
ON THE PREVALENCE OF THE PERIODICITY OF
MAXIMIZING MEASURES

JIAN DING, ZHIQIANG LI, YIWEI ZHANG

Abstract. For a continuous map T : X → X on a compact metric
space (X, d), we say that a function f : X → R has the property
PT if its time averages along forward orbits of T are maximized at
a periodic orbit. In this paper, we prove that for the one-sided full
shift on two symbols, the property PT is prevalent (in the sense of
Hunt–Sauer–Yorke) in spaces of Lipschitz functions with respect to
metrics with mildly fast decaying rate on the diameters of cylinder
sets. This result is a strengthening of [BZ16, Theorem A], confirms
the prediction mentioned in the ICM proceeding contribution of
J. Bochi ([Boc18, Section 1]) suggested by experimental evidence,
and is another step towards the Hunt–Ott conjectures in the area
of ergodic optimization.
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1. Introduction

Mathematicians have hoped for an analog of the notions of “Lebesgue
almost every” and “Lebesgue measure zero” in infinite-dimensional
spaces such as various Banach spaces of functions studied in dynamics.
Such a desire was recorded in the contribution of A. N. Kolmogorov to
the 1954 International Congress of Mathematicians [Ko54].

A natural notion to fulfill this quest called prevalence was introduced
by B. R. Hunt, T. Sauer, and J. A. Yorke [HSY92]. This notion has
since proven to play a central role in understanding generic behaviors
in dynamics from a probabilistic (measure-theoretic) perspective. For
more history, related notions, and applications in analysis, dynamics,
economics, etc., we refer the readers to the surveys by B. R. Hunt and
V. Yu. Kaloshin [HK10] and by W. Ott and J. A. Yorke [OY05].

Following [HK10], we recall the notion of prevalence as follows.
Let V be a topological vector space over R equipped with a complete

metric. A Borel measure µ on V is called transverse to a Borel set
B ⊆ V if µ({x + v : x ∈ B}) = 0 for every v ∈ V . We say that a
Borel subset B of V is shy if there exists a compactly supported Borel
probability measure transverse to B. A subset S of V is called prevalent
(resp. shy) if V \ S (resp. S) is contained in a shy Borel subset of V .
Prevalence has the following properties (see for example, [HK10,

Section 2.1]): it is preserved under translation and countable inter-
sections, it implies density, and it coincides with the notion of having
full Lebesgue measure when the ambient space is a finite-dimensional
Euclidean space.

The aim of this paper is to investigate the prevalence of some ergodic
properties in the study of dynamical systems.

Let T : X → X be a continuous transformation. Let f : X → R
be a continuous function, called a potential. We denote the maximal
potential energy by

β(f) := sup
µ∈M(X,T )

∫
f dµ = max

µ∈M(X,T )

∫
f dµ.

The last identity follows from the weak*-compactness of the setM(X,T )
of T -invariant Borel probability measures on X. The quantity β(f) can
also be expressed in terms of the maximal time average of f (see for ex-
ample, [Je06, Proposition 2.1]). We call a measure µ ∈ M(X,T ) that
maximizes the potential energy

∫
f dµ a measure of maximal potential

energy with respect to f or a f -potential-energy-maximizing measure
(or a f -maximizing measure).
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If one of the f -maximizing measures is supported on a periodic orbit
of T , then we say that f has property PT and call such a measure
periodic. We define the following subsets of the set C(X) of real-valued
continuous functions:

P(T ) := {f ∈ C(X) : f has property PT},
PU (T ) := {f ∈ P(T ) : f has a unique f -maximizing mesure}.
The set of functions with property PT has been investigated in vari-

ous Banach spaces of continuous functions for many dynamical systems,
see for example, [Bou00, Bou01, CLT01, QS12, Co16, BZ16, HLMXZ19,
LZ23]. The study of typical properties of maximizing measures for Lip-
schitz and Hölder functions has been particularly fruitful.

Assume that (X, d) is a compact metric space with infinite cardinal-
ity. Let Lip(X, d) be the space of real-valued Lipschitz functions on
(X, d). A function f : X → R is a little Lipschitz function or locally
flat Lipschitz function if

sup{|f(x)− f(y)| : x, y ∈ X, d(x, y) ⩽ r} = o(r) as r → 0.

The space of real-valued little Lipschitz functions on (X, d) is denoted
by lip(X, d) and called the little Lipschitz space. We equip both spaces
with the Lipschitz norm

∥f∥Lip := ∥f∥∞ + LIPd(f),

i.e., the sum of the sup-norm and the minimal Lipschitz constant
LIPd(f) of f given by LIPd(f) := sup{|f(x) − f(y)|/d(x, y) : x, y ∈
X, x ̸= y}. The snowflake dα of d given by dα(x, y) := d(x, y)α is also a
metric for each α ∈ (0, 1]. The space C0,α(X, d) of α-Hölder continuous
functions is precisely Lip(X, dα). The space c0,α(X, d) := lip(X, dα) is
called the space of little α-Hölder functions by some authors.

We say that a function f ∈ Lip(X, d) (resp. lip(X, d)) has the locking1

property if it has a unique maximizing measure ν ∈ M(X,T ) that is
supported on a periodic orbit of T (in particular, f has property PT )
and moreover ν is the unique maximizing measure for every function in
Lip(X, d) (resp. lip(X, d)) sufficiently close to f in the Lipschitz norm.
The set of Lipschitz functions f ∈ Lip(X, d) (resp. lip(X, d)) with the
locking property is denoted by LockT (X, d) (resp. lockT (X, d)). The
locking property clearly depends on the metric d.

The set of Lipschitz functions with the locking property is exactly
the interior of the set of Lipschitz functions with property PT . One
inclusion is obvious from the definition, and the other was shown by

1This is translated from the term verrouillage used by T. Bousch in [Bou00,
Secton 8].
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G. Yuan and B. R. Hunt [YH99, Remark 4.5] (see also [BZ15]). The
same property holds for little Lipschitz functions, see [LZ23, Theo-
rem 4.1]. In particular, the set of functions with the locking property
is dense among the functions with property PT .

Consider the full shift (Σ+, σ) on the set Σ+ := {0, 1}N of binary
sequences. Here the left-shift operator σ : Σ+ → Σ+ is given by

σ({wi}i∈N) = {wi+1}i∈N for {wi}i∈N ∈ Σ+.

