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Abstract. Expanding Thurston maps form a class of branched covering maps on the topological 2-
sphere S2 which are topological models of some non-uniformly expanding rational maps without any
smoothness or holomorphicity assumption initially investigated by W. P. Thurston, M. Bonk, D. Meyer,
P. Häıssinsky, and K. M. Pilgrim. The measures of maximal entropy and the absolutely continuous
invariant measures for these maps have been studied by these authors, and equilibrium states by the
first-named author. In this paper, we initiate the investigation on two new classes of invariant measures
(namely, the maximizing measures and ground states), and establish the Livšic theorem, a local Anosov
closing lemma, and give a positive answer to the Typically Periodic Optimization Conjecture from
ergodic optimization for these maps. As an application, we establish these results for Misiurewicz–
Thurston rational maps (i.e., postcritically-finite rational maps without periodic critical points) on the
Riemann sphere including the Lattès maps with respect to the spherical metric. Our strategy relies on
the visual metrics developed by the above authors.

In particular, we verify, in a first non-uniformly expanding setting, the Typically Periodic Opti-
mization Conjecture, establishing that for a generic Hölder continuous potential, there exists a unique
maximizing measure, moreover, this measure is supported on a periodic orbit, it satisfies the locking
property, and it is the unique ground state. The expanding Thurston maps we consider include those
that are not topologically conjugate to rational maps, in particular, they can have periodic critical
points.

Contents

1. Introduction 2
1.1. Main Results 5
1.2. Strategy and plan of the paper 8
Acknowledgments 10
2. Notation 11
3. Preliminaries 11
3.1. Thurston maps 11
3.2. Orbifolds 16
3.3. Lattès maps 17
3.4. Symbolic dynamics for expanding Thurston maps 18
4. Little Lipschitz spaces and the locking property 19
5. The Assumptions 22
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1. Introduction

Uniformization and rigidity problems play important roles in the studies in geometry, group theory,
dynamics, analysis, and the intersections of these fields, especially in relation to classical complex
analysis (see for example, [Kl06, Bon06, Sp04]). Inspired by the quest for a proof of Cannon’s Conjecture
[Ca94] in geometric group theory, which can be seen as a quasisymmetric uniformization problem on
the topological 2-sphere S2 closely related to Thurston’s Hyperbolization Conjecture ([Kl06, Bon06]),
M. Bonk and D. Meyer [BM10, BM17] initiated investigations on a class of branched covering maps
on S2 on the opposite side of Cannon’s Conjecture in Sullivan’s dictionary. See also related works of
P. Häıssinsky and K. M. Pilgrim [HP09].

In the early 1980s, D. P. Sullivan [Su85, Su83] introduced a “dictionary,” known as Sullivan’s dic-
tionary nowadays, linking two aspects of conformal dynamics, namely, geometric group theory and
complex dynamics. The former mainly concerns the study of Kleinian groups acting on the Riemann
sphere and the latter mainly focuses on the rational maps. Many dynamical objects in both areas can
be similarly defined and results similarly proven, yet essential and important differences remain.

In Sullivan’s dictionary, Kleinian groups, i.e., discrete subgroups of Möbius transformations on the
Riemann sphere, correspond to rational maps, and convex-cocompact Kleinian groups correspond to ra-
tional maps that exhibit certain expansion properties such as hyperbolic rational maps, semi-hyperbolic
rational maps, and postcritically-finite sub-hyperbolic rational maps, depending on the context of in-
vestigations. See insightful discussions on this part of the dictionary in [BM17, Chapter 1], [HP09,
Chapter 1], and [LM97, Section 1].

The class of branched covering maps M. Bonk and D. Meyer proposed to study in [BM10, BM17],
called expanding Thurston maps, are those whose finitely-many critical points are all preperiodic and
who expand in a subtle way despite of the presence of critical points. These maps are topologi-
cal models of postcritically-finite rational maps on the Riemann sphere with empty Fatou sets. The
expanding Thurston maps belong to the bigger class of branched covering maps on S2 investigated
by W. P. Thurston in his celebrated combinatorial characterization theorem, sometimes known as
the fundamental theorem of complex dynamics, in which he characterized postcritically-finite rational
maps among a class of more general topological maps, known as Thurston maps nowadays [DH93]. A
Thurston map is a (non-homeomorphic) branched covering map on the topological 2-sphere S2 whose
finitely-many critical points are all preperiodic. Thurston’s theorem asserts that a Thurston map is
essentially a postcritically-finite rational map if and only if there exists no so-called Thurston obstruc-
tion, i.e., a collection of simple closed curves on S2 subject to certain conditions. For generalizations
of Thurston’s theorem, see for example, the works of G. Cui, Y. Jiang, D. Sullivan, L. Tan, G. Zhang
[CJS04, JZ09, CT11].

