this paper, which we are going to
repeatedly refer to later as the Assumptions. In Section 5, we define the split Ruelle operator L−sφ and
study its properties including spectral gap. Section 6 contains arguments to bound the dynamical zeta
function ζσA△

,−φ◦π△ with the bounds of the operator norm of L−sφ. We provide a proof of Theorem D
in Subsection 6.4 to deduce the holomorphic extension of DF,−Φ, degF from that of ζσA△

,−Φ◦π△ , and
ultimately to deduce the holomorphic extension of ζF,−Φ from that ofDF,−Φ, degF . In Section 7, we adapt
the arguments of D. Dolgopyat [Do98] in our metric-topological setting aiming to prove Theorem 6.2
at the end of this section, consequently establishing Theorems D, E, and C. Section 8 focuses on Lattès
maps (recalled in Definition 8.4). We include the proof of Theorem A at the end of this section.

Acknowledgments. The first-named author is grateful to the Institute for Computational and Ex-
perimental Research in Mathematics (ICERM) at Brown University for the hospitality during his stay
from February to May 2016, where he learned about this area of research while participating in the
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and Prime Orbit Theorems in ICERM and many conversations since then, and to Hee Oh for her
beautiful talks on her work and helpful comments, while the first-named author also wants to thank
Dennis Sullivan for his encouragement to initiating this project, and Jianyu Chen and Polina Vytnova
for interesting discussions on related areas of research. Most of this work was done during the first-
named author’s stay at the Institute for Mathematical Sciences (IMS) at Stony Brook University as
a postdoctoral fellow. He wants to thank IMS and his postdoctoral advisor Mikhail Yu. Lyubich for
the great support and hospitality. The authors also would like to thank Gengrui Zhang for carefully
reading the manuscript and pointing out several typos.

2. Notation

Let C be the complex plane and Ĉ be the Riemann sphere. For each complex number z ∈ C, we
denote by ℜ(z) the real part of z, and by ℑ(z) the imaginary part of z. We denote by D the open
unit disk D := {z ∈ C : |z| < 1} on the complex plane C. For each a ∈ R, we denote by Ha the
open (right) half-plane Ha := {z ∈ C : ℜ(z) > a} on C, and by Ha the closed (right) half-plane
Ha := {z ∈ C : ℜ(z) ≥ a}. We follow the convention that N := {1, 2, 3, . . . }, N0 := {0} ∪ N, and
N̂ := N ∪ {+∞}, with the order relations <, ≤, >, ≥ defined in the obvious way. For x ∈ R, we define
⌊x⌋ as the greatest integer ≤ x, and ⌈x⌉ the smallest integer ≥ x. As usual, the symbol log denotes
the logarithm to the base e, and logc the logarithm to the base c for c > 0. The symbol i stands for
the imaginary unit in the complex plane C. For each z ∈ C \ {0}, we denote by Arg(z) the principle

argument of z, i.e., the unique real number in (−π, π] with the property that |z|eiArg(z) = z. The
cardinality of a set A is denoted by cardA.

Consider real-valued functions u, v, and w on (0,+∞). We write u(T ) ∼ v(T ) as T → +∞ if

limT→+∞
u(T )
v(T ) = 1, and write u(T ) = v(T ) +O(w(T )) as T → +∞ if lim supT→+∞

∣∣u(T )−v(T )
w(T )

∣∣ < +∞.

Let g : X → Y be a map between two sets X and Y . We denote the restriction of g to a subset Z of
X by g|Z . Consider a map f : X → X on a set X. The inverse map of f is denoted by f−1. We write
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fn for the n-th iterate of f , and f−n := (fn)−1, for n ∈ N. We set f0 := idX , where the identity map
idX : X → X sends each x ∈ X to x itself. For each n ∈ N, we denote by

(2.1) Pn,f :=
{
x ∈ X : fn(x) = x, fk(x) 6= x, k ∈ {1, 2, . . . , n− 1}

}

the set of periodic points of f with periodic n, and by

(2.2) P(n, f) :=
{{
f i(x) : i ∈ {0, 1, . . . , n− 1}

}
: x ∈ Pn,f

}

the set of primitive periodic orbits of f with period n. The set of all primitive periodic orbits of f is
denoted by

(2.3) P(f) :=

+∞⋃

n=1

P(n, f).

Given a complex-valued function ϕ : X → C, we write

(2.4) Snϕ(x) = Sfnϕ(x) :=

n−1∑

j=0

ϕ(f j(x))

for x ∈ X and n ∈ N0. The superscript f is often omitted when the map f is clear from the context.
Note that when n = 0, by definition, we always have S0ϕ = 0.

Let (X, d) be a metric space. For subsets A,B ⊆ X, we set d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B},
and d(A, x) = d(x,A) := d(A, {x}) for x ∈ X. For each subset Y ⊆ X, we denote the diameter of Y by
diamd(Y ) := sup{d(x, y) : x, y ∈ Y }, the interior of Y by intY , and the characteristic function of Y
by 1Y , which maps each x ∈ Y to 1 ∈ R and vanishes otherwise. We use the convention that 1 = 1X
when the space X is clear from the context. For each r > 0 and each x ∈ X, we denote the open (resp.
closed) ball of radius r centered at x by Bd(x, r) (resp. Bd(x, r)).

We set C(X) (resp. B(X)) to be the space of continuous (resp. bounded Borel) functions from X to
R, M(X) the set of finite signed Borel measures, and P(X) the set of Borel probability measures on X.
We denote by C(X,C) (resp. B(X,C)) the space of continuous (resp. bounded Borel) functions from
X to C. We adopt the convention that unless specifically referring to C, we only consider real-valued
functions. If we do not specify otherwise, we equip C(X) and C(X,C) with the uniform norm ‖·‖C0(X).

For a continuous map g : X → X, M(X, g) is the set of g-invariant Borel probability measures on X.
The space of real-valued (resp. complex-valued) Hölder continuous functions with an exponent α ∈

(0, 1] on a compact metric space (X, d) is denoted by C0,α(X, d) (resp. C0,α((X, d),C)). For each
ψ ∈ C0,α((X, d),C), we denote

(2.5) |ψ|α, (X,d) := sup{|ψ(x) − ψ(y)|/d(x, y)α : x, y ∈ X, x 6= y},
and for b ∈ R \ {0}, the normalized Hölder norm of ψ is defined as

(2.6) ‖ψ‖[b]
C0,α(X,d)

:= |b|−1 |ψ|α, (X,d) + ‖ψ‖C0(X) ,

while the standard Hölder norm of ψ is denoted by

(2.7) ‖ψ‖C0,α(X,d) := ‖ψ‖[1]
C0,α(X,d)

.

For a Lipschitz map g : (X, d) → (X, d) on a metric space (X, d), we denote the Lipschitz constant
by

(2.8) LIPd(g) := sup{d(g(x), g(y))/d(x, y) : x, y ∈ X with x 6= y}.

3. Preliminaries

3.1. Thermodynamic formalism. We first review some basic concepts from dynamical systems. We
refer the readers to [LZhe23a, Subsection 3.1] for more details and references.

Let (X, d) be a compact metric space and g : X → X a continuous map. For each real-valued
continuous function φ ∈ C(X), the measure-theoretic pressure Pµ(g, φ) of g for a g-invariant Borel
probability measure µ and the potential φ is

(3.1) Pµ(g, φ) := hµ(g) +

∫
φdµ.
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Here hµ(g) denotes the usual measure-theoretic entropy of g for µ.
By the Variational Principle (see for example, [PU10, Theorem 3.4.1]), we have that for each φ ∈

C(X), the topological pressure P (g, φ) of g with respect to the potential φ satisfies

(3.2) P (g, φ) = sup{Pµ(g, φ) : µ ∈ M(X, g)}.
In particular, when φ is the constant function 0, the topological entropy htop(g) of g satisfies

(3.3) htop(g) = sup{hµ(g) : µ ∈ M(X, g)}.
A measure µ that attains the supremum in (3.2) is called an equilibrium state for the map g and the
potential φ. A measure µ that attains the supremum in (3.3) is called a measure of maximal entropy
of g.

Definition 3.1. Let g : X → X be a continuous map on a metric space (X, d). Let K ⊆ C(X,C)
be a subspace of the space C(X,C) of complex-valued continuous functions on X. Two functions
φ, ψ ∈ C(X,C) are said to be co-homologous (in K) if there exists u ∈ K such that φ− ψ = u ◦ g − u.

One of the main tools in the study of the existence, uniqueness, and other properties of equilibrium
states is the Ruelle operator. We will postpone the discussion of the Ruelle operators of expanding
Thurston maps to Subsection 3.2.

3.2. Thurston maps. In this subsection, we go over some key concepts and results on Thurston maps,
and expanding Thurston maps in particular. For a more thorough treatment of the subject, we refer
to [BM17].

Let S2 denote an oriented topological 2-sphere. A continuous map f : S2 → S2 is called a branched
covering map on S2 if for each point x ∈ S2, there exists a positive integer d ∈ N, open neighborhoods

U of x and V of y = f(x), open neighborhoods U ′ and V ′ of 0 in Ĉ, and orientation-preserving
homeomorphisms ϕ : U → U ′ and η : V → V ′ such that ϕ(x) = 0, η(y) = 0, and

(η ◦ f ◦ ϕ−1)(z) = zd

for each z ∈ U ′. The positive integer d above is called the local degree of f at x and is denoted by
degf (x).

The degree of f is

(3.4) deg f =
∑

x∈f−1(y)

degf (x)

for y ∈ S2 and is independent of y. If f : S2 → S2 and g : S2 → S2 are two branched covering maps on
S2, then so is f ◦ g, and
(3.5) degf◦g(x) = degg(x) degf (g(x)), for each x ∈ S2,

and moreover,

(3.6) deg(f ◦ g) = (deg f)(deg g).

A point x ∈ S2 is a critical point of f if degf (x) ≥ 2. The set of critical points of f is denoted by

crit f . A point y ∈ S2 is a postcritical point of f if y = fn(x) for some x ∈ crit f and n ∈ N. The set
of postcritical points of f is denoted by post f . Note that post f = post fn for all n ∈ N.

Definition 3.2 (Thurston maps). A Thurston map is a branched covering map f : S2 → S2 on S2

with deg f ≥ 2 and card(post f) < +∞.

We now recall the notation for cell decompositions of S2 used in [BM17] and [Li17]. A cell of
dimension n in S2, n ∈ {1, 2}, is a subset c ⊆ S2 that is homeomorphic to the closed unit ball Bn in
Rn. We define the boundary of c, denoted by ∂c, to be the set of points corresponding to ∂Bn under
such a homeomorphism between c and Bn. The interior of c is defined to be inte(c) = c \ ∂c. For each
point x ∈ S2, the set {x} is considered as a cell of dimension 0 in S2. For a cell c of dimension 0, we
adopt the convention that ∂c = ∅ and inte(c) = c.

We record the following three definitions from [BM17].

Definition 3.3 (Cell decompositions). Let D be a collection of cells in S2. We say that D is a cell
decomposition of S2 if the following conditions are satisfied:
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(i) the union of all cells in D is equal to S2,

(ii) if c ∈ D, then ∂c is a union of cells in D,

(iii) for c1, c2 ∈ D with c1 6= c2, we have inte(c1) ∩ inte(c2) = ∅,
(iv) every point in S2 has a neighborhood that meets only finitely many cells in D.

Definition 3.4 (Refinements). Let D′ and D be two cell decompositions of S2. We say that D′ is a
refinement of D if the following conditions are satisfied:

(i) every cell c ∈ D is the union of all cells c′ ∈ D′ with c′ ⊆ c,

(ii) for every cell c′ ∈ D′ there exits a cell c ∈ D with c′ ⊆ c.

Definition 3.5 (Cellular maps and cellular Markov partitions). Let D′ and D be two cell decomposi-
tions of S2. We say that a continuous map f : S2 → S2 is cellular for (D′,D) if for every cell c ∈ D′,
the restriction f |c of f to c is a homeomorphism of c onto a cell in D. We say that (D′,D) is a cellular
Markov partition for f if f is cellular for (D′,D) and D′ is a refinement of D.

Let f : S2 → S2 be a Thurston map, and C ⊆ S2 be a Jordan curve containing post f . Then the pair
f and C induces natural cell decompositions Dn(f, C) of S2, for n ∈ N0, in the following way:

By the Jordan curve theorem, the set S2\C has two connected components. We call the closure of one
of them the white 0-tile for (f, C), denoted by X0

w, and the closure of the other the black 0-tile for (f, C),
denoted by X0

b . The set of 0-tiles is X0(f, C) :=
{
X0

b , X
0
w

}
. The set of 0-vertices is V0(f, C) := post f .

We set V
0
(f, C) := {{x} : x ∈ V0(f, C)}. The set of 0-edges E0(f, C) is the set of the closures of the

connected components of C \ post f . Then we get a cell decomposition

D0(f, C) := X0(f, C) ∪E0(f, C) ∪V
0
(f, C)

of S2 consisting of cells of level 0, or 0-cells.
We can recursively define unique cell decompositions Dn(f, C), n ∈ N, consisting of n-cells such

that f is cellular for (Dn+1(f, C),Dn(f, C)). We refer to [BM17, Lemma 5.12] for more details. We
denote by Xn(f, C) the set of n-cells of dimension 2, called n-tiles; by En(f, C) the set of n-cells of

dimension 1, called n-edges; by V
n
(f, C) the set of n-cells of dimension 0; and by Vn(f, C) the set{

x : {x} ∈ V
n
(f, C)

}
, called the set of n-vertices. The k-skeleton, for k ∈ {0, 1, 2}, of Dn(f, C) is the

union of all n-cells of dimension k in this cell decomposition.
We record Proposition 5.16 of [BM17] here in order to summarize properties of the cell decompositions

Dn(f, C) defined above.

Proposition 3.6 (M. Bonk & D. Meyer [BM17]). Let k, n ∈ N0, let f : S
2 → S2 be a Thurston map,

C ⊆ S2 be a Jordan curve with post f ⊆ C, and m = card(post f).

(i) The map fk is cellular for
(
Dn+k(f, C),Dn(f, C)

)
. In particular, if c is any (n + k)-cell, then

fk(c) is an n-cell, and fk|c is a homeomorphism of c onto fk(c).

(ii) Let c be an n-cell. Then f−k(c) is equal to the union of all (n+ k)-cells c′ with fk(c′) = c.

(iii) The 1-skeleton of Dn(f, C) is equal to f−n(C). The 0-skeleton of Dn(f, C) is the set Vn(f, C) =
f−n(post f), and we have Vn(f, C) ⊆ Vn+k(f, C).

(iv) card(Xn(f, C)) = 2(deg f)n, card(En(f, C)) = m(deg f)n, and card(Vn(f, C)) ≤ m(deg f)n.

(v) The n-edges are precisely the closures of the connected components of f−n(C)\f−n(post f). The
n-tiles are precisely the closures of the connected components of S2 \ f−n(C).

(vi) Every n-tile is an m-gon, i.e., the number of n-edges and the number of n-vertices contained in
its boundary are equal to m.

(vii) Let F := fk be an iterate of f with k ∈ N. Then Dn(F, C) = Dnk(f, C).
We also note that for each n-edge e ∈ En(f, C), n ∈ N0, there exist exactly two n-tiles X, X ′ ∈

Xn(f, C) such that X ∩X ′ = e.
For n ∈ N0, we define the set of black n-tiles as

Xn
b (f, C) :=

{
X ∈ Xn(f, C) : fn(X) = X0

b

}
,
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and the set of white n-tiles as

Xn
w(f, C) :=

{
X ∈ Xn(f, C) : fn(X) = X0

w

}
.

It follows immediately from Proposition 3.6 that

(3.7) card(Xn
b (f, C)) = card(Xn

w(f, C)) = (deg f)n

for each n ∈ N0.
From now on, if the map f and the Jordan curve C are clear from the context, we will sometimes

omit (f, C) in the notation above.
We denote, for each x ∈ S2 and n ∈ Z,

(3.8) Un(x) :=
⋃

{Y n ∈ Xn : there exists Xn ∈ Xn with x ∈ Xn, Xn ∩ Y n 6= ∅}

if n ≥ 0, and set Un(x) := S2 otherwise.
We can now recall a definition of expanding Thurston maps.

Definition 3.7 (Expansion). A Thurston map f : S2 → S2 is called expanding if there exists a metric
d on S2 that induces the standard topology on S2 and a Jordan curve C ⊆ S2 containing post f such
that

lim
n→+∞

max{diamd(X) : X ∈ Xn(f, C)} = 0.

P. Häıssinsky and K. M. Pilgrim developed a notion of expansion in a more general context for
finite branched coverings between topological spaces (see [HP09, Sections 2.1 and 2.2]). This applies to
Thurston maps, and their notion of expansion is equivalent to our notion defined above in the context
of Thurston maps (see [BM17, Proposition 6.4]). Our notion of expansion is not equivalent to classical
notions such as forward-expansive maps or distance-expanding maps. One topological obstruction
comes from the presence of critical points for (non-homeomorphic) branched covering maps on S2.

For an expanding Thurston map f , we can fix a particular metric d on S2 called a visual metric for
f . For the existence and properties of such metrics, see [BM17, Chapter 8]. For a visual metric d for f ,
there exists a unique constant Λ > 1 called the expansion factor of d (see [BM17, Chapter 8] for more
details). One major advantage of a visual metric d is that in (S2, d), we have good quantitative control
over the sizes of the cells in the cell decompositions discussed above. We summarize several results of
this type ([BM17, Proposition 8.4, Lemmas 8.10, 8.11]) in the lemma below.

Lemma 3.8 (M. Bonk & D. Meyer [BM17]). Let f : S2 → S2 be an expanding Thurston map, and
C ⊆ S2 be a Jordan curve containing post f . Let d be a visual metric on S2 for f with expansion factor
Λ > 1. Then there exist constants C ≥ 1, C ′ ≥ 1, K ≥ 1, and n0 ∈ N0 with the following properties:

(i) d(σ, τ) ≥ C−1Λ−n whenever σ and τ are disjoint n-cells for n ∈ N0.

(ii) C−1Λ−n ≤ diamd(τ) ≤ CΛ−n for all n-edges and all n-tiles τ for n ∈ N0.

(iii) Bd(x,K
−1Λ−n) ⊆ Un(x) ⊆ Bd(x,KΛ−n) for x ∈ S2 and n ∈ N0.

(iv) Un+n0(x) ⊆ Bd(x, r) ⊆ Un−n0(x) where n = ⌈− log r/ log Λ⌉ for r > 0 and x ∈ S2.

(v) For every n-tile Xn ∈ Xn(f, C), n ∈ N0, there exists a point p ∈ Xn such that Bd(p,C
−1Λ−n) ⊆

Xn ⊆ Bd(p,CΛ−n).

Conversely, if d̃ is a metric on S2 satisfying conditions (i) and (ii) for some constant C ≥ 1, then d̃
is a visual metric with expansion factor Λ > 1.

Recall that Un(x) is defined in (3.8).
In addition, we will need the fact that a visual metric d induces the standard topology on S2

([BM17, Proposition 8.3]) and the fact that the metric space (S2, d) is linearly locally connected ([BM17,
Proposition 18.5]). A metric space (X, d) is linearly locally connected if there exists a constant L ≥ 1
such that the following conditions are satisfied:

(1) For all z ∈ X, r > 0, and x, y ∈ Bd(z, r) with x 6= y, there exists a continuum E ⊆ X with
x, y ∈ E and E ⊆ Bd(z, rL).

(2) For all z ∈ X, r > 0, and x, y ∈ X \Bd(z, r) with x 6= y, there exists a continuum E ⊆ X with
x, y ∈ E and E ⊆ X \Bd(z, r/L).
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We call such a constant L ≥ 1 a linear local connectivity constant of d.
In fact, visual metrics serve a crucial role in connecting the dynamical arguments with geometric

properties for rational expanding Thurston maps, especially Lattès maps.
We first recall the following notions of equivalence between metric spaces.

Definition 3.9. Consider two metric spaces (X1, d1) and (X2, d2). Let g : X1 → X2 be a homeomor-
phism. Then

(i) g is bi-Lipschitz if there exists a constant C ≥ 1 such that for all u, v ∈ X1,

C−1d1(u, v) ≤ d2(g(u), g(v)) ≤ Cd1(u, v).

(ii) g is a snowflake homeomorphism if there exist constants α > 0 and C ≥ 1 such that for all
u, v ∈ X1,

C−1d1(u, v)
α ≤ d2(g(u), g(v)) ≤ Cd1(u, v)

α.

(iii) g is a quasisymmetric homeomorphism or a quasisymmetry if there exists a homeomorphism
η : [0,+∞) → [0,+∞) such that for all u, v, w ∈ X1,

d2(g(u), g(v))

d2(g(u), g(w))
≤ η

(
d1(u, v)

d1(u,w)

)
.

Moreover, the metric spaces (X1, d1) and (X2, d2) are bi-Lipschitz, snowflake, or quasisymmetrically
equivalent if there exists a homeomorphism from (X1, d1) to (X2, d2) with the corresponding property.

When X1 = X2 =: X, then we say the metrics d1 and d2 are bi-Lipschitz, snowflake, or quasisym-
metrically equivalent if the identity map from (X, d1) to (X, d2) has the corresponding property.

Remark 3.10. If f : Ĉ → Ĉ is a rational expanding Thurston map (or equivalently, a postcritically-
finite rational map without periodic critical points (see [BM17, Proposition 2.3])), then each visual

metric is quasisymmetrically equivalent to the chordal metric on the Riemann sphere Ĉ (see [BM17,

Lemma 18.10]). Here the chordal metric σ on Ĉ is given by σ(z, w) = 2|z−w|√
1+|z|2

√
1+|w|2

for z, w ∈ C, and

σ(∞, z) = σ(z,∞) = 2√
1+|z|2

for z ∈ C. We also note that quasisymmetric embeddings of bounded

connected metric spaces are Hölder continuous (see [?, Section 11.1 and Corollary 11.5]). Accordingly,

the class of Hölder continuous functions on Ĉ equipped with the chordal metric and that on S2 = Ĉ
equipped with any visual metric for f are the same (up to a change of the Hölder exponent).

A Jordan curve C ⊆ S2 is f -invariant if f(C) ⊆ C. We are interested in f -invariant Jordan curves that
contain post f , since for such a Jordan curve C, we get a cellular Markov partition (D1(f, C),D0(f, C))
for f . According to Example 15.11 in [BM17], such f -invariant Jordan curves containing post f need
not exist. However, M. Bonk and D. Meyer [BM17, Theorem 15.1] proved that there exists an fn-
invariant Jordan curve C containing post f for each sufficiently large n depending on f . A slightly
stronger version of this result was proved in [Li16, Lemma 3.11], and we record it below.

Lemma 3.11 (M. Bonk & D. Meyer [BM17], Z. Li [Li16]). Let f : S2 → S2 be an expanding Thurston

map, and C̃ ⊆ S2 be a Jordan curve with post f ⊆ C̃. Then there exists an integer N(f, C̃) ∈ N such

that for each n ≥ N(f, C̃) there exists an fn-invariant Jordan curve C isotopic to C̃ rel. post f such
that no n-tile in Xn(f, C) joins opposite sides of C.

The phrase “joining opposite sides” has a specific meaning in our context.

Definition 3.12 (Joining opposite sides). Fix a Thurston map f with card(post f) ≥ 3 and an f -
invariant Jordan curve C containing post f . A set K ⊆ S2 joins opposite sides of C if K meets two
disjoint 0-edges when card(post f) ≥ 4, or K meets all three 0-edges when card(post f) = 3.

Note that card(post f) ≥ 3 for each expanding Thurston map f [BM17, Lemma 6.1].
The following lemma proved in [Li18, Lemma 3.13] generalizes [BM17, Lemma 15.25].

Lemma 3.13 (M. Bonk & D. Meyer [BM17], Z. Li [Li18]). Let f : S2 → S2 be an expanding Thurston
map, and C ⊆ S2 be a Jordan curve that satisfies post f ⊆ C and fnC(C) ⊆ C for some nC ∈ N. Let
d be a visual metric on S2 for f with expansion factor Λ > 1. Then there exists a constant C0 > 1,
depending only on f , d, C, and nC, with the following property:
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If k, n ∈ N0, X
n+k ∈ Xn+k(f, C), and x, y ∈ Xn+k, then

(3.9) C−1
0 d(x, y) ≤ Λ−nd(fn(x), fn(y)) ≤ C0d(x, y).

We summarize the existence, uniqueness, and some basic properties of equilibrium states for expand-
ing Thurston maps in the following theorem.

Theorem 3.14 (Z. Li [Li18]). Let f : S2 → S2 be an expanding Thurston map and d a visual metric on
S2 for f . Let φ, γ ∈ C0,α(S2, d) be real-valued Hölder continuous functions with an exponent α ∈ (0, 1].
Then the following statements are satisfied:

(i) There exists a unique equilibrium state µφ for the map f and the potential φ.

(ii) For each t ∈ R, we have d
dtP (f, φ+ tγ) =

∫
γ dµφ+tγ .

(iii) If C ⊆ S2 is a Jordan curve containing post f with the property that fnC(C) ⊆ C for some
nC ∈ N, then µφ

(⋃+∞
i=0 f

−i(C)
)
= 0.

Theorem 3.14 (i) is part of [Li18, Theorem 1.1]. Theorem 3.14 (ii) follows immediately from [Li18,
Theorem 6.13] and the uniqueness of equilibrium states in Theorem 3.14 (i). Theorem 3.14 (iii) was
established in [Li18, Proposition 7.1].

The following distortion lemma serves as the cornerstone in the development of thermodynamic
formalism for expanding Thurston maps in [Li18] (see [Li18, Lemmas 5.1 and 5.2]).

Lemma 3.15 (Z. Li [Li18]). Let f : S2 → S2 be an expanding Thurston map and C ⊆ S2 be a Jordan
curve containing post f with the property that fnC(C) ⊆ C for some nC ∈ N. Let d be a visual metric on
S2 for f with expansion factor Λ > 1 and a linear local connectivity constant L ≥ 1. Fix φ ∈ C0,α(S2, d)
with α ∈ (0, 1]. Then there exist constants C1 = C1(f, C, d, φ, α) and C2 = C2(f, C, d, φ, α) ≥ 1
depending only on f , C, d, φ, and α such that

|Snφ(x)− Snφ(y)| ≤ C1d(f
n(x), fn(y))α,(3.10)

∑
z′∈f−n(z) degfn(z

′) exp(Snφ(z
′))

∑
w′∈f−n(w) degfn(w

′) exp(Snφ(w′))
≤ exp (4C1Ld(z, w)

α) ≤ C2,(3.11)

for n, m ∈ N0 with n ≤ m, Xm ∈ Xm(f, C), x, y ∈ Xm, and z, w ∈ S2. We choose

(3.12) C1 := |φ|α, (S2,d) C0(1− Λ−α)−1 and C2 := exp
(
4C1L

(
diamd(S

2)
)α)

where C0 > 1 is a constant depending only on f , C, and d from [Li18, Lemma 3.13].

Recall that the main tool used in [Li18] to develop the thermodynamic formalism for expanding
Thurston maps is the Ruelle operator. We will need a complex version of the Ruelle operator in this
paper discussed in [Li17]. We summarize relevant definitions and facts about the Ruelle operator below
and refer the readers to [Li17, Chapter 3.3] for a detailed discussion.

Let f : S2 → S2 be an expanding Thurston map and φ ∈ C(S2,C) be a complex-valued continuous
function. The Ruelle operator Lφ (associated to f and φ) acting on C(S2,C) is defined as the following

(3.13) Lφ(u)(x) =
∑

y∈f−1(x)

degf (y)u(y) exp(φ(y)),

for each u ∈ C(S2,C). Note that Lφ is a well-defined and continuous operator on C(S2,C). The Ruelle
operator Lφ : C(S2,C) → C(S2,C) has an extension to the space of complex-valued bounded Borel
functions B(S2,C) (equipped with the uniform norm) given by (3.13) for each u ∈ B(S2,C).

We observe that if φ ∈ C(S2) is real-valued, then Lφ(C(S2)) ⊆ C(S2) and Lφ(B(S2)) ⊆ B(S2).
The adjoint operator L∗

φ : C
∗(S2) → C∗(S2) of Lφ acts on the dual space C∗(S2) of the Banach space

C(S2). We identify C∗(S2) with the space M(S2) of finite signed Borel measures on S2 by the Riesz
representation theorem.

When φ ∈ C(S2) is real-valued, we denote

(3.14) φ := φ− P (f, φ).

We record the following three technical results on the Ruelle operators in our context.
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Lemma 3.16 (Z. Li [Li18]). Let f : S2 → S2 be an expanding Thurston map and C ⊆ S2 be a Jordan
curve containing post f with the property that fnC(C) ⊆ C for some nC ∈ N. Let d be a visual metric on
S2 for f with expansion factor Λ > 1. Let φ ∈ C0,α(S2, d) be a real-valued Hölder continuous function
with an exponent α ∈ (0, 1]. Then there exists a constant C3 = C3(f, C, d, φ, α) depending only on f , C,
d, φ, and α such that for each x, y ∈ S2 and each n ∈ N0 the following equations are satisfied

Ln
φ
(1)(x)/Ln

φ
(1)(y) ≤ exp (4C1Ld(x, y)

α) ≤ C2,(3.15)

C−1
2 ≤ Ln

φ
(1)(x) ≤ C2,(3.16)

∣∣Ln
φ
(1)(x)− Ln

φ
(1)(y)

∣∣ ≤ C2(exp(4C1Ld(x, y)
α)− 1) ≤ C3d(x, y)

α,(3.17)

where C1, C2 are constants in Lemma 3.15 depending only on f , C, d, φ, and α.
Lemma 3.16 was proved in [Li18, Lemma 5.15]. The next theorem is part of [Li18, Theorem 5.16].

Theorem 3.17 (Z. Li [Li18]). Let f : S2 → S2 be an expanding Thurston map and C ⊆ S2 be a Jordan
curve containing post f with the property that fnC(C) ⊆ C for some nC ∈ N. Let d be a visual metric on
S2 for f with expansion factor Λ > 1. Let φ ∈ C0,α(S2, d) be a real-valued Hölder continuous function

with an exponent α ∈ (0, 1]. Then the sequence
{

1
n

∑n−1
j=0 L

j

φ
(1)
}
n∈N converges uniformly to a function

uφ ∈ C0,α(S2, d), which satisfies Lφ(uφ) = uφ, and C
−1
2 ≤ uφ(x) ≤ C2 for each x ∈ S2, where C2 ≥ 1

is a constant from Lemma 3.15.

Let f : S2 → S2 be an expanding Thurston map and d be a visual metric on S2 for f with expansion
factor Λ > 1. Let φ ∈ C0,α(S2, d) be a real-valued Hölder continuous function with an exponent
α ∈ (0, 1]. Then we denote

(3.18) φ̃ := φ− P (f, φ) + log uφ − log(uφ ◦ f),
where uφ is the continuous function given by Theorem 3.17.

A measure µ ∈ P(S2) is an eigenmeasure of L∗
φ if L∗

φ(µ) = cµ for some c ∈ R. See [Li18, Corol-

lary 6.10] for the uniqueness of the measure mφ. The reader is referred to the first paragraph of

Subsection 5.3 for the notion of an abstract modulus of continuity and the definition of Cbh(S
2, d).

Lemma 3.18. Let f : S2 → S2 be an expanding Thurston map and d be a visual metric on S2 for f
with expansion factor Λ > 1. Let φ ∈ C0,α(S2, d) be a real-valued Hölder continuous function with an
exponent α ∈ (0, 1]. We define a map τ : R → C0,α(S2, d) by setting τ(t) = utφ. Then τ is continuous
with respect to the uniform norm ‖ · ‖C0(S2) on C

0,α(S2, d).