For a strictly decreasing sequence a = {an}n∈N0 of positive numbers
converging to zero, define a function da : Σ

+ × Σ+ → R by assigning,
for each pair of distinct w = {wn}n∈N, z = {zn}n∈N ∈ Σ+,

(1.1) da(w, z) := am

wherem is the smallest positive integer with the property that wn ̸= zn,
and by setting da(z, z) := 0 for each z ∈ Σ+. It is easy to see that da
is a metric on Σ+.

We consider the Banach spaces Lip(Σ+, da) and lip(Σ+, da) with re-
spect to the metric da. Observe that the faster the sequence a decays,
the more regular the functions in Lip(Σ+, da) are.

We are now ready to state our main theorem below.

Theorem 1.1 (Main Theorem). Let (Σ+, σ) be the full shift on binary
sequences. Let θ be a number in (0, 1/4) and a = {an}n∈N0 be a strictly
decreasing sequence of positive numbers satisfying

(1.2)
an+1

an
= O(θn) as n→ +∞.

Then PU (σ)∩Lip(Σ+, da) is a prevalent set in the space Lip(Σ+, da)
of real-valued Lipschitz functions, where PU (σ) consists of contin-
uous functions f : Σ+ → R with the property that there is a unique
f -maximizing measure µ and that µ is supported on a periodic orbit of
σ. Moreover, Lockσ(Σ

+, da) is a prevalent set in Lip(Σ+, da).

In general, prevalence does not guarantee topological genericity, nei-
ther does the latter imply the former. However, due to the fact that
Lockσ(Σ

+, da) is known to be an open set in Lip(Σ+, da), topological
genericity can be guaranteed by the density alone, which is always a
direct consequence of prevalence. Therefore, Theorem 1.1 represents,
albeit in our special setting, a strengthening of the kind of topological
result obtained in [Co16, Theorem A].

As explained in [Boc18, Section 1], the type of results like The-
orem 1.1 provide some confirmation of the experimental findings of
B. R. Hunt and E. Ott published over two decades ago [HO96a, HO96b].
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In the late 1990s, B. R. Hunt, E. Ott, and G. Yuan conjectured
that for a typical chaotic system T , a typical smooth function f ad-
mits a maximizing measure supported on a periodic orbit, where the
typicality on the function f was both in the sense of probability (in
terms of the Lebesgue measure of the parameter(s) for the potential
f in a parameter space) ([HO96a, Conjecture] and [HO96b, Conjec-
ture 2]) and in the sense of topology (topological genericity) ([YH99,
Conjecture 1.1]). We recall that such a function f has property PT .
Moreover, B. R. Hunt and E. Ott observed based on numerical evi-
dence that the set of the functions f without property PT has fractal
dimension zero. Despite the recent breakthroughs in the direction of
topological genericity initiated by [Co16], the Hunt–Ott conjecture has
been much less thoroughly investigated.

For a specific map T (x) = 2x on the circle, and a one-parameter
family ρτ (x) = cos 2π(x − τ), Corollary 1 in [Bou00] shows that the
maximizing measure is unique and that it is supported on a periodic
orbit for every τ except on a set which has zero Lebesgue measure
and zero Hausdorff dimension (see also [Je00]). Therefore, the Hunt–
Ott conjecture is confirmed in this specific one-parameter family. The
notion of full Lebesgue measure coincides in finite dimension with the
notion of prevalence in Theorem 1.1.

In fact, Theorem 1.1 is a strengthened version of [BZ16, Theorem
A] by J. Bochi and the third-named author, where they assume the
evanescent condition on a, i.e., a = {an}n∈N0 is a strictly decreasing
sequence of positive numbers satisfying

(1.3)
an+1

an
= O

(
2−2n+2)

as n→ +∞.

Theorem 1.1 guarantees the prevalence of continuous functions with
the locking property in bigger subspaces of Hölder continuous func-
tions (than the space of functions satisfying (1.3)), which confirms the
prediction mentioned in [Boc18, Section 1] suggested by experimental
evidence, and is another step towards the Hunt–Ott conjectures.

As a counterpart to Theorem 1.1, the following result for little Lip-
schitz functions holds.

Theorem 1.2. Assume the hypotheses of Theorem 1.1. Then PU (σ)∩
lip(Σ+, da) is a prevalent set in lip(Σ+, da). Moreover, lockσ(Σ

+, da)
is a prevalent set in lip(Σ+, da).

Remark 1.3. Since dαa = daα where aα := {aαn}n∈N0 , it is easy to
see that we can replace the metric da by dαa for α ∈ (− logθ 4, 1] in
Theorems 1.1 and 1.2 to extend these results to Hölder continuous
functions with exponent sufficiently close to 1.
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Main ideas of the proof. The strategy of the proof of Theo-
rem 1.1 relies on an approach of finite-dimensional approximations via
Haar wavelets for ergodic optimization, which can be conveniently re-
expressed as a maximum mean cycle problem on de Bruijn–Good di-
rected graphs. Due to the hypothesis (1.2), the coefficients in the Haar
series for a Lipschitz function (with respect to da) decay fast in a con-
trolled way. Our main goal is to show that with high probability, the
maximizing measure for a function f coincides with that for a step
function obtained from truncating the Haar series for f at some finite
step in the finite-dimensional approximations. To this end, we adapt
some idea from [CCK15, Section 5], and make refined estimates to get
a lower bound for the fluctuation on the (conditional) gap between the
mean-weights of the two heaviest directed cycles on the sequence of
de Bruijn–Good directed graphs. These estimates ensure that the hy-
pothesis (1.2) is sufficient to guarantee the prevalence of the periodicity
of the maximizing measure. For a comparison between our strategy and
that from [CCK15], see a discussion before the proof of Proposition 5.1
in Section 5.

De Bruijn–Good directed graphs were independently introduced by
N. G. de Bruijn [deBr46] and I. J. Good [Go46] in 1946, and have played
important roles in both pure mathematics (for example, enumerative
combinatorics) and applied mathematics (for example, genome assem-
bly). The appearance of de Bruijn–Good directed graphs in this paper
is natural, as walks on these graphs correspond to orbits under the shift
operator σ (see [BZ16]).

Investigations on the directed cycle with the maximum mean-weight
in a directed graph are sometimes known as the maximum mean cy-
cle problem. This problem is one of the most fundamental problems
in combinatorial optimization and has a long history of algorithmic
studies, for example, [DIG99, Ka78].