Inspired by Thurston’s theorem, it is desirable to investigate the most essential dynamical and
geometric properties of postcritically-finite rational maps in the setting of Thurston maps instead, with
the conformality or any smoothness assumptions removed.

Under Sullivan’s dictionary, the counterpart to Thurston’s theorem in the geometric group theory
is Cannon’s Conjecture [Ca94]. An equivalent formulation of Cannon’s Conjecture [Bon06, Conjec-
ture 5.2] from a quasisymmetric uniformization point of view predicts that if the boundary at infinity
∂∞G of a Gromov hyperbolic group G is homeomorphic to S2, then ∂∞G equipped with a visual metric
is quasisymmetrically equivalence to S2 equipped with the spherical metric. The notion of quasisym-
metry recalled in Definition 3.10 is fundamental in coarse geometry. Gromov hyperbolic groups can
be considered as metric-topological systems generalizing the conformal systems in the context, namely,
convex-cocompact Kleinian groups. Inspired by Sullivan’s dictionary and their interest in Cannon’s
Conjecture, M. Bonk and D. Meyer [BM10, BM17], P. Häıssinsky and K. M. Pilgrim [HP09], along
with others, studied a subclass of Thurston maps by imposing some additional condition of expansion.
Roughly speaking, we say that a Thurston map is expanding if for any two points x, y ∈ S2, their
preimages under iterations of the map get closer and closer. It is important to keep in mind that this
condition is much weaker than the usual distance-expanding condition and the expansive condition due
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to the presence of critical points. For a closer investigation on the weak expansion properties of these
maps, see [Li15].

Expanding Thurston maps give natural topological models for investigating the dynamical and geo-
metric properties of (non-uniformly expanding) postcritically-finite rational maps. On the other hand,
an expanding Thurston map may be obstructed, i.e., not topologically conjugate to a rational map, in
particular, it can have periodic critical points. See Appendix A for examples.

The geometric and dynamical properties of these maps have been explored extensively by M. Bonk
and D. Meyer and summarized in their monograph [BM10, BM17] (see also [HP09]). See also the sub-
sequent related works [Yi11, HP12, Me13, HP14, Li17, BD18, HM18, LZ18, Wu19, BM20, DPTUZ21,
Liw22], which list is far from exhaustive.

Postcritically-finite rational maps, in particular, are at the center of various directions of active
investigations extending well beyond the scope of complex dynamics. For example, for their connections
to self-similar groups, see for example, [Ne05, BN06, HM18]; for their connections to geometric group
theory, see for example, [Su85, Bon06, BM17, HP09, HP14, Me13]; for their connections to arithmetic
dynamics1, see for examples, [BIJMST19, De18].

In dynamics, invariant measures and periodic orbits are both indispensable tools as well as basic
objects for investigations themselves. The locations of periodic points in terms of certain combinatorial
structure was studied and an exact formula for the number of periodic points for each period was found
in [Li16] for expanding Thurston maps. Equidistribution and large deviation results for periodic points
were studied in [Li18, Li15]. An asymptotic formula for the number of periodic orbits with a certain
weight induced by a Hölder continuous potential similar to the prime number theorem in number theory
was established in [LZ23a, LZ23b, LZ23c] (see also [LZ18]). Regarding important classes of invariant
measures of these maps, the measures of maximal entropy were studied in [BM10, BM17, HP09], the
absolutely continuous invariant measures in [BM17], and the equilibrium measures by the first-named
author [Li18] and later by Das et al. [DPTUZ21] in broader settings with a different approach building
upon prior works of P. Häıssinsky and K. M. Pilgrim [HP09]. The first-named author has been informed
that similar results on equilibrium states have also been obtained independently by P. Häıssinsky.