Proof. Fix an arbitrary bounded open interval I ⊆ R. For each n ∈ N, define Tn : I → C(S2, d) by
Tn(t) := Ln

tφ
(1S2) for t ∈ I. Since tφ = tφ − P (f, tφ), by (3.13) and the continuity of the topological

pressure (see for example, [PU10, Theorem 3.6.1]), we know that Tn is a continuous function with
respect to the uniform norm ‖ · ‖C0(S2) on C(S2, d). Applying [Li18, Theorem 6.8 and Corollary 6.10],

we get that Tn(t) converges to τ |I(t) in the uniform norm on C(S2, d) uniformly in t ∈ I as n→ +∞.
Hence τ(t) is continuous on I. Recall utφ ∈ C0,α(S2, d) (see Theorem 3.17). Therefore τ(t) is continuous
in t ∈ R with respect to the uniform norm on C0,α(S2, d). �

The potentials that satisfy the following property are of particular interest in the considerations of
Prime Orbit Theorems and the analytic study of dynamical zeta functions.

Definition 3.19 (Eventually positive functions). Let g : X → X be a map on a set X, and ϕ : X → C
be a complex-valued function on X. Then ϕ is eventually positive if there exists N ∈ N such that
Snϕ(x) > 0 for each x ∈ X and each n ∈ N with n ≥ N .

Theorem 3.14 (ii) leads to the following corollary that we frequently use, often implicitly, throughout
this paper. See [LZhe23a, Corollary 3.29] for a proof.

Corollary 3.20. Let f : S2 → S2 be an expanding Thurston map, and d be a visual metric on S2 for f .
Let φ ∈ C0,α(S2, d) be an eventually positive real-valued Hölder continuous function with an exponent
α ∈ (0, 1]. Then the function t 7→ P (f,−tφ), t ∈ R, is strictly decreasing and there exists a unique
number s0 ∈ R such that P (f,−s0φ) = 0. Moreover, s0 > 0.
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3.3. Subshifts of finite type. We give a brief review of the dynamics of one-sided subshifts of finite
type in this subsection. We refer the readers to [Ki98] for a beautiful introduction to symbolic dynamics.
For a discussion on results on subshifts of finite type in our context, see [PP90, Ba00].

Let S be a finite nonempty set, and A : S × S → {0, 1} be a matrix whose entries are either 0 or
1. For n ∈ N0, we denote by An the usual matrix product of n copies of A. We denote the set of
admissible sequences defined by A by

Σ+
A = {{xi}i∈N0 : xi ∈ S, A(xi, xi+1) = 1, for each i ∈ N0}.

Given θ ∈ (0, 1), we equip the set Σ+
A with a metric dθ given by dθ({xi}i∈N0 , {yi}i∈N0) = θN for

{xi}i∈N0 6= {yi}i∈N0 , where N is the smallest integer with xN 6= yN . The topology on the metric space(
Σ+
A, dθ

)
coincides with that induced from the product topology, and is therefore compact.

The left-shift operator σA : Σ
+
A → Σ+

A (defined by A) is given by

σA({xi}i∈N0) = {xi+1}i∈N0 for {xi}i∈N0 ∈ Σ+
A.

The pair
(
Σ+
A, σA

)
is called the one-sided subshift of finite type defined by A. The set S is called the

set of states and the matrix A : S × S → {0, 1} is called the transition matrix.
We say that a one-sided subshift of finite type

(
Σ+
A, σA

)
is topologically mixing if there exists N ∈ N

such that An(x, y) > 0 for each n ≥ N and each pair of x, y ∈ S.
Let X and Y be topological spaces, and f : X → X and g : Y → Y be continuous maps. We say that

the topological dynamical system (X, f) is a factor of the topological dynamical system (Y, g) if there
is a surjective continuous map π : Y → X such that π ◦ g = f ◦ π. We call the map π : Y → X a factor
map.

The following proposition is established in [LZhe23a, Proposition 3.31].

Proposition 3.21. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2

satisfying f(C) ⊆ C and post f ⊆ C. Let d be a visual metric on S2 for f with expansion factor Λ > 1.
Fix θ ∈ (0, 1). We set S△ := X1(f, C), and define a transition matrix A△ : S△ × S△ → {0, 1} by

A△(X,X
′) =

{
1 if f(X) ⊇ X ′,

0 otherwise

for X, X ′ ∈ X1(f, C). Then f is a factor of the one-sided subshift of finite type
(
Σ+
A△
, σA△

)
defined by

the transition matrix A△ with a surjective and Hölder continuous factor map π△ : Σ
+
A△

→ S2 given by

(3.19) π△ ({Xi}i∈N0) = x, where {x} =
⋂

i∈N0

f−i(Xi).

Here Σ+
A△

is equipped with the metric dθ defined in Subsection 3.3, and S2 is equipped with the visual
metric d.

Moreover,
(
Σ+
A△
, σA△

)
is topologically mixing and π△ is injective on π−1

△

(
S2 \⋃i∈N0

f−i(C)
)
.

Remark 3.22. We can show that if f has no periodic critical points, then π is uniformly bounded-to-
one (i.e., there exists N ∈ N0 depending only on f such that card

(
π−1
△ (x)

)
≤ N for each x ∈ S2); if f

has at least one periodic critical point, then π△ is uncountable-to-one on a dense set. We will not use
this fact in this paper.

3.4. Dynamical zeta functions and Dirichlet series. Let g : X → X be a map on a topological
space X. Let ψ : X → C be a complex-valued function on X. We write

(3.20) Z
(n)
g,−ψ(s) :=

∑

x∈P1,gn

e−sSnψ(x), n ∈ N and s ∈ C.

Recall that P1,gn defined in (2.1) is the set of fixed points of gn, and Snψ is defined in (2.4). We denote
by the formal infinite product

(3.21) ζg,−ψ(s) := exp

(
+∞∑

n=1

Z
(n)
g,−ψ(s)

n

)
= exp

(+∞∑

n=1

1

n

∑

x∈P1,gn

e−sSnψ(x)
)
, s ∈ C,

the dynamical zeta function for the map g and the potential ψ. More generally, we can define dynamical
Dirichlet series as analogs of Dirichlet series in analytic number theory.
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Definition 3.23. Let g : X → X be a map on a topological space X. Let ψ : X → C and w : X → C
be complex-valued functions on X. We denote by the formal infinite product

(3.22) Dg,−ψ,w(s) := exp

(+∞∑

n=1

1

n

∑

x∈P1,gn

e−sSnψ(x)
n−1∏

i=0

w
(
gi(x)

))
, s ∈ C,

the dynamical Dirichlet series with coefficient w for the map g and the potential ψ.

The following result is obtained in [LZhe23a, Section 5].

Proposition 3.24. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2

satisfying f(C) ⊆ C and post f ⊆ C. Let d be a visual metric on S2 for f with expansion factor Λ > 1.
Let φ ∈ C0,α(S2, d) be an eventually positive real-valued Hölder continuous function with an exponent
α ∈ (0, 1]. Denote by s0 the unique positive number with P (f,−s0φ) = 0. Let

(
Σ+
A△
, σA△

)
be the one-

sided subshift of finite type associated to f and C defined in Proposition 3.21, and let π△ : Σ
+
A△

→ S2 be

the factor map defined in (3.19). Denote by degf (·) the local degree of f . Then the following statements
are satisfied:

(i) P (σA△
, ϕ ◦ π△) = P (f, ϕ) for each ϕ ∈ C0,α(S2, d) . In particular, for an arbitrary number

t ∈ R, we have P (σA△
,−tφ ◦ π△) = 0 if and only if t = s0.

(ii) All three infinite products ζf,−φ, ζσA△
,−φ◦π△ , and Df,−φ,degf converge uniformly and absolutely to

respective non-vanishing continuous functions on Ha = {s ∈ C : ℜ(s) ≥ a} that are holomorphic
on Ha = {s ∈ C : ℜ(s) > a}, for each a ∈ R satisfies a > s0.

(iii) For all s ∈ C with ℜ(s) > s0, we have

ζf,−φ(s) =
∏

τ∈P(f)

(
1− exp

(
−s
∑

y∈τ

φ(y)

))−1

,(3.23)

Df,−φ,degf (s) =
∏

τ∈P(f)

(
1− exp

(
−s
∑

y∈τ

φ(y)

)∏

z∈τ

degf (z)

)−1

,(3.24)

ζσA△
,−φ◦π△(s) =

∏

τ∈P(σA△
)

(
1− exp

(
−s
∑

y∈τ

φ ◦ π△(y)
))−1

.(3.25)

Recall that P(g) denotes the set of all primitive periodic orbits of g (see (2.3)). We recall that an
infinite product of the form exp

∑
ai, ai ∈ C, converges uniformly (resp. absolutely) if

∑
ai converges

uniformly (resp. absolutely).

4. The Assumptions

We state below the hypotheses under which we will develop our theory in most parts of this paper.
We will repeatedly refer to such assumptions in the later sections. We emphasize again that not all
assumptions are assumed in all the statements in this paper.

The Assumptions.

(1) f : S2 → S2 is an expanding Thurston map.

(2) C ⊆ S2 is a Jordan curve containing post f with the property that there exists nC ∈ N such
that fnC(C) ⊆ C and fm(C) * C for each m ∈ {1, 2, . . . , nC − 1}.

(3) d is a visual metric on S2 for f with expansion factor Λ > 1 and a linear local connectivity
constant L ≥ 1.

(4) α ∈ (0, 1].

(5) ψ ∈ C0,α((S2, d),C) is a complex-valued Hölder continuous function with an exponent α.

(6) φ ∈ C0,α(S2, d) is an eventually positive real-valued Hölder continuous function with an expo-
nent α, and s0 ∈ R is the unique positive real number satisfying P (f,−s0φ) = 0.

(7) µφ is the unique equilibrium state for the map f and the potential φ.



16 ZHIQIANG LI AND TIANYI ZHENG

Note that the uniqueness of s0 in (6) is guaranteed by Corollary 3.20. For a pair of f in (1) and φ
in (6), we will say that a quantity depends on f and φ if it depends on s0.

Observe that by Lemma 3.11, for each f in (1), there exists at least one Jordan curve C that
satisfies (2). Since for a fixed f , the number nC is uniquely determined by C in (2), in the remaining
part of the paper, we will say that a quantity depends on f and C even if it also depends on nC.

Recall that the expansion factor Λ of a visual metric d on S2 for f is uniquely determined by d and
f . We will say that a quantity depends on f and d if it depends on Λ.

Note that even though the value of L is not uniquely determined by the metric d, in the remainder of
this paper, for each visual metric d on S2 for f , we will fix a choice of linear local connectivity constant
L. We will say that a quantity depends on the visual metric d without mentioning the dependence on
L, even though if we had not fixed a choice of L, it would have depended on L as well.

In the discussion below, depending on the conditions we will need, we will sometimes say “Let f , C,
d, ψ, α satisfy the Assumptions.”, and sometimes say “Let f and d satisfy the Assumptions.”, etc.

5. Ruelle operators and split Ruelle operators

In this section, we define appropriate variations of the Ruelle operator on the suitable function
spaces in our context and establish some important inequalities that will be used later. More precisely,
in Subsection 5.1, for an expanding Thurston map f with some forward invariant Jordan curve C ⊆ S2

and a complex-valued Hölder continuous function ψ, we “split” the Ruelle operator Lψ : C(S2,C) →
C(S2,C) into pieces L(n)

ψ,c,E : C(E,C) → C
(
X0

c ,C
)
, for c ∈ {b, w}, n ∈ N0, and a union E ⊆ S2 of

an arbitrary collection of n-tiles in the cell decomposition Dn(f, C) of S2 induced by f and C. Such
construction is crucial to the proof of Proposition 6.1 where the images of characteristic functions

supported on n-tiles under L(n)
ψ,c,E are used to relate periodic points and preimage points of f . We then

define the split Ruelle operators Lψ on the product space C
(
X0

b ,C
)
× C

(
X0

w,C
)
by piecing together

L(1)
ψ,c1,c2

= L(1)

ψ,c1,X0
c2

, c1, c2 ∈ {b, w}. Subsection 5.2 is devoted to establishing various inequalities,

among them the basic inequalities in Lemma 5.12, that are indispensable in the arguments in Section 7.
In Subsection 5.3, we verify the spectral gap for Lψ that is essential in the proof of Theorem 6.3.

5.1. Construction.

Lemma 5.1. Let f , C, d, Λ, α satisfy the Assumptions. Fix a constant T > 0. Then for all n ∈ N,
Xn ∈ Xn(f, C), x, x′ ∈ Xn, and ψ ∈ C0,α((S2, d),C) with |ℜ(ψ)|α, (S2,d) ≤ T , we have

(5.1) |1− exp(Snψ(x)− Snψ(x
′))| ≤ C10 |ψ|α, (S2,d) d(f

n(x), fn(x′))α,

where the constant

(5.2) C10 = C10(f, C, d, α, T ) :=
2C0

1− Λ−α
exp

(
C0T

1− Λ−α

(
diamd(S

2)
)α
)
> 1

depends only on f , C, d, α, and T . Here C0 > 1 is a constant from Lemma 3.13 depending only on f ,
C, and d.
Proof. Fix T > 0, n ∈ N, Xn ∈ Xn(f, C), x, x′ ∈ Xn, and ψ ∈ C0,α((S2, d),C) with |ℜ(ψ)|α, (S2,d) ≤ T .

By Lemma 3.15, for each φ ∈ C0,α(S2, d),

(5.3) |Snφ(x)− Snφ(x
′)| ≤

C0 |φ|α, (S2,d)

1− Λ−α
d(fn(x), fn(x′))α.

Then by (5.3) and the fact that |1− ey| ≤ |y|e|y| and |1− eiy| ≤ |y| for y ∈ R, we get∣∣∣1− eSnψ(x)−Snψ(x
′)
∣∣∣ ≤

∣∣∣1− eSnℜ(ψ)(x)−Snℜ(ψ)(x′)
∣∣∣+ eSnℜ(ψ)(x)−Snℜ(ψ)(x′)

∣∣∣1− eiSnℑ(ψ)(x)−iSnℑ(ψ)(x′)
∣∣∣

≤
C0 |ℜ(ψ)|α, (S2,d)

1− Λ−α
d(fn(x), fn(x′))α exp

(
C0T

1− Λ−α

(
diamd(S

2)
)α
)

+ exp

(
C0T

1− Λ−α

(
diamd(S

2)
)α
)
C0 |ℑ(ψ)|α, (S2,d)

1− Λ−α
d(fn(x), fn(x′))α

≤ C10 |ψ|α, (S2,d) d(f
n(x), fn(x′))α.
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Here the constant C10 = C10(f, C, d, α, T ) is defined in (5.2). �

Fix an expanding Thurston map f : S2 → S2 with a Jordan curve C ⊆ S2 satisfying post f ⊆ C. Let
d be a visual metric for f on S2, and ψ ∈ C0,α((S2, d),C) a complex-valued Hölder continuous function.

Let n ∈ N, c ∈ {b, w}, and x ∈ inte
(
X0

c

)
, where X0

b (resp. X0
w) is the black (resp. white) 0-tile. If

E ⊆ S2 is a union of n-tiles in Xn(f, C), u ∈ C((E, d),C) a complex-valued continuous function defined
on E, and if we define a function v ∈ B(S2,C) by

(5.4) v(y) =

{
u(y) if y ∈ E,

0 otherwise,

then by Proposition 3.6 (i) and (ii), the Ruelle operator associated to f and ψ (recalled in (3.13)) acting
on B(S2,C) can be written in the following form:

(5.5) Lnψ(v)(x) =
∑

Xn∈Xn
c

Xn⊆E

u
(
(fn|Xn)−1(x)

)
exp
(
Snψ

(
(fn|Xn)−1(x)

))
.

Note that by default, a summation over an empty set is equal to 0. We will always use this convention
in this paper. Inspired by (5.5), we give the following definition.

Definition 5.2. Let f : S2 → S2 be an expanding Thurston map, C ⊆ S2 a Jordan curve containing
post f , and ψ ∈ C(S2,C) a complex-valued continuous function. Let n ∈ N0, and E ⊆ S2 be a union

of n-tiles in Xn(f, C). We define a map L(n)
ψ,c,E : C(E,C) → C

(
X0

c ,C
)
, for each c ∈ {b, w}, by

(5.6) L(n)
ψ,c,E(u)(y) =

∑

Xn∈Xn
c

Xn⊆E

u
(
(fn|Xn)−1(y)

)
exp
(
Snψ

(
(fn|Xn)−1(y)

))
,

for each complex-valued continuous function u ∈ C(E,C) defined on E, and each point y ∈ X0
c . When

E = X0
c′ for some c′ ∈ {b, w}, we often write

L(n)
ψ,c,c′ := L(n)

ψ,c,X0
c′
.

Note that L(0)
ψ,c,E(u) =

{
u if X0

c ⊆ E

0 otherwise
, for c ∈ {b, w}, whenever the expression on the left-hand side

of the equation makes sense.

Lemma 5.3. Let f , C, d, α satisfy the Assumptions. Let ψ ∈ C(S2,C) be a complex-valued continuous
function. Fix numbers n, m ∈ N0 and a union E ⊆ S2 of an arbitrary collection of n-tiles in Xn(f, C)
(i.e., E =

⋃{Xn ∈ Xn(f, C) : Xn ⊆ E}). Then for each c ∈ {b, w} and each u ∈ C(E,C), we have

L(n)
ψ,c,E(u) ∈ C

(
X0

c ,C
)
, and

(5.7) L(n+m)
ψ,c,E (u) =

∑

c′∈{b,w}

L(m)
ψ,c,c′

(
L(n)
ψ,c′,E(u)

)
.

If, in addition, ψ ∈ C0,α((S2, d),C) and u ∈ C0,α((E, d),C) are Hölder continuous, then

(5.8) L(n)
ψ,c,E(u) ∈ C0,α

((
X0

c , d
)
,C
)
.

Remark 5.4. In the above context, Lnψ(v) ∈ B(S2,C) may not be continuous on S2 if E 6= S2, where

v is defined in (5.4) extending u to S2. If E = S2, then it follows immediately from (5.6) that for each

c ∈ {b, w}, L(n)
ψ,c,E(u) =

(
Lnψ(u)

)∣∣
X0

c

. Hence by (5.8) and the linear local connectivity of (S2, d), it can

be shown that Lnψ(C0,α((S2, d),C)) ⊆ C0,α((S2, d),C). We will not use this fact in this paper.

Proof. Fix arbitrary c ∈ {b, w} and u ∈ C(E,C).
The cases of Lemma 5.3 when either m = 0 or n = 0 follow immediately from Definition 5.2. Thus,

without loss of generality, we can assume m, n ∈ N.
The continuity of L(n)

ψ,c,E(u) follows trivially from (5.6) and Proposition 3.6 (i).
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By (5.6), Proposition 3.6 (i) and (ii), and the fact that f−m(x) ∩ C 6= ∅, we get
∑

c′∈{b,w}

L(m)
ψ,c,c′

(
L(n)
ψ,c′,E(u)

)
(x) =

∑

c′∈{b,w}

∑

y∈f−m(x)∩X0
c′

eSmψ(y)
∑

z∈f−n(y)∩E

eSnψ(z)u(z)

=
∑

y∈f−m(x)

∑

z∈f−n(y)∩E

eSmψ(y)+Snψ(z)u(z) =
∑

z∈f−(n+m)(x)∩E

eSn+mψ(z)u(z) = L(n+m)
ψ,c,E (u)(x).

Identity (5.7) is now established by the continuity of two sides of the equation above.

Finally, to prove (5.8), we first fix two distinct points x, x′ ∈ X0
c . Denote yXn := (fn|Xn)−1(x) and

y′Xn := (fn|Xn)−1(x′) for each Xn ∈ Xn
c .

By Lemmas 3.13, 3.15, and 5.1, we have
∣∣L(n)

ψ,c,E(u)(x)− L(n)
ψ,c,E(u)(x

′)
∣∣

d(x, x′)α
≤ 1

d(x, x′)α

∑

Xn∈Xn
c

Xn⊆E

∣∣eSnψ(yXn )u(yXn)− eSnψ(y
′
Xn

)u(y′Xn)
∣∣

≤ 1

d(x, x′)α

∑

Xn∈Xn
c

Xn⊆E

(∣∣eSnψ(yXn )
∣∣|u(yXn)− u(y′Xn)|+

∣∣eSnψ(yXn ) − eSnψ(y
′
Xn

)
∣∣|u(y′Xn)|

)

≤ 1

d(x, x′)α

∑

Xn∈Xn
c

Xn⊆E

eSnℜ(ψ)(yXn ) |u|α, (E,d) d(yXn , y′Xn)α

+
1

d(x, x′)α

∑

Xn∈Xn
c

Xn⊆E

∣∣1− eSnψ(yXn )−Snψ(y
′
Xn

)
∣∣eSnℜ(ψ)(y′

Xn
)|u(y′Xn)|

≤ |u|α, (E,d)Cα0 Λ−αn
∑

Xn∈Xn

eSnℜ(ψ)(yXn ) + C10 |ψ|α, (S2,d)

∑

Xn∈Xn
c

Xn⊆E

eSnℜ(ψ)(y′
Xn

)|u(y′Xn)|

≤ C0Λ
−αn |u|α, (E,d)

∥∥Lnℜ(ψ)(1S2)
∥∥
C0(S2)

+ C10 |ψ|α, (S2,d)

∥∥∥L(n)
ℜ(ψ),c,E(|u|)

∥∥∥
C0(S2)

,

where C0 > 1 is a constant depending only on f , C, and d from Lemma 3.13, and C10 > 1 is a constant
depending only on f , C, d, α, and ψ from Lemma 5.1. Therefore (5.8) holds. �

Definition 5.5 (Split Ruelle operators). Let f : S2 → S2 be an expanding Thurston map with a
Jordan curve C ⊆ S2 satisfying f(C) ⊆ C and post f ⊆ C. Let d be a visual metric for f on S2, and
ψ ∈ C0,α((S2, d),C) a complex-valued Hölder continuous function with an exponent α ∈ (0, 1]. Let
X0

b , X
0
w ∈ X0(f, C) be the black 0-tile and the while 0-tile, respectively. The split Ruelle operator

Lψ : C
(
X0

b ,C
)
× C

(
X0

w,C
)
→ C

(
X0

b ,C
)
× C

(
X0

w,C
)
on the product space C

(
X0

b ,C
)
× C

(
X0

w,C
)
is

given by

Lψ(ub, uw) =
(
L(1)
ψ,b,b(ub) + L(1)

ψ,b,w(uw),L
(1)
ψ,w,b(ub) + L(1)

ψ,w,w(uw)
)

for ub ∈ C
(
X0

b ,C
)
and uw ∈ C

(
X0

w,C
)
.

Note that by Lemma 5.3, the operator Lψ is well-defined. Moreover, by (5.8) in Lemma 5.3, we have

(5.9) Lψ

(
C0,α

((
X0

b , d
)
,C
)
× C0,α

((
X0

w, d
)
,C
))

⊆ C0,α
((
X0

b , d
)
,C
)
× C0,α

((
X0

w, d
)
,C
)
.

Note that it follows immediately from Definition 5.2 that Lψ is a linear operator on the Banach space

C0,α
((
X0

b , d
)
,C
)
× C0,α

((
X0

w, d
)
,C
)
equipped with a norm given by

‖(ub, uw)‖ := max
{
‖ub‖[b]C0,α(X0

b
,d)
, ‖uw‖[b]C0,α(X0

w,d)

}
,

for each b ∈ R \ {0}. See (2.6) for the definition of the normalized Hölder norm ‖u‖[b]
C0,α(E,d)

.

For each c ∈ {b, w}, we define the projection πc : C(X0
b ,C)× C(X0

w,C) → C(X0
c ,C) by

(5.10) πc(ub, uw) = uc, for (ub, uw) ∈ C(X0
b ,C)× C(X0

w,C).
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Definition 5.6. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2 satisfying
f(C) ⊆ C and post f ⊆ C. Let d be a visual metric for f on S2, and ψ ∈ C0,α((S2, d),C) a complex-
valued Hölder continuous function with an exponent α ∈ (0, 1]. For all n ∈ N0 and b ∈ R \ {0}, we
write the operator norm

∣∣∣∣∣∣
L

n
ψ

∣∣∣∣∣∣[b]
α

:= sup

{∥∥πc
(
L

n
ψ(ub, uw)

)∥∥[b]
C0,α(X0

c ,d)
:

c ∈ {b, w}, ub ∈ C0,α((X0
b , d),C), uw ∈ C0,α((X0

w, d),C)
with ‖ub‖[b]C0,α(X0

b
,d)

≤ 1 and ‖uw‖[b]C0,α(X0
w,d)

≤ 1

}
.(5.11)

We write
∣∣∣∣∣∣
L

n
ψ

∣∣∣∣∣∣
α
:=
∣∣∣∣∣∣
L

n
ψ

∣∣∣∣∣∣[1]
α
.

Lemma 5.7. Let f , C, d, α, ψ satisfy the Assumptions. We assume, in addition, that f(C) ⊆ C.
Let X0

b , X
0
w ∈ X0(f, C) be the black 0-tile and the while 0-tile, respectively. Then for all n ∈ N0,

ub ∈ C
(
X0

b ,C
)
, and uw ∈ C

(
X0

w,C
)
,

(5.12) L

n
ψ(ub, uw) =

(
L(n)
ψ,b,b(ub) + L(n)

ψ,b,w(uw),L
(n)
ψ,w,b(ub) + L(n)

ψ,w,w(uw)
)
.

Consequently,

∣∣∣∣∣∣
L

n
ψ

∣∣∣∣∣∣[b]
α

= sup

{ ∥∥L(n)
ψ,c,b(ub) + L(n)

ψ,c,w(uw)
∥∥[b]
C0,α(X0

c ,d)

max
{
‖ub‖[b]C0,α(X0

b
,d)
, ‖uw‖[b]C0,α(X0

w,d)

} :

c ∈ {b, w}, ub ∈ C0,α((X0
b , d),C), uw ∈ C0,α((X0

w, d),C)
with ‖ub‖C0(X0

b
)‖uw‖C0(X0

w) 6= 0

}
.(5.13)

Proof. We prove (5.12) by induction. The case where n = 0 and the case where n = 1 both hold by
definition. Assume now (5.12) holds when n = m for some m ∈ N. Then by (5.7) in Lemma 5.3, for
each c ∈ {b, w}, we have

πc
(
L

m+1
ψ (ub, uw)

)
= πc

(
Lψ

(
L(m)
ψ,b,b(ub) + L(m)

ψ,b,w(uw),L
(m)
ψ,w,b(ub) + L(m)

ψ,w,w(uw)
))

=
∑

c′∈{b,w}

L(1)
ψ,c,c′

(
L(m)
ψ,c′,b(ub) + L(m)

ψ,c′,w(uw)
)

=
∑

c′∈{b,w}

L(1)
ψ,c,c′

(
L(m)
ψ,c′,b(ub)

)
+

∑

c′∈{b,w}

L(1)
ψ,c,c′

(
L(m)
ψ,c′,w(uw)

)

= L(m+1)
ψ,c,b (ub) + L(m+1)

ψ,c,w (uw),

for ub ∈ C
(
X0

b ,C
)
and uw ∈ C

(
X0

w,C
)
. This completes the inductive step, establishing (5.12).

Identity (5.13) follows immediately from Definition 5.6 and (5.12). �

5.2. Basic inequalities. Let f : S2 → S2 be an expanding Thurston map, and d be a visual metric on
S2 for f with expansion factor Λ > 1. Let ψ ∈ C0,α((S2, d),C) be a complex-valued Hölder continuous
function with an exponent α ∈ (0, 1]. We define

(5.14) ψ̃ := ℜ̃(ψ) + iℑ(ψ) = ψ − P (f,ℜ(ψ)) + log uℜ(ψ) − log
(
uℜ(ψ) ◦ f

)
,

where uℜ(ψ) is the continuous function given by Theorem 3.17 with φ := ℜ(ψ). Then for each u ∈
C(S2,C) and each x ∈ S2, we have

L
ψ̃
(u)(x) =

∑

y∈f−1(x)

degf (y)u(y)e
ψ(y)−P (f,ℜ(ψ))+log uℜ(ψ)(y)−log(uℜ(ψ)(f(y)))

=
exp(−P (f,ℜ(ψ))

uℜ(ψ)(x)

∑

y∈f−1(x)

degf (y)u(y)uℜ(ψ)(y) exp(ψ(y))(5.15)

=
exp(−P (f,ℜ(ψ))

uℜ(ψ)(x)
Lψ
(
uℜ(ψ)u

)
(x).
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Given a Jordan curve C ⊆ S2 with post f ⊆ C, then for each n ∈ N0, each union E of n-tiles in Xn(f, C),
each v ∈ C(E,C), each c ∈ {b, w}, and each z ∈ X0

c ,

L(n)

ψ̃,c,E
(v)(z) =

∑

Xn∈Xn
c (f,C)

Xn⊆E

(
veSn(ψ−P (f,ℜ(ψ))+log uℜ(ψ)−log(uℜ(ψ)◦f))

)(
(fn|Xn)−1(z)

)

=
exp(−nP (f,ℜ(ψ))

uℜ(ψ)(z)

∑

Xn∈Xn
c (f,C)

Xn⊆E

(
vuℜ(ψ) exp(Snψ)

)(
(fn|Xn)−1(z)

)
(5.16)

=
exp(−nP (f,ℜ(ψ))

uℜ(ψ)(z)
L(n)
ψ,c,E

(
uℜ(ψ)v

)
(z).

Definition 5.8 (Cones). Let f : S2 → S2 be an expanding Thurston map, and d be a visual metric
on S2 for f with expansion factor Λ > 1. Fix a constant α ∈ (0, 1]. For each subset E ⊆ S2 and each
constant B ∈ R with B > 0, we define the B-cone inside C0,α(E, d) as

KB(E, d) =
{
u ∈ C0,α(E, d) : u(x) > 0, |u(x)− u(y)| ≤ B(u(x) + u(y))d(x, y)α for x, y ∈ E

}
.

It is essential to define the B-cones inside C0,α(E, d) in the form above in order to establish the
following lemma, which will be used in the proof of Proposition 7.13.

Lemma 5.9. Let (X, d) be a metric space and α ∈ (0, 1]. Then for each B > 0 and each u ∈ KB(X, d),
we have u2 ∈ K2B(X, d).

Proof. Fix arbitrary B > 0 and u ∈ KB(X, d). For any x, y ∈ X,

∣∣u2(x)− u2(y)
∣∣ = |u(x) + u(y)||u(x) − u(y)| ≤ B|u(x) + u(y)|2d(x, y)α ≤ 2B

(
u2(x) + u2(y)

)
d(x, y)α.

Therefore u2 ∈ K2B(X, d). �

Lemma 5.10. Let f , d, α, ψ satisfy the Assumptions. Let φ ∈ C0,α(S2, d) be a real-valued Hölder
continuous function with an exponent α. Then the operator norm of L

φ̃
acting on C(S2) is given by∥∥L

φ̃

∥∥
C0(S2)

= 1. In addition, L
φ̃
(1S2) = 1S2.

Moreover, consider a Jordan curve C ⊆ S2 satisfying post f ⊆ C. Assume in addition that f(C) ⊆ C.
Then for all n ∈ N0, c, c

′ ∈ {b, w}, ub ∈ C(X0
b ,C), and uw ∈ C(X0

w,C), we have

∥∥∥L(n)

ψ̃,c,c′
(uc′)

∥∥∥
C0(X0

c )
≤ ‖uc′‖C0(X0

c′
) and(5.17)

∥∥∥L(n)

ψ̃,c,b
(ub) + L(n)

ψ̃,c,w
(uw)

∥∥∥
C0(X0

c )
≤ max

{
‖ub‖C0(X0

b
), ‖uw‖C0(X0

w)

}
.(5.18)

Proof. The fact that
∥∥L

φ̃

∥∥
C0(S2)

= 1 and L
φ̃
(1S2) = 1S2 is established in [Li17, Lemma 5.25].