It is also worth mentioning that our methods should be extendable
to shifts on an arbitrary finite number of symbols or more generally
to subshifts of finite type by investigating natural generalizations of
de Bruijn–Good directed graphs. Favoring clarity at the expense of
generality, we opted to work with the full shift on 2 symbols. In this
context, we are able to express with relative ease the random pertur-
bations key to the proof of Theorem 1.1.

To compare Theorem 1.1 with [BZ16, Theorem B], we note that the
proof of Theorem B in [BZ16] bounds the probability Pb{g ∈ Hb :
Gapn(f0 + g) ⩽ ϵn} by the maximum number of pairs of neighbours in
C (BGn) (see [BZ16, Equation (5.3)]). By [BZ16, Subsection 3.5], such
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a number is no more than 22
n
. Hence the approach in [BZ16] requires

the evanescent condition to offset the impact of 22
n
.

In contrast, Proposition 5.1 in this paper bounds a similar prob-
ability with more sophisticated probabilistic tools, leading to an im-
provement from the evanescence condition to condition (1.2) in the
current paper. Two main new ingredients are discussed as follows.
First, in Propositions 5.1 and 5.2, we obtain the desired bound on the
probability of small gap from a bound on some conditional probability
P({Gapn,t ⩽ ϵn}) of small gap. Here Gapn,t is the absolute value of
the difference between the largest two values in {Xt(C) : C ∈ C (BGn)},
where {Xt(C) : C ∈ C (BGn)} has the distribution of the collection of
random variables

{
M f0+g

n (C) : C ∈ C (BGn)
}
under the conditioning of

{Yw = tw : w ∈ Σ⩽n−2}. Second, by bounding the probability density
function of Xt(C) and applying the concentration inequality (for the
uniform distribution), we get an upper bound for P({Gapn,t ⩽ ϵn}) un-
der an assumption on exponential decay of ϵn (rather than the double-
exponential decay in [BZ16]).

In view of the connection to the coding of hyperbolic smooth systems,
it is natural to consider the case where an = O(θn), for θ ∈ (0, 1).
In such a case, da coincides with the classical Cantor distance on Σ+.
However, a major obstacle for proving Theorem 1.1 in such a case lies in
obtaining an effective lower bound for P({Gapn,t ⩽ ϵn}) when ϵn decays
to zero at a speed slower than an exponential rate (c.f. Proposition 5.1).

In addition, the upper bound 1/4 on θ in Theorem 1.1 comes from
the constants 2−n and 2n in (5.6) from Proposition 5.1. These constants
come from our choices of {Yw}w∈Σ∗ as i.i.d. random variables with the
uniform distribution on [−1, 1]. We suspect that the constant 1/4 might
be improvable by using other distributions for {Yw}w∈Σ∗ . However, the
alternative proof could be significantly lengthier and too complicated
to showcase the main ideas of our strategy. Given that the case where
an = O(θn) for θ ∈ (0, 1) remains open, such technical considerations
may be better suited for subsequent investigations.

The paper is organized as follows. Section 2 is devoted to preliminar-
ies, where we recall some basic facts about full shifts, Haar series, and
the compactness of Hilbert bricks (see Lemma 2.1). Section 3 provides
a more concrete formulation (see Theorem 3.1) of our main result The-
orem 1.1, with the proof of the implication included at the end of the
section. In Section 4 we recall the de Bruijn–Good directed graphs and
the gap criterion for the locking property that was developed in [BZ16],
see Lemma 4.1. In Section 5 we adapt some idea from [CCK15, Sec-
tion 5] to make refined estimates for the (conditional) gap between the
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mean-weights of the two heaviest directed cycles, see Proposition 5.1
and Proposition 5.2. Using these estimates, we show in Section 6 that
hypothesis (1.2) guarantees that with probability 1, the gap criterion is
satisfied at some finite step in the finite-dimensional approximations,
establishing Theorem 3.1. Thus we complete the proof of Theorem 1.1.
Finally, Section 7 is devoted to the proof of Theorems 1.2.

Acknowledgments. The authors want to thank the anonymous ref-
eree(s) for valuable comments. Y. Zhang is grateful to Peking Uni-
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supported by NSFC Nos. 12161141002, 11871262, and 12271432.

2. Preliminaries

In this section, we will introduce the background and necessary con-
cepts.

2.1. Full shift. We follow the convention that N := {1, 2, 3, . . . } and
N0 := {0} ∪ N in this paper.
For each n ∈ N, the set Σn := {0, 1}n of words of length n (or n-

words) in the alphabet {0, 1} is the set of binary sequences of length
n. Write Σ0 := {∅} and call ∅ the word of length 0. Define |w| := n for
each n-word, n ∈ N0. The set Σ+ := {0, 1}N of infinite words in the
alphabet {0, 1} is the set of one-sided infinite binary sequences. Denote
the set of finite words by Σ∗ :=

⋃
n∈N0

Σn and the set of words of length

at most k, for k ∈ N0, by Σ⩽k :=
⋃k

n=0 Σn. Note that Σ∗ includes ∅,
i.e., the word of length 0. We often write {wn}n∈N = w1w2 . . . wn . . .
for an infinite word w = {wn}n∈N ∈ Σ+, and similarly, write {zn}mn=1 =
z1z2 . . . zm for an m-word z = {zn}mn=1 ∈ Σm, m ∈ N.

The left-shift operator σ : Σ+ → Σ+ is given by

σ({wi}i∈N) = {wi+1}i∈N for {wi}i∈N ∈ Σ+.

The pair (Σ+, σ) is called the full shift on Σ+ = {0, 1}N.
For each pair of finite words w, z ∈ Σ∗, define wz to be their

concatenation if w ̸= ∅ and set wz := z otherwise, and denote by
[w] := {wy : y ∈ Σ+} the cylinder set beginning at w.
An infinite word w ∈ Σ+ is a periodic point of (Σ+, σ) if σn(w) = w

for some n ∈ N, and the smallest such positive integer n is called the
period of w. Let Pσ denote the set of all periodic points of (Σ+, σ).
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Let x = {xi}i∈N0 and y = {yi}i∈N0 be two elements of Σ+. Denote
by x†y the position of first disagreement between the sequences x and
y, that is, the least m ∈ N such that xm ̸= ym, with the convention
x † x = +∞. The following properties hold:

x † y = y † x, x † z ⩾ min{x † y, y † z}.

For each n ∈ N, we define the n-th variation of a function f : Σ+ → R
as:

(2.1) varn(f) := sup
x†y⩾n

|f(x)− f(y)|.

2.2. Haar series. As mentioned in [BZ16, Section 1.3], for each w ∈
Σ∗, we define the Haar function:

(2.2) hw :=
1[w0] − 1[w1]

2
.