In this paper, we investigate some other basic properties of periodic points of expanding Thurston
maps and initiate the studies of another two classes of invariant measures, namely, (potential-energy-
)maximizing measures and ground states. More precisely, we establish in our context the Livšic Theorem
and various closing lemmas including a Bressaud–Quas closing lemma and a local version of Anosov
closing lemma. The Livšic Theorem, dating back to the work of Livšic [Liv72], has played important
roles in the study of rigidity problems in dynamics [Sp04]. It basically states that a real-valued function
(called a potential) is determined uniquely (up to a coboundary of the same regularity) by the sum
of its values along periodic orbits (see Theorem 1.1). The usual approach to Livšic Theorems only
yielded a partial result [Li18, Proposition 8.8] for expanding Thurston maps. Our current approach is
to establish a stronger result, called the bilateral Mañé lemma, using tools from ergodic optimization.
Due to the presence of critical points, the lack of Markov partitions, and the non-uniform expansion
nature in our setting, the full version of the classical Anosov closing lemma is beyond reach (c.f.
[CKY88] in a one-dimensional real dynamics setting). A version of the (global) Anosov closing lemma
was established by the first-named author in [Li18, Lemma 8.6], albeit coarse in the temporal direction,
i.e., it holds only for sufficiently high iterates of the map and sufficiently long orbits. In this paper,
we establish a local version (away from critical points) of the Anosov closing lemma (Lemma 8.6)
without the assumptions on the iterate of the map or lengths of the orbits. On the other hand,
we formulate fairly general rules to deduce the Bressaud–Quas shadowing property between related
systems such as factors and iterations before verifying this property for our maps, proving the Bressaud–
Quas closing lemma. Combining these two kinds of closing lemmas, we are able to formulate and
establish another local closing lemma in Lemma 8.1, which is crucial in our investigations on the new
classes of invariant measures, i.e., the maximizing measures and ground states. We prove existence,
uniqueness, and periodicity of the maximizing measures for generic Hölder continuous potentials for
expanding Thurston maps, establishing the Typically Periodic Optimization (TPO) Conjecture ([YH99,
Conjecture 1.1]) in our setting. We say that an invariant measure is periodic if it is supported on a

1See [HP09, Section 4.7] for an account on some formal similarities between the p-adic dynamics setting and our visual
metrics setting.
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periodic orbit. Outside of complex dynamics, the TPO Conjecture has previously been fully verified
mostly in uniformly expanding and uniformly hyperbolic systems (see [Co16] for distance expanding
maps and [HLMXZ19] for Axiom A attractors and Anosov diffeomorphisms). The TPO Conjecture has
connections to various fields such as the Finiteness Conjecture in control theory [Boc18] and the random
minimum (or maximum) mean cycle problems in probability theory [BZ16, DLZ23]. Our theorem may
be the first to verify the TPO Conjecture in a non-uniformly expanding setting for Hölder continuous
potentials to the best of our knowledge. Finally, we prove that for an expanding Thurston map and a
generic Hölder potential there exists a unique ground state which the equilibrium state converges to at
zero temperature.

To better understand our results for the invariant measures mentioned above, we quickly review
some basic notions from the thermodynamical formalism in ergodic theory, dating back to the works
of Ya. G. Sinai, R. Bowen, D. Ruelle, and others around early the 1970s [Do68, Sin72, Bow75, Rue78],
inspired by statistical mechanics. Recall the measure-theoretic pressure

(1.1) Pµ(T, ψ) = hµ(T ) +

∫
ψ dµ,

where hµ(T ) is the measure-theoretic entropy. In the language of statistical mechanics, the measure-
theoretic entropy and the integral of the potential represent the kinetic and potential energy, respec-
tively, while the measure-theoretic pressure represents the free energy, which is the sum of the kinetic
energy and the potential energy. Under this interpretation, a measure of maximal entropy maximizes
the kinetic energy (i.e., hµ(T )), and an equilibrium state maximizes the free energy (i.e., Pµ(T, f)). It
is thereby natural to consider measures of maximal potential energy.

We denote the maximal potential energy by

(1.2) β(ψ) := sup
µ∈M(X,T )

∫
ψ dµ = max

µ∈M(X,T )

∫
ψ dµ.

The last identity follows from the weak*-compactness of the set M(X,T ) of T -invariant Borel proba-
bility measures on X.

We call a measure µ ∈ M(X,T ) that maximizes the potential energy
∫
ψ dµ a measure of maximal

potential energy with respect to ψ or a ψ-potential-energy-maximizing measure (or a ψ-maximizing
measure). We denote the (non-empty) set of ψ-maximizing measures by

(1.3) Mmax(T, ψ) :=

{
µ ∈ M(X,T )

∣∣∣∣
∫
ψ dµ = β(ψ)

}
.