To prove (5.18), we first fix arbitrary n ∈ N0, c ∈ {b, w}, ub ∈ C(X0
b ), and uw ∈ C(X0

w). Denote
M := max

{
‖ub‖C0(X0

b
), ‖uw‖C0(X0

w)

}
. Then by Definition 5.2, (5.14), and the fact that L

ℜ̃(ψ)
(1S2) =

1S2 , for each y ∈ inte(X0
c ),

∥∥∥L(n)

ψ̃,c,b
(ub) + L(n)

ψ̃,c,w
(uw)

∥∥∥
C0(X0

c )
≤M

∑

Xn∈Xn
c

∣∣exp
(
Snψ̃

(
(fn|Xn)−1(y)

))∣∣

=MLn
ℜ̃(ψ)

(1S2)(y) =M.

This establishes (5.18). Finally, (5.17) follows immediately from (5.18) and Definition 5.2 by setting
one of the functions ub and uw to be 0. �

Lemma 5.11. Let f , C, d, L, α, Λ satisfy the Assumptions. Then there exist constants C13 > 1 and
C14 > 0 depending only on f , C, d, and α such that the following is satisfied:
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For all K, M, T, a ∈ R with K > 0, M > 0, T > 0, and |a| ≤ T , and all real-valued Hölder
continuous function φ ∈ C0,α(S2, d) with |φ|α, (S2,d) ≤ K and ‖φ‖C0(S2) ≤M , we have

∥∥ãφ
∥∥
C0(S2)

≤ C13(K +M)T + |log(deg f)|,(5.19)
∣∣ãφ
∣∣
α, (S2,d)

≤ C13KTe
C14KT ,(5.20)

‖uaφ‖C0,α(S2,d) ≤
(
4TKC0(1− Λ−α)−1L+ 1

)
e2C15 ,(5.21)

exp(−C15) ≤ uaφ(x) ≤ exp(C15)(5.22)

for x ∈ S2, where the constant C0 > 1 depending only on f , d, and C is from Lemma 3.13, and the
constant

(5.23) C15 = C15(f, C, d, α, T,K) := 4TKC0(1− Λ−α)−1L
(
diamd(S

2)
)α
> 0

depends only on f , C, d, α, T , and K.

Proof. Fix K, M , T , a, φ that satisfy the conditions in this lemma.

Recall ãφ = aφ − P (f, aφ) + log uaφ − log(uaφ ◦ f), where the function uaφ is defined as uφ in
Theorem 3.17.

By Theorem 3.17 and (3.12) in Lemma 3.15, we immediately get (5.22).
By Lemma 3.25 in [LZhe23a], (3.4), and (3.5), for each x ∈ S2,

P (f, aφ) = lim
n→+∞

1

n
log

∑

y∈f−n(x)

degfn(y)e
aSnφ(y) ≤ lim

n→+∞

1

n
log

∑

y∈f−n(x)

degfn(y)e
nTM

= TM + lim
n→+∞

1

n
log

∑

y∈f−n(x)

degfn(y) = TM + log(deg f).

Similarly, P (f, aφ) ≥ −TM + log(deg f). So |P (f, aφ)| ≤ TM + |log(deg f)|.
Thus by combining the above with (5.22) and (5.23), we get

(5.24)
∥∥ãφ

∥∥
C0(S2)

≤ TM + TM + |log(deg f)|+ 2C15 ≤ C16T (K +M) + |log(deg f)|,

where C16 := 2 + 8 C0
1−Λ−αL

(
diamd(S

2)
)α

is a constant depending only on f , C, d, and α.
Note f is Lipschitz with respect to d (see [Li18, Lemma 3.12]). Thus by (5.22) and the fact that

|log t1 − log t2| ≤ |t1−t2|
min{t1, t2}

for all t1, t2 > 0, we get

∣∣ãφ
∣∣
α, (S2,d)

≤ |aφ|α, (S2,d) + |log uaφ|α, (S2,d) + |log(uaφ ◦ f)|α, (S2,d)

≤ TK + eC15(1 + LIPd(f)) |uaφ|α, (S2,d) .(5.25)

Here LIPd(f) denotes the Lipschitz constant of f with respect to the visual metric d (see (2.8)).
By Theorem 3.17, (3.17) in Lemma 3.16, (3.12) in Lemma 3.15, (5.23), and the fact that |1−e−t| ≤ t

for t > 0, we get

|uaφ(x)− uaφ(y)| =
∣∣∣∣ lim
n→+∞

1

n

n−1∑

j=0

(
Lj
aφ

(
1S2

)
(x)− Lj

aφ

(
1S2

)
(y)
)∣∣∣∣

≤ lim sup
n→+∞

1

n

n−1∑

j=0

∣∣∣Lj
aφ

(
1S2

)
(x)− Lj

aφ

(
1S2

)
(y)
∣∣∣

≤ e2C15

(
1− exp

(
−4

TKC0

1− Λ−α
Ld(x, y)α

))
≤ e2C15

4TKC0

1− Λ−α
Ld(x, y)α,

for all x, y ∈ S2. So

(5.26) |uaφ|α, (S2,d) ≤ 4
TKC0

1− Λ−α
Le2C15 .

Thus by (5.25), (5.26), and (5.23), we get
∣∣ãφ
∣∣
α, (S2,d)

≤ TKC13e
C14TK ,
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where the constants C13 := max
{
C16, 1 + 4C0(1 − Λ−α)−1L(1 + LIPd(f))

}
and C14 := 12C0(1 −

Λ−α)−1L(diamd(S
2))α depend only on f , C, d, and α. Since C13 ≥ C16, (5.19) follows from (5.24).

Finally, (5.21) follows from (5.22) and (5.26). �

Lemma 5.12 (Basic inequalities). Let f , C, d, α, φ, s0 satisfy the Assumptions. Then there exists a
constant A0 = A0

(
f, C, d, |φ|α, (S2,d) , α

)
≥ 2C0 > 2 depending only on f , C, d, |φ|α, (S2,d), and α such

that A0 increases as |φ|α, (S2,d) increases, and that for all c ∈ {b, w}, x, x′ ∈ X0, n ∈ N, union E ⊆ S2

of n-tiles in Xn(f, C), B ∈ R with B > 0, and a, b ∈ R with |a| ≤ 2s0 and |b| ∈ {0} ∪ [1,+∞), the
following statements are satisfied:

(i) For each u ∈ KB(E, d), we have

(5.27)

∣∣L(n)

ãφ,c,E
(u)(x)− L(n)

ãφ,c,E
(u)(x′)

∣∣

L(n)

ãφ,c,E
(u)(x) + L(n)

ãφ,c,E
(u)(x′)

≤ A0

(
B

Λαn
+

∣∣ãφ
∣∣
α, (E,d)

1− Λ−α

)
d(x, x′)α.

(ii) Denote s := a+ ib. Fix an arbitrary v ∈ C0,α((E, d),C). Then

(5.28)
∣∣∣L(n)

s̃φ,c,E
(v)(x) −L(n)

s̃φ,c,E
(v)(x′)

∣∣∣ ≤
(
C0

|v|α, (E,d)
Λαn

+A0 max{1, |b|}L(n)

ãφ,c,E
(|v|)(x)

)
d(x, x′)α,

where C0 > 1 is a constant from Lemma 3.13 depending only on f , d, and C.
If, in addition, there exists a non-negative real-valued Hölder continuous function h ∈ C0,α(E, d)

such that

|v(y) − v(y′)| ≤ B(h(y) + h(y′))d(y, y′)α

when y, y′ ∈ E, then
∣∣∣L(n)

s̃φ,c,E
(v)(x) − L(n)

s̃φ,c,E
(v)(x′)

∣∣∣(5.29)

≤ A0

(
B

Λαn

(
L(n)

ãφ,c,E
(h)(x) + L(n)

ãφ,c,E
(h)(x′)

)
+max{1, |b|}L(n)

ãφ,c,E
(|v|)(x)

)
d(x, x′)α.

Proof. Fix c, n, E, B, a, and b as in the statement of Lemma 5.12.
(i) Note that by Lemma 5.11,

(5.30) sup
{∣∣τ̃φ

∣∣
α, (S2,d)

: τ ∈ R, |τ | ≤ 2s0 + 1
}
≤ T0,

where the constant

(5.31) T0 = T0
(
f, C, d, |φ|α, (S2,d) , α

)
:= (2s0 + 1)C13 |φ|α, (S2,d) exp

(
(2s0 + 1)C14 |φ|α, (S2,d)

)
> 0

depends only on f , C, d, |φ|α, (S2,d), and α. Here C13 > 1 and C14 > 0 are constants from Lemma 5.11

depending only on f , C, d, and α.
Fix u ∈ KB(E, d) and x, x′ ∈ X0

c . For each Xn ∈ Xn
c , denote yXn := (fn|Xn)−1(x) and y′Xn :=

(fn|Xn)−1(x′).
Then by Definition 5.8,
∣∣∣L(n)

ãφ,c,E
(u)(x) − L(n)

ãφ,c,E
(u)(x′)

∣∣∣ ≤
∑

Xn∈Xn
c

Xn⊆E

∣∣∣u(yXn)eSn ãφ(yXn ) − u(y′Xn)eSnãφ(y
′
Xn

)
∣∣∣

≤
∑

Xn∈Xn
c

Xn⊆E

(∣∣u(yXn)− u(y′Xn)
∣∣ eSnãφ(y′Xn ) + u(yXn)

∣∣∣eSnãφ(yXn ) − eSnãφ(y
′
Xn

)
∣∣∣
)

≤
∑

Xn∈Xn
c

Xn⊆E

B
(
u(yXn)eSnãφ(yXn )e

∣∣Snãφ(y′Xn)−Snãφ(yXn)
∣∣
+ u(y′Xn)eSnãφ(y

′
Xn

)
)
d(yXn , y′Xn)α

+
∑

Xn∈Xn
c

Xn⊆E

u(yXn)
∣∣∣1− eSnãφ(y

′
Xn

)−Snãφ(yXn)
∣∣∣eSnãφ(yXn ).
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Combining the above with Lemmas 3.15, 3.13, 5.1, (5.30), and (5.31), we get
∣∣L(n)

ãφ,c,E
(u)(x)− L(n)

ãφ,c,E
(u)(x′)

∣∣

L(n)

ãφ,c,E
(u)(x) + L(n)

ãφ,c,E
(u)(x′)

≤ B exp

(∣∣ãφ
∣∣
α, (S2,d)

C0(diamd(S
2))α

1− Λ−α

)
d(x, x′)αCα0

Λαn
+ C10

∣∣ãφ
∣∣
α, (S2,d)

d(x, x′)α

≤ A1

(
B

Λαn
+

∣∣ãφ
∣∣
α, (S2,d)

1− Λ−α

)
d(x, x′)α,

where

(5.32) C10 = C10(f, C, d, α, T0) =
2C0

1− Λ−α
exp

(
C0T0

1− Λ−α

(
diamd(S

2)
)α
)

is a constant from Lemma 5.1, and

(5.33) A1 := (1− Λ−α)C10(f, C, d, α, T0).
Both of these constants only depend on f , C, d, |φ|α, (S2,d) and α.

Define a constant

(5.34) A0 = A0

(
f, C, d, |φ|α, (S2,d) , α

)
:=

(1 + 2T0)A1

1− Λ−α
= (1 + 2T0)C10

(
f, C, d, α, T0

)
> 2

depending only on f , C, d, |φ|α, (S2,d), and α. By (5.34), (5.31), and (5.32), we see that A0 increases as

|φ|α, (S2,d) increases. Now (5.27) follows from the fact that A0 ≥ A1.

(ii) Fix x, x′ ∈ X0
c . For each X

n ∈ Xn
c , denote yXn := (fn|Xn)−1(x) and y′Xn := (fn|Xn)−1(x′).

Note that by (3.18) and (5.30), we have

(5.35)
∣∣s̃φ
∣∣
α, (S2,d)

≤
∣∣ãφ
∣∣
α, (S2,d)

+ |bφ|α, (S2,d) ≤ T0 + |b| |φ|α, (S2,d) ≤ 2T0 max{1, |b|},

since T0 ≥ |φ|α, (S2,d) by (5.31) and the fact that C13 > 1 from Lemma 5.11.

Note that ∣∣∣L(n)

s̃φ,c,E
(v)(x) − L(n)

s̃φ,c,E
(v)(x′)

∣∣∣ ≤
∑

Xn∈Xn
c

Xn⊆E

∣∣∣v(yXn)eSns̃φ(yXn) − v(y′Xn)eSns̃φ(y
′
Xn

)
∣∣∣

≤
∑

Xn∈Xn
c

Xn⊆E

(∣∣v(yXn)− v(y′Xn)
∣∣
∣∣∣eSns̃φ(y′Xn)

∣∣∣+ |v(yXn)|
∣∣∣eSns̃φ(yXn ) − eSns̃φ(y

′
Xn

)
∣∣∣
)
.(5.36)

We bound the two terms in the last summation above separately.
By Lemmas 3.15, 5.1, (5.33), and (5.35),

∑

Xn∈Xn
c

Xn⊆E

|v(yXn)|
∣∣∣eSns̃φ(yXn ) − eSns̃φ(y

′
Xn

)
∣∣∣

=
∑

Xn∈Xn
c

Xn⊆E

|v(yXn)|
∣∣∣1− eSns̃φ(y

′
Xn

)−Sns̃φ(yXn )
∣∣∣eSnãφ(yXn )

≤ C10(f, C, d, α, T0)
∣∣s̃φ
∣∣
α, (S2,d)

d(x, x′)αL(n)

ãφ,c,E
(|v|)(x)(5.37)

≤ A1

2T0 max{1, |b|}L(n)

ãφ,c,E
(|v|)(x)

1− Λ−α
d(x, x′)α

= A0max{1, |b|}L(n)

ãφ,c,E
(|v|)(x)d(x, x′)α,

where the last inequality follows from (5.34).
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By (5.14), Lemma 3.13, and (5.17) in Lemma 5.10,
∑

Xn∈Xn
c

Xn⊆E

∣∣v(yXn)− v(y′Xn)
∣∣
∣∣∣eSns̃φ(y′Xn )

∣∣∣ ≤
∑

Xn∈Xn
c

Xn⊆E

|v|α, (E,d) d(yXn , y′Xn)αeSnãφ(y
′
Xn

)

≤ |v|α, (E,d)
d(x, x′)αCα0

Λαn

∑

Xn∈Xn
c

eSnãφ(y
′
Xn

) ≤ C0

|v|α, (E,d)
Λαn

d(x, x′)α.(5.38)

Thus (5.28) follows from (5.36), (5.37) and (5.38).
If, in addition, there exists a non-negative real-valued Hölder continuous function h ∈ C0,α(E, d)

such that |v(y) − v(y′)| ≤ B(h(y) + h(y′))d(y, y′)α when y, y′ ∈ E, then by Lemmas 3.15, 3.13, (5.30),
(5.33), and (5.32),

∑

Xn∈Xn
c

Xn⊆E

∣∣v(yXn)− v(y′Xn)
∣∣
∣∣∣eSns̃φ(y′Xn )

∣∣∣

≤
∑

Xn∈Xn
c

Xn⊆E

B
(
h(yXn)eSnãφ(yXn )e

∣∣Snãφ(y′Xn)−Snãφ(yXn)
∣∣
+ h(y′Xn)eSn ãφ(y

′
Xn

)
)
d(yXn , y′Xn)α

≤ B exp

(∣∣ãφ
∣∣
α, (S2,d)

C0

(
diamd(S

2)
)α

1− Λ−α

)
d(x, x′)αCα0

Λαn

(
L(n)

ãφ,c,E
(h)(x) + L(n)

ãφ,c,E
(h)(x′)

)

≤ A1BΛ−αn
(
L(n)

ãφ,c,E
(h)(x) + L(n)

ãφ,c,E
(h)(x′)

)
d(x, x′)α.

Therefore, (5.29) follows from (5.36), (5.37), the last inequality, and the fact that A0 ≥ A1 from
(5.34). �

5.3. Spectral gap. Let (X, d) be a metric space. A function h : [0,+∞) → [0,+∞) is an abstract
modulus of continuity if it is continuous at 0, non-decreasing, and h(0) = 0. Given any constant
τ ∈ [0,+∞], and any abstract modulus of continuity g, we define the subclass Cτg ((X, d),C) of C(X,C)
as

Cτg ((X, d),C) =
{
u ∈ C(X,C) : ‖u‖C0(X) ≤ τ and for x, y ∈ X, |u(x)− u(y)| ≤ g(d(x, y))

}
.

We denote Cτg (X, d) := Cτg ((X, d),C) ∩ C(X).
Assume now that (X, d) is compact. Then by the Arzelà-Ascoli Theorem, each Cτg ((X, d),C) (resp.

Cτg (X, d)) is precompact in C(X,C) (resp. C(X)) equipped with the uniform norm. It is easy to see
that each Cτg ((X, d),C) (resp. C

τ
g (X, d)) is actually compact. On the other hand, for u ∈ C(X,C), we

can define an abstract modulus of continuity by

(5.39) g(t) := sup{|u(x)− u(y)| : x, y ∈ X, d(x, y) ≤ t}
for t ∈ [0,+∞), so that u ∈ Cιg((X, d),C), where ι := ‖u‖∞.

The following lemma is easy to check (see also [Li17, Lemma 5.24]).

Lemma 5.13. Let (X, d) be a metric space. For each pair of constants τ1, τ2 ≥ 0, each pair of abstract
moduli of continuity g1, g2, and each real number c > 0, we have

{
u1u2 : u1 ∈ Cτ1g1 ((X, d),C), u2 ∈ Cτ2g2 ((X, d),C)

}
⊆ Cτ1τ2τ1g2+τ2g1((X, d),C) and

{
1/u : u ∈ Cτ1g1 ((X, d),C), u(x) ≥ c for each x ∈ X

}
⊆ Cc

−1

c−2g1
((X, d),C).

The following corollary follows immediately from Lemma 5.13. We leave the proof to the readers.

Corollary 5.14. Let (X, d) be a metric space, and α ∈ (0, 1] a constant. Then for all Hölder continuous
functions u, v ∈ C0,α((X, d),C), we have u, v ∈ C0,α((X, d),C) with

‖uv‖C0,α(X,d) ≤ ‖u‖C0,α(X,d) ‖v‖C0,α(X,d) ,

and if, in addition, |u(x)| ≥ c, for each x ∈ X, for some constant c > 0, then 1/u ∈ C0,α((X, d),C)
with ‖1/u‖C0,α(X,d) ≤ c−1 + c−2 ‖u‖C0,α(X,d).
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Lemma 5.15. Let f , C, d, α satisfy the Assumptions. Assume in addition that f(C) ⊆ C. Let
φ ∈ C0,α(S2, d) be a real-valued Hölder continuous function with an exponent α, and µφ denote the
unique equilibrium state for f and φ. Fix arbitrary c ∈ {b, w} and u ∈ C(X0). Then for each n ∈ N,

∫

X0
c

udµφ =
∑

c′∈{b,w}

∫

X0
c′

L(n)

φ̃,c′,c
(u) dµφ.

Proof. We define a function v ∈ B(S2) by setting v(x) = u(x) if x ∈ inte
(
X0

c

)
and v(x) = 0 otherwise.

We choose a pointwise increasing sequence of continuous non-negative functions τi ∈ C(S2), i ∈ N,
such that limi→+∞ τi(x) = 1inte(X0

c )
for all x ∈ S2. Then {vτi}i∈N is a bounded sequence of continuous

functions on S2, convergent pointwise to v.
Fix n ∈ N. Since µφ(C) = 0 by [Li17, Proposition 5.39], then by (5.6), Proposition 3.6 (i) and (ii),

and the Dominated Convergence Theorem, we get

∑

c′∈{b,w}

∫

X0
c′

L(n)

φ̃,c′,c
(u) dµφ =

∑

c′∈{b,w}

∫

X0
c′

∑

Xn∈Xn
c′

Xn⊆X0
c

(
eSnφ̃u

)(
(fn|Xn)−1(x)

)
dµφ(x)

=
∑

c′∈{b,w}

lim
i→+∞

∫

inte(X0
c′
)

∑

Xn∈Xn
c′

Xn⊆X0
c

(
eSnφ̃vτi

)(
(fn|Xn)−1(x)

)
dµφ(x)

=
∑

c′∈{b,w}

lim
i→+∞

∫

inte(X0
c′
)
Ln
φ̃
(vτi)(x) dµφ(x) = lim

i→+∞

∫

S2

Ln
φ̃
(vτi) dµφ

= lim
i→+∞

∫

S2

vτi d
(
L∗
φ̃

)n
(µφ) = lim

i→+∞

∫

S2

vτi dµφ =

∫

S2

v dµφ =

∫

X0
c

udµφ. �

Lemma 5.16. Let f , C, d satisfy the Assumptions. Assume in addition that f(C) ⊆ C. Fix an abstract
modulus of continuity g. Then for each α ∈ (0, 1], K ∈ (0,+∞), and δ1 ∈ (0,+∞), there exist constants
δ2 ∈ (0,+∞) and N ∈ N with the following property:

For all c ∈ {b, w}, ub ∈ C+∞
g (X0

b , d), uw ∈ C+∞
g (X0

w, d), and φ ∈ C0,α(S2, d), if ‖φ‖C0,α(S2,d) ≤ K,

max
{
‖ub‖C0(X0

b
), ‖uw‖C0(X0

w)

}
≥ δ1, and

∫
X0

b

ub dµφ +
∫
X0

w

uw dµφ = 0 where µφ denotes the unique

equilibrium state for f and φ, then

∥∥∥L(N)

φ̃,c,b
(ub) + L(N)

φ̃,c,w
(uw)

∥∥∥
C0(X0

c )
≤ max

{
‖ub‖C0(X0

b
), ‖uw‖C0(X0

w)

}
− δ2.

Proof. Fix arbitrary constants α ∈ (0, 1], K ∈ (0,+∞), and δ1 ∈ (0,+∞). Choose ǫ > 0 small

enough such that g(ǫ) < δ1
2 . Let n0 ∈ N be the smallest number such that fn0

(
inte

(
X0

b

))
= S2 =

fn0
(
inte

(
X0

w

))
.

By Lemma 3.8 (iv), there exists a number N ∈ N depending only on f , C, d, g, and δ1 such that
N ≥ 2n0 and for each z ∈ S2, we have UN−n0(z) ⊆ Bd(z, ǫ) (see (3.8)).

Fix arbitrary c ∈ {b, w}, φ ∈ C0,α(S2, d) with ‖φ‖C0,α(S2,d) ≤ K, and functions ub ∈ C+∞
g (X0

b , d)

and uw ∈ C+∞
g (X0

w, d) with max
{
‖ub‖C0(X0

b
), ‖uw‖C0(X0

w)

}
≥ δ1 and

∫
X0

b

ub dµφ +
∫
X0

w

uw dµφ = 0.

Without loss of generality, we assume that
∫
X0

b

ub dµφ ≤ 0 and
∫
X0

w

uw dµφ ≥ 0. So we can choose points

y1 ∈ X0
b and y2 ∈ X0

w in such a way that ub(y1) ≤ 0 and uw(y2) ≥ 0.
We denote

M := max
{
‖ub‖C0(X0

b
), ‖uw‖C0(X0

w)

}
.

We fix a point x ∈ X0
c . Since fN

(
UN−n0(y1) ∩X0

b

)
= S2, there exists y ∈ f−N (x) ∩X0

b such that

y ∈ UN−n0(y1) ⊆ Bd(y1, ǫ). Since M ≥ δ1, ub(y) ≤ ub(y1) + g(ǫ) < δ1
2 ≤ M − δ1

2 . Choose XN
y ∈ XN

c

such that y ∈ XN
y ⊆ X0

b . Denote wXN := (fN |XN )−1(x) for each XN ∈ XN
c . So by Lemma 5.10, we
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have

L(N)

φ̃,c,b
(ub)(x) + L(N)

φ̃,c,w
(uw)(x)

= ub(y)e
SN φ̃(y) +

∑

XN∈XN
c \{XN

y }

XN⊆X0
b

ub(wXN )eSN φ̃(wXN ) +
∑

XN∈XN
c

XN⊆X0
w

uw(wXN )eSN φ̃(wXN )

≤
(
M − δ1

2

)
exp
(
SN φ̃(y)

)
+M

∑

XN∈XN
c \{XN

y }

exp
(
SN φ̃(wXN )

)

=M
∑

XN∈XN
c

exp
(
SN φ̃(wXN )

)
− δ1

2
exp
(
SN φ̃(y)

)
=M − δ1

2
exp
(
SN φ̃(y)

)
.

Similarly, there exists z ∈ f−N(x) ∩X0
w such that z ∈ UN−n0(y2) ⊆ Bd(y2, ǫ) and

L(N)

φ̃,c,b
(ub)(x) + L(N)

φ̃,c,w
(uw)(x) ≥ −M +

δ1
2
exp
(
SN φ̃(z)

)
.

Hence we get
∥∥∥L(N)

φ̃,c,b
(ub) + L(N)

φ̃,c,w
(uw)

∥∥∥
C0(X0

c )
≤M − δ1

2 inf
{
exp
(
SN φ̃(w)

)
: w ∈ S2

}
.

By (5.19) in Lemma 5.11 with T := 1, the definition of M above, and (2.7), we have
∥∥∥L(N)

φ̃,c,b
(ub) + L(N)

φ̃,c,w
(uw)

∥∥∥
C0(X0

c )
≤ max

{
‖ub‖C0(X0

b
), ‖uw‖C0(X0

w)

}
− δ2

with δ2 :=
δ1
2 exp(−N(C13K+ |log(deg f)|)), where C13 is a constant from Lemma 5.11 depending only

on f , C, d, and α. Therefore the constant δ2 depends only on f , C, d, α, g, K, and δ1. �

Theorem 5.17. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2 satisfying
f(C) ⊆ C and post f ⊆ C. Let d be a visual metric on S2 for f with expansion factor Λ > 1 and
α ∈ (0, 1] be a constant. Let H, Hb, and Hw be bounded subsets of C0,α(S2, d), C0,α

(
X0

b , d
)
, and

C0,α
(
X0

w, d
)
, respectively (with respect to Hölder norms). Then for all c ∈ {b, w}, φ ∈ H, ub ∈ Hb,

and uw ∈ Hw, we have

(5.40) lim
n→+∞

∥∥∥L(n)

φ̃,c,b
(ub) + L(n)

φ̃,c,w
(uw)

∥∥∥
C0(X0

c )
= 0,

where the pair of functions ub ∈ C0,α
(
X0

b , d
)
and uw ∈ C0,α

(
X0

w, d
)
are given by

ub := ub −
∫

X0
b

ub dµφ −
∫

X0
w

uw dµφ and uw := uw −
∫

X0
b

ub dµφ −
∫

X0
w

uw dµφ

with µφ denoting the unique equilibrium state for f and φ.
Moreover, the convergence in (5.40) is uniform in φ ∈ H, ub ∈ Hb, and uw ∈ Hw.

Proof. Without loss of generality, we assume that H 6= ∅, Hb 6= ∅, and Hw 6= ∅. Define constants
K := sup

{
‖φ‖C0,α(S2,d) : φ ∈ H

}
∈ [0,+∞) and Kc := sup

{
‖uc‖C0,α(X0

b
,d) : uc ∈ Hc

}
∈ [0,+∞) for

c ∈ {b, w}. Define for each n ∈ N0,

an := sup
{∥∥∥L(n)

φ̃,c,b
(ub) + L(n)

φ̃,c,w
(uw)

∥∥∥
C0(X0

c )
: c ∈ {b, w}, φ ∈ H, ub ∈ Hb, uw ∈ Hw

}
.

Note that by Definition 5.2, a0 ≤ 2Kb + 2Kw < +∞.
By (5.7) in Lemma 5.3 and (5.18) in Lemma 5.10, for all n ∈ N0, φ ∈ H, c ∈ {b, w}, vb ∈ C(X0

b ),
and vw ∈ C(X0

w), we have
∥∥∥L(n+1)

φ̃,c,b
(vb) + L(n+1)

φ̃,c,w
(vw)

∥∥∥
C0(X0

c ,d)
=

∥∥∥∥
∑

c′∈{b,w}

L(1)

φ̃,c,c′

(
L(n)

φ̃,c′,b
(vb) + L(n)

φ̃,c′,w
(vw)

)∥∥∥∥
C0(X0

c ,d)

≤ max
{∥∥∥L(n)

φ̃,c′,b
(vb) + L(n)

φ̃,c′,w
(vw)

∥∥∥
C0(X0

c′
,d)

: c′ ∈ {b, w}
}
.

So {an}n∈N0 is a non-increasing sequence of non-negative real numbers.
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Suppose now that limn→+∞ an =: a∗ > 0. By Lemma 5.10, (5.28) in Lemma 5.12 with a := 1

and b := 0, (5.34), (5.31), and (5.2), we get that L(n)

φ̃,c,b
(ub) + L(n)

φ̃,c,w
(uw) ∈ C

2(Kb+Kw)
g (X0

c , d), for each

c ∈ {b, w} and each pair of ub ∈ Hb and uw ∈ Hw, with an abstract modulus of continuity g given by
g(t) := 2(C0(Kb +Kw) + 2(Kb +Kw)A)t

α, t ∈ [0,+∞), where the constant A > 1 is given by

A := (1 + 2T )
2C0

1 − Λ−α
exp
( C0T

1− Λ−α

(
diamd(S

2)
)α)

,

and T := (2s0+1)C13K exp(2s0C14K). Here the constant C0 > 1 depending only on f , d, and C comes
from Lemma 3.13, and C13 > 1, C14 > 0 are constants from Lemma 5.11 depending only on f , C, d,
and α. So g and A both depend only on f , C, d, α, H, Hb, and Hw. By Lemma 5.15,

∑

c∈{b,w}

∫

X0
c

(
L(n)

φ̃,c,b
(ub) + L(n)

φ̃,c,w
(uw)

)
dµφ =

∫

X0
b

ub dµφ +

∫

X0
w

uw dµφ = 0.

By (5.7) in Lemma 5.3, (5.18) in Lemma 5.10, and applying Lemma 5.16 with f , C, d, g, α, K, and
δ1 :=

a∗
2 > 0, we find constants N ∈ N and δ2 > 0 such that
∥∥∥L(N+n)

φ̃,c,b
(ub) + L(N+n)

φ̃,c,w
(uw)

∥∥∥
C0(X0

c )
=
∥∥∥
∑

c′∈{b,w}

L(N)

φ̃,c,c′

(
L(n)

φ̃,c′,b
(ub) + L(n)

φ̃,c′,w
(uw)

)∥∥∥
C0(X0

c )

≤ max
{∥∥∥L(n)

φ̃,c′,b
(ub) + L(n)

φ̃,c′,w
(uw)

∥∥∥
C0(X0

c′
)
: c′ ∈ {b, w}

}
− δ2 ≤ an − δ2,

for all n ∈ N0, c ∈ {b, w}, φ ∈ H, ub ∈ Hb, and uw ∈ Hw satisfying

(5.41) max
{∥∥∥L(n)

φ̃,c′,b
(ub) + L(n)

φ̃,c′,w
(uw)

∥∥∥
C0(X0

c′
)
: c′ ∈ {b, w}

}
≥ a∗/2.

Since limn→+∞ an = a∗, we can fix m ≥ 1 large enough so that am ≤ a∗+
δ2
2 . Then for each c ∈ {b, w},

each φ ∈ H, and each pair ub ∈ Hb and uw ∈ Hw satisfying (5.41) with n := m, we have
∥∥∥L(N+m)

φ̃,c,b
(ub) + L(N+m)

φ̃,c,w
(uw)

∥∥∥
C0(X0

c )
≤ am − δ2 ≤ a∗ − 2−1δ2.

On the other hand, by (5.18) in Lemma 5.10, for all φ ∈ H, ub ∈ Hb, and uw ∈ Hw with max
{∥∥L(m)

φ̃,c′,b
(ub)+

L(m)

φ̃,c′,w
(uw)

∥∥
C0(X0

c′
)
: c′ ∈ {b, w}

}
< a∗/2, the following holds for each c ∈ {b, w}:

∥∥∥L(N+m)

φ̃,c,b
(ub) + L(N+m)

φ̃,c,w
(uw)

∥∥∥
C0(X0

c )
< a∗/2.