These functions are straightforward adaptations of the classical Haar
functions on [0, 1] (see for example, [Pi09, Section 6.3]). It has an
advantage to work on the Cantor set Σ+ over working on the interval
[0, 1]: the Haar functions defined in (2.2) are continuous. We follow the
choice of the normalization in [BZ16], which makes subsequent formulas
simpler.

If a function f : Σ+ → R satisfies varn(f) = 0 for some n ∈ N0,
i.e., it is constant on each cylinder of length n, then it is called a step
function of level n. Such functions form a vector space Sn of dimension
2n. For each n ∈ N, the set {1} ∪ {hw : |w| < n} forms a basis of the
vector space Sn.

Let β be the unbiased Bernoulli measure on Σ+, i.e., the proba-
bility measure that assigns equal weights to all cylinders of the same
length. Let L2(β) denote the Hilbert space of functions that are square-
integrable with respect to the measure β. Then the set {1} ∪ {hw :
w ∈ Σ∗} is an orthogonal basis of L2(β). Thus every f ∈ L2(β) can be
represented by a Haar series :

f = c∅(f) +
∑
w∈Σ∗

cw(f)hw (equality in L2(β)),

where the Haar coefficients are defined as:

(2.3) c∅(f) :=

∫
f dβ, cw(f) := 2|w|+2

∫
f hw dβ,

for each w ∈ Σn. It follows from [BZ16, Equations (2.2), (2.3), and
(2.4)] that the n-th approximation Anf of f ∈ L2(β) has the following
equivalent characterizations:
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• the projection of f on the subspace Sn along the orthogonal
complement of Sn;

• the sum of the truncated Haar series:

(2.4) Anf = c∅(f) +
∑
|w|<n

cw(f)hw;

• the function obtained by averaging f on cylinders of length n:

(2.5) Anf =
∑
w∈Σn

(
2n

∫
[w]

f dβ

)
1[w].

Thus we have

∥f − Anf∥∞ ⩽ varn(f),

which, under the additional assumption that f is continuous, converges
to 0 as n tends to +∞. Therefore every continuous function f can be
written as a uniformly convergent series:

f = c∅(f) +
+∞∑
n=0

∑
w∈Σn

cw(f)hw,

which, with some abuse of language, we also call a Haar series.

2.3. Gauges. Let a = {an}n∈N0 be a strictly decreasing sequence of
positive numbers converging to 0.

Consider a function f ∈ C(Σ+). It follows from (2.1) and (2.3) that
for each n ∈ N and each w ∈ Σn, we have

(2.6) cw(f) ⩽ varn(f).

Similarly, if f is Lipschitz with respect to da, then

(2.7) LIPda(f) = sup
n∈N

varn(f)

an
.

A gauge is a family b = {bw}w∈Σ∗ of positive numbers indexed by
finite words. We say that a gauge b = {bw}w∈Σ∗ is weakly a-admissible
if

(2.8) bn = o(an) as n→ +∞,

where

bn := max
w∈Σn

{bw} for each n ∈ N0.

The proof of [BZ16, Lemma 1.1] in [BZ16, Section 2] establishes
the following lemma, which is stronger than the statement of [BZ16,
Lemma 1.1].
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Lemma 2.1. Let (Σ+, σ) be the full shift on binary sequences. Suppose
that a = {an}n∈N0 is a strictly decreasing sequence of positive numbers
converging to zero satisfying

∑
k⩾n ak = O(an) as n → +∞. Let b =

{bw}w∈Σ∗ be a weakly a-admissible gauge. For a family e = {ew}w∈Σ∗

of real numbers satisfying |ew| ⩽ bw for each w ∈ Σ∗, the Haar se-
ries

∑
w∈Σ∗

ewhw converges in the uniform norm to a function fe in
Lip(Σ+, da). Moreover, the set

(2.9) Hb := {fe : e = {ew}w∈Σ∗ with |ew| ⩽ bw for each w ∈ Σ∗}

is a compact subset of Lip(Σ+, da).

The set Hb as in the lemma above is called the Hilbert brick with
gauge b. By means of Haar coefficients, it can be identified with the
product space

∏
w∈Σ∗

[−bw, bw]. In particular, we can endow each inter-
val [−bw, bw], w ∈ Σ∗, with a probability measure µw. Then by using
the identification from Lemma 2.1, we obtain a probability measure
Pb :=

∏
w∈Σ∗

µw on the Banach space Lip(Σ+, da) supported on the
compact subset Hb.

In this paper, we are most interested in the special case when all µw

are uniform measures on [−bw, bw].

3. A concrete formulation of Theorem 1.1

Theorem 1.1 follows from an explicit construction of a compactly
supported probability measure that is transverse to the complement of
Lockσ(Σ

+, da). Therefore, in order to establish Theorem 1.1, we prove
Theorem 3.1 below, which has concrete information on such a measure.

Theorem 3.1. Let (Σ+, σ) be the full shift on binary sequences. Let
a = {an}n∈N0 be a strictly decreasing sequence of positive numbers
satisfying an+1/an = O(θn) as n → +∞ for some θ ∈ (0, 1/4). Set
bn := an/n for each n ∈ N0. Consider the weakly a-admissible gauge
b = {bw}w∈Σ∗ given by bw := b|w| for each w ∈ Σ∗. Then there exists
a probability measure Pb supported on the compact set Hb such that for
each f0 ∈ Lip(Σ+, da),

Pb({g ∈ Hb : f0 + g ∈ Lockσ(Σ
+, da)}) = 1,

and consequently, Pb({g ∈ Lip(Σ+, da) : f0 + g /∈ Lockσ(Σ
+, da)}) = 0.

A proof of Theorem 3.1 will be presented in Section 6.

Proof of Theorem 1.1 assuming Theorem 3.1. Theorem 3.1 concludes
that the measure Pb is transverse (as defined in Section 1) to the com-
plement of the set Lockσ(Σ

+, da) and is supported on the compact set
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Hb. Thus Lockσ(Σ
+, da) is a prevalent set (as defined in Section 1) in

Lip(Σ+, da). Therefore Theorem 3.1 implies Theorem 1.1. □

4. A gap criterion for the locking property

From now on, our aim is to establish Theorem 3.1. To this end,
we need to utilize a criterion for the locking property in terms of
some probabilistic objects for the maximum mean cycle problem on
de Bruijn–Good digraphs.