We say that a measure µ ∈ M(X,T ) is a ground state for T and ψ if it is the limit of a sequence of
equilibrium states µtiψ in the weak∗ topology for some sequence {ti}i∈N of real numbers that tends
to infinity. Since t = ti can be considered as inverse temperature, we say that equilibrium state µtψ
converges at zero temperature if there exists a unique ground state. One can show that if T admits
a finite topological entropy, then any ground state is a ψ-maximizing measure (see the discussion
preceding Theorem 1.6). The ground states may thereby be considered as the most physically relevant
maximizing measures.

The study of maximizing measures and ground states is the main theme for a field in ergodic the-
ory known as ergodic optimization. Despite of its close connections to the theory of thermodynam-
ical formalism, ergodic optimization originated in 1990s from the works of B. R. Hunt and E. Ott
[HO96a, HO96b], with motivation from control theory [OGY90, SGYO93], and the Ph.D. thesis of
O. Jenkinson [Je96]. Much of the early work in ergodic optimization focused on specific maps and
potentials from finite dimensional function spaces [HO96a, HO96b, Je96, Je00, Je01, Bou00]. G. Yuan
and B. R. Hunt conjectured [YH99, Conjecture 1.1] that for an axiom A or a uniformly expanding map,
and for a (topologically) generic Lipschitz continuous or a (topologically) generic C1-smooth potential
ψ, there is a ψ-maximizing measure and it is supported on a periodic orbit. It was recently settled
by [Co16, HLMXZ19]. In the more general setting of any suitably hyperbolic system and any space of
suitably regular potentials, the Yuan–Hunt Conjecture is known as the Typically Periodic Optimization
Conjecture. In the context of Hamiltonian systems, a similar conjecture is known as Mañé’s Conjecture
[Ma96].
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Complementary to the genericity in the positive statement of the TPO Conjecture, examples of non-
convergence of equilibrium states at zero temperature have been constructed in symbolic settings (see for
example, [BGT18, CRL15, CH10, vER07]). Moreover, D. Coronel and J. Rivera-Leterlier introduced
another approach to the non-convergence of equilibrium states at zero temperature [CRL15]. They
constructed families of quadratic-like maps satisfying an assumption of non-uniform expansion called
the Collet–Eckmann condition, so that the ground states with respect to the geometrical potential are
not unique in a robust sense, i.e., there is an open set of analytic 2-parameter families of quadratic-like
maps that exhibit so-called “sensitive dependence” of geometric Gibbs states [CRL17]. More recently,
D. Coronel and J. Rivera-Leterlier established analogous examples of the sensitivity dependence of
geometric Gibbs states at positive temperature [CRL19].

Considering the recent breakthroughs on maximizing measures and ground states in uniformly ex-
panding and uniformly hyperbolic settings mentioned above, it is natural to consider the properties of
these measures for generic potentials in non-uniformly expanding settings.

One major source of non-uniform expansion in dynamical systems arises from the existence of critical
points. A basic setting of low-dimensional dynamical systems with critical points is that of rational maps

on the Riemann sphere Ĉ. To limit the complexity, we assume that all critical points are preperiodic
(i.e., have finite forward orbits) in this paper. These rational maps are called the postcritically-finite
rational maps, and have been studied extensively in complex dynamics independent of the interests
from ergodic theory. From the ergodic theory point of view, these maps serve as the most basic setting
of non-uniformly expanding rational maps. The subclass of these maps with parabolic orbifolds, called
Lattès maps, are ubiquitous in the study of complex dynamics, appearing in many key theorems in
the field. For recent works related to Lattès maps in the context of Thurston maps in particular, see
[LZ18, BM20, BHI21].

Motivated by Sullivan’s dictionary, for each expanding Thurston map, we can equip the topological
2-sphere S2 with a natural class of metrics, called visual metrics, constructed in a similar fashion as the
visual metrics on the boundary ∂∞G at infinity of a Gromov hyperbolic group G. A characterization
theorem of rational maps from a quasisymmetric uniformization point of view is established in this
context by M. Bonk and D. Meyer [BM10, BM17], and by P. Häıssinsky and K. M. Pilgrim [HP09]:
An expanding Thurston map is conjugate to a rational map if and only if the sphere (S2, d) equipped

with a visual metric d is quasisymmetrically equivalent to the Riemann sphere Ĉ equipped with the
spherical metric.