Thus aN+m ≤ max
{
a∗− δ2

2 ,
a∗
2

}
< a∗, contradicting the fact that {an}n∈N0 is a non-increasing sequence

and the assumption that limn→+∞ an = a∗ > 0. This proves the uniform convergence in (5.40). �

Theorem 5.18. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2 satisfying
f(C) ⊆ C and post f ⊆ C. Let d be a visual metric on S2 for f with expansion factor Λ > 1. Let
α ∈ (0, 1] be a constant and H be a bounded subset of C0,α(S2, d) with respect to the Hölder norm.
Then there exists a constant ρ1 ∈ (0, 1) depending on f , C, d, α, and H such that the following property
is satisfied:

For all φ ∈ H, n ∈ N0, c ∈ {b, w}, ub ∈ C0,α
(
X0

b , d
)
, and uw ∈ C0,α

(
X0

w, d
)
, we have

(5.42)
∥∥∥
∑

c′∈{b,w}

L(n)

φ̃,c,c′
(uc′)

∥∥∥
C0(X0

c )
≤ 6ρn1 max

c′∈{b,w}

{
‖uc′‖C0,α(X0

c′
,d)

}
,

where uc′ ∈ C0,α
(
X0

c′ , d
)
for c′ ∈ {b, w} are given by uc′ := uc′ −

∫
X0

b

ub dµφ −
∫
X0

w

uw dµφ, with µφ
denoting the unique equilibrium state for f and φ. In particular,

(5.43)
∥∥∥
∑

c′∈{b,w}

L(n)

φ̃,c,c′
(uc′)

∥∥∥
C0(X0

c )
≤
∣∣∣∣
∫

X0
b

ub dµφ +

∫

X0
w

uw dµφ

∣∣∣∣+ 6ρn1 max
c′∈{b,w}

{
‖uc′‖C0,α(X0

c′
,d)

}
.
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Proof. Without loss of generality, we assume that H 6= ∅. Define a constant

(5.44) K := sup
{
‖φ‖C0,α(S2,d) : φ ∈ H

}
∈ [0,+∞).

Denote, for each c ∈ {b, w},
Hc :=

{
vc ∈ C0,α

(
X0

c , d
)
: ‖vc‖C0,α(X0

c ,d)
≤ 3
}
.

Inequality (5.43) follows immediately from (5.42), the triangle inequality, and the fact that L(1)

φ̃,c,b

(
1X0

b

)
+

L(1)

φ̃,c,w

(
1X0

w

)
= 1X0

c
by (5.6) and Lemma 5.10. So it suffices to establish (5.42).

We first consider the special case where ub ∈ Hb and uw ∈ Hw.
By (5.28) in Lemma 5.12 with s := 1, (5.17) in Lemma 5.10, and (5.44), for all j ∈ N, c ∈ {b, w},

φ ∈ H, ub ∈ Hb, and uw ∈ Hw, we have
∣∣∣∣
∑

c′∈{b,w}

L(j)

φ̃,c,c′
(uc′)

∣∣∣∣
α, (X0

c ,d)

≤ C0

Λαj

∑

c′∈{b,w}

|uc′ |α, (X0
c′
,d) +A0

∑

c′∈{b,w}

∥∥∥L(j)

φ̃,c,c′
(|uc′ |)

∥∥∥
C0(X0

c )

≤ 6C0

Λαj
+A0

∑

c′∈{b,w}

‖uc′‖C0(X0
c′
) ≤ C17,(5.45)

where the constant C17 is given by C17 := 6C0 + 12A0, the constant A0 := A0

(
f, C, d,K, α

)
> 2

defined in (5.34) from Lemma 5.12 depends only on f , C, d, H, and α, and the constant C0 > 1 from
Lemma 3.13 depends only on f , C, and d. Thus C17 > 1 depends only on f , C, d, and H.

So by (5.7) in Lemma 5.3, (5.28) in Lemma 5.12 with s := 1, (5.45), and (5.17) in Lemma 5.10, we
get that for all k ∈ N,

∣∣∣L(k+j)

φ̃,c,b
(ub) + L(k+j)

φ̃,c,w
(uw)

∣∣∣
α, (X0

c ,d)
≤

∑

c′∈{b,w}

∣∣∣L(k)

φ̃,c,c′

(
L(j)

φ̃,c′,b
(ub) + L(j)

φ̃,c′,w
(uw)

)∣∣∣
α, (X0

c ,d)

(5.46)

≤
∑

c′∈{b,w}

(
C0

Λαk

∣∣∣L(j)

φ̃,c′,b
(ub) + L(j)

φ̃,c′,w
(uw)

∣∣∣
α, (X0

c′
,d)

+A0

∥∥∥L(k)

φ̃,c,c′

(∣∣∣L(j)

φ̃,c′,b
(ub) + L(j)

φ̃,c′,w
(uw)

∣∣∣
)∥∥∥

C0(X0
c )

)

≤ 2C0C17

Λαk
+A0

∑

c′∈{b,w}

∥∥∥L(j)

φ̃,c′,b
(ub) + L(j)

φ̃,c′,w
(uw)

∥∥∥
C0(X0

c′
)
.

By Theorem 5.17, we can choose N0 ∈ N with the property that

(5.47)
2C0C17

Λαj
≤ 1

8
and (1 +A0)

∥∥∥L(j)

φ̃,c,b
(ub) + L(j)

φ̃,c,w
(uw)

∥∥∥
C0(X0

c )
≤ 1

8
,

for all j ∈ N with j ≥ N0, c ∈ {b, w}, φ ∈ H, ub ∈ Hb, and uw ∈ Hw. We set N0 ∈ N to be the smallest
integer with this property. So N0 depends only on f , C, d, α, and H.

For each m ∈ N, each c ∈ {b, w}, each φ ∈ H, and each pair of functions ub ∈ Hb and uw ∈ Hw, we
denote

(5.48) vm,c := L(2N0m)

φ̃,c,b
(ub) + L(2N0m)

φ̃,c,w
(uw).

Then by (5.46) and (5.47), the function vm,c ∈ C0,α
(
X0

c , d
)
satisfies ‖vm,c‖C0,α(X0

c ,d)
≤ 3/8. So 2vm,c ∈

Hc. We also note that by Lemma 5.15,

∑

c∈{b,w}

∫

X0
c

vm,c dµφ =
∑

c∈{b,w}

∑

c′∈{b,w}

∫

X0
c

L(2N0m)

φ̃,c,c′
(uc′) dµφ =

∑

c′∈{b,w}

∫

X0
c′

uc′ dµφ = 0.

Next, we prove by induction that for each m ∈ N, each φ ∈ H, and each pair of functions ub ∈ Hb

and uw ∈ Hw, we have

(5.49) max
{
‖vm,b‖C0,α(X0

b
,d) , ‖vm,w‖C0,α(X0

w,d)

}
≤ 3(1/2)m.

We have already shown that (5.49) holds for m = 1.
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Assume that (5.49) holds for m = j for some j ∈ N, then 2jvj,b ∈ Hb and 2jvj,w ∈ Hw. By (5.7) in

Lemma 5.3, for each c ∈ {b, w}, 2jvj+1,c = L(2N0)

φ̃,c,b
(2jvj,b) + L(2N0)

φ̃,c,w
(2jvj,w). Thus

∥∥2jvj+1,c

∥∥
C0,α(X0

c ,d)
≤

3/8 < 1/2. So ‖vj+1,c‖C0,α(X0
c ,d)

≤ (1/2)j+1 < 3(1/2)j+1.

The induction is now complete.

Then by (5.7) in Lemma 5.3, (5.18) in Lemma 5.10, (5.48), and (5.49), the following holds for all
j ∈ N, m ∈ N0, c ∈ {b, w}, φ ∈ H, ub ∈ Hb, and uw ∈ Hw:

∥∥∥L(j+2N0m)

φ̃,c,b
(ub) + L(j+2N0m)

φ̃,c,w
(uw)

∥∥∥
C0(X0

c )
=
∥∥∥
∑

c′∈{b,w}

L(j)

φ̃,c,c′

(
L(2N0m)

φ̃,c′,b
(ub) + L(2N0m)

φ̃,c′,w
(uw)

)∥∥∥
C0(X0

c )

≤ max
{∥∥∥L(2N0m)

φ̃,c′,b
(ub) + L(2N0m)

φ̃,c′,w
(uw)

∥∥∥
C0(X0

c′
)
: c′ ∈ {b, w}

}
≤ 3(1/2)m.

Hence, for each n ∈ N0,

(5.50)
∥∥∥L(n)

φ̃,c,b
(ub) + L(n)

φ̃,c,w
(uw)

∥∥∥
C0(X0

c )
≤ 3(1/2)

⌊ n
2N0

⌋ ≤ 6ρn1 ,

where the constant ρ1 := 2−1/(2N0) depends only on f , C, d, α, and H.
Finally, we consider the general case. For each pair of functions wb ∈ C0,α

(
X0

b , d
)
and ww ∈

C0,α
(
X0

w, d
)
, we denote M := max

{
‖wb‖C0,α(X0

b
,d) , ‖ww‖C0,α(X0

w,d)

}
and wc′ := wc′ −

∫
X0

b

wb dµφ −∫
X0

w

ww dµφ for each c′ ∈ {b, w}. Let ub := 1
Mwb and uw := 1

Mww. Then clearly ub ∈ Hb, uw ∈ Hw,

ub =
1
Mwb, and uw = 1

Mww. Therefore, by (5.50), for each n ∈ N0, each φ ∈ H, and each c ∈ {b, w},
∥∥∥L(n)

φ̃,c,b

(wb

M

)
+ L(n)

φ̃,c,w

(ww

M

)∥∥∥
C0(X0

c )
≤ 6ρn1 .

Now (5.42) follows. This completes the proof. �

Remark 5.19. For φ ∈ C0,α(S2, d), the existence of the spectral gap for the split Ruelle operator
L

φ̃
on C0,α

(
X0

b , d
)
× C0,α

(
X0

w, d
)
follows immediately from (5.12) in Lemma 5.7, Theorem 5.18, and

Lemma 5.12 (ii).

Finally, we establish the following lemma that will be used in Section 6.

Lemma 5.20. Let f , C, d, α, φ, s0 satisfy the Assumptions. Assume in addition f(C) ⊆ C. Then for
all n ∈ N and s ∈ C satisfying |ℜ(s)| ≤ 2s0 and |ℑ(s)| ≥ 1, we have

(5.51)
∣∣∣∣∣∣
L

n
s̃φ

∣∣∣∣∣∣[ℑ(s)]

α
≤ 4A0,

and more generally,

(5.52)
∥∥∥
(
L(n)

s̃φ,c,b
(ub) + L(n)

s̃φ,c,w
(uw)

)m∥∥∥
[ℑ(s)]

C0,α(X0
c ,d)

≤ (3m+ 1)A0

for all m ∈ N, c ∈ {b, w}, ub ∈ C0,α
((
X0

b , d
)
,C
)
, and uw ∈ C0,α

((
X0

w, d
)
,C
)
satisfying

(5.53) ‖ub‖[ℑ(s)]

C0,α(X0
b
,d)

≤ 1 and ‖uw‖[ℑ(s)]

C0,α(X0
w,d)

≤ 1.

Here A0 = A0

(
f, C, d, |φ|α, (S2,d) , α

)
≥ 2C0 > 2 is a constant from Lemma 5.12 depending only on f , C,

d, |φ|α, (S2,d), and α, and C0 > 1 is a constant depending only on f , C, and d from Lemma 3.13.

Proof. Fix n, m ∈ N, c ∈ {b, w}, and s = a + ib with a, b ∈ R satisfying |a| ≤ 2s0 and |b| ≥ 1.
Choose arbitrary ub ∈ C0,α

((
X0

b , d
)
,C
)
and uw ∈ C0,α

((
X0

w, d
)
,C
)
satisfying (5.53). We denote

M :=
∥∥L(n)

s̃φ,c,b
(ub) + L(n)

s̃φ,c,w
(uw)

∥∥
C0(X0

c )
. By (5.18) in Lemma 5.10, we have M ≤ 1.

We then observe that for each Hölder continuous function v ∈ C0,α((X, d0),C) on a compact metric
space (X, d0), we have |vm|α, (X,d0) ≤ m‖v‖m−1

C0(X)
|v|α, (X,d0). Thus we get from (5.28) in Lemma 5.12,
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(5.17) in Lemma 5.10, (5.53), and the observation above that
∥∥∥
(
L(n)

s̃φ,c,b
(ub) + L(n)

s̃φ,c,w
(uw)

)m∥∥∥
[b]

C0,α(X0
c ,d)

=Mm +
1

|b|
∣∣∣
(
L(n)

s̃φ,c,b
(ub) + L(n)

s̃φ,c,w
(uw)

)m∣∣∣
α, (X0

c ,d)

≤ 1 +mMm−1|b|−1
∣∣∣L(n)

s̃φ,c,b
(ub) + L(n)

s̃φ,c,w
(uw)

∣∣∣
α, (X0

c ,d)

≤ 1 +mC0Λ
−αn

∑

c′∈{b,w}

‖uc′‖[b]C0,α(X0
c′
,d)

+mA0

∑

c′∈{b,w}

∥∥∥L(n)

ãφ,c,c′
(|uc′ |)

∥∥∥
C0(X0

c )

≤ 1 + 2mC0 +mA0

(
‖ub‖C0(X0

b
) + ‖uw‖C0(X0

w)

)
≤ (3m+ 1)A0,

where C0 > 1 is a constant depending only on f , C, and d from Lemma 3.13, and the last inequality
follows from the fact that A0 ≥ 2C0 > 2 (see Lemma 5.12). The inequality (5.52) is now established,
and (5.51) follows from (5.13) in Lemma 5.7 and (5.52). �

6. Bound the zeta function with the operator norm

In this section, we bound the dynamical zeta function ζσA△
,−φ◦π△ using some bounds of the operator

norm of L−sφ, for an expanding Thurston map f with some forward invariant Jordan curve C and an
eventually positive real-valued Hölder continuous potential φ.

Subsection 6.1 focuses on Proposition 6.1, which provides a bound of the dynamical zeta function
ζσA△

,−φ◦π△ for the symbolic system
(
Σ+
A△
, σA△

)
asscociated to f in terms of the operator norms of Ln−sφ,

n ∈ N and s ∈ C in some vertical strip with |ℑ(s)| large enough. The idea of the proof originated from
D. Ruelle [Ru90]. In Subsection 6.2, we establish in Theorem 6.3 an exponential decay bound on the

operator norm
∣∣∣
∣∣∣
∣∣∣Ln−sφ

∣∣∣
∣∣∣
∣∣∣
α
of Ln−sφ, n ∈ N, assuming the bound stated in Theorem 6.2. Theorem 6.2 will

be proved at the end of Subsection 7.3. Combining the bounds in Proposition 6.1 and Theorem 6.3, we
give a proof of Theorem E in Subsection 6.3. Finally, in Subsection 6.5, we deduce Theorem 6.5 from
Theorem D following the ideas from [PS98] using basic complex analysis.

6.1. Ruelle’s estimate.

Proposition 6.1. Let f , C, d, Λ, α, φ, s0 satisfy the Assumptions. We assume, in addition, that
f(C) ⊆ C and no 1-tile in X1(f, C) joins opposite sides of C. Let

(
Σ+
A△
, σA△

)
be the one-sided subshift

of finite type associated to f and C defined in Proposition 3.21, and let π△ : Σ
+
A△

→ S2 be defined in
(3.19). Then for each δ > 0 there exists a constant Dδ > 0 such that for all integers n ≥ 2 and k ∈ N,
we have

(6.1)
∑

Xk∈Xk(f,C)

max
c∈{b,w}

∥∥L(k)

−sφ,c,Xk(1Xk)
∥∥
C0,α(X0

c ,d)
≤ Dδ|ℑ(s)|Λ−α exp(k(δ + P (f,−ℜ(s)φ)))

and ∣∣∣∣Z
(n)
σA△

,−φ◦π△(s)−
∑

c∈{b,w}

∑

X1∈X1(f,C)
X1⊆X0

c

L(n)
−sφ,c,X1(1X1)(xX1)

∣∣∣∣(6.2)

≤ Dδ|ℑ(s)|
n∑

m=2

∣∣∣∣∣∣
L

n−m
−sφ

∣∣∣∣∣∣
α

( 1

Λα
exp(δ + P (f,−ℜ(s)φ))

)m

for any choice of a point xX1 ∈ inte(X1) for each X1 ∈ X1(f, C), and for all s ∈ C with |ℑ(s)| ≥ 2s0+1

and |ℜ(s)− s0| ≤ s0, where Z
(n)
σA△

,−φ◦π△(s) is defined in (3.20).

Proof. Fix the integer n ≥ 2.
We first choose xXn ∈ Xn for each n-tile Xn ∈ Xn in the following way. If Xn ⊆ fn(Xn), then

let xXn be the unique point in Xn ∩ P1,fn (see [Li16, Lemmas 4.1 and 4.2]); otherwise Xn must be a
black n-tile contained in the white 0-tile, or a white n-tile contained in the black 0-tile, in which case
we choose an arbitrary point xXn ∈ inte(Xn). Next, for each i ∈ N0 with i ≤ n− 1, and each Xi ∈ Xi,
we fix an arbitrary point xXi ∈ inte(Xi).
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By (5.6) and our construction, we get that for all s ∈ C, c ∈ {b, w}, and Xn ∈ Xn with Xn ⊆ X0
c ,

(6.3) L(n)
−sφ,c,Xn(1Xn)(xXn) =

{
exp(−sSnφ(xXn)) if Xn ⊆ fn(Xn),

0 otherwise.

It is easy to check that by (6.3), the function Z
(n)
σA△

,−φ◦π△(s) defined in (3.20) satisfies

(6.4) Z
(n)
σA△

,−φ◦π△(s) =
∑

c∈{b,w}

∑

Xn∈Xn

Xn⊆X0
c

L(n)
−sφ,c,Xn(1Xn)(xXn).

Thus, by the triangle inequality, we get

∣∣∣∣Z
(n)
σA△

,−φ◦π△(s)−
∑

c∈{b,w}

∑

X1∈X1

X1⊆X0
c

L(n)
−sφ,c,X1(1X1)(xX1)

∣∣∣∣

≤
n∑

m=2

∑

c∈{b,w}

∣∣∣∣
∑

Xm−1∈Xm−1

Xm−1⊆X0
c

L(n)
−sφ,c,Xm−1(1Xm−1)(xXm−1)−

∑

Xm∈Xm

Xm⊆X0
c

L(n)
−sφ,c,Xm(1Xm)(xXm)

∣∣∣∣(6.5)

≤
n∑

m=2

∑

c∈{b,w}

∑

Xm−1∈Xm−1

Xm−1⊆X0
c

∣∣∣∣L
(n)
−sφ,c,Xm−1(1Xm−1)(xXm−1)−

∑

Xm∈Xm

Xm⊆Xm−1

L(n)
−sφ,c,Xm(1Xm)(xXm)

∣∣∣∣.

Note that for all s ∈ C, 2 ≤ m ≤ n, c ∈ {b, w}, and Xm−1 ∈ Xm−1 with Xm−1 ⊆ X0
c , by (5.6),

L(n)
−sφ,c,Xm−1(1Xm−1)(xXm−1) =

∑

Xn∈Xn
c

Xn⊆Xm−1

exp
(
−sSnφ

(
(fn|Xn)−1(xXm−1)

))

=
∑

Xm∈Xm

Xm⊆Xm−1

∑

Xn∈Xn
c

Xn⊆Xm

exp
(
−sSnφ

(
(fn|Xn)−1(xXm−1)

))
(6.6)

=
∑

Xm∈Xm

Xm⊆Xm−1

L(n)
−sφ,c,Xm(1Xm)(xXm−1).

Hence by (6.5), (6.6), and (5.8), we get

∣∣∣∣Z
(n)
σA△

,−φ◦π△(s)−
∑

c∈{b,w}

∑

X1∈X1

X1⊆X0
c

L(n)
−sφ,c,X1(1X1)(xX1)

∣∣∣∣

≤
n∑

m=2

∑

c∈{b,w}

∑

Xm−1∈Xm−1

Xm−1⊆X0
c

∑

Xm∈Xm

Xm⊆Xm−1

∣∣L(n)
−sφ,c,Xm(1Xm)(xXm−1)− L(n)

−sφ,c,Xm(1Xm)(xXm)
∣∣

≤
n∑

m=2

∑

c∈{b,w}

∑

Xm−1∈Xm−1

Xm−1⊆X0
c

∑

Xm∈Xm

Xm⊆Xm−1

∥∥L(n)
−sφ,c,Xm(1Xm)

∥∥
C0,α(X0

c ,d)
d(xXm−1 , xXm)α.

Note that by (5.8), L(m)
−sφ,c,Xm(1Xm) ∈ C0,α

((
X0

c , d
)
,C
)
for s ∈ C, m ∈ N, c ∈ {b, w}, Xm ∈ Xm,

and that by Lemma 3.8 (ii), d(xXm−1 , xXm) ≤ diamd(X
m−1) ≤ CΛ−m+1. Here C ≥ 1 is a constant
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from Lemma 3.8 depending only on f , C, and d. So by (5.7) in Lemma 5.3 and (5.13) in Lemma 5.7,
∣∣∣∣Z

(n)
σA△

,−φ◦π△(s)−
∑

c∈{b,w}

∑

X1∈X1

X1⊆X0
c

L(n)
−sφ,c,X1(1X1)(xX1)

∣∣∣∣(6.7)

≤
n∑

m=2

∑

Xm∈Xm

∣∣∣
∣∣∣
∣∣∣Ln−m−sφ

∣∣∣
∣∣∣
∣∣∣
α

(
max

c′∈{b,w}

∥∥L(m)
−sφ,c′,Xm(1Xm)

∥∥
C0,α(X0

c′
,d)

)
CαΛα(1−m).

We now give an upper bound for
∑

Xm∈Xm maxc′∈{b,w}

∥∥L(m)
−sφ,c′,Xm(1Xm)

∥∥
C0,α(X0

c′
,d)
.

Fix an arbitrary point y ∈ C \ post f .
Consider arbitrary s ∈ C with |ℜ(s) − s0| ≤ s0, m ∈ N, Xm

b ∈ Xm
b , Xm

w ∈ Xm
w , Xm ∈ Xm,

xb, x
′
b ∈ X0

b , xw, x
′
w ∈ X0

w, and c, c′ ∈ {b, w} with c 6= c′. By (5.6), Lemmas 3.13, and 3.8 (ii), we have

(6.8) L(m)
−sφ,c′,Xm

c

(
1Xm

c

)
(xc′) = 0,

and ∣∣∣L(m)
−sφ,c′,Xm

c′
(1Xm

c′
)(xc′)

∣∣∣ =
∣∣∣exp

(
−sSmφ

(
(fm|Xm

c′
)−1(xc′)

))∣∣∣

= exp
(
−ℜ(s)Smφ

(
(fm|Xm

c′
)−1(y)

))exp(−ℜ(s)Smφ((fm|Xm
c′
)−1(xc′)))

exp(−ℜ(s)Smφ((fm|Xm
c′
)−1(y)))

(6.9)

≤ exp
(
−ℜ(s)Smφ

(
(fm|Xm

c′
)−1(y)

))
exp
(
ℜ(s)C1

(
diamd

(
X0

c′

))α)

≤ exp
(
−ℜ(s)Smφ

(
(fm|Xm

c′
)−1(y)

))
exp(ℜ(s)CαC1),

where C1 > 0 is a constant from Lemma 3.15 depending only on f , C, d, φ, and α.
Hence by (6.8) and (6.9), we get

(6.10)
∥∥∥L(m)

−sφ,c′,Xm(1Xm)
∥∥∥
C0(X0

c′
)
≤ exp

(
−ℜ(s)Smφ

(
(fm|Xm)−1(y)

))
exp (ℜ(s)CαC1) .

By (5.6),

(6.11) L(m)
−sφ,c′,Xm

c

(
1Xm

c

)
(xc′)− L(m)

−sφ,c′,Xm
c

(
1Xm

c

)
(x′c′) = 0.

By (5.6) and Lemma 5.1 with T := 2s0 |φ|α, (S2,d),
∣∣1− L(m)

−sφ,c′,Xm
c′
(1Xm

c′
)(xc′)

/
L(m)

−sφ,c′,Xm
c′
(1Xm

c′
)(x′c′)

∣∣

=
∣∣1− exp

(
−s
(
Smφ

(
(fm|Xm

c′
)−1(xc′)

))
− Smφ

(
(fm|Xm

c′
)−1(x′c′)

))∣∣

≤ C10 |sφ|α, (S2,d) d(xc′ , x
′
c′)
α = C10|s| |φ|α, (S2,d) d(xc′ , x

′
c′)
α,

where the constant C10 = C10(f, C, d, α, T ) > 1 depends only on f , C, d, α, and φ in our context.
Thus by (6.9),

∣∣L(m)
−sφ,c′,Xm

c′
(1Xm

c′
)(xc′)− L(m)

−sφ,c′,Xm
c′
(1Xm

c′
)(x′c′)

∣∣

≤
∣∣1− L(m)

−sφ,c′,Xm
c′
(1Xm

c′
)(xc′)

/
L(m)

−sφ,c′,Xm
c′
(1Xm

c′
)(x′c′)

∣∣∣∣L(m)
−sφ,c′,Xm

c′
(1Xm

c′
)(x′c′)

∣∣

≤ 4−1C11|s|d(xc′ , x′c′)α exp
(
−ℜ(s)Smφ

(
(fm|Xm

c′
)−1(y)

))
,

where we define the constant

(6.12) C11 := max
{
2, 4C10 |φ|α, (S2,d)

}
exp (2s0C

αC1)

depending only on f , C, d, α, and φ.
So we get

(6.13)
∣∣L(m)

−sφ,c′,Xm
c′
(1Xm

c′
)
∣∣
α, (X0

c′
,d)

≤ 4−1C11|s| exp
(
−ℜ(s)Smφ

(
(fm|Xm

c′
)−1(y)

))
.

Thus by (6.11) and (6.13), we have

(6.14)
∣∣L(m)

−sφ,c′,Xm(1Xm)
∣∣
α, (X0

c′
,d)

≤ 4−1C11|s| exp
(
−ℜ(s)Smφ

(
(fm|Xm)−1(y)

))
.
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Hence by (6.10) and (6.14), for all m ∈ N, Xm ∈ Xm, s ∈ C, and c′ ∈ {b, w} satisfying |ℑ(s)| ≥
2s0 + 1 and |ℜ(s)− s0| ≤ s0, we have

(6.15)
∥∥L(m)

−sφ,c′,Xm(1Xm)
∥∥
C0,α(X0

c′
,d)

≤ C11|ℑ(s)| exp
(
−ℜ(s)Smφ

(
(fm|Xm)−1(y)

))
.

So by (6.15) and the fact that y ∈ C, we get
∑

Xm∈Xm

max
c′∈{b,w}

∥∥L(m)
−sφ,c′,Xm(1Xm)

∥∥
C0,α(X0

c′
,d)

≤ C11|ℑ(s)|
∑

Xm∈Xm

exp
(
−ℜ(s)Smφ

(
(fm|Xm)−1(y)

))
(6.16)

= 2C11|ℑ(s)|Lm−ℜ(s)φ(1S2)(y).

We construct a sequence of continuous functions pm : R → R, m ∈ N, as

(6.17) pm(a) :=
(
Lm−aφ(1S2)(y)

)1/m
.

By Lemma 3.25 in [LZhe23a], the function a 7→ pm(a) − eP (f,−aφ) converges to 0 as m tends to +∞,
uniformly in a ∈ [0, 2s0]. Recall that a 7→ P (f,−aφ) is continuous in a ∈ R (see for example, [PU10,
Theorem 3.6.1]). Thus by (6.16), there exists a constant C12 > 0 depending only on f , C, d, α, φ, and
δ such that for all m ∈ N and s ∈ C with |ℑ(s)| ≥ 2s0 + 1 and |ℜ(s)− s0| ≤ s0,

∑

Xm∈Xm

max
c′∈{b,w}

∥∥L(m)
−sφ,c′,Xm(1Xm)

∥∥
C0,α(X0

c′
,d)

(6.18)

≤ 2C11|ℑ(s)|(pm(ℜ(s)))m ≤ C12|ℑ(s)|em(δ+P (f,−ℜ(s)φ)).

Combining (6.7) with the above inequality, we get for all s ∈ C with |ℑ(s)| ≥ 2s0+1 and |ℜ(s)−s0| ≤
s0,

∣∣∣∣Z
(n)
σA△

,−φ◦π△(s)−
∑

c∈{b,w}

∑

X1∈X1

X1⊆X0
c

L(n)
−sφ,c,X1(1X1)(xX1)

∣∣∣∣

≤ Dδ|ℑ(s)|
n∑

m=2

∣∣∣
∣∣∣
∣∣∣Ln−m−sφ

∣∣∣
∣∣∣
∣∣∣
α

( 1

Λα
exp(δ + P (f,−ℜ(s)φ))

)m
,

where Dδ := CαC12Λ
α > C12 > 0 is a constant depending only on f , C, d, φ, α, and δ.

Inequality (6.1) now follows from (6.18) and DδΛ
−α ≥ C12. �

6.2. Operator norm. The following theorem is one of the main estimates we need to prove in this
paper.

Theorem 6.2. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2 satisfying
f(C) ⊆ C and post f ⊆ C. Let d be a visual metric on S2 for f with expansion factor Λ > 1, and
φ ∈ C0,α(S2, d) be an eventually positive real-valued Hölder continuous function with an exponent
α ∈ (0, 1] that satisfies the α-strong non-integrability condition. Let s0 ∈ R be the unique positive real
number satisfying P (f,−s0φ) = 0.

Then there exist constants ι ∈ N, a0 ∈ (0, s0], b0 ∈ [2s0 + 1,+∞), and ρ ∈ (0, 1) such that for each
c ∈ {b, w}, each n ∈ N, each s ∈ C with |ℜ(s) − s0| ≤ a0 and |ℑ(s)| ≥ b0, and each pair of functions

ub ∈ C0,α
((
X0

b , d
)
,C
)
and uw ∈ C0,α

((
X0

w, d
)
,C
)
satisfying ‖ub‖[ℑ(s)]

C0,α(X0
b
,d)

≤ 1 and ‖uw‖[ℑ(s)]

C0,α(X0
w,d)

≤ 1,

we have

(6.19)

∫

X0
c

∣∣∣L(nι)

−̃sφ,c,b
(ub) + L(nι)

−̃sφ,c,w
(uw)

∣∣∣
2
dµ−s0φ ≤ ρn.

Here µ−s0φ denotes the unique equilibrium state for the map f and the potential −s0φ.
We will prove the above theorem at the end of Section 7. Assuming Theorem 6.2, we can establish

the following theorem.
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Theorem 6.3. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2 satisfying
f(C) ⊆ C and post f ⊆ C. Let d be a visual metric on S2 for f with expansion factor Λ > 1, and
φ ∈ C0,α(S2, d) be an eventually positive real-valued Hölder continuous function with an exponent
α ∈ (0, 1] that satisfies the α-strong non-integrability condition. Let s0 ∈ R be the unique positive real
number satisfying P (f,−s0φ) = 0.

Then there exists a constant D′ = D′(f, C, d, α, φ) > 0 such that for each ǫ > 0, there exist constants

δǫ ∈ (0, s0), b̃ǫ ≥ 2s0 + 1, and ρǫ ∈ (0, 1) with the following property:

For each n ∈ N and all s ∈ C satisfying |ℜ(s)− s0| < δǫ and |ℑ(s)| ≥ b̃ǫ, we have

(6.20)
∣∣∣∣∣∣
L

n
−sφ
∣∣∣∣∣∣
α
≤ D′|ℑ(s)|1+ǫρnǫ .