Let us make some remarks to explain the relations between (infinite
dimensional) ergodic optimization, finite-dimensional ergodic optimiza-
tion, and the maximum mean cycle problem on digraphs. The facts
stated below until the start of Subsection 4.1 serve merely to assist
the reader in comprehending our approach and will not be used in the
proofs.

Recall that Pσ denotes the set of all periodic points of (Σ+, σ). Each
periodic orbit in Pσ is associated to a unique invariant probability mea-
sure supported on it. It is well-known that the set of these measures
is a dense subset in M(Σ+, σ). Consider a sequence of maps {πn}n∈N0

where πn : M(Σ+, σ) → R2n is given by πn(µ) := {µ([w])}w∈Σn for
µ ∈ M(Σ+, σ). Denote Rn := πn(M(Σ+, σ)). It then follows from
Sections 3 and 4 in [Zi95] (see also Subsection 3.5 in [BZ16]) that
R0 ⊂ R1 ⊂ · · · form a nested sequence of finite-dimensional polyhedra,
whose vertices are measures supported on some periodic orbits in Pσ.
Moreover, each polyhedron Rn is a projection of the next one Rn+1,
and M(Σ+, σ) can be recovered as the inverse limit of the sequence
{Rn}n∈N0 .
Since M(Σ+, σ) is a Poulsen simplex, the polyhedra in {Rn}n∈N0 are

not regular simplices. On the contrary, they have huge numbers of ver-
tices, and their faces are small. By Proposition 3.5 in [BZ16], Rn is iso-
morphic to the so-called “circulation polytope” of the de Bruijn–Good
digraph BGn. With the aid of this isomorphism, the finite-dimensional
ergodic optimization problem over Rn can be conveniently restated as
the maximum mean cycle problem on the de Bruijn–Good digraph
BGn, and a criterion for the locking property is expressed in terms
of the gap between the mean-weights of two heaviest directed cycles
in the de Bruijn–Good digraph accordingly, see the gap criterion in
Subsection 4.2. This step requires some notions from graph theory.

4.1. Graph theory. In this subsection, we go over some key concepts
and notation from graph theory. For a more detailed introduction to
graph theory, we refer to [BM08].
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A directed graph (or digraph) D is an ordered pair (V (D), A(D)) of
sets, where V (D) is the set of vertices and A(D) is the set of arcs,
together with an incidence function ψD : A(D) → V (D) × V (D) that
sends an arc a to an ordered pair (u, v) of vertices. For an arc a ∈ A(D)
with ψD(a) = (u, v), we call the vertex u the tail of a, denoted by
tail(a), and call v the head of a, denoted by head(a).

A digraph D′ is a subdigraph of a digraph D if V (D′) ⊆ V (D),
A(D′) ⊆ A(D), and ψD′ is the restriction of ψD to A(D′). We then say
that D contains D′ or that D′ is contained in D, and write D ⊇ D′ or
D′ ⊆ D, respectively.

A directed cycle C is a digraph satisfying that cardA(C) = cardV (C) =:
n ∈ N, that V (C) =

⋃
a∈A(C){tail(a), head(a)}, and that there is an

enumeration a0, a1, . . . , an−1 of A(C) such that head(ai) = tail(ai+1)
for each i ∈ {0, 1, . . . , n − 1}, where an := a0. For a directed cycle
C we write len(C) for the length (i.e., the number of arcs) of C. For
a digraph D, we denote by C (D) the collection of all directed cycles
contained in D.

The de Bruijn–Good digraph BGn, n ∈ N, is a digraph whose set of
vertices V (BGn) := Σn−1 and set of arcs A(BGn) := Σn consists of words
of length n− 1 and words of length n, respectively, which satisfies that
tail(w1 . . . wn) = w1 . . . wn−1 and head(w1 . . . wn) = w2 . . . wn for each
n-word w1 . . . wn ∈ A(BGn). The first five de Bruijn–Good digraphs
are shown in Figure 4.1.

4.2. Gap criterion. Fix a real-valued continuous function f ∈ C(Σ+)
and an integer n ∈ N. We define inductively weightsW f

n (w) associated
to f on the arcs w of the de Bruijn–Good digraph BGn as follows:

• If n = 1, then W f
1 (α) :=

(−1)α

2
c∅(f) for each α ∈ {0, 1};

• If n ⩾ 2, then W f
n (wα) := W f

n−1(w) + (−1)α

2
(cw(f)) for all

w ∈ Σn−1 and α ∈ {0, 1}.
Thus

(4.1) W f
n (x1x2 . . . xn︸ ︷︷ ︸

w

) =
1

2

n−1∑
i=0

(−1)xi+1cx1x2...xi
(f).

The pair
(
BGn,W

f
n

)
induces the mean-weight (induced by f)

(4.2) M f
n (C) :=

1

len(C)
∑

w∈A(C)

W f
n (w)

on each directed cycle C contained in BGn.
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Figure 4.1. The de Bruijn–Good digraphs BGn for 1 ⩽
n ⩽ 5.

Denote by C1 and C2 the two heaviest (in terms of mean-weight, in
descending order) directed cycles contained in BGn. Then define

Gapn(f) :=M f
n (C1)−M f

n (C2) ⩾ 0

to be the gap in the mean-weights of C1 and C2 in BGn.
It is easy to check that

W f
n (w) = WAnf

n (w),(4.3)

M f
n (C) =MAnf

n (C),(4.4)
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Gapn(f) = Gapn(Anf)(4.5)

for w ∈ Σn and C ∈ A(BGn).
In the notations above, we have the following gap criterion from

[BZ16, Lemma 4.2].

Lemma 4.1 (Gap criterion for the locking property [BZ16]). Let (Σ+, σ)
be the full shift on binary sequences. Consider a strictly decreasing se-
quence a = {an}n∈N0 of positive numbers satisfying

(4.6)
+∞∑
n=1

nan < +∞.

If a function f ∈ Lip(Σ+, da) satisfies the following inequality:

(4.7) Gapn(f) >
+∞∑
k=n

(k − n+ 1) max
w∈Σk

{|cw(f)|}.

for some n ∈ N, then f ∈ Lockσ(Σ
+, da).

In informal terms, if the tail of the Haar series is small compared to
the gap of its initial part (up to the length n− 1 (see (2.4), (4.1), and
(4.5))), so it does not influence the maximizing measure. Note that
f ∈ Lockσ(Σ

+, da) then in particular f ∈ PU (σ).