Our main approach to the study of the dynamics of our non-uniformly expanding systems differs
from classical approaches in that it relies on the study of coarse geometric properties of the associated
metric spaces. This should not be a surprise considering the rich connections to geometric group theory
and coarse geometry mentioned above. Such an approach has been tested by the first-named author to
develop a reasonable theory of thermodynamical formalism for expanding Thurston maps in his thesis
(see [Li18, Li17]), and more recently, in his collaborated work with T. Zheng to establish Prime Orbit
Theorems with exponential error terms [LZ23a, LZ23b, LZ23c, LZ18].

To get a glimpse of this approach, we note that in the setting of Lattès maps or more general
postcritically-finite rational maps, with respect to the spherical metric on the Riemann sphere, the
Ruelle–Perron–Frobenius (transfer) operator does not leave the space of α-Hölder continuous functions
invariant [DPU96, Remark 3.1]. Similarly, the quests for the α-Hölder continuous fixed point of the
Bousch operator associated to an α-Hölder continuous potential, leading to the Mañé lemma, have
only produced partial results on fixed points with lower Hölder exponent in various contexts (see for
example, [Mo09, CLT01]). With the help of visual metrics, however, we get in our context well-defined
Ruelle–Perron–Frobenius (transfer) operators, and similarly, Bousch operators, which admit Hölder
continuous fixed points with the desired Hölder exponent. Moreover, even though the strongest form of
the Anosov closing lemma is still beyond reach, we manage to establish weaker forms of closing lemmas
with appropriate choices of metrics. Both of these observations turned out to be crucial in our current
investigations.

1.1. Main Results. Let (X, d) be a compact metric space with infinite cardinality. The space Lip(X, d)
of real-valued Lipschitz functions consists of functions φ ∈ C(X) with

sup{|φ(x) − φ(y)| |x, y ∈ X, d(x, y) ≤ r} = O(r) as r → 0.
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Similarly, a function φ ∈ C(X) is a little Lipschitz function or locally flat Lipschitz function if

sup{|φ(x) − φ(y)| |x, y ∈ X, d(x, y) ≤ r} = o(r) as r → 0.

The space of real-valued little Lipschitz functions on (X, d) is denoted by lip(X, d) and is called the
little Lipschitz space. Clearly lip(X, d) ⊆ Lip(X, d). We equip both spaces with the usual Lipschitz
norm. The Lipschitz space Lip(X, d) is sometimes also called the big Lipschitz space.

Little Lipschitz spaces, like big Lipschitz spaces, play central roles in the study of Lipschitz analy-
sis and Lipschitz algebras in the analysis on metric spaces and functional analysis; see the beautiful
monographs of N. Weaver [We18] and of Ş. Cobzaş, R. Miculescu, and A. Nicolae [CMN19], as well
as references to the vast literature therein. Among other important properties, little Lipschitz spaces
are double preduals of the big Lipschitz spaces under mild assumptions (see for example, [We18, Sec-
tion 4.3]). To quote from [We18, Section 4.1]: “The theory of little Lipschitz spaces is, generally
speaking, parallel to but a bit more difficult than the theory of (big) Lipschitz spaces.”

Note that for each α ∈ (0, 1], the snowflake dα of d given by dα(x, y) := d(x, y)α is also a metric.
Since the space C0,α(X, d) of real-valued Hölder continuous on (X, d) with exponent α coincides with
the space Lip(X, dα) of real-valued Lipschitz functions on (X, dα) with the same norm, we sometimes
say that a function φ ∈ Lip(X, dα) is Hölder continuous with exponent α when there is little chance
for confusion. The space c0,α(X, d) := lip(X, dα) is called the little Hölder space with exponent α on
(X, d) by some authors.

The Livšic theorem plays important roles in rigidity problems in dynamics [Sp04]. We state our first
main theorem below.

Theorem 1.1 (Livšic theorem for expanding Thurston maps). Let f : X → X be either an
expanding Thurston map on the topological 2-sphere X = S2 equipped with a visual metric or a

postcricitally-finite rational map with no periodic critical points on the Riemann sphere X = Ĉ equipped
with the chordal or spherical metric. Let φ : X → R be Hölder continuous. Then the following state-
ments are equivalent:

(i) If x ∈ X satisfies fn(x) = x for some n ∈ N then
∑n−1

i=0 φ(f
i(x)) = 0.