Proof. Fix an arbitrary number ǫ > 0. Let ι ∈ N, a0 ∈ (0, s0], b0 ∈ [2s0 + 1,+∞), and ρ ∈ (0, 1) be
constants from Theorem 6.2 depending only on f , C, d, α, and φ.

We choose ι0 ∈ N to be the smallest integer satisfying 1
2ι0

< ǫ, ι0 ≥ 2, and ι0
ι ∈ N.

Denote

(6.21) γ := − log max
{
ρι0/(2ι), ρ

1/2
1 , Λ−α

}
> 0,

where ρ1 := ρ1
(
f, C, d, α,H

)
∈ (0, 1), with H :=

{
−̃tφ : t ∈ R, |t − s0| ≤ a0

}
a bounded subset of

C0,α(S2, d), is a constant from Theorem 5.18 depending only on f , C, d, and α in our context here.
We define

ρǫ := e−γ/(32ι0) ∈ (0, 1),(6.22)

b̃ǫ := max
{
eι0γ , (21A2

0)
2ι0 , 2s0 + 1

}
> e.(6.23)

Here A0 = A0

(
f, C, d, |φ|α, (S2,d) , α

)
> 2 is a constant from Lemma 5.12 depending only on f , C, d,

|φ|α, (S2,d), and α.

Moreover, note that by (3.18),
∥∥−̃aφ−−̃s0φ

∥∥
C0(S2)

≤ |a−s0|‖φ‖C0(S2)+ |P (f,−aφ)−P (f,−s0φ)|+
2‖ log u−aφ − log u−s0φ‖C0(S2). Since the function t 7→ P (f, tφ) is continuous (see for example, [PU10,

Theorem 3.6.1]), P (f,−s0φ) = 0, and the map t 7→ utφ is continuous on C0,α(S2, d) equipped with
the uniform norm ‖ · ‖C0(S2) by Lemma 3.18, we can choose δǫ ∈ (0, a0) sufficiently small so that if
a ∈ [s0 − δǫ, s0 + δǫ], then

(6.24) |P (f,−aφ)| ≤ − log ρǫ and
∥∥−̃aφ− −̃s0φ

∥∥
C0(S2)

≤ log min
{
ρ−1/(2ι), ρ

−1/2
1

}
.

Fix an arbitrary number s = a + ib ∈ C with a, b ∈ R satisfying |a − s0| ≤ δǫ and |b| ≥ b̃ǫ,
and fix an arbitrary pair of complex-valued Hölder continuous functions ub ∈ C0,α

((
X0

b , d
)
,C
)
and

uw ∈ C0,α
((
X0

w, d
)
,C
)
satisfying ‖ub‖[b]C0,α(X0

b
,d)

≤ 1 and ‖uw‖[b]C0,α(X0
w,d)

≤ 1.

We denote by m ∈ N the smallest integer satisfying

(6.25) mι0γ ≥ 2 log|b| ≥ 0.

Then m ≥ 2 by (6.23).
We first note that by (5.6), the Cauchy–Schwartz inequality, Lemma 5.10, (5.43) in Theorem 5.18,

Theorem 6.2, (5.52) in Lemma 5.20, and (6.24), and by denoting Lc′ :=
∣∣L(mι0)

−̃sφ,c′,b
(ub) + L(mι0)

−̃sφ,c′,w
(uw)

∣∣,
we have for each c ∈ {b, w} and each x ∈ X0

c ,
( ∑

c′∈{b,w}

L(mι0)

−̃aφ,c,c′

(∣∣L(mι0)

−̃sφ,c′,b
(ub) + L(mι0)

−̃sφ,c′,w
(uw)

∣∣
)
(x)

)2

=

( ∑

c′∈{b,w}

∑

X∈X
mι0
c

X∈X0
c′

(
e

1
2
Smι0 −̃aφ+

1
2
Smι0 (−̃aφ−−̃s0φ) · e 1

2
Smι0 −̃s0φLc′

)((
fmι0 |X

)−1
(x)
))2

≤
( ∑

c′∈{b,w}

L(mι0)

−̃aφ,c,c′

(
e
mι0‖−̃aφ−−̃s0φ‖C0(S2)

)
(x)

)( ∑

c′∈{b,w}

L(mι0)

−̃s0φ,c,c′
(
L2
c′

)
(x)

)
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≤ e
mι0‖−̃aφ−−̃s0φ‖C0(S2)

(
6ρmι01 max

c′∈{b,w}

∥∥L2
c′

∥∥
C0,α(X0

c′
,d)

+
∑

c′∈{b,w}

∫

X0
c′

L2
c′ dµ−s0φ

)

≤ 42A0ρ
mι0/2
1 |b|+ 2ρmι0/(2ι).

Combining the above with (6.25), (6.21), and the fact that ι0 ≥ 2 and A0 > 2, we get for each c ∈ {b, w},
∥∥∥∥
∑

c′∈{b,w}

L(mι0)

−̃aφ,c,c′

(∣∣∣L(mι0)

−̃sφ,c′,b
(ub) + L(mι0)

−̃sφ,c′,w
(uw)

∣∣∣
)∥∥∥∥

C0(X0
c )

(6.26)

≤
(
42A0|b|−2+1 + 2|b|−2/ι0

)1/2 ≤ 7A0|b|−1/ι0 .

Thus by (5.10), (5.12), (5.7), and (6.26), we get that for each c ∈ {b, w},
∥∥∥πc
(
L

2mι0
−̃sφ

(ub, uw)
)∥∥∥

C0(X0
c )

=

∥∥∥∥
∑

c′∈{b,w}

L(mι0)

−̃sφ,c,c′

(
L(mι0)

−̃sφ,c′,b
(ub) + L(mι0)

−̃sφ,c′,w
(uw)

)∥∥∥∥
C0(X0

c )

≤
∥∥∥∥
∑

c′∈{b,w}

L(mι0)

−̃aφ,c,c′

(∣∣∣L(mι0)

−̃sφ,c′,b
(ub) + L(mι0)

−̃sφ,c′,w
(uw)

∣∣∣
)∥∥∥∥

C0(X0
c )

(6.27)

≤ 7A0|b|−1/ι0 .

By (5.10), (5.12), (5.28) in Lemma 5.12, Lemma 5.20, (6.26), (6.25), and (6.21), we have for each
c ∈ {b, w},

1

|b|
∣∣∣πc
(
L

2mι0
−̃sφ

(ub, uw)
)∣∣∣
α, (X0

c ,d)

=
1

|b|

∣∣∣∣
∑

c′∈{b,w}

L(mι0)

−̃sφ,c,c′

(
L(mι0)

−̃sφ,c′,b
(ub) + L(mι0)

−̃sφ,c′,w
(uw)

)∣∣∣∣
α, (X0

c ,d)

≤
∑

c′∈{b,w}

C0

Λαmι0

∥∥∥L(mι0)

−̃sφ,c′,b
(ub) + L(mι0)

−̃sφ,c′,w
(uw)

∥∥∥
[b]

C0,α(X0
c′
,d)

(6.28)

+
∑

c′∈{b,w}

A0

∥∥∥L(mι0)

−̃aφ,c,c′

(∣∣∣L(mι0)

−̃sφ,c′,b
(ub) + L(mι0)

−̃sφ,c′,w
(uw)

∣∣∣
)∥∥∥

C0(X0
c )

≤ 8A0C0Λ
−αmι0 +A0

(
7A0|b|−1/ι0

)
≤ 7A2

0|b|−2 + 7A2
0|b|−1/ι0 ≤ 14A2

0|b|−1/ι0 ,

where C0 > 1 is a constant depending only on f , C, and d from Lemma 3.13, and A0 ≥ 2C0 > 2 (see
Lemma 5.12).

Hence, for each n ∈ N, by choosing k ∈ N0 and r ∈ {0, 1, . . . , 2mι0 − 1} with n = 2mι0k+ r, we get

from (6.27), (6.28), Definition 5.6, and (5.51) in Lemma 5.20 that since |b| ≥ b̃ǫ and m ≥ 2,

∣∣∣∣∣∣
L

n
−̃sφ

∣∣∣∣∣∣
α
≤ |b|

∣∣∣∣∣∣
L

2mι0k+r

−̃sφ

∣∣∣∣∣∣[b]
α

≤ |b|
(∣∣∣∣∣∣
L

2mι0
−̃sφ

∣∣∣∣∣∣[b]
α

)k ∣∣∣∣∣∣
L

r
−̃sφ

∣∣∣∣∣∣[b]
α

≤ 4A0|b|
(
7A0|b|−1/ι0 + 14A2

0|b|−1/ι0
)k ≤ 4A0|b|1−

k
2ι0(6.29)

≤ 4A0|b|1+
1

2ι0
−

2mι0k+r
2ι0

1
2mι0 ≤ 4A0|b|1+

1
2ι0 |b|

− n

4mι20

≤ 4A0|b|1+ǫe
−

n log|b|

8(m−1)ι20 ≤ 4A0|b|1+ǫρ2nǫ ,

where the last inequality follows from (6.22) and the fact that m is the smallest integer satisfying (6.25).

We now turn the upper bound for
∣∣∣∣∣∣
L

n
−̃sφ

∣∣∣∣∣∣
α
in (6.29) into a bound for

∣∣∣
∣∣∣
∣∣∣Ln−sφ

∣∣∣
∣∣∣
∣∣∣
α
.
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By (5.13), (5.16), (5.22) in Lemma 5.11, and Corollary 5.14, we get

∣∣∣∣∣∣
L

n
−sφ
∣∣∣∣∣∣
α
= sup

{∥∥∑
c∈{b,w} L

(n)
−sφ,c′,c(vc)

∥∥
C0,α(X0

c′
,d)

max
{
‖vc‖C0,α(X0

c ,d)
: c ∈ {b, w}

}
}

≤ enP (f,−aφ) ‖u−aφ‖C0,α(S2,d) sup

{∥∥∑
c∈{b,w} L

(n)

−̃sφ,c′,c

(
vc/u−aφ

)∥∥
C0,α(X0

c′
,d)

max
{
‖vc‖C0,α(X0

c ,d)
: c ∈ {b, w}

}
}

≤ enP (f,−aφ) ‖u−aφ‖C0,α(S2,d)

∣∣∣∣∣∣
L

n
−̃sφ

∣∣∣∣∣∣
α
sup

{
max

{
‖vc/u−aφ‖C0,α(X0

c ,d)
: c ∈ {b, w}

}

max
{
‖vc‖C0,α(X0

c ,d)
: c ∈ {b, w}

}
}

≤ enP (f,−aφ) ‖u−aφ‖C0,α(S2,d)

∣∣∣∣∣∣
L

n
−̃sφ

∣∣∣∣∣∣
α
‖1/u−aφ‖C0,α(S2,d)

≤ enP (f,−aφ) ‖u−aφ‖C0,α(S2,d)

∣∣∣∣∣∣
L

n
−̃sφ

∣∣∣∣∣∣
α
e2C15

(
1 + ‖u−aφ‖C0,α(S2,d)

)

≤
∣∣∣∣∣∣
L

n
−̃sφ

∣∣∣∣∣∣
α
e2C15

(
1 + ‖u−aφ‖C0,α(S2,d)

)2
exp(nP (f,−aφ)),

where the suprema are taken over all vb ∈ C0,α
((
X0

b , d
)
,C
)
, vw ∈ C0,α

((
X0

w, d
)
,C
)
, and c′ ∈ {b, w}

with ‖vb‖C0(X0
b
)‖vw‖C0(X0

w) 6= 0. Here the constant C15 = C15(f, C, d, α, T,K), with T := 2s0 and

K := |φ|α, (S2,d) > 0, is defined in (5.23) in Lemma 5.11 and depends only on f , C, d, α, and |φ|α, (S2,d)

in our context.
Combining the above inequality with (6.29), (6.23), (6.24), and (5.21) in Lemma 5.11, we get that if

a ∈ (s0 − δǫ, s0 + δǫ) and |b| ≥ b̃ǫ, then

∣∣∣∣∣∣
L

n
−sφ
∣∣∣∣∣∣
α
≤ 4A0|b|1+ǫρ2nǫ ρ−nǫ e2C15

(
1 + ‖u−aφ‖C0,α(S2,d)

)2 ≤ D′|b|1+ǫρnǫ ,

where D′ := 4A0e
2C15

(
8
s0|φ|α, (S2,d)C0

1−Λ−α L+ 2
)2(

e2C15
)2
> 1, which depends only on f , C, d, α, and φ. �

6.3. Bound the symbolic zeta function. Using Proposition 6.1 and Theorem 6.3, we can get the
following bound for the zeta function ζσA△

,−φ◦π△ (c.f. (3.21)).

Proposition 6.4. Let f , C, d, Λ, α, φ, s0 satisfy the Assumptions. We assume, in addition, that
φ satisfies the α-strong non-integrability condition, and that f(C) ⊆ C and no 1-tile in X1(f, C) joins

opposite sides of C. Then for each ǫ > 0 there exist constants C̃ǫ > 0 and ãǫ ∈ (0, s0) such that

(6.30)

∣∣∣∣
+∞∑

n=1

1

n
Z

(n)
σA△

,−φ◦π△(s)

∣∣∣∣ ≤ C̃ǫ|ℑ(s)|2+ǫ

for all s ∈ C with |ℜ(s)− s0| < ãǫ and |ℑ(s)| ≥ b̃ǫ, where b̃ǫ ≥ 2s0 + 1 is a constant depending only on
f , C, d, α, φ, and ǫ defined in Theorem 6.3.

Recall Z
(n)
σA△

,−φ◦π△(s) defined in (3.20).

Proof. Let δ := 1
3 log(Λ

α) > 0.
Since t 7→ P (f,−tφ) is continuous on R (see for example, [PU10, Theorem 3.6.1]), we fix ãǫ ∈

(0, δǫ) ⊆ (0, s0) such that |P (f,−tφ)| < 1
3 log(Λ

α) for each t ∈ R with |t− s0| < ãǫ, where δǫ ∈ (0, s0) is
a constant defined in Theorem 6.3 depending only on f , C, d, α, φ, and ǫ.
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Fix an arbitrary point xX1 ∈ inte(X1) for each X1 ∈ X1. By Lemmas 5.3, 5.7, and (6.1) in
Proposition 6.1, for each n ≥ 2 and each s ∈ C with |ℜ(s)− s0| < ãǫ, we have

∣∣∣∣
∑

c∈{b,w}

∑

X1∈X1

X1⊆X0
c

L(n)
−sφ,c,X1(1X1)(xX1)

∣∣∣∣

≤
∑

c∈{b,w}

∑

X1∈X1

X1⊆X0
c

∣∣∣∣
∑

c′∈{b,w}

L(n−1)
−sφ,c,c′

(
L(1)

−sφ,c′,X1(1X1)
)
(xX1)

∣∣∣∣(6.31)

≤
∣∣∣
∣∣∣
∣∣∣Ln−1

−sφ

∣∣∣
∣∣∣
∣∣∣
α

∑

c∈{b,w}

∑

X1∈X1

X1⊆X0
c

max
c′∈{b,w}

∥∥L(1)
−sφ,c′,X1(1X1)

∥∥
C0,α(X0

c′
,d)

≤
∣∣∣
∣∣∣
∣∣∣Ln−1

−sφ

∣∣∣
∣∣∣
∣∣∣
α
Dδ |ℑ(s)|Λ−α exp(δ + P (f,−ℜ(s)φ)),

where Dδ > 0 is a constant depending only on f , C, d, α, φ, and δ from Proposition 6.1.
Hence by (3.20), Proposition 6.1, (6.31), Theorem 6.3, and the choices of δ and ãǫ above, we get that

for each s ∈ C with |ℜ(s)− s0| < ãǫ and |ℑ(s)| ≥ b̃ǫ,

+∞∑

n=2

1

n

∣∣∣Z(n)
σA△

,−φ◦π△(s)
∣∣∣ ≤

+∞∑

n=2

1

n

(∣∣∣∣
∑

c∈{b,w}

∑

X1∈X1

X1⊆X0
c

L(n)
−sφ,c,X1(1X1)(xX1)

∣∣∣∣

+

∣∣∣∣Z
(n)
σA△

,−φ◦π△(s)−
∑

c∈{b,w}

∑

X1∈X1

X1⊆X0
c

L(n)
−sφ,c,X1(1X1)(xX1)

∣∣∣∣
)

≤
+∞∑

n=2

1

n

(∣∣∣
∣∣∣
∣∣∣Ln−1

−sφ

∣∣∣
∣∣∣
∣∣∣
α
Dδ|ℑ(s)|Λ−α

3 +Dδ|ℑ(s)|
n∑

m=2

∣∣∣
∣∣∣
∣∣∣Ln−m−sφ

∣∣∣
∣∣∣
∣∣∣
α
Λ−mα

3

)

≤ |ℑ(s)|2+ǫ
+∞∑

n=2

D′

n
Dδ

n∑

m=1

ρn−mǫ Λ−mα
3 ≤ D′Dδ|ℑ(s)|2+ǫ

+∞∑

n=2

ρ̃nǫ ≤ D′Dδ

1− ρ̃ǫ
|ℑ(s)|2+ǫ,

where the constant ρ̃ǫ := max
{
ρǫ, Λ

−α/3
}
< 1 depends only on f , C, d, α, φ, and ǫ. Here constants

D′ ∈ (0, s0) and ρǫ ∈ (0, 1) are from Theorem 6.3 depending only on f , C, d, α, φ, and ǫ.
Therefore, by Proposition A.1 (i) in [LZhe23a] and (3.20), we have

∣∣∣∣
+∞∑

n=1

1

n
Z

(n)
σA△

,−φ◦π△(s)

∣∣∣∣ ≤
∣∣∣Z(1)

σA△
,−φ◦π△(s)

∣∣∣+
+∞∑

n=2

1

n

∣∣∣Z(n)
σA△

,−φ◦π△(s)
∣∣∣ ≤ C̃ǫ|ℑ(s)|2+ǫ

for all s ∈ C with |ℜ(s)− s0| < ãǫ and |ℑ(s)| ≥ b̃ǫ, where the constant

C̃ǫ := D′Dδ(1− ρ̃ǫ)
−1 + 2deg f exp

(
2s0‖φ‖C0(S2)

)

depends only on f , C, d, α, φ, and ǫ. �

It follows immediately from the above proposition that ζσA△
,−φ◦π△(s) has a non-vanishing holomorphic

extension across the vertical line ℜ(s) = s0 for high frequency. In order to get a similar theorem for
ζσA△

,−φ◦π△(s) as Theorem D, we just need to establish its holomorphic extension for low frequency.

Proof of Theorem E. Statement (i) of Theorem E has been established in [LZhe23a, Theorem E].
To verify statement (ii) in Theorem E, we assume, in addition, that φ satisfies the α-strong non-

integrability condition.

Fix an arbitrary ǫ > 0. Let C̃ǫ > 0 and ãǫ ∈ (0, s0) be constants from Proposition 6.4, and b̃ǫ ≥ 2s0+1
be a constant from Theorem 6.3, all of which depend only on f , C, d, α, φ, and ǫ. The inequality (1.5)
follows immediately from (6.30) in Proposition 6.4.
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Therefore, by the compactness of
[
−b̃ǫ, b̃ǫ

]
, we can choose ǫ̃0 ∈ (0, ãǫ) ⊆ (0, s0) small enough such

that ζσA△
,−φ◦π△(s) extends to a non-vanishing holomorphic function on the closed half-plane {s ∈ C :

ℜ(s) ≥ s0 − ǫ̃0} except for a simple pole at s = s0. �

6.4. Proof of Theorem D. In this subsection, we give a proof of Theorem D assuming Theorem E.

Proof of Theorem D. Statement (i) is established in [LZhe23a, Theorem D].
To verify statement (ii), we continue with the proof of [LZhe23a, Theorem D] and assume in addition

that φ satisfies the α-strong non-integrability condition. By statement (ii) in Theorem E and the proof
of Claim 1 (in the proof of [LZhe23a, Theorem D] in [LZhe23a, Section 8]), Df,−φ,degf extends to a

non-vanishing holomorphic function on Hs0−ǫ′0
except for the simple pole at s = s0. Moreover, for each

ǫ > 0, there exists a constant C ′
ǫ > 0 such that

exp
(
−C ′

ǫ|ℑ(s)|2+ǫ
)
≤
∣∣Df,−φ, degf (s)

∣∣ ≤ exp
(
C ′
ǫ|ℑ(s)|2+ǫ

)

for all s ∈ C with |ℜ(s) − s0| < ǫ′0 and |ℑ(s)| ≥ bǫ, where bǫ := b̃ǫ > 0 is a constant from Theorem E
depending only on f , C, d, φ, and ǫ.

Therefore, statement (ii) in Theorem D holds for aǫ := min{ǫ0, ãǫ} > 0, bǫ = b̃ǫ > 0, and some
constant Cǫ > C ′

ǫ > 0 depending only on f , C, d, φ, and ǫ. �

6.5. Proof of Theorem C. We first state the following theorem on the logarithmic derivative of the
zeta function, which will be proved at the end of this subsection.

Theorem 6.5. Let f : S2 → S2 be an expanding Thurston map, and d be a visual metric on S2 for f .
Let φ ∈ C0,α(S2, d) be an eventually positive real-valued Hölder continuous function with an exponent
α ∈ (0, 1] that satisfies the α-strong non-integrability condition. Denote by s0 the unique positive number
with P (f,−s0φ) = 0.

Then there exists Nf ∈ N depending only on f such that for each n ∈ N with n ≥ Nf , the following

statement holds for F := fn and Φ :=
∑n−1

i=0 φ ◦ f i:
There exist constants a ∈ (0, s0), b ≥ 2s0 + 1, and D > 0 such that

(6.32)

∣∣∣∣
ζ ′F,−Φ(s)

ζF,−Φ(s)

∣∣∣∣ ≤ D|ℑ(s)| 12

for all s ∈ C with |ℜ(s)− s0| < a and |ℑ(s)| ≥ b.

Statement (i) in Theorem C is established in [LZhe23a]. Once Theorem D and Theorem 6.5 are
established, statement (ii) in Theorem C follows from standard number-theoretic arguments. More
precisely, a proof of statement (ii) in Theorem C, relying on Proposition 3.24, Theorem 6.5, and
statement (ii) in Theorem D, is verbatim the same as that of [PS98, Theorem 1] presented in [PS98,
Section 3]. We omit this proof here and direct the interested readers to the references cited above.

To prove Theorem 6.5, following the ideas from [PS98], we convert the bounds of the zeta function
for an expanding Thurston map from Theorem D to a bound of its logarithmic derivative.

We first record a standard result from complex analysis (see [EE85, Theorem 4.2]) as in [PS98,
Section 2].

Lemma 6.6. Consider z ∈ C, R > 0, and δ > 0. Let F : ∆ → C is a holomorphic function on the
closed disk ∆ :=

{
s ∈ C : |s− z| ≤ R(1 + δ)3

}
. Assume that F satisfies the following two conditions:

(i) F (s) has no zeros on the subset
{
s ∈ C : |s− z| ≤ R(1 + δ)2,ℜ(s) > ℜ(z)−R(1 + δ)

}
⊆ ∆.

(ii) There exists a constant U ≥ 0 depending only on z, R, δ, and F such that

log|F (s)| ≤ U + log|F (z)|
for all s ∈ ∆ with |s− z| ≤ R(1 + δ)3.

Then for each s ∈ ∆ with |s− z| ≤ R, we have
∣∣∣∣
F ′(s)

F (s)

∣∣∣∣ ≤
2 + δ

δ

(∣∣∣∣
F ′(z)

F (z)

∣∣∣∣+
(
2 + (1 + δ)−2

)
(1 + δ)

Rδ2
U

)
.
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We will also need a version of the well-known Phragmén–Lindelöf theorem recorded below. See [Ti39,
Section 5.65] for the statement and proof of this theorem.

Theorem 6.7 (The Phragmén–Lindelöf Theorem). Consider real numbers δ1 < δ2. Let h(s) be a
holomorphic function on the strip {s ∈ C : δ1 ≤ ℜ(s) ≤ δ2}. Assume that the following conditions are
satisfied:

(i) For each σ > 0, there exist real numbers Cσ > 0 and Tσ > 0 such that

|h(δ + it)| ≤ Cσe
σ|t|

for all δ, t ∈ R with δ1 ≤ δ ≤ δ2 and |t| ≥ Tσ.

(ii) There exist real numbers C0 > 0, T0 > 0, and k1, k2 ∈ R such that

|h(δ1 + it)| ≤ C0|t|k1 and |h(δ2 + it)| ≤ C0|t|k2

for all t ∈ R with |t| ≥ T0.

Then there exist real numbers D > 0 and T > 0 such that

|h(δ + it)| ≤ C|t|k(δ)

for all δ, t ∈ R with δ1 ≤ δ ≤ δ2 and |t| ≥ T , where k(δ) is the linear function of δ which takes values
k1, k2 for δ = δ1, δ2, respectively.

Assuming Theorem D, we establish Theorem 6.5 as follows.

Proof of Theorem 6.5. We choose Nf ∈ N as in Remark 1.1. Note that P
(
f i,−s0Sfi φ

)
= iP (f,−s0φ) =

0 for each i ∈ N (see for example, [Wal82, Theorem 9.8]). We observe that by Lemma 3.11, it suffices
to prove the case n = Nf = 1. In this case, F = f , Φ = φ, and there exists a Jordan curve C ⊆ S2

satisfying f(C) ⊆ C, post f ⊆ C, and no 1-tile in X1(f, C) joins opposite sides of C.
Let Cǫ, aǫ ∈ (0, s0), and bǫ ≥ 2s0 +1 be constants from Theorem D depending only on f , C, d, α, φ,

and ǫ. We fix ǫ := 1 throughout this proof.

Define R := aǫ
3 , β := bǫ +

aǫ
2 , and δ :=

(
3
2

)1/3 − 1. Note that R(1 + δ)3 = aǫ
2 .

Fix an arbitrary z ∈ C with ℜ(z) = s0 +
aǫ
4 and |ℑ(z)| ≥ β. The closed disk

∆ :=
{
s ∈ C : |s− z| ≤ R(1 + δ)3

}
= {s ∈ C : |s− z| ≤ aǫ/2}

is a subset of {s ∈ C : |ℜ(s)− s0| < aǫ, |ℑ(s)| ≥ bǫ}. Thus by Theorem D, inequality (1.3) holds for all
s ∈ ∆, and the zeta function ζf,−φ has no zeros in ∆.

For each s ∈ ∆, by (1.3) in Theorem D and the fact that |ℑ(z)| ≥ β = bǫ +
aǫ
2 ,

∣∣log
∣∣ζf,−φ(s)

∣∣− log
∣∣ζf,−φ(z)

∣∣∣∣ ≤ 2Cǫ
(
|ℑ(z)|+ 2−1aǫ

)3 ≤ 24Cǫ|ℑ(z)|3 =: U.

Claim. For each a ∈ R with a > s0, there exists a real number K(a) > 0 depending only on f , C, d,
φ, and a such that |ζ ′f,−φ(a+ it)/ζf,−φ(a+ it)| ≤ K(a) for all t ∈ R.

To establish the claim, we first fix an arbitrary a ∈ R with a > s0. By Corollary 3.20, the topological
pressure P (f,−aφ) < 0. It follows from [Li15, Proposition 6.8] that there exist numbers Na ∈ N and
τa ∈ (0, 1) such that for each integer n ∈ N with n ≥ Na,

∑

x∈P1,fn

exp(−aSnφ(x)) ≤ τna .

Since the zeta function ζf,−φ converges uniformly and absolutely to a non-vanishing holomorphic func-

tion on
{
s ∈ C : ℜ(s) ≥ a+s0

2

}
(see Proposition 3.24), we get from (3.21), Theorem 3.20 (ii) in
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[LZhe23a], and (3.6) that
∣∣∣∣
ζ ′f,−φ(a+ it)

ζf,−φ(a+ it)

∣∣∣∣ =
∣∣∣∣
+∞∑

n=1

1

n

∑

x∈P1,fn

(Snφ(x)) exp(−(a+ it)Snφ(x))

∣∣∣∣

≤ ‖φ‖C0(S2)

+∞∑

n=1

∑

x∈P1,fn

exp(−aSnφ(x))

≤ ‖φ‖C0(S2)

( +∞∑

n=Na+1

τna +

Na∑

n=1

cardP1,fn

)
≤ K(a),

for all t ∈ R, where K(a) := ‖φ‖C0(S2)

(
1

1−τa
+Na +

∑Na
n=1(deg f)

n
)
is a constant depending only on f ,

C, d, φ, and a. This establishes the claim.

Hence by Lemma 6.6, the claim with a := s0 +
aǫ
4 , and the choices of U , R, and δ above, we get that

for all s ∈ ∆ with ℑ(s) = ℑ(z) and
∣∣ℜ(s)−

(
s0 +

aǫ
4

)∣∣ ≤ R = aǫ
3 , we have

(6.33)

∣∣∣∣
ζ ′f,−φ(s)

ζf,−φ(s)

∣∣∣∣ ≤
2 + δ

δ

(
K
(
s0 +

aǫ
4

)
+

24Cǫ
(
2 + (1 + δ)−2

)
(1 + δ)

Rδ2
|ℑ(z)|3

)
≤ C19|ℑ(s)|3,

where C19 := 2+δ
δ

(
K
(
s0 +

aǫ
4

)
+ 24Cǫ(2+(1+δ)−2)(1+δ)

Rδ2

)
is a constant depending only on f , C, d, α, and

φ. Recall that the only restriction on ℑ(z) is that |ℑ(z)| ≥ β. Thus (6.33) holds for all s ∈ C with∣∣ℜ(s)−
(
s0 +

aǫ
4

)∣∣ ≤ aǫ
3 and |ℑ(s)| ≥ β.

By Theorem D, h(s) :=
ζ′
f,−φ(s)
ζf,−φ(s)

+ 1
s−s0

is holomorphic on {s ∈ C : |ℜ(s) − s0| < aǫ}. Applying

the Phragmén–Lindelöf theorem (Theorem 6.7) to h(s) on the strip {s ∈ C : δ1 ≤ ℜ(s) ≤ δ2} with
δ1 := s0 − aǫ

12 and δ2 := s0 +
aǫ
200 . It follows from (6.33) that condition (i) of Theorem 6.7 holds. On

the other hand, (6.33) and the claim above guarantees condition (ii) of Theorem 6.7 with k1 := 3 and

k2 := 0. Hence by Theorem 6.7, there exist constants D̃ > 0 and b ≥ 2s0 + 1 depending only on f , C,
d, α, and φ such that |h(s)| ≤ D̃|ℑ(s)|1/2 for all s ∈ C with |ℜ(s)− s0| ≤ aǫ

200 and |ℑ(s)| ≥ b.
Therefore inequality (6.32) holds for all s ∈ C with |ℜ(s) − s0| ≤ aǫ

200 =: a and |ℑ(s)| ≥ b, where

a ∈ (0, s0), b ≥ 2s0 + 1, and D := D̃ + 1 are constants depending only on f , C, d, α, and φ. �

7. The Dolgopyat cancellation estimate

We adapt the arguments of D. Dolgopyat [Do98] in our metric-topological setting, aiming to prove
Theorem 6.2 at the end of this section. In Subsection 7.1, we first give a formulation of the α-strong
non-integrability condition, α ∈ (0, 1], for our setting and then show its independence on the choice
of the Jordan curve C. In Subsection 7.2, a consequence of the α-strong non-integrability condition
that we will use in the remaining part of this section is formulated in Proposition 7.5. We remark
that it is crucial for the arguments in Subsection 7.3 to have the same exponent α ∈ (0, 1] in both the
lower bound and the upper bound in (7.25). The definition of the Dolgopyat operator MJ,s,φ in our
context is given in Definition 7.7 after important constants in the construction are carefully chosen.
In Subsection 7.3, we adapt the cancellation arguments of D. Dolgopyat to establish the l2-bound in
Theorem 6.2.