5. Random perturbations on the arc-weight

In this section, we will describe the random weights on arcs of the
de Bruijn–Good digraphs BGn, n ∈ N. Namely, we deal with the Haar
expansion of f0+ g, with f0 ∈ Lip(Σ+, da) (the deterministic part) and
g ∈ Hb (the random part).
Let {Yw}w∈Σ∗ be a collection of i.i.d. random variables, having the

uniform distribution on [−1, 1], indexed by the set Σ∗ of finite words.
Suppose that a = {an}n∈N0 is a strictly decreasing sequence of

positive numbers converging to zero satisfying
∑

k⩾n ak = O(an) as
n → +∞. Let {bn}n∈N0 be a sequence of positive numbers satisfying
bn = o(an) as n→ +∞.

We formally define a random function

(5.1) g =
+∞∑
m=0

∑
w∈Σm

bm · Yw · hw,

which has random coefficients on its Haar series. By Lemma 2.1, the
series above always converge uniformly, and the limit g is Lipschitz
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with respect to da. For each n ∈ N, the n-th approximation Ang of g
is given by

(5.2) Ang =
n−1∑
m=0

∑
w∈Σm

bmYwhw.

Fix an arbitrary function f0 ∈ Lip(Σ+, da). With abuse of notation,
we use similar symbols for the random arc-weight, mean-weight, and
gap induced by random functions that are continuous. In particular,
the (random) arc-weights W f0+g

n (w), n ∈ N, on BGn induced by f0 + g
are defined by the following inductive process:

• If n = 1, then W f0+g
1 (α) = (−1)α

2
(c∅(f0) + b0 · Y∅) for each α ∈

{0, 1};
• If n ⩾ 2, thenW f0+g

n (wα) = W f0+g
n−1 (w)+ (−1)α

2
(cw1w2···wn−1(f0)+

bn−1 · Yw) for all w ∈ Σn−1 and α ∈ {0, 1}.
Fix an integer n ∈ N. We then have

(5.3) W f0+g
n (w1w2 . . . wn︸ ︷︷ ︸

w

) =
1

2

n−1∑
i=0

(−1)wi+1(cw1w2...wi
(f0)+biYw1w2...wi

),

for w ∈ Σn. Moreover, the (random) mean-weight of a directed cycle
C in BGn induced by f0 + g is then given by

(5.4) M f0+g
n (C) = 1

len(C)
∑

w∈A(C)

W f0+g
n (w).

Finally, the (random) gap, induced by f0+g, between the mean-weights
of the two heaviest (in terms of mean-weight) directed cycles C1 and C2
in BGn is

(5.5) Gapn(f0 + g) =M f0+g
n (C1)−M f0+g

n (C2) ⩾ 0.

Since uniform measures are continuous, almost surely there is a unique
directed cycle with the maximal mean-weight, i.e., Gapn(f0 + g) > 0.

The main technical result is formulated below.

Proposition 5.1. Let (Σ+, σ) be the full shift on binary sequences.
Let a = {an}n∈N0 be a strictly decreasing sequence of positive numbers
satisfying an+1/an = O(θn) as n → +∞ for some θ ∈ (0, 1/2). Let
{bn}n∈N0 be a sequence of positive numbers satisfying bn = o(an) as n→
+∞. Consider a weakly a-admissible gauge b = {bw}w∈Σ∗ satisfying
bw = b|w| for all w ∈ Σ∗. Fix an arbitrary function f0 ∈ Lip(Σ+, da).
Consider the random function g defined in (5.1).

Consider an integer n ⩾ 2, a real number ϵ ∈ (0, 1/2), and a col-
lection t = {tw}w∈Σ⩽n−2

of real numbers tw ∈ R. Let {Xt(C) : C ∈
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C (BGn)} be a collection of random variables with joint distribution
given by the conditional distribution of

{
M f0+g

n (C) : C ∈ C (BGn)
}

given {Yw = tw : w ∈ Σ⩽n−2}. Let Gapn,t be the absolute value of
the difference between the largest two values in {Xt(C) : C ∈ C (BGn)}.
Then

(5.6) P
({

Gapn,t ⩽ 2−nbn−1ϵ
})

⩽ 2nϵ.

Remark. Note that A(C1) ⊈ A(C2) for each pair of distinct directed
cycles contained in a directed graph D. Then by (5.3), (5.4), and the
definition of Yw for w ∈ Σ∗, we get that the random functions Xt(C)
and Xt(C ′) are distinct linear combinations of random variables Yw,
w ∈ Σ⩽n−1, (with scalar multiples of Haar functions as coefficients) for
distinct directed cycles C and C ′ contained in BGn. Moreover, Gapn,t

in the proposition is well-defined almost surely.

The strategy of our proof of Proposition 5.1 is inspired by the proof
of Theorem 3 in [CCK15]. The proof in [CCK15] states the anti-
concentration inequalities of Gaussian random vectors and the proof
lies in bounding the probability density function of the maximum of a
Gaussian random vector. Our proof has three major differences:

(i) Due to the definition of prevalence, it requires a probability
measure which is compactly supported. Thus we cannot di-
rectly use the jointly Gaussian random variables (which are not
compactly supported) and the resulting estimates in the proof
of Theorem 3 in [CCK15].

(ii) While in [CCK15] special properties of jointly Gaussian random
variables are used in an essential way in the general case, we
have to work with uniform distributions relying on the combi-
natorics of de Bruijn–Good digraphs and specific edge weights.

(iii) Our strategy concentrates on the upper bound on the proba-
bility of small conditional gap Gapn,t, rather than the maxi-
mum of a Gaussian random vector in the proof of Theorem 3
in [CCK15].

Proof of Proposition 5.1. Consider n, ϵ, and t as given in the hypoth-
esis.

Let E be the event that |Yw| ⩽ 1− 2ϵ for all w ∈ Σn−1.
We will investigate, for each C ∈ C (BGn), the standard deviation

σC := σ(Xt(C)), the mean µC := E[Xt(C)], the probability density

function ϕC forXt(C), and the probability density function ϕ̃C forXt(C)
restricted to E . Then it follows from the definition of Xt, the fact that
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E[Yw] = 0 for w ∈ Σ∗, (5.3), and (5.4) that

(5.7) Xt(C) = µC +
bn−1

2 len(C)
∑

w∈V (C)

(−1)zC(w)Yw

for each C ∈ C (BGn). Here and henceforth by zC(w) we denote, for
eachw ∈ V (C), the unique number in {0, 1} such thatwzC(w) ∈ A(C).
Note that

(5.8) |Xt(C)− µC| ⩽ bn−1/2.