(ii) There exists a Hölder continuous function u : X → R such that φ = u− u ◦ f .
A special case of the Livšic Theorem for expanding Thurston maps was established in Proposition 8.8

in [Li18] under the additional assumption of the existence of an invariant Jordan curve C ⊆ S2 containing
the postcritical points. For preservation of regularity in Theorem 1.1 and Theorem 1.2 below, see
Remark 6.6. By working with the Bousch operators using techniques from the theory of the Ruelle
operators, we establish in this paper the Mañé lemma and the bilateral Mañé lemma for expanding
Thurston maps (without additional assumptions). The latter is a strengthening of the Livšic theorem
for expanding Thurston maps.

Theorem 1.2 (Mañé and bilateral Mañé lemmas for expanding Thurston maps). Let f : X →
X be either an expanding Thurston map on the topological 2-sphere X = S2 equipped with a visual metric

or a postcricitally-finite rational map with no periodic critical points on the Riemann sphere X = Ĉ
equipped with the chordal or spherical metric. Let φ : X → R be Hölder continuous. Then the following
statements hold:

(i) (The Mañé lemma.) There exists a Hölder continuous function u : X → R such that φ(x)−
u(x) + (u ◦ f)(x) ≤ β(φ) for all x ∈ X.

(ii) (The bilateral Mañé lemma.) There exists a Hölder continuous function u : X → R such
that −β(−φ) ≤ φ(x)− u(x) + (u ◦ f)(x) ≤ β(φ) for all x ∈ X.

The bilateral Mañé lemma was first introduced by T. Bousch [Bou02] for the doubling map on S1.
For a continuous map T : X → X, we define subsets

P(X) ⊆ C(X), Lock(X, dα) ⊆ Lip(X, dα), lock(X, dα) ⊆ lip(X, dα)

for α ∈ (0, 1], of the set of real-valued continuous functions C(X) as follows: P(X) is the set of
φ ∈ C(X) with a φ-maximizing measure supported on a periodic orbit of T . If a function φ ∈ P(X) ∩
Lip(X, dα) (resp. φ ∈ P(X)∩lip(X, dα)) satisfies cardMmax(T, φ) = 1 andMmax(T, φ) = Mmax(T, ψ)
for all ψ ∈ Lip(X, dα) (resp. ψ ∈ lip(X, dα)) sufficient close to φ in Lip(X, dα), we say that φ has the
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locking property in Lip(X, dα) (resp. lip(X, dα)). The set Lock(X, dα) (resp. lock(X, dα)) consists of all
φ ∈ P(X) with the locking property in Lip(X, dα) (resp. lip(X, dα)).

In this paper, by “generic” we mean “open and dense”.

Theorem 1.3 (Generic periodic maximization and locking for Misiurewicz–Thurston ratio-

nal maps). Let f : Ĉ → Ĉ be a Misiurewicz–Thurston rational map (i.e., a postcritically-finite rational

map without periodic critical points). Let σ be the chordal metric on the Riemann sphere Ĉ. Then

there exists a number γ ∈ (0, 1) such that for each β ∈ (0, γ), the set P(Ĉ) contains an open and dense

subset lock(Ĉ, σβ) of lip(Ĉ, σβ).

We recall that a rational Thurston map (i.e., a postcritically-finite rational map) is expanding if and
only if it has no periodic critical points ([BM17, Proposition 2.3]).

For a more general expanding Thurston map f : S2 → S2 defined on the topological 2-sphere S2

(that may or may not be conjugate to a rational map), there is no canonical smooth structure on S2,
so it is natural (in view of the connection to Kleinian groups via Sullivan’s dictionary) to formulate the
corresponding theorem in terms of the visual metrics.

Theorem 1.4 (Generic periodic maximization and locking for expanding Thurston maps).
Let f : S2 → S2 be an expanding Thurston map (for example, a postcritically-finite rational map with
no periodic points). Let d be a visual metric on S2 for f . Fix numbers α ∈ (0, 1] and β ∈ (0, 1). Then
the following statements hold:

(i) The set P(S2) contains an open and dense subset Lock(S2, dα) of Lip(S2, dα).

(ii) The set P(S2) contains an open and dense subset lock(S2, dβ) of lip(S2, dβ).

Note that an expanding Thurston map may have periodic critical points, in which case the investi-
gations of certain dynamical properties can be more involved (compare [Me13, Li15, Li18, DPTUZ21]).
In our approach to establishing Theorem 1.4, all expanding Thurston maps are treated simultaneously
without extra care given to these special maps.

In the special case of Lattès maps, the following theorem holds.