7.1. Strong non-integrability.

Definition 7.1 (Strong non-integrability condition). Let f : S2 → S2 be an expanding Thurston map
and d be a visual metric on S2 for f . Fix α ∈ (0, 1]. Let φ ∈ C0,α(S2, d) be a real-valued Hölder
continuous function with an exponent α.

(1) We say that φ satisfies the (C, α)-strong non-integrability condition (with respect to f and d), for
a Jordan curve C ⊆ S2 with post f ⊆ C, if there exist numbers N0, M0 ∈ N, ε ∈ (0, 1), and M0-

tiles YM0
b ∈ XM0

b (f, C), YM0
w ∈ XM0

w (f, C) such that for each c ∈ {b, w}, each integer M ≥M0,

and each M -tile X ∈ XM (f, C) with X ⊆ YM0
c , there exist two points x1(X), x2(X) ∈ X with

the following properties:

(i) min{d(x1(X), S2 \X), d(x2(X), S2 \X), d(x1(X), x2(X))} ≥ εdiamd(X), and
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(ii) for each integer N ≥ N0, there exist two (N +M0)-tiles X
N+M0
c,1 , XN+M0

c,2 ∈ XN+M0(f, C)
such that YM0

c = fN
(
XN+M0

c,1

)
= fN

(
XN+M0

c,2

)
, and that

(7.1)
|SNφ(ς1(x1(X))) − SNφ(ς2(x1(X))) − SNφ(ς1(x2(X))) + SNφ(ς2(x2(X)))|

d(x1(X), x2(X))α
≥ ε,

where we write ς1 :=
(
fN
∣∣
X
N+M0
c,1

)−1
and ς2 :=

(
fN
∣∣
X
N+M0
c,2

)−1
.

(2) We say that φ satisfies the α-strong non-integrability condition (with respect to f and d) if φ
satisfies the (C, α)-strong non-integrability condition with respect to f and d for some Jordan
curve C ⊆ S2 with post f ⊆ C.

(3) We say that φ satisfies the strong non-integrability condition (with respect to f and d) if φ
satisfies the α′-strong non-integrability condition with respect to f and d for some α′ ∈ (0, α].

For given f , d, and α as in Definition 7.1, if φ ∈ C0,α(S2, d) satisfies the (C, α)-strong non-integrability

condition for some Jordan curve C ⊆ S2 with post f ⊆ C, then we fix the choices of N0, M0, ε, Y
M0
b ,

YM0
w , x1(X), x2(X), XN+M0

b,1 , XN+M0
w,1 as in Definition 7.1, and say that something depends only on f ,

d, α, and φ even if it also depends on some of these choices.
We will see in the following lemma that the strong non-integrability condition is independent of the

Jordan curve C.

Lemma 7.2. Let f , d, α satisfies the Assumptions. Let C and Ĉ be Jordan curves on S2 with post f ⊆
C∩Ĉ. Let φ ∈ C0,α(S2, d) be a real-valued Hölder continuous function with an exponent α. Fix arbitrary

integers n, n̂ ∈ N. Let F := fn and F̂ := f n̂ be iterates of f . Then Φ := Sfnφ satisfies the (C, α)-strong
non-integrability condition with respect to F and d if and only if Φ̂ := Sfn̂φ satisfies the (Ĉ, α)-strong
non-integrability condition with respect to F̂ and d.

In particular, if φ satisfies the α-strong non-integrability condition with respect to f and d, then it
satisfies the (C, α)-strong non-integrability condition with respect to f and d.

Proof. Let Λ > 1 be the expansion factor of the visual metric d for f . Note that post f = postF =

post F̂ , and that it follows immediately from Lemma 3.8 that d is a visual metric for both F and F̂ .
By Lemma 3.8 (ii) and (v), there exist numbers C20 ∈ (0, 1) and l ∈ N such that for each m̂ ∈ N0, each

X̂ ∈ Xm̂(F̂ , Ĉ), there exists X ∈ X⌈m̂n̂/n⌉+l(F, C) such that X ⊆ X̂ and diamd(X) ≥ C20 diamd(X̂).
By symmetry, it suffices to show the forward implication in the first statement of Lemma 7.2.
We assume that Φ satisfies the (C, α)-strong non-integrability condition with respect to F and d. We

use the choices of numbers N0, M0, ε, tiles Y
M0
b ∈ XM0

b (F, C), YM0
w ∈ XM0

w (F, C), XN+M0
c,1 ,XN+M0

c,2 ∈
XN+M0(F, C), points x1(X), x2(X), and functions ς1, ς2 as in Definition 7.1 (with f and φ replaced by
F and Φ, respectively).

It follows from Lemma 3.8 (ii) and (v) again that we can choose an integer M̂0 ∈ N large enough
such that the following statements hold:

(1)
⌈
M̂0n̂/n

⌉
+ l ≥M0.

(2) There exist M̂0-tiles Ŷ
M̂0
b ∈ XM̂0

b (F̂ , Ĉ) and Ŷ M̂0
w ∈ XM̂0

w (F̂ , Ĉ) such that Ŷ M̂0
b ⊆ inte

(
YM0
b

)
and

Ŷ M̂0
w ⊆ inte

(
YM0
w

)
.

We define the following constants:

N̂0 :=

⌈
1

αn̂
logΛ

2 |φ|α, (S2,d) C0C
2α

(1− Λ−α)ε1+α(1− C20)

⌉
.(7.2)

ε̂ := εC20 ∈ (0, ε).(7.3)

For each c ∈ {b, w}, each integer M̂ ≥ M̂0, and each M̂ -tile X̂ ∈ XM̂ (F̂ , Ĉ) with X̂ ⊆ Ŷ M̂0
c , we

denote M :=
⌈
M̂n̂/n

⌉
+ l ≥M0, and choose an M -tile X ∈ XM (F, C) with

(7.4) X ⊆ X̂ and diamd(X) ≥ C20 diamd(X̂).
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Define, for each i ∈ {1, 2},
(7.5) x̂i(X̂) := xi(X).

We need to verify Properties (i) and (ii) in Definition 7.1 for the (Ĉ, α)-strong non-integrability

condition of Φ̂ with respect to F̂ and d.

Fix arbitrary c ∈ {b, w}, M̂ ∈ N, and X̂ ∈ XM̂ (F̂ , Ĉ) with M̂ ≥ M̂0 and X̂ ⊆ Ŷ M̂0
c .

Property (i). By (7.4), (7.5), (7.3), and Property (i) for the (C, α)-strong non-integrability condition
of Φ with respect to F and d, we get

d(x̂1(X̂), x̂2(X̂))/diamd(X̂) ≥ d(x1(X), x2(X))/
(
C−1
20 diamd(X)

)
≥ εC20 = ε̂,

and for each i ∈ {1, 2},
d(x̂i(X̂), S2 \ X̂)/diamd(X̂) ≥ d(xi(X), S2 \X)

(
C−1
20 diamd(X)

)
≥ εC20 = ε̂.

Property (ii). Fix an arbitrary integer N̂ ≥ N̂0. Choose an integer N ≥ N0 large enough so that

Nn > N̂n̂.
By Proposition 3.6 (i) and (vii), for each i ∈ {1, 2}, since FN maps XN+M0

c,i injectively onto YM0
c

and Ŷ M̂0
c ⊆ inte

(
YM0
c

)
, we have

ςi
(
Ŷ M̂0
c

)
∈ XM̂0n̂+Nn(f, Ĉ),

where ςi =
(
FN
∣∣
X
N+M0
c,i

)−1
. Define, for each i ∈ {1, 2},

X̂N̂+M̂0
c,i := fNn−N̂n̂

(
ςi
(
Ŷ M̂0
c

))
∈ XN̂ n̂+M̂0n̂(f, Ĉ) = XN̂+M̂0(F̂ , Ĉ),

and write ς̂i =
(
F̂ N̂
∣∣
X̂
N̂+M̂0
c,i

)−1
=
(
f N̂n̂

∣∣
X̂
N̂+M̂0
c,i

)−1
. Note that fNn−N̂n̂ ◦ ςi = ς̂i.

By (7.4), (7.5), Properties (i) and (ii) for the (C, α)-strong non-integrability condition of Φ with
respect to F and d, Lemmas 3.13, 3.8 (ii), (7.2), and (7.3), we have

∣∣∣SF̂
N̂
Φ̂(ς̂1(x̂1(X̂)))− SF̂

N̂
Φ̂(ς̂2(x̂1(X̂)))− SF̂

N̂
Φ̂(ς̂1(x̂2(X̂))) + SF̂

N̂
Φ̂(ς̂2(x̂2(X̂)))

∣∣∣
d(x̂1(X̂), x̂2(X̂))α

=

∣∣∣Sf
N̂n̂
φ(ς̂1(x1(X))) − Sf

N̂n̂
φ(ς̂2(x1(X))) − Sf

N̂n̂
φ(ς̂1(x2(X))) + Sf

N̂n̂
φ(ς̂2(x2(X)))

∣∣∣
d(x1(X), x2(X))α

≥

∣∣∣SfNnφ(ς1(x1(X))) − SfNnφ(ς2(x1(X))) − SfNnφ(ς1(x2(X))) + SfNnφ(ς2(x2(X)))
∣∣∣

d(x1(X), x2(X))α

−
∑

i∈{1, 2}

∣∣∣Sf
Nn−N̂n̂

φ(ςi(x1(X))) − Sf
Nn−N̂n̂

φ(ςi(x2(X)))
∣∣∣

d(x1(X), x2(X))α

≥

∣∣∣SFNΦ(ς1(x1(X))) − SFNΦ(ς2(x1(X))) − SFNΦ(ς1(x2(X))) + SFNΦ(ς2(x2(X)))
∣∣∣

d(x1(X), x2(X))α

−
∑

i∈{1, 2}

|φ|α, (S2,d) C0

1− Λ−α
· d
((
fNn−N̂n̂ ◦ ςi

)
(x1(X)),

(
fNn−N̂n̂ ◦ ςi

)
(x2(X))

)

εα(diamd(X))α

≥ ε−
∑

i∈{1, 2}

|φ|α, (S2,d) C0

1− Λ−α
· diamd

((
fNn−N̂n̂ ◦ ςi

)
(X)

)

εα(diamd(X))α

≥ ε−
2 |φ|α, (S2,d) C0

1− Λ−α
· C

αΛ−α(Mn+Nn−(Nn−N̂n̂))

εαC−αΛ−αMn

≥ ε−
2 |φ|α, (S2,d) C0C

2α

(1− Λ−α)εα
Λ−αN̂0n̂ ≥ ε− ε(1− C20) = ε̂,
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where C ≥ 1 is a constant from Lemma 3.8 and C0 > 1 is a constant from Lemma 3.13, both of which
depend only on f , C, and d.

The first statement of Lemma 7.2 is now established. The second statement is a special case of the
first statement. �

Proposition 7.3. Let f , d, α satisfy the Assumptions. Fix φ ∈ C0,α(S2, d). If φ satisfies the α-strong
non-integrability condition (in the sense of Definition 7.1), then φ is non-locally integrable (in the sense
of Definition 8.3).

Proof. We argue by contradiction and assume that φ is locally integrable and satisfies the α-strong
non-integrability condition.

Let Λ > 1 be the expansion factor of d for f . We first fix a Jordan curve C ⊆ S2 containing post f .
Then we fix N0,M0, Y

M0
b , and YM0

w as in Definition 7.1. We chooseM :=M0 and consider an arbitrary

M -tile X ∈ XM (f, C) with X ⊆ YM0
b . We fix x1(X), x2(X) ∈ X satisfying Properties (i) and (ii) in

Definition 7.1 (1). By Theorem F in [LZhe23a], φ = K + β ◦ f − β for some constant K ∈ C and some
Hölder continuous function β ∈ C0,α((S2, d),C).

Then by Property (ii) in Definition 7.1 (1), for each N ≥ N0,

|β(ς1(x1(X))) − β(ς2(x1(X))) − β(ς1(x2(X))) + β(ς2(x2(X)))| /d(x1(X), x2(X))α ≥ ε > 0,

where ς1 :=
(
fN
∣∣
X
N+M0
c,1

)−1
and ς2 :=

(
fN
∣∣
X
N+M0
c,2

)−1
. Combining the above with Property (i) in

Definition 7.1 and Proposition 3.6 (i), we get

2 |β|α, (S2,d)

(
max

{
diamd

(
Y N+M0

)
: Y N+M0 ∈ XN+M0(f, C)

})α

εα(diamd(X))α
≥ ε > 0.

Thus by Lemma 3.8 (ii), 2 |β|α, (S2,d)
CαΛ−αN−αM0

C−αΛ−αM0
≥ ε1+α > 0, where C ≥ 1 is a constant from

Lemma 3.8 depending only on f , C, and d. This is impossible since N ≥ N0 is arbitrary. �

7.2. Dolgopyat operator. We now fix an expanding Thurston map f : S2 → S2, a visual metric d
on S2 for f with expansion factor Λ > 1, a Jordan curve C ⊆ S2 with f(C) ⊆ C and post f ⊆ C,
and an eventually positive real-valued Hölder continuous function φ ∈ C0,α(S2, d) that satisfies the
(C, α)-strong non-integrability condition. We use the notations from Definition 7.1 below.

We set the following constants that will be repeatedly used in this section. We will see that all these
constants defined from (7.6) to (7.12) below depend only on f , C, d, α, and φ.

m0 := max
{⌈
α−1 logΛ

(
8C1ε

α−1
)⌉
,
⌈
logΛ

(
10ε−1C2

)⌉}
≥ 1.(7.6)

δ0 := min
{
(2C1)

−1, ε2C−2/20
}
∈ (0, 1).(7.7)

b0 := max
{
2s0 + 1, C0T0/(1 − Λ−α), 2A0

∣∣−̃s0φ
∣∣
α, (S2,d)

/
(1− Λ−α)

}
.(7.8)

A := max{3C10T0, 4A0}.(7.9)

ǫ1 := min
{
πδ0/16, (4A)

−1Λ−M0
}
∈ (0, 1).(7.10)

N1 := max
{
N0,

⌈
α−1 logΛ

(
max

{
210A, 1280AΛC2/(εδ0), 4A0, 4C10

})⌉}
.(7.11)

η := min

{
2−12,

(
εδ0ǫ1

1280ΛC2

)2

,
Aǫ1ε

α

240C10C2
Λ−2αm0−1

(
LIPd(f)

)−αN1

}
.(7.12)

Here the constants M0 ∈ N, N0 ∈ N, and ε ∈ (0, 1) depending only on f , d, C, and φ are from
Definition 7.1; the constant s0 is the unique positive real number satisfying P (f,−s0φ) = 0; the
constant C ≥ 1 depending only on f , d, and C is from Lemma 3.8; the constant C0 > 1 depending only
on f , d, and C is from Lemma 3.13; the constant C1 > 0 depending only on f , d, C, φ, and α is from
Lemma 3.15; the constant A0 > 2 depending only on f , C, d, |φ|α, (S2,d), and α is from Lemma 5.12;

the constant C10 = C10(f, C, d, α, T0) > 1 depending only on f , C, d, α, and φ is defined in (5.2) from
Lemma 5.1; and the constant T0 > 0 depending only on f , C, d, φ, and α is defined in (5.31), and
according to Lemma 5.11 satisfies

(7.13) sup
{∣∣ãφ

∣∣
α, (S2,d)

: a ∈ R, |a| ≤ 2s0
}
≤ T0.
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We denote for each b ∈ R with |b| ≥ 1,

(7.14) Cb :=
{
X ∈ Xm(b)(f, C) : X ⊆ YM0

b ∪ YM0
w

}
,

where we write

(7.15) m(b) :=
⌈
α−1 logΛ(C|b|/ǫ1)

⌉
.

Note that by (7.10),
m(b) ≥ logΛ(1/ǫ1) ≥M0,

and if X ∈ Cb, then diamd(X) ≤
(
ǫ1
|b|

)1/α
by Lemma 3.8 (ii).

For each X ∈ Cb, we now fix choices of tiles X1(X), X2(X) ∈ Xm(b)+m0(f, C) and X′
1(X), X′

2(X) ∈
Xm(b)+2m0(f, C) in such a way that for each i ∈ {1, 2},
(7.16) xi(X) ∈ X′

i(X) ⊆ Xi(X).

By Property (i) in Definition 7.1, (7.6), and Lemma 3.8 (ii) and (v), it is easy to see that the constant
m0 we defined in (7.6) is large enough so that the following inequalities hold:

d(Xi(X), S2 \X) ≥ ε

10
C−1Λ−m(b),(7.17)

diamd(Xi(X)) ≤ ε

10
C−1Λ−m(b),(7.18)

d(X′
i(X), S2 \ Xi(X)) ≥ ε

10
C−1Λ−m(b)−m0 ,(7.19)

diamd(X
′
i(X)) ≤ ε

10
C−1Λ−m(b)−m0(7.20)

for i ∈ {1, 2}, and that

(7.21) d(X1(X),X2(X)) ≥ ε

10
C−1Λ−m(b).

For each X ∈ Cb and each i ∈ {1, 2}, we define a function ψi,X : S2 → R by

(7.22) ψi,X(x) :=
d(x, S2 \ Xi(X))α

d(x,X′
i(X))α + d(x, S2 \Xi(X))α

for x ∈ S2. Note that

(7.23) ψi,X(x) = 1 if x ∈ X′
i(X), and ψi,X(x) = 0 if x /∈ Xi(X).

Definition 7.4. We say that a subset J ⊆ {1, 2} × {1, 2} × Cb has a full projection if π3(J) = Cb,
where π3 : {1, 2} × {1, 2} × Cb → Cb is the projection π3(j, i,X) = X. We write F for the collection of
all subsets of {1, 2} × {1, 2} × Cb that have full projections.

For a subset J ⊆ {1, 2} × {1, 2} × Cb, we define a function βJ : S
2 → R as

(7.24) βJ(x) :=





1− η
4

∑
i∈{1, 2}

∑
X∈Cb

(1,i,X)∈J

ψi,X
(
fN1(x)

)
if x ∈ inte

(
XN1+M0

b,1

)
∪ inte

(
XN1+M0

w,1

)
,

1− η
4

∑
i∈{1, 2}

∑
X∈Cb

(2,i,X)∈J

ψi,X
(
fN1(x)

)
if x ∈ inte

(
XN1+M0

b,2

)
∪ inte

(
XN1+M0

w,2

)
,

1 otherwise,

for x ∈ S2.
The only properties of potentials that satisfy α-strong non-integrability used in this section are

summarized in the following proposition.

Proposition 7.5. Let f , C, d, α, φ satisfy the Assumptions. We assume, in addition, that f(C) ⊆ C
and that φ satisfies the α-strong non-integrability condition. Let b ∈ R with |b| ≥ 1. Using the notation
above, the following statement holds:

For each c ∈ {b, w}, each X ∈ Cb, each x ∈ X′
1(X), and each y ∈ X′

2(X),

(7.25) δ0d(x, y)
α ≤ |SN1φ(τ1(x))− SN1φ(τ2(x))− SN1φ(τ1(y)) + SN1φ(τ2(y))| ≤ δ−1

0 d(x, y)α,

where we write τ1 :=
(
fN1

∣∣
X
N1+M0
c,1

)−1
and τ2 :=

(
fN1

∣∣
X
N1+M0
c,2

)−1
.
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Proof. We first observe that the second inequality in (7.25) follows immediately from the triangle
inequality, Lemma 3.15, and (7.7).

It suffices to prove the first inequality in (7.25). Fix arbitrary c ∈ {b, w}, X ∈ Cb, x ∈ X′
1(X), and

y ∈ X′
2(X). By (7.16), (7.21), Lemmas 3.8 (ii), 3.15, and (7.19),

|SN1φ(τ1(x))− SN1φ(τ2(x))− SN1φ(τ1(y)) + SN1φ(τ2(y))| /d(x, y)α

≥ |SN1φ(τ1(x))− SN1φ(τ2(x)) − SN1φ(τ1(y)) + SN1φ(τ2(y))|
d(x1(X), x2(X))α

· d(X1(X),X2(X))α

(diamd(X))α

≥
(
ε− 2C1(diamd(X

′
1(X))α + 2C1(diamd(X

′
2(X))α

(diamd(X))α

)
10−αεαC−αΛ−αm(b)

(diamd(X))α

≥
(
ε− 4C110

−αεαC−αΛ−αm(b)−αm0

C−αΛ−αm(b)

)
10−αεαC−αΛ−αm(b)

CαΛ−αm(b)
≥ ε1+α

2C2α10α
≥ δ0,

where the last two inequalities follow from (7.6) and (7.7). �

Lemma 7.6. Let f , C, d, Λ, α, φ, s0 satisfy the Assumptions. We assume, in addition, that f(C) ⊆ C
and that φ satisfies the α-strong non-integrability condition. We use the notation in this section.

Fix b ∈ R with |b| ≥ 2s0 + 1. Then for each X ∈ Cb and each i ∈ {1, 2}, the function ψi,X : S2 → R
defined in (7.22) is Hölder with an exponent α and

(7.26) |ψi,X |α, (S2,d) ≤ 20ε−αCΛα(m(b)+2m0).

Moreover, for each subset J ⊆ {1, 2} × {1, 2} ×Cb, the function βJ : S
2 → R defined in (7.24) satisfies

(7.27) 1 ≥ βJ(x) ≥ 1− η > 1/2

for x ∈ S2. In addition, βJ ∈ C0,α(S2, d) with |βJ |α, (S2,d) ≤ Lβ, where

(7.28) Lβ := 40ε−αCΛα(m(b)+2m0)(LIPd(f))
αN1η

is a constant depending only on f , C, d, α, φ, and b. Here C ≥ 1 is a constant from Lemma 3.8
depending only on f , C, and d.
Proof. We will first establish (7.26). Consider distinct points x, y ∈ S2.

If x, y ∈ S2 \ Xi(X), then (ψi,X(x)− ψi,X(y))/d(x, y)
α = 0.

If x ∈ S2 \ Xi(X) and y ∈ Xi(X), then by (7.19),

|ψi,X(x)− ψi,X(y)|/d(x, y)α = d
(
y, S2 \ Xi(X)

)
· d(x, y)−α ·

(
d
(
y,X′

i(X)
)α

+ d
(
y, S2 \Xi(X)

)α)−1

≤ d
(
X′
i(X), S2 \ Xi(X)

)−α ≤ 10αε−αCαΛα(m(b)+m0) ≤ 20ε−αCΛα(m(b)+2m0).

Similarly, if y ∈ S2 \Xi(X) and x ∈ Xi(X), then |ψi,X(x)−ψi,X(y)|/d(x, y)α ≤ 20ε−αCΛα(m(b)+2m0).
If x, y ∈ Xi(X), then by (7.18), (7.16), and (7.19),

|ψi,X(x)− ψi,X(y)|/d(x, y)α

≤ d(x, S2 \ Xi(X))α|d(x,X′
i(X))α − d(y,X′

i(X))α|
d(x, y)α(d(x,X′

i(X))α + d(x, S2 \ Xi(X))α)(d(y,X′
i(X))α + d(y, S2 \ Xi(X))α)

+
|d(x, S2 \ Xi(X))α − d(y, S2 \ Xi(X))α|d(x,X′

i(X))α

d(x, y)α(d(x,X′
i(X))α + d(x, S2 \Xi(X))α)(d(y,X′

i(X))α + d(y, S2 \Xi(X))α)

≤ d(x, S2 \ Xi(X))αd(x, y)α + d(x, y)αd(x,X′
i(X))α

d(x, y)αd(X′
i(X), S2 \ Xi(X))2α

≤
(
10−αεαC−αΛ−αm(b) + 10−αεαC−αΛ−αm(b)

)(
10ε−1CΛm(b)+m0

)2α ≤ 20ε−αCΛα(m(b)+2m0).

Hence |ψi,X |α, (S2,d) ≤ 20ε−αCΛα(m(b)+2m0), establishing (7.26).

In order to establish (7.27), we only need to observe that for each j ∈ {1, 2}, and each x ∈
inte

(
XN1+M0

b,j

)
∪ inte

(
XN1+M0

w,j

)
, at most one term in the summations in (7.24) is nonzero. Indeed,

we note that for each pair of distinct tiles X1, X2 ∈ Cb, Xi1(X1)∩Xi2(X2) = ∅ for all i1, i2 ∈ {1, 2} by
(7.17), and X1(X1) ∩ X2(X1) = ∅ by (7.21). Hence, by (7.23), at most one term in the summations in
(7.24) is nonzero, and (7.27) follows from (7.12).
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We now show the continuity of βJ . Note that for each i ∈ {1, 2} and each X ∈ Cb, by (7.17), (7.23),
and the continuity of ψi,X , we have

ψi,X
(
fN1

(
∂XN1+M0

c,j

))
= ψi,X

(
YM0
c

)
= {0}

for c ∈ {b, w} and j ∈ {1, 2}. It follows immediately from (7.24) that βJ is continuous.

Finally, for arbitrary x, y ∈ S2 with x 6= y, we will establish |βJ(x)−βJ (y)|
d(x,y)α ≤ Lβ by considering the

following two cases.

Case 1. x, y ∈ XN1+m(b) for some XN1+m(b) ∈ XN1+m(b). If

XN1+m(b) *
⋃{

XN1+M0
c,j : c ∈ {b, w}, j ∈ {1, 2}

}
,

then βJ(x)− βJ(y) = 1− 1 = 0. If

XN1+m(b) ⊆
⋃{

XN1+M0
c,j : c ∈ {b, w}, j ∈ {1, 2}

}
,

then by (7.23),

|βJ(x)− βJ(y)|
d(x, y)α

=

(
1− η

4

∑
i∈{1, 2} ψi,X∗

(
fN1(x)

))
−
(
1− η

4

∑
i∈{1, 2} ψi,X∗

(
fN1(y)

))

d(x, y)α

≤ η |ψi,X∗ |α, (S2,d)

(
LIPd(f)

)αN1 ≤ Lβ,

where we denote X∗ := fN1
(
XN1+m(b)

)
.

Case 2. card
(
{x, y} ∩ XN1+m(b)

)
≤ 1 for all XN1+m(b) ∈ XN1+m(b). We assume, without loss of

generality, that βJ(x)−βJ (y) 6= 0. Then by (7.23) and (7.17), d
(
fN1(x), fN1(y)

)
≥ ε

10C
−1Λ−m(b). Thus

d(x, y) ≥ ε
10C

−1Λ−m(b)(LIPd(f))
−N1 . Hence by (7.27), |βJ(x)−βJ (y)|

d(x,y)α ≤ 10ε−αCΛαm(b)(LIPd(f))
αN1η ≤

Lβ. �

Definition 7.7. Let f , C, d, α, φ satisfy the Assumptions. We assume, in addition, that f(C) ⊆ C
and that φ satisfies the α-strong non-integrability condition. Let a, b ∈ R satisfy |b| ≥ 1. Denote
s := a+ib. For each subset J ⊆ {1, 2}×{1, 2}×Cb, the Dolgopyat operator MJ,s,φ on C

0,α
((
X0

b , d
)
,C
)
×

C0,α
((
X0

w, d
)
,C
)
is defined by

(7.29) MJ,s,φ(ub, uw) = L
N1+M0

ãφ

(
ubβJ |X0

b

, uwβJ |X0
w

)

for ub ∈ C0,α
((
X0

b , d
)
,C
)
and uw ∈ C0,α

((
X0

w, d
)
,C
)
.

Here Cb is defined in (7.14), βJ is defined in (7.24), M0 ∈ N is a constant from Definition 7.1,
and N1 is given in (7.11). Note that in (7.29), since βJ ∈ C0,α(S2, d) (see Lemma 7.6), we have
ucβJ |X0

c
∈ C0,α

((
X0

c , d
)
,C
)
for c ∈ {b, w}.

7.3. Cancellation argument.

Lemma 7.8. Let f , C, d satisfy the Assumptions. Let ϕ ∈ C0,α(S2, d) be a real-valued Hölder contin-
uous function with an exponent α ∈ (0, 1]. Then there exists a constant Cµϕ ≥ 1 depending only on f ,
d, and ϕ such that for all integers m, n ∈ N0, and tiles Xn ∈ Xn(f, C), Xm+n ∈ Xm+n(f, C) satisfying
Xm+n ⊆ Xn, we have

(7.30) µϕ(X
n)/µϕ(X

m+n) ≤ C2
µϕ exp(m(‖ϕ‖C0(S2) + P (f, ϕ))),

where µϕ is the unique equilibrium state for the map f and the potential ϕ, and P (f, ϕ) denotes the
topological pressure for f and ϕ.

Proof. By [Li18, Theorems 5.16, 1.1, and Corollary 5.18], the unique equilibrium state µϕ is a Gibbs
state with respect to f , C, and ϕ as defined in Definition 5.3 in [Li18]. More precisely, there exist
constants Pµϕ ∈ R and Cµϕ ≥ 1 such that for each n ∈ N0, each n-tile X

n ∈ Xn, and each x ∈ Xn, we

have C−1
µϕ ≤ µϕ(Xn)

exp(Snϕ(x)−nPµϕ )
≤ Cµϕ .
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Figure 7.1. Proof of (7.32) of Lemma 7.9.

B

C

O

A

Figure 7.2. Proof of (7.33) of Lemma 7.9.

We fix arbitrary integers m, n ∈ N0, and tiles Xn ∈ Xn, Xm+n ∈ Xm+n satisfying Xm+n ⊆ Xn.
Choose an arbitrary point x ∈ Xm+n. Then

µϕ(X
n)

µϕ(Xm+n)
≤ C2

µϕ

exp
(
Snϕ(x)− nPµϕ

)

exp
(
Sn+mϕ(x)− (n+m)Pµϕ

) ≤ C2
µϕ exp(m(‖ϕ‖C0(S2) + P (f, ϕ))).

Inequality (7.30) follows immediately from the fact that Pµϕ = P (f, ϕ) (see [Li18, Theorem 5.16 and
Proposition 5.17]). �

Lemma 7.9. For all z1, z2 ∈ C \ {0}, the following inequalities hold:

|Arg(z1z2)| ≤ |Arg(z1)|+ |Arg(z2)|,(7.31)

|z1 + z2| ≤ |z1|+ |z2| − (Arg(z1/z2))
2 min{|z1|, |z2|}/16,(7.32)

∣∣∣Arg(z1/z2)
∣∣∣ ≤ 2|z1 − z2|/min{|z1|, |z2|}.(7.33)

Proof. Inequality (7.31) follows immediately from the definition of Arg (see Section 2).
We then verify (7.32). Without loss of generality, we assume that |z1| ≤ |z2| and θ := Arg

(
z1
z2

)
≥ 0.

Using the labeling in Figure 7.1, we let
−−→
OQ = z2 and

−−→
QC = z1. Then

|z1 + z2| = |OA|+ |AC| ≤ |z2|+ |BC| = |z2|+ |z1| cos(θ/2)

≤ |z2|+ |z1|
(
1− θ2

8
+

θ4

4!24

)
≤ |z2|+

(
1− θ2

16

)
|z1|.

Inequality (7.33) follows immediately from the following observation in elementary Euclidean plane
geometry. As seen in Figure 7.2, assume A = z1 and B = z2. Then |z1 − z2| = |AB| ≥ |AC| ≥
1
2 |OA|∡AOC = 1

2 |z1||Arg(z1/z2)|. �

Lemma 7.10. Let f , C, d, α, φ, s0 satisfy the Assumptions. We assume, in addition, that f(C) ⊆ C
and that φ satisfies the α-strong non-integrability condition. Fix b ∈ R with |b| ≥ 2s0+1. Fix c ∈ {b, w}
and hc ∈ KA|b|

(
X0

c , d
)
. For each m ≥ m(b) −M0 and each m-tile Xm ∈ Xm(f, C) with Xm ⊆ X0

c , we
have

sup{hc(x) : x ∈ Xm} ≤ 2 inf{hc(x) : x ∈ Xm}.
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Recall that the cone KA|b|

(
X0

c , d
)
is defined in Definition 5.8.