Define, for each C ∈ C (BGn) and each pair of numbers x, x′ ∈ R,
the event

Rt(C, x′) := {Xt(C ′) ⩽ x′ for all C ′ ∈ C (BGn) \ {C}},

and the conditional probabilities

QC(x, x
′) := P(Rt(C, x′) |Xt(C) = x),

Q̃C(x, x
′) := P(E ∩ Rt(C, x′) |Xt(C) = x),

QC(x) := QC(x, x),

Q̃C(x) := Q̃C(x, x).

We first verify the following two claims.

Claim 1. ϕC(x+∆) ⩾ ϕ̃C(x) for all C ∈ C (BGn), ∆ ∈ [0, bn−1ϵ], and
x ∈ R satisfying |x− µC| ⩽ 1− bn−1ϵ.

To establish Claim 1, we fix C, ∆, and x as in the claim. We consider
a collection {yw}w∈V (C) of real numbers satisfying both

(5.9) µC +
bn−1

2 len(C)
∑

w∈V (C)

(−1)zC(w)yw = x

and |yw| ⩽ 1− 2ϵ for each w ∈ V (C). We set

y′w := yw + (−1)zC(w)2∆/bn−1

for each w ∈ V (C). Then

|y′w| ⩽ 1− 2ϵ+
2∆

bn−1

⩽ 1
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for each w ∈ V (C), and

µC +
bn−1

2 len(C)
∑

w∈V (C)

(−1)zC(w)y′w

= µC +
bn−1

2 len(C)

( ∑
w∈V (C)

(−1)zC(w)yw +
∑

w∈V (C)

2∆

bn−1

)
= x+∆.

Claim 1 then follows from (5.7) and the translation invariance of uni-
formly distributed random variables.

By a similar argument as in the proof of Claim 1, we get the following
claim.

Claim 2. QC
(
x+∆, x+

(
1−2−n+1

)
∆
)
⩾ Q̃C(x) for all C ∈ C (BGn),

∆ ∈ [0, bn−1ϵ], and x ∈ R satisfying |x− µC| ⩽ 1− bn−1ϵ.

To establish Claim 2, we fix C, ∆, and x as in the claim. We consider
a collection {yw}w∈Σn−1 of real numbers satisfying both the equality in
(5.9) and |yw| ⩽ 1− 2ϵ for each w ∈ Σn−1. We set

y′w := yw + (−1)zC(w)2∆/bn−1

for each w ∈ V (C), and set y′u := yu for each u ∈ Σn−1 \ V (C). Then
|y′w| ⩽ 1 for all w ∈ Σn−1 as

|y′w| ⩽ 1− 2ϵ+
2∆

bn−1

⩽ 1

for each w ∈ V (C). On the other hand, consider an arbitrary directed
cycle C ′ ∈ C (BGn) \ {C}. Since C ′ and C are distinct directed cycles, it
is clear that A(C ′) \ A(C) ̸= ∅. Consequently,

µC′ +
bn−1

2 len(C ′)

∑
w∈V (C′)

(−1)zC′ (w)y′w

⩽ µC′ +
bn−1

2 len(C ′)

( ∑
w∈V (C′)

(−1)zC′ (w)yw − 2∆

bn−1

+
∑

w∈V (C′)

2∆

bn−1

)
= x+

∆

len(C ′)
(−1 + cardV (C ′))

⩽ x+
(
1− 2−n+1

)
∆.

Claim 2 then follows from (5.7) and the translation invariance of uni-
formly distributed random variables.

Finally, we apply the two claims to finish the proof of the proposition.
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Provided x′ < x, we define the events Q(C) := Rt(C, x′) ∩ {Xt(C) =
x}, C ∈ C (BGn). We observe that Q(C) and Q(C ′) are disjoint for
distinct directed cycles C and C ′ in C (BGn).

Define ι := bn−1ϵ. Then by the two claims, the observation above,

(5.7), (5.8), and the definitions of QC, Q̃C, Rt, and E , we get

P
(
Gapn,t ⩾ 2−n+1ι

)
⩾

∑
C∈C (BGn)

∫ −ι+µC+2−1bn−1

ι+µC−2−1bn−1

QC
(
x+ ι, x+

(
1− 2−n+1

)
ι
)
ϕC(x+ ι) dx

⩾
∑

C∈C (BGn)

∫ −ι+µC+2−1bn−1

ι+µC−2−1bn−1

Q̃C(x)ϕ̃C(x) dx

⩾
∑

C∈C (BGn)

P(E ∩ {C is the cycle with maximal mean-weight})

= P(E).

We remark that in the last inequality, we used the fact that ϕ̃C is zero
outside of [µC − 2−1bn−1, µC + 2−1bn−1] by (5.8).

As a straightforward consequence of the uniform distribution and
the hypothesis that ϵ ∈ (0, 1/2), we have

P(E) = (1− 2ϵ)2
n−1

⩾ 1− 2nϵ,

where the inequality follows from the well-known inequality 1−mα ⩽
(1−α)m for m ∈ N and α ∈ (0, 1) from the concavity of the logarithm.
The proposition is therefore established. □

The following proposition brings us a step closer to the gap criterion
in Lemma 4.1.

Proposition 5.2. Let (Σ+, σ) be the full shift on binary sequences.
Let a = {an}n∈N0 be a strictly decreasing sequence of positive numbers
satisfying an+1/an = O(θn) as n → +∞ for some θ ∈ (0, 1/2). Let
{bn}n∈N0 be a sequence of positive numbers satisfying bn = o(an) as n→
+∞. Consider a weakly a-admissible gauge b = {bw}w∈Σ∗ satisfying
bw = b|w| for all w ∈ Σ∗.

Then there exists a measure Pb supported on Hb with the property
that for every f0 ∈ Lip(Σ+, da), we have

Pb

({
g ∈ Hb : ∃N ∈ N, ∀n ⩾ N, Gapn(f0 + g) ⩾ 4−nn−3bn−1

})
= 1.

Proof. Fix an arbitrary integer n ⩾ 2.
It follows from Proposition 5.1 that

P({Gapn,t ⩽ 2−nbn−1ϵ}) ⩽ 2nϵ
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for all ϵ ∈ (0, 1/2).
We denote by ϕn−2 the joint probability density function for all the

random variables in {Yw : w ∈ Σ⩽n−2}. Then for each ϵ ∈ (0, 1/2),

P{Gapn(f0 + g) ⩽ 2−nbn−1ϵ}

⩽
∫

P{Gapn,t ⩽ 2−nbn−1ϵ}ϕn−2(t) dt

⩽ 2nϵ.