Theorem 1.5 (Generic periodic maximization and locking for Lattès maps). Let f : Ĉ → Ĉ
be a Lattès map. Let σ be the chordal metric on the Riemann sphere Ĉ. Fix numbers α ∈ (0, 1] and
β ∈ (0, 1). Then the following statements hold:

(i) The set P(Ĉ) contains an open and dense subset Lock(Ĉ, σα) of Lip(Ĉ, σα).

(ii) The set P(Ĉ) contains an open and dense subset lock(Ĉ, σβ) of lip(Ĉ, σβ).

Remark. We can replace the chordal metric by the spherical metric in the statement and the theorem
still holds due to the bi-Lipschitz equivalence between these two metrics. Note that β cannot be 1 since

the only little Lipschitz functions in lip(Ĉ, σ) are the constant functions (c.f. [We18, Example 4.9]).

Theorem 1.6 (Generic uniqueness of ground states). The following statements hold:

(i) Under the assumptions in Theorem 1.3, 1.4, or 1.5 with ρ being d or σ accordingly, every
φ ∈ lock(X, ρβ) has a unique ground state, and consequently, for a generic ψ ∈ lip(X, ρβ)
there exists a unique ground state for f and ψ, i.e., the equilibrium state µtψ converges at zero
temperature.

(ii) Under the assumptions in Theorem 1.4 or 1.5 with ρ being d or σ accordingly, every φ ∈
Lock(X, ρα) has a unique ground state, and consequently, for a generic ψ ∈ Lip(X, ρα) there
exists a unique ground state for f and ψ, i.e., the equilibrium state µtψ converges at zero
temperature.

The following theorem is a consequence of the results in [Co16, BZ15, HLMXZ19] and our investi-
gations on little Lipschitz functions.

Theorem 1.7 (Generic periodic maximization and locking in little Lipschitz spaces). Let a
map T : X → X on a compact metric space (X, d) be a distance expanding map, an Axiom A attractor,
or an Anosov diffeomorphism on a compact Riemannian manifold. Let β ∈ (0, 1). Then the set P(X)
contains an open and dense subset lock(X, dβ) of lip(X, dβ).
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See [Co16, HLMXZ19] for more discussions on the systems mentioned in Theorem 1.7.
The result in Theorem 1.7 for the little Lipschitz spaces does not follow directly from the similar

result for the space Fα+ considered in [CLT01]. In the case of distance expanding maps, a similar result
is claimed in [Co16, Section 1] for the space C !a(X,R) whose definition coincides with lip(X, dα) in our
notation.

1.2. Strategy and plan of the paper. Even though results in the uniformly expanding and uniformly
hyperbolic settings similar to those in this paper are either classical or have been recently established,
new strategies are needed to settle them in our non-uniformly expanding context in complex dynamics.

Roughly speaking, by investigating the coarse geometric properties of various relevant metrics (spher-
ical, chordal, visual, canonical orbitfold, and singular conformal metrics) and their interplay with asso-
ciated combinatorial structures (tiles, flowers, and bouquets), we convert and split the difficulties from
non-uniform expansion into two categories: ones of combinatorial nature and ones related to metric
geometry, and try to tackle them separately.

Due to the coarse geometric nature of our approach, various multiplicative and additive constants
arise naturally in our analysis, both spacial and temporal, throughout the paper. This may make our
proofs seem more technical than they really are.

We establish an appropriate form of the Mañé lemma (to construct the so-called sub-actions with
appropriate regularity) and formulate and prove fine quantitative (local) versions of closing lemmas.
To investigate the maximizing measures and ground states, we adopt some of the ideas from [Co16] and
[HLMXZ19] for distance expanding maps, Axiom A attractors, and Anosov diffeomorphisms. Since
the strongest forms of the ingredients are not available in our non-uniformly expanding setting, the
arguments in the proofs in Section 9 is delicate and quantitative in nature. One challenge we face is
to formulate appropriate weaker versions of the classical results to fit them together in the proofs in
Section 9.