Proof. Fix arbitrary x, x′ ∈ Xm. By Definition 5.8, Lemma 3.8 (ii), (7.15), and (7.10),

|hc(x)− hc(x
′)| ≤ A|b|(hc(x) + hc(x

′))d(x, x′)α ≤ A|b|(hc(x) + hc(x
′))(diamd(X

m))α

≤ A|b|(hc(x) + hc(x
′))CΛαM0−αm(b) ≤ A|b|(ǫ1/|b|)ΛαM0(hc(x) + hc(x

′)) ≤ (hc(x) + hc(x
′))/4,

where C ≥ 1 is a constant from Lemma 3.8 depending only on f , C, and d. The lemma follows
immediately. �

Lemma 7.11. Let f , C, d, α, φ, s0 satisfy the Assumptions. We assume, in addition, that f(C) ⊆ C
and that φ satisfies the α-strong non-integrability condition. Fix b ∈ R, m ∈ N, c ∈ {b, w}, uc ∈
C0,α

((
X0

c , d
)
,C
)
, and hc ∈ KA|b|

(
X0

c , d
)
such that |b| ≥ 2s0 + 1, m ≥ N1 +m(b), |uc(y)| ≤ hc(y), and

|uc(y)−uc(y′)| ≤ A|b|(hc(y)+hc(y′))d(y, y′)α whenever y, y′ ∈ X0
c . Then for each Xm ∈ Xm(f, C) with

Xm ⊆ X0
c , at least one of the following statements holds:

(1) |uc(x)| ≤ 3
4hc(x) for all x ∈ Xm.

(2) |uc(x)| ≥ 1
4hc(x) for all x ∈ Xm.

Proof. Assume that |uc(x0)| < 1
4hc(x0) for some x0 ∈ Xm. Then by Lemmas 3.8 (ii), 7.10, and (7.15),

for each x ∈ Xm,

|uc(x)| < |uc(x)− uc(x0)|+
1

4
hc(x0) ≤ A|b|(hc(x) + hc(x0))(diamd(X

m))α +
1

4
hc(x0)

≤
(
2A|b|CΛ−αN1−αm(b) +

1

4

)
sup{hc(y) : y ∈ Xm} ≤

(
4Aǫ1Λ

−αN1 +
1

2

)
hc(x) ≤

3

4
hc(x),

where C ≥ 1 is a constant from Lemma 3.8. The last inequality follows from (7.11) and the fact that
ǫ1 ∈ (0, 1) (see (7.10)). �

Lemma 7.12. Let f , C, d, α, φ, s0 satisfy the Assumptions. We assume, in addition, that f(C) ⊆ C and
that φ satisfies the α-strong non-integrability condition. Fix arbitrary s := a+ib with a, b ∈ R satisfying
|a−s0| ≤ s0 and |b| ≥ b0. Given arbitrary hb ∈ KA|b|

(
X0

b , d
)
, hw ∈ KA|b|

(
X0

w, d
)
, ub ∈ C0,α

((
X0

b , d
)
,C
)
,

and uw ∈ C0,α
((
X0

w, d
)
,C
)
satisfying the property that for each c ∈ {b, w}, we have |uc(y)| ≤ hc(y) and

|uc(y)− uc(y
′)| ≤ A|b|(hc(y) + hc(y

′))d(y, y′)α whenever y, y′ ∈ X0
c .

Define the functions Qc,j : Y
M0
c → R for j ∈ {1, 2} and c ∈ {b, w} by

Qc,j(x) :=

∣∣∑
k∈{1, 2} uς(c,k)(τk(x))e

SN1
−̃sφ(τk(x))

∣∣

−1
2ηhς(c,j)(τj(x))e

SN1
−̃aφ(τj (x)) +

∑
k∈{1, 2} hς(c,k)(τk(x))e

SN1
−̃aφ(τk(x))

,

for x ∈ YM0
c , where we write τk :=

(
fN1

∣∣
X
N1+M0
c,k

)−1
for k ∈ {1, 2}, and we set ς(c, j) ∈ {b, w} in such

a way that τj
(
YM0
c

)
⊆ X0

ς(c,j) for j ∈ {1, 2}.
Then for each c ∈ {b, w} and each X ∈ Cb with X ⊆ YM0

c , we have

min
{
‖Qc,j‖C0(Xi(X)) : i, j ∈ {1, 2}

}
≤ 1.

Proof. Fix arbitrary c ∈ {b, w} and X ∈ Cb with X ⊆ YM0
c . For typographic reasons, we denote in

this proof

(7.34) ui,x := uς(c,i)(τi(x)), hi,x := hς(c,i)(τi(x)), ei,x := eSN1
−̃sφ(τi(x))

for i ∈ {1, 2} and x ∈ X.
If |uj,·| ≤ 3

4hj,· on X, for some j ∈ {1, 2}, then ‖Qc,j‖C0(Xi(X)) ≤ 1 for all i ∈ {1, 2}. Thus, by

Lemma 7.11, we can assume that

(7.35) |uk,x| ≥ hk,x/4 for all x ∈ X and k ∈ {1, 2}.
We define a function Θ: X → (−π, π] by setting

(7.36) Θ(x) := Arg

(
u1,xe1,x
u2,xe2,x

)
for x ∈ X.
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We first claim that for all x, y ∈ X, we have∣∣∣∣Arg
(
u1,x/u2,x
u1,y/u2,y

)∣∣∣∣ ≤ 16Aǫ1Λ
−αN1 ≤ π/16 and(7.37)

|b||−SN1φ(τ1(x)) + SN1φ(τ2(x)) + SN1φ(τ1(y))− SN1φ(τ2(y))| ≤ π/16.(7.38)

Indeed, by (7.31) and (7.33) in Lemma 7.9, (7.34), (7.35), Lemmas 3.8 (ii), 7.10, (7.14), and (7.15),
∣∣∣∣Arg

(
u1,x/u2,x
u1,y/u2,y

)∣∣∣∣ ≤
∣∣∣∣Arg

(
u1,x
u1,y

)∣∣∣∣+
∣∣∣∣Arg

(
u2,x
u2,y

)∣∣∣∣ ≤
∑

j∈{1, 2}

2|uj,x − uj,y|
inf{|uj,z| : z ∈ X}

≤
∑

j∈{1, 2}

8A|b|(hj,x + hj,y)

inf{hj,z : z ∈ X} d(τj(x), τj(y))
α

≤ 16A|b|
∑

j∈{1, 2}

sup{hj,z : z ∈ X}
inf{hj,z : z ∈ X} CΛ−αN1−αm(b) ≤ 64A|b|(ǫ1/|b|)Λ−αN1 ≤ π/16,

where C ≥ 1 is a constant from Lemma 3.8. The last inequality follows from the fact that N1 ≥⌈
1
α logΛ

(
210A

)⌉
(see (7.11)) and the fact that ǫ1 ∈ (0, 1) (see (7.10)). We have now verified (7.37). To

show (7.38), we note that by Lemma 3.8 (ii), (7.14), (7.15), and (7.10),

|b||−SN1φ(τ1(x)) + SN1φ(τ2(x)) + SN1φ(τ1(y))− SN1φ(τ2(y))|
≤ |b|δ−1

0 d(x, y)α ≤ |b|δ−1
0 (diamd(X))α ≤ |b|δ−1

0 CαΛ−αm(b) ≤ δ−1
0 ǫ1 ≤ π/16.

The claim is now verified.

We will choose i0 ∈ {1, 2}, by separate discussions in the following two cases, in such a way that

(7.39) |Θ(x)| ≥ 16η1/2 for all x ∈ Xi0(X).

Case 1. |Θ(y)| ≥ π/4 for some y ∈ X. Then by (7.31) in Lemma 7.9, (7.34), (7.36), (7.37), (7.38),
and the fact that η ∈

(
0, 2−12

)
(see (7.12)), for each x ∈ X,

|Θ(x)| ≥ |Θ(y)| −
∣∣∣∣Arg

(
(u1,ye1,y)/(u2,ye2,y)

(u1,xe1,x)/(u2,xe2,x)

)∣∣∣∣

≥ π

4
−
∣∣∣∣Arg

(
u1,y/u2,y
u1,x/u2,x

)∣∣∣∣−
∣∣∣∣Arg

(
e1,y/e2,y
e1,x/e2,x

)∣∣∣∣ ≥
π

4
− π

16
− π

16
≥ π

8
≥ 16η1/2.

We can choose i0 = 1 in this case.

Case 2. |Θ(z)| < π/4 for all z ∈ X. Then by (7.31) in Lemma 7.9, (7.34), (7.36), (7.37), (7.38),
|b| ≥ b0 ≥ 1 (see (7.8)), (7.25), (7.21), and (7.15), for each x ∈ X1(X) and each y ∈ X2(X),

|Θ(x)−Θ(y)| =
∣∣∣∣Arg

(
(u1,xe1,x)/(u2,xe2,x)

(u1,ye1,y)/(u2,ye2,y)

)∣∣∣∣ ≥
∣∣∣∣Arg

(
e1,x/e2,x
e1,y/e2,y

)∣∣∣∣−
∣∣∣∣Arg

(
u2,y/u1,y
u2,x/u1,x

)∣∣∣∣
≥ |b||−SN1φ(τ1(x)) + SN1φ(τ2(x)) + SN1φ(τ1(y)) − SN1φ(τ2(y))| − 16Aǫ1Λ

−αN1

≥ |b|δ0d(x, y)α − 16Aǫ1Λ
−αN1 ≥ |b|δ0

(
10−1εC−1Λ−m(b)

)α − 16Aǫ1Λ
−αN1

≥ εδ0(10Λ)
−1C−2ǫ1 − 16Aǫ1Λ

−αN1 ≥ εδ0ǫ1
/(

20ΛC2
)
,

where the last inequality follows from the observation that 16AΛ−αN1 ≤ εδ0
20ΛC2 sinceN1 ≥

⌈
1
α logΛ

(
320AΛC2

εδ0

)⌉

(see (7.11)).

We now claim that at least one of the following statements holds:

(1) |Θ(x)| ≥ εδ0ǫ1
80ΛC2 for all x ∈ X1(X).

(2) |Θ(y)| ≥ εδ0ǫ1
80ΛC2 for all y ∈ X2(X).

Indeed, assume that statement (1) fails, then there exists x0 ∈ X1(X) such that |Θ(x0)| ≤ εδ0ǫ1
80ΛC2 .

Hence for all y ∈ X2(X),

|Θ(y)| ≥ |Θ(y)−Θ(x0)| − |Θ(x0)| ≥
εδ0ǫ1
20ΛC2

− εδ0ǫ1
80ΛC2

≥ εδ0ǫ1
80ΛC2

.

The claim is now verified.
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Thus we can fix i0 ∈ {1, 2} such that |Θ(x)| ≥ εδ0ǫ1
80ΛC2 ≥ 16η1/2 (see (7.12)) for all x ∈ Xi0(X) in this

case.

By (7.34), Lemmas 3.15, 7.10, 3.8 (ii), (7.14), and (7.15), for arbitrary x, y ∈ Xi0(X) and j ∈ {1, 2},
∣∣∣∣∣
hj,x exp

(
SN1−̃aφ

(
τj(x)

))

hj,y exp
(
SN1−̃aφ

(
τj(y)

))
∣∣∣∣∣ ≤

∣∣∣∣
hj,x
hj,y

∣∣∣∣e|SN1
−̃aφ(τj (x))−SN1

−̃aφ(τj (y))|

≤ 2 exp

(
C0

∣∣−̃aφ
∣∣
α, (S2,d)

d(x, y)α

1− Λ−α

)
≤ 2 exp

(
C0

∣∣−̃aφ
∣∣
α, (S2,d)

CαΛ−αm(b)

1− Λ−α

)
(7.40)

≤ 2 exp
(
ǫ1|b|−1C0

∣∣−̃aφ
∣∣
α, (S2,d)

(1− Λ−α)−1
)
≤ 8,

where the last inequality follows from (7.8), (7.13), the condition that |b| ≥ b0, and the fact that
ǫ1 ∈ (0, 1) (see (7.10)).

We fix k0 ∈ {1, 2} such that

(7.41) inf{hj,x|ej,x| : x ∈ Xi0(X), j ∈ {1, 2}} = inf{hk0,x|ek0,x| : x ∈ Xi0(X)}.

Hence by (7.32) in Lemma 7.9, (7.35), (7.36), (7.34), (7.39), (7.41), (5.14), and (7.40), for each
x ∈ Xi0(X), we have

|u1,xe1,x + u2,xe2,x| ≤ −Θ2(x)

16
min

k∈{1, 2}
{|uk,xek,x|}+

∑

j∈{1, 2}

|uj,xej,x|

≤ −Θ2(x)

64
min

k∈{1, 2}
{hk,x|ek,x|}+

∑

j∈{1, 2}

hj,x|ej,x|

≤ −4η inf
{
hk0,ye

SN1
−̃aφ(τk0 (y)) : y ∈ Xi0(X)

}
+

∑

j∈{1, 2}

hj,xe
SN1

−̃aφ(τj(x))

≤ −1

2
ηhk0,xe

SN1
−̃aφ(τk0 (x)) +

∑

j∈{1, 2}

hj,xe
SN1

−̃aφ(τj(x)).

Therefore, we conclude that ‖Qc,k0‖C0(Xi0 (X)) ≤ 1. �

Proposition 7.13. Let f , C, d, α, φ, s0 satisfy the Assumptions. We assume, in addition, that
f(C) ⊆ C and that φ satisfies the α-strong non-integrability condition. We use the notation in this
section.

There exist numbers a0 ∈ (0, s0) and ρ ∈ (0, 1) such that for all s := a + ib with a, b ∈ R satisfying
|a− s0| ≤ a0 and |b| ≥ b0, there exists a subset Es ⊆ F of the set F of all subsets of {1, 2}×{1, 2}×Cb
with a full projection such that the following statements are satisfied:

(i) The cone KA|b|

(
X0

b , d
)
×KA|b|

(
X0

w, d
)
is invariant under MJ,−s,φ for all J ∈ F , i.e.,

MJ,−s,φ
(
KA|b|

(
X0

b , d
)
×KA|b|

(
X0

w, d
))

⊆ KA|b|

(
X0

b , d
)
×KA|b|

(
X0

w, d
)
.

(ii) For all J ∈ F , hb ∈ KA|b|

(
X0

b , d
)
, and hw ∈ KA|b|

(
X0

w, d
)
, we have

(7.42)
∑

c∈{b,w}

∫

X0
c

|πc(MJ,−s,φ(hb, hw))|2 dµ−s0φ ≤ ρ
∑

c∈{b,w}

∫

X0
c

|hc|2 dµ−s0φ.

(iii) Given arbitrary hb ∈ KA|b|

(
X0

b , d
)
, hw ∈ KA|b|

(
X0

w, d
)
, ub ∈ C0,α

((
X0

b , d
)
,C
)
, and uw ∈

C0,α
((
X0

w, d
)
,C
)
satisfying the property that for each c ∈ {b, w}, we have |uc(y)| ≤ hc(y)

and |uc(y) − uc(y
′)| ≤ A|b|(hc(y) + hc(y

′))d(y, y′)α whenever y, y′ ∈ X0
c . Then the following

statement is true:
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There exists J ∈ Es such that
∣∣∣πc
(
L

N1+M0

−̃sφ
(ub, uw)

)
(x)
∣∣∣ ≤ πc(MJ,−s,φ(hb, hw))(x) and(7.43)

∣∣∣πc
(
L

N1+M0

−̃sφ
(ub, uw)

)
(x)− πc

(
L

N1+M0

−̃sφ
(ub, uw)

)
(x′)

∣∣∣(7.44)

≤ A|b|(πc(MJ,−s,φ(hb, hw))(x) + πc(MJ,−s,φ(hb, hw))(x
′))d(x, x′)α

for each c ∈ {b, w} and all x, x′ ∈ X0
c .

Proof. For typographical convenience, we write ι := N1 +M0 in this proof.
We fix an arbitrary number s = a+ ib with a, b ∈ R satisfying |a− s0| ≤ s0 and |b| ≥ b0.

(i) Without loss of generality, it suffices to show that for each J ∈ F ,

πb
(
MJ,−s,φ

(
KA|b|

(
X0

b , d
)
×KA|b|

(
X0

w, d
)))

⊆ KA|b|

(
X0

b , d
)
.

Fix J ∈ F , functions hb ∈ KA|b|

(
X0

b , d
)
, hw ∈ KA|b|

(
X0

w, d
)
, and points x, x′ ∈ X0

b with x 6= x′. For

each Xι ∈ Xι
b, denote yXι := (f ι|Xι)−1(x) and y′Xι := (f ι|Xι)−1(x′).

Then by Definition 7.7, (5.12) in Lemma 5.7, Definition 5.2, and (5.14),

|πb(MJ,−s,φ(hb, hw))(x) − πb(MJ,−s,φ(hb, hw))(x
′)|

=

∣∣∣∣
∑

c∈{b,w}

L(ι)

−̃aφ,b,c

(
hcβJ |X0

c

)
(x)−

∑

c∈{b,w}

L(ι)

−̃aφ,b,c

(
hcβJ |X0

c

)
(x′)

∣∣∣∣

≤
∑

c∈{b,w}

∑

Xι∈Xι
b

Xι⊆X0
c

∣∣∣hc(yXι)βJ(yXι)eSι−̃aφ(yXι ) − hc(y
′
Xι)βJ (y

′
Xι)eSι−̃aφ(y

′
Xι

)
∣∣∣

≤
∑

c∈{b,w}

∑

Xι∈Xι
b

Xι⊆X0
c

∣∣hc(yXι)βJ(yXι)− hc(y
′
Xι)βJ(y

′
Xι)
∣∣eSι−̃aφ(y′Xι )

+
∑

c∈{b,w}

∑

Xι∈Xι
b

Xι⊆X0
c

hc(yXι)βJ (yXι)
∣∣∣eSι−̃aφ(yXι ) − eSι−̃aφ(y

′
Xι

)
∣∣∣

≤
∑

c∈{b,w}

∑

Xι∈Xι
b

Xι⊆X0
c

hc(yXι)
∣∣βJ (yXι)− βJ(y

′
Xι)
∣∣eSι−̃aφ(yXι )e

∣∣Sι−̃aφ(y′Xι)−Sι−̃aφ(yXι )
∣∣

+
∑

c∈{b,w}

∑

Xι∈Xι
b

Xι⊆X0
c

∣∣hc(yXι)− hc(y
′
Xι)
∣∣βJ(y′Xι)eSι−̃aφ(y

′
Xι

)

+
∑

c∈{b,w}

∑

Xι∈Xι
b

Xι⊆X0
c

hc(yXι)βJ (yXι)eSι−̃aφ(yXι)
∣∣∣1− eSι−̃aφ(y

′
Xι

)−Sι−̃aφ(yXι )
∣∣∣.

By Lemmas 3.15, 7.6, 3.13, and 5.1, the right-hand side of the last inequality is

≤ exp

(
T0C0

(
diamd(S

2)
)α

1− Λ−α

)( ∑

c∈{b,w}

∑

Xι∈Xι
b

Xι⊆X0
c

hc(yXι)LβC
α
0 Λ

−ιαd(x, x′)αeSι−̃aφ(yXι )

+
∑

c∈{b,w}

∑

Xι∈Xι
b

Xι⊆X0
c

A|b|
(
hc(yXι)eSι−̃aφ(yXι ) + hc(y

′
Xι)eSι−̃aφ(y

′
Xι

)
)
Cα0 Λ

−αιd(x, x′)α

)

+C10T0d(x, x
′)α

∑

c∈{b,w}

L(ι)

−̃aφ,b,c

(
hcβJ |X0

c

)
(x),
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where C0 > 1 is a constant from Lemma 3.13 depending only on f , C, and d; Lβ is a constant defined in

(7.28) in Lemma 7.6; T0 > 0 is a constant defined in (5.31) giving an upper bound for
∣∣−̃aφ

∣∣
α, (S2,d)

by

Lemma 5.11 (c.f. (5.30)); and C10 := C10(f, C, d, α, T0) > 1 is a constant defined in (5.2) in Lemma 5.1.
Both T0 and C10 depend only on f , C, d, φ, and α. Thus by (5.2), (7.27) and (7.28) in Lemma 7.6,
Definition 7.7, (7.15), and the calculation above, we get

|πb(MJ,−s,φ(hb, hw))(x)− πb(MJ,−s,φ(hb, hw))(x
′)|

A|b|(πb(MJ,−s,φ(hb, hw))(x) + πb(MJ,−s,φ(hb, hw))(x′))d(x, x′)α

≤ C10

A|b|(1 − η)
(Lβ +A|b|)Λ−αι +

C10T0
A|b|

≤ C10

1− η

(
40ε−α

A|b| CΛ2αm0+1C|b|
ǫ1

(LIPd(f))
αN1η + 1

)
Λ−α(N1+M0) +

C10T0
A|b| ≤ 1.

The last inequality follows from the observations that C10T0
A ≤ 1

3 (see (7.9)), that

40ε−αC10C
2ηΛ−αN1−αM0+2αm0+1(LIPd(f))

αN1/(Aǫ1(1− η)) ≤ 1/3

(by (7.12)), and that by (7.11) and (7.12), Λ−α(N1+M0) ≤ 1
4C10

≤ 1
3
1−η
C10

.

(ii) Fix J ∈ F and two functions hb ∈ KA|b|

(
X0

b , d
)
, hw ∈ KA|b|

(
X0

w, d
)
.

We first establish that

(7.45)
(
πc
(
MJ,−s,φ(hb, hw)

)
(x)
)2 ≤ πc

(
L

ι
−̃aφ

(
h2b, h

2
w

))
(x) · πc

(
L

ι
−̃aφ

((
βJ |X0

b

)2
,
(
βJ |X0

w

)2))
(x)

for c ∈ {b, w} and x ∈ X0
c . Indeed, fix arbitrary c ∈ {b, w} and x ∈ X0

c . For each Xι ∈ Xι
c, denote

yXι := (f ι|Xι)−1(x). Then by Definition 7.7, (5.12) in Lemma 5.7, and the Cauchy–Schwartz inequality,
we have

(
πc
(
MJ,−s,φ(hb, hw)

)
(x)
)2

=

( ∑

c′∈{b,w}

L(ι)

−̃aφ,c,c′

(
hc′βJ |X0

c′

)
(x)

)2

=

( ∑

c′∈{b,w}

∑

Xι∈Xι
c

Xι⊆X0
c′

(
hc′βJ exp

(
Sι−̃aφ

))
(yXι)

)2

≤
( ∑

c′∈{b,w}

∑

Xι∈Xι
c

Xι⊆X0
c′

(
h2c′ exp

(
Sι−̃aφ

))
(yXι)

)( ∑

c′∈{b,w}

∑

Xι∈Xι
c

Xι⊆X0
c′

(
β2J exp

(
Sι−̃aφ

))
(yXι)

)

= πc

(
L

ι
−̃aφ

(
h2b, h

2
w

))
(x) · πc

(
L

ι
−̃aφ

((
βJ |X0

b

)2
,
(
βJ |X0

w

)2))
(x).

We will focus on the case where the potential is −̃s0φ for now, and only consider the general case at
the end of the proof of statement (ii).

Next, we define a set

(7.46) WJ :=
⋃

(j,i,X)∈J

fM0(X′
i(X)).

We claim that for each c ∈ {b, w} and each x ∈WJ ∩X0
c , we have

(7.47) πc

(
L

ι
−̃s0φ

((
βJ |X0

b

)2
,
(
βJ |X0

w

)2))
(x) ≤ 1− 1

4
η exp

(
−ι
∥∥−̃s0φ

∥∥
C0(S2)

)
.
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Indeed, we first fix arbitrary c ∈ {b, w} and x ∈ WJ ∩X0
c . Let X ∈ Cb denote the unique m(b)-tile in

Cb with x ∈ fM0(X). By (5.12) in Lemma 5.7, Definition 5.2, and (7.24),

πc

(
L

ι
−̃s0φ

((
βJ |X0

b

)2
,
(
βJ |X0

w

)2))
(x)

=
∑

c′∈{b,w}

L(ι)

−̃s0φ,c,c′

((
βJ |X0

c′

)2)
(x) =

∑

c′∈{b,w}

∑

Xι∈Xι
c

Xι⊆X0
c′

β2J(yXι) exp
(
Sι−̃s0φ(yXι)

)

≤
∑

c′∈{b,w}

L(ι)

−̃s0φ,c,c′

(
1X0

c′

)
(x)− 1

4
ηψiX ,X

(
fN1(y∗)

)
exp
(
Sι−̃s0φ(y∗)

)
≤ 1− 1

4
η exp

(
−ι
∥∥−̃s0φ

∥∥
C0(S2)

)
,

where iX , jX ∈ {1, 2} are chosen in such a way that (jX , iX ,X) ∈ J (due to the fact that J ∈ F
has a full projection (see Definition 7.4)), and we denote yXι := (f ι|Xι)−1(x) for Xι ∈ Xι

c, and write
y∗ := y

X
N1+M0
c,jX

. The last inequality follows from (5.18) in Lemma 5.10, (7.23), and (7.46). The claim is

now verified.

Next, we claim that for each c ∈ {b, w},
(7.48) πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
∈ KA|b|(X

0
c , d).

Indeed, by (5.12) in Lemma 5.7, Lemmas 5.9, and 5.12 (i), for all x, y ∈ X0
c ,∣∣∣πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
(x)− πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
(y)
∣∣∣

≤
∑

c′∈{b,w}

∣∣∣L(ι)

−̃s0φ,c,c′

(
h2c′
)
(x)−L(ι)

−̃s0φ,c,c′

(
h2c′
)
(y)
∣∣∣

≤ A0

(
2A|b|
Λαι

+

∣∣−̃s0φ
∣∣
α, (S2,d)

1− Λ−α

)
d(x, y)α

∑

c′∈{b,w}

∑

z∈{x, y}

L(ι)

−̃s0φ,c,c′

(
h2c′
)
(z)

≤ A|b|d(x, y)α
∑

z∈{x, y}

πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
(z),

where A0 = A0

(
f, C, d, |φ|α, (S2,d) , α

)
> 2 is a constant from Lemma 5.12 depending only on f , C, d,

|φ|α, (S2,d), and α; and C ≥ 1 is a constant from Lemma 3.8 depending only on f , C, and d. The last

inequality follows from A0

Λα(N1+M0)
≤ 1

4 (see (7.11)) and
A0

∣∣∣−̃s0φ
∣∣∣
α, (S2,d)

1−Λ−α ≤ 1
2b0 ≤ 1

2Ab0 ≤ 1
2A|b| (see (7.8)

and (7.9)). The claim now follows immediately.

We now combine (7.48), Lemmas 7.10, 7.8, (7.46), and |b| ≥ b0 ≥ 2s0 + 1 (see (7.8)) to deduce that
for each c ∈ {b, w}, we have∫

X0
c

πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
dµ−s0φ ≤

∑

X∈Cb
X⊆Y

M0
c

∫

fM0 (X)
πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
dµ−s0φ(7.49)

≤
∑

X∈Cb
X⊆Y

M0
c

µ−s0φ
(
fM0(X)

)
sup

x∈fM0(X)

{
πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
(x)
}

≤
∑

X∈Cb
X⊆Y

M0
c

µ−s0φ
(
fM0(X)

)
· 2 inf

x∈fM0 (X)

{
πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
(x)
}

≤ C18

∑

X∈Cb
X⊆Y

M0
c

µ−s0φ
(
fM0

(
X′
iJ,X

(X)
))

inf
x∈fM0

(
X′
iJ,X

(X)
)
{
πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
(x)
}

≤ C18

∑

X∈Cb
X⊆Y

M0
c

∫

fM0

(
X′
iJ,X

(X)
) πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
dµ−s0φ
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≤ C18

∫

WJ∩X
0
c

πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
dµ−s0φ,

where iJ,X ∈ {1, 2} can be set in such a way that either (1, iJ,X ,X) ∈ J or (2, iJ,X ,X) ∈ J due
to the assumption that J ∈ F has a full projection, and the constant C18 can be chosen as C18 :=
2C2

µ−s0φ
exp
(
2m0

(
‖−s0φ‖C0(S2) + P (f,−s0φ)

))
> 1, which depends only on f , C, d, and φ. Here the

constant Cµ−s0φ ≥ 1 is from Lemma 7.8, depending only on f , d, and φ.

We now observe that by (5.12) in Lemma 5.7 and Lemma 5.15,

(7.50)
∑

c∈{b,w}

∫

X0
c

πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
dµ−s0φ =

∑

c∈{b,w}

∫

X0
c

h2c dµ−s0φ.

Combining (7.50), (7.45), Lemma 5.10, (7.27) in Lemma 7.6, (7.47), and (7.49), we get
∑

c∈{b,w}

∫

X0
c

h2c dµ−s0φ −
∑

c∈{b,w}

∫

X0
c

∣∣πc
(
MJ,−s0,φ(hb, hw)

)∣∣2 dµ−s0φ(7.51)

=
∑

c∈{b,w}

∫

X0
c

πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
dµ−s0φ −

∑

c∈{b,w}

∫

X0
c

∣∣πc
(
MJ,−s0,φ(hb, hw)

)∣∣2 dµ−s0φ

≥
∑

c∈{b,w}

∫

X0
c

πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
·
(
1− πc

(
L

ι
−̃s0φ

((
βJ |X0

b

)2
,
(
βJ |X0

w

)2)))
dµ−s0φ

≥
∑

c∈{b,w}

∫

WJ∩X
0
c

πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
·
(
1− πc

(
L

ι
−̃s0φ

((
βJ |X0

b

)2
,
(
βJ |X0

w

)2)))
dµ−s0φ

≥ η

4
exp
(
−ι
∥∥−̃s0φ

∥∥
C0(S2)

) ∑

c∈{b,w}

∫

WJ∩X
0
c

πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
dµ−s0φ

≥ η

4C18
exp
(
−ι
∥∥−̃s0φ

∥∥
C0(S2)

) ∑

c∈{b,w}

∫

X0
c

πc

(
L

ι
−̃s0φ

(
h2b, h

2
w

))
dµ−s0φ

≥ η

4C18
exp
(
−ι
∥∥−̃s0φ

∥∥
C0(S2)

) ∑

c∈{b,w}

∫

X0
c

h2c dµ−s0φ.

We now consider the general case where the potential is −̃sφ. Fix c′ ∈ {b, w} and an arbitrary
point x ∈ X0

c′ . For each Xι ∈ Xι
c′ , denote yXι := (f ι|Xι)−1(x). Then by Definition 7.7 and (5.12) in

Lemma 5.7,

πc′
(
MJ,−s,φ(hb, hw)

)
(x) =

∑

c∈{b,w}

∑

Xι∈Xι
c′

Xι⊆X0
c

hc(yXι)βJ (yXι) exp
(
Sι−̃aφ(yXι)

)

≤
∑

c∈{b,w}

∑

Xι∈Xι
c′

Xι⊆X0
c

hc(yXι)βJ (yXι) exp
(
Sι−̃s0φ(yXι)

)
exp
(∣∣Sι−̃aφ(yXι)− Sι−̃s0φ(yXι)

∣∣)

≤ πc′
(
MJ,−s0,φ(hb, hw)

)
(x)e

ι
(
|a−s0|‖φ‖C0(S2)+|P (f,−aφ)−P (f,−s0φ)|+2‖ log u−aφ−log u−s0φ‖C0(S2)

)
.