Taking ϵ := 2−nn−3, then , we have

+∞∑
n=2

P{Gapn(f0 + g) ⩽ 4−nn−3bn−1} ⩽
+∞∑
n=2

n−3 < +∞.

By the Borel–Cantelli lemma, therefore, the proposition follows. □

6. Proof of Theorem 3.1

We are now ready to establish the more concrete formulation Theo-
rem 3.1 of our main theorem (Theorem 1.1).

Proof of Theorem 3.1. Fix an arbitrary function f0 ∈ Lip(Σ+, da). De-
fine

Λf0 :=
{
g ∈ Hb : ∃N ∈ N, ∀n ⩾ N, Gapn(f0 + g) ⩾ 4−nn−3bn−1

}
.

Next, for each g ∈ Λf0 , by the definition of Λf0 , for all sufficiently
large n ∈ N,

(6.1) Gapn(f0 + g) ⩾ 4−nn−3bn−1.

On the other hand, since by the hypothesis on a and b,

(6.2)
+∞∑
k=1

kak < +∞,

and since θ ∈ (0, 1/4), for all sufficiently large integers n, one has

(6.3)
bn−1

bn
> max{LIPda(f0), 1}4n+1n4

and

(6.4) an ⩾
+∞∑

k=n+1

(k − n+ 1)ak.
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Combining (6.1), (6.3), bn = an/n, (6.4), (2.6), (2.7), and the triangle
inequality, we deduce that for each N ∈ N, there exists an integer
n ⩾ N such that

Gapn(f0 + g)

⩾ 4−nn−3bn−1 (by (6.1))

> 4max{LIPda(f0), 1}nbn (by (6.3))

= 4max{LIPda(f0), 1}an (by bn = an/n)

⩾ 2max{LIPda(f0), 1}
+∞∑
k=n

(k − n+ 1)ak (by (6.4))

⩾
+∞∑
k=n

(k − n+ 1)(ak LIPda(f0) + bk) (by bk = ak/k).

Note that by (2.6) and (2.7), ak LIPda(f0) ⩾ maxw∈Σk
{|cw(f0)|}. On

the other hand, since g ∈ Λf0 , by the definition of Λf0 and Lemma 2.1,
we have bk ⩾ maxw∈Σk

{|cw(g)|}. Hence

Gapn(f0 + g)

⩾
+∞∑
k=n

(k − n+ 1)
(
max
w∈Σk

{|cw(f0)|}+ max
w∈Σk

{|cw(g)|}
)

⩾
+∞∑
k=n

(k − n+ 1) max
w∈Σk

{|cw(f0 + g)|}.

This means that f0 + g satisfies the gap criterion (4.7) at length n.
Together with (6.2) and Lemma 4.1 (on f0 + g), it then follows that
f0 + g ∈ Lockσ(Σ

+, da).
Hence for each f0 ∈ Lip(Σ+, da) we have

Λf0 ⊆ {g ∈ Hb : f0 + g ∈ Lockσ(Σ
+, da)}.

Then it follows from Proposition 5.2,

1 = Pb(Λf0) ⩽ Pb({g ∈ Hb : f0 + g ∈ Lockσ(Σ
+, da)}) ⩽ 1.

The proof of Theorem 3.1 is therefore complete. □

7. Proof of Theorem 1.2

Recall the definition of little Lipschitz spaces reviewed in Section 1.

Proof of Theorem 1.2. It suffices to show that lockσ(Σ
+, da) is a preva-

lent set in lip(Σ+, da).
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Set bn := an/n for each n ∈ N0. Consider the weakly a-admissible
gauge b = {bw}w∈Σ∗ given by bw := b|w| for each w ∈ Σ∗.
We first show that the Hilbert brickHb defined in (2.9) in Lemma 2.1

is a subset of lip(Σ+, da).
Indeed, for each e = {ew}w∈Σ∗ with |ew| ⩽ bw for each w ∈ Σ∗,

by Lemma 2.1 the uniform limit fe ∈ Lip(Σ+, da) of the Haar series∑
w∈Σ∗

ewhw satisfies that for each n ∈ N sufficiently large and each
pair of x, y ∈ Σ+ with x † y = n, by (2.2), the hypothesis on a, and
our choice of bn, we have

|fe(x)− fe(y)| ⩽
+∞∑
m=n

bm ⩽ 2bn = 2an/n = o(an).

Thus by the definitions of the metric da and of the little Lipschitz space,
we have fe ∈ lip(Σ+, da). It follows from (2.9) that Hb ⊆ lip(Σ+, da).

Note that lip(Σ+, da) ⊆ Lip(Σ+, da) and that

Lockσ(Σ
+, da) ∩ lip(Σ+, da) ⊆ lockσ(Σ

+, da).

Hence by Theorem 3.1, the probability measure Pb from Theorem 3.1
supported on the compact setHb satisfies that for each f0 ∈ lip(Σ+, da),

Pb({g ∈ Hb : f0 + g ∈ lockσ(Σ
+, da)})

⩾ Pb({g ∈ Hb : f0 + g ∈ Lockσ(Σ
+, da) ∩ lip(Σ+, da))

= Pb({g ∈ Hb : f0 + g ∈ Lockσ(Σ
+, da)) = 1.

Therefore, lockσ(Σ
+, da) is a prevalent set in lip(Σ+, da), and the

theorem is established. □

As more detailed discussions in [LZ23, Section 1] suggest, there is a
“dictionary” for the correspondences between thermodynamic formal-
ism and its tropical counterpart, ergodic optimization. In this dictio-
nary, the existence, uniqueness, and equidistribution of periodic points
for the equilibrium state may be considered as the counterparts to the
existence, uniqueness, and periodicity of (the support of) the maximiz-
ing measure. In the current paper, we investigated in yet another “lan-
guage”, namely, a probabilistic one through random maximum mean
cycle problems on digraphs using probabilistic tools. Here directed cy-
cles on digraphs translate to periodic orbits, and maximum mean cy-
cles to maximizing measures. Similar analogies can be drawn between
these three “languages” in the “dictionary.” It would be interesting to
investigate further into such connections, especially the probabilistic
aspects.
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Probab. Stat. 36 (2000), 489–508.

[Bou01] Bousch, T., La condition de Walters. Ann. Sci. Éc. Norm. Supér. (4) 34
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