Since the function t 7→ P (f, tφ) is continuous (see for example, [PU10, Theorem 3.6.1]) and the map
t 7→ utφ is continuous on C0,α(S2, d) equipped with the uniform norm ‖ · ‖C0(S2) by Lemma 3.18, we
can choose a0 ∈ (0, s0) small enough, depending only on f , C, d, α, and φ such that if s = a+ ib with
a, b ∈ R satisfies |a− s0| ≤ a0 and |b| ≥ 2s0 + 1, then

exp
(
ι
(
|a− s0|‖φ‖C0(S2) + |P (f,−aφ)− P (f,−s0φ)|+ 2‖ log u−aφ − log u−s0φ‖C0(S2)

))

≤
(
1 + (4C18)

−1η exp
(
−ι‖−̃s0φ‖C0(S2)

))1/2
,

and consequently

(7.52) πc′
(
MJ,−s,φ(hb, hw)

)
(x) ≤

(
1 +

exp
(
−ι‖−̃s0φ‖C0(S2)

)

4C18

)1/2

πc′(MJ,−s0,φ(hb, hw))(x).
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Therefore, if s = a+ ib with a, b ∈ R satisfies |a− s0| ≤ a0 and |b| ≥ b0 ≥ 2s0 + 1 (see (7.8)), we get
from (7.52) and (7.51) that

∑

c∈{b,w}

∫

X0
c

|πc(MJ,−s,φ(hb, hw))|2 dµ−s0φ

≤
(
1 +

η exp
(
−ι‖−̃s0φ‖C0(S2)

)

4C18

) ∑

c∈{b,w}

∫

X0
c

|πc(MJ,−s0,φ(hb, hw))|2 dµ−s0φ

≤
(
1−

η2 exp
(
−2ι‖−̃s0φ‖C0(S2)

)

16C2
18

) ∑

c∈{b,w}

∫

X0
c

|hc|2 dµ−s0φ.

We finish the proof of (ii) by choosing

ρ := 1− 16−1C−2
18 η

2 exp
(
−2ι‖−̃s0φ‖C0(S2)

)
∈ (0, 1),

which depends only on f , C, d, α, and φ.
(iii) Given arbitrary hb, hw, ub, and uw satisfying the hypotheses in (iii), we construct a subset

J ⊆ {1, 2} × {1, 2} × Cb as follows: For each X ∈ Cb,

(1) if
∥∥QcX ,1

∥∥
C0(X1(X))

≤ 1, then include (1, 1,X) in J , otherwise

(2) if
∥∥QcX ,2

∥∥
C0(X1(X))

≤ 1, then include (2, 1,X) in J , otherwise

(3) if
∥∥QcX ,1

∥∥
C0(X2(X))

≤ 1, then include (1, 2,X) in J , otherwise

(4) if
∥∥QcX ,2

∥∥
C0(X2(X))

≤ 1, then include (2, 2,X) in J ,

where we denote cX ∈ {b, w} with the property that X ⊆ YM0
cX

. Here functions Qc,j : Y
M0
c → R,

c ∈ {b, w} and j ∈ {1, 2}, are defined in Lemma 7.12.
By Lemma 7.12, at least one of the four cases above occurs for each X ∈ Cb. Thus, the set J

constructed above has a full projection (c.f. Definition 7.4).
We finally set Es :=

⋃{J}, where the union ranges over all hb, hw, ub, and uw satisfying the hypotheses
in (iii).

We now fix such hb, hw, ub, uw, and the corresponding J constructed above. Then for each c ∈ {b, w}
and each x ∈ X0

c , we will establish (7.43) as follows:

(1) If x /∈ ⋃X∈Cb
fM0(X1(X)∪X2(X)), then by (7.23) and (7.24), βJ (y) = 1 for all y ∈ f−(N1+M0)(x).

Thus (7.43) holds for x by Definition 7.7, (5.12) in Lemma 5.7, and Definition 5.2.

(2) If x ∈ fM0(Xi(X)) for some X ∈ Cb and i ∈ {1, 2}, then one of the following two cases occurs:

(a) (1, i,X) /∈ J and (2, i,X) /∈ J . Then by (7.24), βJ(y) = 1 for all y ∈ f−(N1+M0)(x). Thus
(7.43) holds for x by Definition 7.7, (5.12) in Lemma 5.7, and Definition 5.2.

(b) (j, i,X) ∈ J for some j ∈ {1, 2}. Then by the construction of J , we have (j′, i′,X) ∈ J if

and only if (j′, i′) = (j, i). We denote the inverse branches τk :=
(
fN1

∣∣
X
N1+M0
c,k

)−1
for k ∈

{1, 2}. Write z :=
(
fN1+M0

∣∣
X
N1+M0
c,j

)−1
(x). Then βJ (y) = 1 for each y ∈ f−(N1+M0)(x) \

τj(Xi(X)) = f−(N1+M0)(x) \ {z}. In particular, βJ
(
τj∗
(
fN1(z)

))
= 1, where j∗ ∈ {1, 2}

and j∗ 6= j. By the construction of J , we get Qc,j

(
fN1(z)

)
≤ 1, i.e.,

∣∣∣∣
∑

k∈{1, 2}

(
uς(c,k)e

SN1
−̃sφ
)(
τk
(
fN1(z)

))∣∣∣∣

≤ −1

2
ηhς(c,j)(z)e

SN1
−̃aφ(z) +

∑

k∈{1, 2}

(
hς(c,k)e

SN1
−̃aφ
)(
τk
(
fN1(z)

))

≤
(
βJhς(c,j)e

SN1
−̃aφ
)
(z) +

(
βJhς(c,j∗)e

SN1
−̃aφ
)(
τj∗
(
fN1(z)

))
,

where ς(c, k) is defined as in the statement of Lemma 7.12. Hence (7.43) holds for x by
Definition 7.7, (5.12) in Lemma 5.7, and Definition 5.2.



56 ZHIQIANG LI AND TIANYI ZHENG

We are going to establish (7.44) now. By (5.12) in Lemma 5.7, (5.29) in Lemma 5.12, Definition 5.2,
and (7.27), for all c ∈ {b, w} and x, x′ ∈ X0

c with x 6= x′,

1

d(x, x′)α

∣∣∣πc
(
L

N1+M0

−̃sφ
(ub, uw)

)
(x)− πc

(
L

N1+M0

−̃sφ
(ub, uw)

)
(x′)

∣∣∣

≤ 1

d(x, x′)α

∑

c′∈{b,w}

∣∣∣L(ι)

−̃sφ,c,c′
(uc′)(x) −L(ι)

−̃sφ,c,c′
(uc′)(x

′)
∣∣∣

≤ A0

∑

c′∈{b,w}

((
A|b|
Λαι

∑

z∈{x, x′}

L(ι)

−̃aφ,c,c′
(hc′)(z)

)
+ |b|L(ι)

−̃aφ,c,c′
(hc′)(x)

)

≤
(
A0A

Λαι
+A0

)
|b|

∑

c′∈{b,w}

∑

z∈{x, x′}

L(ι)

−̃aφ,c,c′
(
2hc′βJ |X0

c′

)
(z)

≤
(
2A0A

Λαι
+ 2A0

)
|b|

∑

z∈{x, x′}

πc(MJ,−s,φ(hb, hw))(z) ≤ A|b|
∑

z∈{x, x′}

πc(MJ,−s,φ(hb, hw))(z),

where the last inequality follows from 2A0
Λαι ≤ 1

2 (see (7.11)) and A ≥ 4A0 (see (7.9)). �

Proof of Theorem 6.2. We set ι := N1+M0, where N1 ∈ Z is defined in (7.11) andM0 ∈ N is a constant
from Definition 7.1. We take the constants a0 ∈ (0, s0) and ρ ∈ (0, 1) from Proposition 7.13, and b0 as
defined in (7.8).

Fix arbitrary s := a + ib with a, b ∈ R satisfying |a − s0| ≤ a0 and |b| ≥ b0. Fix arbitrary ub ∈
C0,α

((
X0

b , d
)
,C
)
and uw ∈ C0,α

((
X0

w, d
)
,C
)
satisfying

(7.53) ‖ub‖[ℑ(s)]

C0,α(X0
b
,d)

≤ 1 and ‖uw‖[ℑ(s)]

C0,α(X0
w,d)

≤ 1.

We recall the constant A ∈ R defined in (7.9) and the subset Es ⊆ F constructed in Proposition 7.13.
We will construct sequences {hb,k}+∞

k=−1 in KA|b|

(
X0

b , d
)
, {hw,k}+∞

k=−1 in KA|b|

(
X0

w, d
)
, {ub,k}+∞

k=0 in

C0,α
((
X0

b , d
)
,C
)
, {uw,k}+∞

k=0 in C0,α
((
X0

w, d
)
,C
)
, and {Jk}+∞

k=0 in Es recursively so that the following

properties are satisfied for each k ∈ N0, each c ∈ {b, w}, and all x, x′ ∈ X0
c :

(1) uc,k = πc

(
L

kι
−̃sφ

(ub, uw)
)
.

(2) |uc,k(x)| ≤ hc,k(x) and |uc,k(x)− uc,k(x
′)| ≤ A|b|(hc,k(x) + hc,k(x

′))d(x, x′)α.

(3)
∑

c′∈{b,w}

∫
X0

c′
h2c′,k dµ−s0φ ≤ ρ

∑
c′∈{b,w}

∫
X0

c′
h2c′,k−1 dµ−s0φ.

(4) πc

(
L

ι
−̃sφ

(ub,k, uw,k)
)
(x) ≤ πc

(
MJk,−s,φ(hb,k, hw,k)

)
(x) and

∣∣∣πc
(
L

ι
−̃sφ

(ub,k, uw,k)
)
(x)− πc

(
L

ι
−̃sφ

(ub,k, uw,k)
)
(x′)

∣∣∣
≤ A|b|

(
πc
(
MJk,−s,φ(hb,k, hw,k)

)
(x) + πc

(
MJk,−s,φ(hb,k, hw,k)

)
(x′)

)
d(x, x′)α.

We first set hc,−1 := 1/ρ, hc,0 := ‖uc‖[b]C0,α(X0
c ,d)

∈ [0, 1], and uc,0 := uc for each c ∈ {b, w}. Then

clearly, Properties (1), (2), and (3) are satisfied for k = 0. By Property (2) for k = 0, we can choose
J0 ∈ Es according to Proposition 7.13 (iii) such that Property (4) holds for k = 0.

We continue our construction recursively as follows. Assume that we have chosen ub,i ∈ C0,α
((
X0

b , d
)
,C
)
,

uw,i ∈ C0,α
((
X0

w, d
)
,C
)
, hb,i ∈ KA|b|

(
X0

b , d
)
, hw,i ∈ KA|b|

(
X0

w, d
)
, and Ji ∈ Es for some i ∈ N0. Then

we define, for each c ∈ {b, w},

uc,i+1 := πc

(
L

ι
−̃sφ

(ub,i, uw,i)
)

and hc,i+1 := πc(MJi,−s,φ(hb,i, hw,i)).

Then for each c ∈ {b, w}, by (5.9) we get uc,i+1 ∈ C0,α
((
X0

c , d
)
,C
)
, and by Proposition 7.13 (i) we have

hc,i+1 ∈ KA|b|

(
X0

c , d
)
. Property (1) for k = i+ 1 follows from Property (1) for k = i. Property (2) for

k = i+1 follows from Property (4) for k = i. Property (3) for k = i+1 follows from Proposition 7.13 (ii).
By Property (2) for k = i+1 and Proposition 7.13 (iii), we can choose Ji+1 ∈ Es such that Property (4)
for k = i + 1 holds. This completes the recursive construction and the verification of Properties (1)
through (4) for all k ∈ N0.
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By (5.12) in Lemma 5.7, Properties (1), (2), (3), and Theorem 3.14 (iii), we have
∫

X0
c

∣∣∣L(nι)

−̃sφ,c,b
(ub) + L(nι)

−̃sφ,c,w
(uw)

∣∣∣
2
dµ−s0φ =

∫

X0
c

∣∣∣πc
(
L

nι
−̃sφ

(ub, uw)
)∣∣∣

2
dµ−s0φ

=

∫

X0
c

|uc,n|2 dµ−s0φ ≤
∫

X0
c

h2c,n dµ−s0φ ≤ ρn
(∫

X0
b

h2b,0 dµ−s0φ +

∫

X0
w

h2w,0 dµ−s0φ

)
≤ ρn,

for all c ∈ {b, w} and n ∈ N. �

8. Lattès maps and smooth potentials

8.1. Non-local integrability. We briefly recall the notion of non-local integrability discussed in
[LZhe23a, Section 7].

Let f : S2 → S2 be an expanding Thurston map, d be a visual metric on S2 for f , and C ⊆ S2 be a
Jordan curve satisfying f(C) ⊆ C and post f ⊆ C. We define

(8.1) Σ−
f, C :=

{
{X−i}i∈N0 : X−i ∈ X1(f, C) and f

(
X−(i+1)

)
⊇ X−i, for i ∈ N0

}
.

For each X ∈ X1(f, C), since f is injective on X (see Proposition 3.6 (i)), we denote the inverse branch
of f restricted on X by f−1

X : f(X) → X, i.e., f−1
X := (f |X)−1.

Let ψ ∈ C0,α((S2, d),C) be a complex-valued Hölder continuous function with an exponent α ∈ (0, 1].
For each ξ = {ξ−i}i∈N0 ∈ Σ−

f, C , we define the function

(8.2) ∆f, C
ψ, ξ(x, y) :=

+∞∑

i=0

((
ψ ◦ f−1

ξ−i ◦ · · · ◦ f
−1
ξ0

)
(x)−

(
ψ ◦ f−1

ξ−i ◦ · · · ◦ f
−1
ξ0

)
(y)
)

for each (x, y) ∈ ⋃
X∈X1(f,C)
X⊆f(ξ0)

X ×X.

The following lemma is verified in [LZhe23a, Section 7].

Lemma 8.1. Let f , C, d, ψ, α satisfy the Assumptions in Section 4. We assume, in addition, that
f(C) ⊆ C. Let ξ = {ξ−i}i∈N0 ∈ Σ−

f, C. Then for each X ∈ X1(f, C) with X ⊆ f(ξ0), we get that

∆f, C
ψ, ξ(x, y) as a series defined in (8.2) converges absolutely and uniformly in x, y ∈ X, and moreover,

for each triple of x, y, z ∈ X, the identity

(8.3) ∆f, C
ψ, ξ(x, y) = ∆f, C

ψ, ξ(z, y)−∆f, C
ψ, ξ(z, x)

holds with
∣∣∆f, C

ψ, ξ(x, y)
∣∣ ≤ C1d(x, y)

α, where C1 = C1(f, C, d, ψ, α) is a constant depending on f , C, d,
ψ, and α from Lemma 3.15.

Definition 8.2 (Temporal distance). Let f , C, d, ψ, α satisfy the Assumptions in Section 4. We
assume, in addition, that f(C) ⊆ C. For ξ = {ξ−i}i∈N0 ∈ Σ−

f, C and η = {η−i}i∈N0 ∈ Σ−
f, C with

f(ξ0) = f(η0), we define the temporal distance ψf, Cξ, η as ψf, Cξ, η (x, y) := ∆f, C
ψ, ξ(x, y) − ∆f, C

ψ, η(x, y) for each

(x, y) ∈ ⋃
X∈X1(f,C)
X⊆f(ξ0)

X ×X.

Recall that fn is an expanding Thurston map with post fn = post f for each expanding Thurston
map f : S2 → S2 and each n ∈ N.

Definition 8.3 (Local integrability). Let f : S2 → S2 be an expanding Thurston map and d a visual
metric on S2 for f . A complex-valued Hölder continuous function ψ ∈ C0,α((S2, d),C) is locally in-
tegrable (with respect to f and d) if for each natural number n ∈ N, and each Jordan curve C ⊆ S2

satisfying fn(C) ⊆ C and post f ⊆ C, we have
(
Sfnψ

)fn, C
ξ, η

(x, y) = 0 for all ξ = {ξ−i}i∈N0 ∈ Σ−
fn, C and

η = {η−i}i∈N0 ∈ Σ−
fn, C satisfying fn(ξ0) = fn(η0), and all (x, y) ∈ ⋃

X∈X1(fn,C)
X⊆fn(ξ0)

X ×X.

The function ψ is non-locally integrable if it is not locally integrable.
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8.2. Characterizations. In this section, we show that for Lattès maps, in the class of continuously dif-
ferentiable real-valued potentials, the weaker condition of non-local integrability implies the (stronger)
1-strong non-integrability for some visual metric d for f . This leads to a characterization of the Prime
Orbit Theorems in this context (Theorem A). The proof relies on the geometric properties of various
metrics in this context and does not generalize to other rational expanding Thurston maps. However,
we are able to show the genericity of the α-strong non-integrability condition in C0,α(S2, d) in the next
section.

In order to carry out the cancellation argument in Section 7, it is crucial to have both the lower bound
and the upper bound in (7.25). As seen in the proof of Proposition 7.5, the upper bound in (7.25) is
guaranteed automatically by the Hölder continuity of the potential φ with the right exponent α. If we
could assume in addition that the identity map on S2 is a bi-Lipschitz equivalence (or more generally,
snowflake equivalence) from a visual metric d to the Euclidean metric on S2, and the temporal distance

φf, Cξ, ξ′ is nonconstant and continuously differentiable, then we could expect a lower bound with the same

exponent as that in the upper bound in (7.25) near the same point.

However, for a rational expanding Thurston map f : Ĉ → Ĉ, the chordal metric σ (see Remark 3.10
for the definition), which is bi-Lipschitz equivalent to the Euclidean metric away from the infinity,
is never a visual metric for f (see [BM17, Lemma 8.12]). In fact, (S2, d) is snowflake equivalent to(
Ĉ, σ

)
if and only if f is topologically conjugate to a Lattès map (see [BM17, Theorem 18.1 (iii)] and

Definition 8.4 below).
Recall that we call two metric spaces (X1, d1) and (X2, d2) are bi-Lipschitz, snowflake, or quasisym-

metrically equivalent if there exists a homeomorphism from (X1, d1) to (X2, d2) with the corresponding
property (see Definition 3.9).

We recall a version of the definition of Lattès maps.

Definition 8.4. Let f : Ĉ → Ĉ be a rational Thurston map on the Riemann sphere Ĉ. If f is expanding
and the orbifold Of = (S2, αf ) associated to f is parabolic, then it is called a Lattès map.

See [BM17, Chapter 3] and [Mi06] for other equivalent definitions and more properties of Lattès
maps.

The special phenomenon mentioned above is not common in the study of Prime Orbit Theorems for
smooth dynamical systems, as we are endeavoring out of Riemannian settings into general self-similar
metric spaces. We content ourselves with the smooth examples of strongly non-integrable potentials
for Lattès maps in Proposition 8.6 below.

Remark 8.5. For a Lattès map f : Ĉ → Ĉ, the universal orbifold covering map Θ: C → Ĉ of the

orbifold Of =
(
Ĉ, αf

)
associated to f is holomorphic (see [BM17, Theorem A.26, Definition A.27, and

Corollary A.29]). Let d0 be the Euclidean metric on C. Then the canonical orbifold metric ωf of f is
the pushforward of d0 by Θ, more precisely,

ωf (p, q) := inf
{
d0(z, w) : z ∈ Θ−1(p), w ∈ Θ−1(q)

}

for p, q ∈ Ĉ (see Section 2.5 and Appendices A.9 and A.10 in [BM17] for more details on the canonical

orbifold metric). Let σ be the chordal metric on Ĉ as recalled in Remark 3.10. By [BM17, Proposi-

tion 8.5], ωf is a visual metric for f . By [BM17, Lemma A.34],
(
Ĉ, ωf

)
and

(
Ĉ, σ

)
are bi-Lipschitz

equivalent, i.e., there exists a bi-Lipschitz homeomorphism h : Ĉ → Ĉ from
(
Ĉ, ωf

)
to
(
Ĉ, σ

)
. Moreover,

by the discussion in [BM17, Appendix A.10], h cannot be the identity map.

Proposition 8.6. Let f : Ĉ → Ĉ be a Lattès map, and d := ωf be the canonical orbifold metric of f

on Ĉ (as recalled in Remark 8.5). Let φ : Ĉ → R be a continuously differentiable real-valued function

on the Riemann sphere Ĉ. Then φ ∈ C0,1
(
Ĉ, d

)
, and the following statements are equivalent:

(i) φ is not co-homologous to a constant in C
(
Ĉ,C

)
.

(ii) φ is non-locally integrable with respect to f and d (in the sense of Definition 8.3).

(iii) φ satisfies the 1-strong non-integrability condition with respect to f and d (in the sense of
Definition 7.1).

See Definition 3.1 for the notion of co-homologous functions.
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Proof. We denote the Euclidean metric on C by d0. Let σ be the chordal metric on C as recalled in
Remark 3.10. By [BM17, Proposition 8.5], the canonical orbifold metric d = ωf is a visual metric for
f . Let Λ > 1 be the expansion factor of d for f .

Let Of = (S2, αf ) be the orbifold associated to f (see Subsection 7.2 in [LZhe23a]). Since f has

no periodic critical points, the ramification function αf (z) < +∞ for all z ∈ Ĉ (see Definition 7.4 in
[LZhe23a]).

By inequality (A.43) in [BM17, Appendix A.10],

(8.4) sup
{
σ(z1, z2)/d(z1, z2) : z1, z2 ∈ Ĉ, z1 6= z2

}
< +∞.

By (8.4) and the assumption that φ is continuously differentiable, we get φ ∈ C0,1
(
Ĉ, σ

)
⊆ C0,1

(
Ĉ, d

)
.

We establish the equivalence of statements (i) through (iii) as follows.

(i) ⇐⇒ (ii): The equivalence follows immediately from Theorem F in [LZhe23a].

(ii) ⇐⇒ (iii). The backward implication follows from Proposition 7.3. To show the forward im-
plication, we assume that φ is non-locally integrable. We observe from Lemma 3.11, Theorem F in
[LZhe23a], and Lemma 7.2 that by replacing f with an iterate of f if necessary, we can assume without
loss of generality that there exists a Jordan curve C ⊆ S2 such that post f ⊆ C, f(C) ⊆ C, and that
there exist ξ = {ξ−i}i∈N0 ∈ Σ−

f, C and η = {η−i}i∈N0 ∈ Σ−
f, C , X

1 ∈ X1(f, C), and u0, v0 ∈ X1 with

X1 ⊆ f(ξ0) = f(η0), and

(8.5) φf, Cξ, η (u0, v0) 6= 0.

By the continuity of φf, Cξ, η (see Lemma 8.1 and Definition 8.2), we can assume that u0, v0 ∈ inte(X1).

Without loss of generality, we can assume that ∞ /∈ X1. We use the usual coordinate z = (x, y) ∈ R2

on X1. We fix a constant C22 ≥ 1 depending only on f and C such that

(8.6) C−1
22 σ(z1, z2) ≤ d0(z1, z2) ≤ C22d(z1, z2) for all z1, z2 ∈ X1.

Note that αf (z) = 1 for all z ∈ Ĉ \ post f (see Definition 7.4 in [LZhe23a]). Recall the notion
of singular conformal metrics from [BM17, Appendix A.1]. By Proposition A.33 and the discussion
proceeding it in [BM17, Appendix A.10], the following statements hold:

(1) The canonical orbifold metric d is a singular conformal metric with a conformal factor ρ that
is continuous and positive everywhere except at the points in supp(αf ) ⊆ post f .

(2) d(z1, z2) = inf
γ

∫
γρdσ, where the infimum is taken over all σ-rectifiable paths γ in Ĉ joining z1

and z2.

(3) For each z ∈ Ĉ \ supp(αf ), there exists a neighborhood Uz ⊆ Ĉ containing z and a constant
Cz ≥ 1 such that C−1

z ≤ ρ(u) ≤ Cz for all u ∈ Uz.

Choose connected open sets V and U such that u0, v0 ∈ V ⊆ V ⊆ U ⊆ U ⊆ inte(X1). By
compactness and statement (3) above, there exists a constant C23 ≥ 1 such that

(8.7) C−1
23 ≤ ρ(z) ≤ C23 for all z ∈ U.

Thus by (8.6), (8.4), and a simple covering argument using statement (2) above, inequality (8.7), and
the fact that V ⊆ U , there exists a constant C24 ≥ 1 depending only on f , C, d, φ, and the choices of
U and V such that

(8.8) C−1
24 d(z1, z2) ≤ d0(z1, z2) ≤ C24d(z1, z2) for all z1, z2 ∈ V .

We denote, for each i ∈ N,

(8.9) τi := (f |ξ1−i)−1 ◦ · · · ◦ (f |ξ−1)
−1 ◦ (f |ξ0)−1 and τ ′i := (f |η1−i)−1 ◦ · · · ◦ (f |η−1)

−1 ◦ (f |η0)−1.

We define a function Φ: X1 → R by Φ(z) := φf, Cξ, η (u0, z) for z ∈ X1 (see Definition 8.2 and Lemma 8.1).

Claim. Φ is continuously differentiable on V .

By Definition 8.2, it suffices to show that the function D(·) := ∆f, C
φ, ξ(u0, ·) is continuously differentiable

on V . By Lemma 8.1, the function D(z) =
∑+∞

i=0 ((φ ◦ τi)(u0) − (φ ◦ τi)(z)) is the uniform limit of a
series of continuous functions on V . Since V ⊆ inte(X1), by (8.9) and Proposition 3.6 (i), the function
φ ◦ τi is differentiable on V for each i ∈ N.
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We fix an arbitrary integer i ∈ N. For each pair of distinct points z1, z2 ∈ inte(X1), we choose the
maximal integer m ∈ N with the property that there exist two m-tiles Xm

1 , X
m
2 ∈ Xm(f, C) such that

z1 ∈ Xm
1 , z2 ∈ Xm

2 , and Xm
1 ∩Xm

2 6= ∅. Then by Proposition 3.6 (i) and Lemma 3.8 (i) and (ii),

|(φ ◦ τi)(z1)− (φ ◦ τi)(z2)|
d(z1, z2)

≤
‖φ‖

C0,1(Ĉ,d) diamd(τi(X
m
1 ∪Xm

2 ))

C−1Λ−(m+1)

≤ ‖φ‖
C0,1(Ĉ,d)

2CΛ−(m+i)

C−1Λ−(m+1)
≤ 2C2 ‖φ‖

C0,1(Ĉ,d)Λ
1−i,

where C ≥ 1 is a constant from Lemma 3.8 depending only on f , C, and d. Thus by (8.8),

sup

{∣∣∣∣
∂

∂x
(φ ◦ τi)(z)

∣∣∣∣ : z ∈ V

}
≤ sup

{ |(φ ◦ τi)(z1)− (φ ◦ τi)(z2)|
d0(z1, z2)

: z1, z2 ∈ V, z1 6= z2

}

≤ C24 sup

{ |(φ ◦ τi)(z1)− (φ ◦ τi)(z2)|
d(z1, z2)

: z1, z2 ∈ V, z1 6= z2

}
≤ 2C24C

2 ‖φ‖
C0,1(Ĉ,d)Λ

1−i.

Hence ∂
∂xD exists and is continuous on V . Similarly, ∂

∂yD exists and is continuous on V . Therefore,

D is continuously differentiable on V , establishing the claim.

By the claim, (8.5), and the simple observation that φf, Cξ, η (u0, u0) = 0, there exist numbers M0 ∈ N,
ε ∈ (0, 1), and C25 > 1, and M0-tiles Y

M0
b ∈ XM0

b (f, C) and YM0
w ∈ XM0

w (f, C) such that C25 ≥ C24,

YM0
b ∪ YM0

w ⊆ V ⊆ inte(X1), and at least one of the following two inequalities holds:

(a) inf
{∣∣ ∂

∂xΦ(z)
∣∣ : z ∈ h−1

(
YM0
b ∪ YM0

w

)}
≥ 2C25ε,

(b) inf
{∣∣ ∂

∂yΦ(z)
∣∣ : z ∈ h−1

(
YM0
b ∪ YM0

w

)}
≥ 2C25ε.

We assume now that inequality (a) holds and remark that the proof in the other case is similar.
Without loss of generality, we can assume that ε ∈

(
0, (2C25C)−2

)
.

Then by Lemma 3.8 (v), for each c ∈ {b, w}, each integer M ≥ M0, and each M -tile X ∈ XM (f, C)
with X ⊆ YM0

c , there exists a point u1(X) = (x1(X), y0(X)) ∈ X such that Bd
(
u1(X), C−1Λ−M

)
⊆ X.

We choose x2(X) ∈ R such that |x1(X)− x2(X)| = (4C25C)−1Λ−M . Then by (8.8) and C25 ≥ C24, we
get

u2(X) := (x2(X), y0(X)) ∈Bd0
(
u1(X), (2C25C)−1Λ−M

)

⊆ Bd
(
u1(X), (2C)−1Λ−M

)
⊆ Bd

(
u1(X), C−1Λ−M

)
⊆ X.(8.10)

In particular, the entire horizontal line segment connecting u1(X) and u2(X) is contained in inte(X).
By (8.10), Lemma 3.8 (ii), (8.8), and C25 ≥ C24, we get

min
{
d
(
u1(X), Ĉ \X

)
, d
(
u2(X), Ĉ \X

)
, d(u1(X), u2(X))

}
(8.11)

≥ min
{
(2C)−1Λ−M , C−1

25 (4C25C)−1Λ−M
}
≥ εdiamd(X).

On the other hand, by (8.8), C25 ≥ C24, Definition 8.2, inequality (a) above, and the mean value
theorem,

∣∣φf, Cξ, η (u1(X), u2(X))
∣∣

d(u1(X), u2(X))
≥
∣∣φf, Cξ, η (u1(X), u2(X))

∣∣
C25d0(u1(X), u2(X))

=
|Φ(u1(X)) −Φ(u2(X))|
C25|x1(X)− x2(X)| ≥ 2ε.

We choose

(8.12) N0 :=
⌈
logΛ

(
2C2ε−2 |φ|

1,(Ĉ,d) C0

/(
1− Λ−1

))⌉
.

where C0 > 1 is a constant depending only on f , C, and d from Lemma 3.13.
Fix arbitrary N ≥ N0. Define XN+M0

c,1 := τN
(
YM0
c

)
and XN+M0

c,2 := τ ′N
(
YM0
c

)
(c.f. (8.9)). Note that

ς1 = τN |YM0
c

and ς2 = τ ′N |YM0
c

.
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Then by Definition 8.2, (8.11), Lemmas 8.1, 3.15, 3.8 (i) and (ii), and Proposition 3.6 (i),

|SNφ(ς1(u1(X))) − SNφ(ς2(u1(X))) − SNφ(ς1(u2(X))) + SNφ(ς2(u2(X)))|
d(u1(X), u2(X))

≥
∣∣φf, Cξ, η (u1(X)), u2(X))

∣∣
d(u1(X), u2(X))

− lim sup
n→+∞

|Sn−Nφ(τn(u1(X))) − Sn−Nφ(τn(u2(X)))|
εdiamd(X)

− lim sup
n→+∞

|Sn−Nφ(τ ′n(u1(X))) − Sn−Nφ(τ
′
n(u2(X)))|

εdiamd(X)

≥ 2ε−
|φ|

1,(Ĉ,d)C0

1− Λ−1
· d(τN (u1(X)), τN (u2(X))) + d(τ ′N (u1(X)), τ ′N (u2(X)))

εdiamd(X)

≥ 2ε−
|φ|

1,(Ĉ,d)C0

1− Λ−1
· diamd(τN (X)) + diamd(τ

′
N (X))

εdiamd(X)

≥ 2ε−
|φ|

1,(Ĉ,d)C0

1− Λ−1
· 2CΛ−(M+N)

εC−1Λ−M
≥ 2ε−

2C2ε−1 |φ|
1,(Ĉ,d) C0

1− Λ−1
Λ−N0 ≥ ε,

where the last inequality follows from (8.12).
Therefore, φ satisfies the 1-strong non-integrability condition with respect to f and d. �

Proof of Theorem A. By Proposition 8.6, φ ∈ C0,α
(
Ĉ, d

)
. So the existence and uniqueness of s0 > 0

follows from Corollary 3.20.
The implication (i) =⇒ (iii) follows from Proposition 8.6 and Theorem C. The implication (iii) =⇒

(ii) is trivial. The implication (ii) =⇒ (i) follows immediately by a contradiction argument using
[LZhe23a, Theorem F and Proposition 8.1]. �
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