We discuss our approach in more detail below.
We need to establish a form of the closing lemma that produces, for a nonempty compact forward-

invariant set K (disjoint from critical points), a periodic orbit O close to K in terms of its (r, θ)-gap
∆r, θ(O) we introduce (see Lemma 8.1). Such a closing lemma is ultimately built upon the Anosov
closing lemma as well as a closing lemma due to Bressaud–Quas [BQ07]. A version of the Anosov closing
lemma for expanding Thurston maps was established by the first-named author in [Li18, Lemma 8.6],
albeit coarse in the temporal direction, i.e., it holds only for sufficiently high iterates of the map and
sufficiently long orbits. Although it appears to be relevant, this version turns out to be insufficient
for our need in this paper. Instead, we establish a local version (away from critical points) of the
Anosov closing lemma in our setting in Lemma 8.6. Its proof relies on the combinatorial and metric
properties of combinatorial objects like tiles, flowers, and bouquets, while successfully avoiding the
more complicated combinatorics near critical points. We have to improve the qualitative uniform
local injectivity property of our maps from [Li15] to a quantitative uniform local expansion property
in Section 7 for this purpose (as well as the final perturbation argument). On the other hand, if a
Bressaud–Quas closing lemma holds for a dynamical system, we say such a system has the Bressaud–
Quas shadowing property. We establish fairly general rules to deduce the Bressaud–Quas shadowing
property between related systems such as factors and iterations before establishing this property for
expanding Thurston maps in Subsection 8.3.

On the other hand, the existence and properties of sub-actions are important in our proof. A sub-
action is a function h that satisfies the cohomological inequality φ+h◦T −h ≤ β(φ), where T : X → X
is a finite-to-one surjective continuous map on a compact metric space X and φ is a potential. It was
established by many authors in various settings that for some uniformly hyperbolic system T and a
sufficiently regular φ, a sub-action exists [CG93, Sav99, Bou00, Bou01, CLT01, Bou11, PoSh04]). Such
results are called non-positive Livšic theorems, Mañé-Conze-Guivarc’h lemmas or Mañé lemmas for
short. As a simple example, if T is a subshift of finite type and φ is α-Hölder continuous, then there
exists an α-Hölder continuous sub-action. Having such a result, including h’s regularity, is crucial in
our setting. However, the regularity for sub-actions may not always be as good as that of φ even if T is
uniformly expanding (see [BJ02]). Beyond uniformly expanding and uniformly hyperbolic systems, such
a issue is even more serious. For example, for some intermittent map T and some α-Hölder continuous
φ, the Hölder exponent of a sub-action is strictly smaller than α [Mo09].
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In order to find a sub-action h, T. Bousch [Bou00] proposed that it suffices to find a solution h (also
known as a calibrated sub-action nowadays [Ga17]) for the functional equation

(1.4) h(x) = −β(φ) + max
{
φ(y) + h(y)

∣∣ y ∈ T−1(x)
}
.

Equivalently, a function h that satisfies (1.4) is a fixed point of the nonlinear operator L on the set of
all real-valued functions on X given by

(1.5) L(u)(x) = −β(φ) + max
{
φ(y) + h(y)

∣∣ y ∈ T−1(x)
}
.

A related operator on a quotient function space was also studied by T. Bousch in [Bou00].
We call the operator in (1.5) a Bousch operator (or a Bousch–Lax operator). In the context of

Hamiltonian systems, an analogous construction gives the Lax–Oleinik semi-groups2 as studied by
A. Fathi [Fa10]. The Bousch operator can be considered as a tropical version of the Ruelle–Perron–
Frobenius operator in thermodynamical formalism, which was introduced by D. Ruelle as an analog
of the Ruelle–Araki transfer operator from classical statistical mechanics. In order to emphasize its
connection to the Ruelle–Perron–Frobenius operator, we adopt in this paper a slightly modified version
of the Bousch operator (see Section 6).

By investigating the Bousch operator in our setting with respect to visual metrics, we find a fixed
point uφ of the Bousch operator Lφ for an α-Hölder continuous φ and show that uφ is α-Hölder

continuous (Proposition 6.4), establishing the Mañé lemma. We view the Bousch operator as a Ruelle–
Perron–Frobenius operator with respect to the max-plus algebra on R ∪ {−∞}, and our proof of
Proposition 6.4 follows the proof of the corresponding result of the eigenfunctions for the Ruelle–
Perron–Frobenius operators in [Li18, Theorem 5.16].

We combine our local closing lemma and the existence of a calibrated sub-action in a quantitative
analysis to establish Theorem 1.5 (i). More precisely, we show that for an arbitrary α-Hölder continuous

potential ϕ ∈ Lip(Ĉ, σα) with respect to the chordal metric σ, any perturbation of the form ϕ′ =

ϕ − ǫσ(·,O)α, with ǫ > 0 sufficiently small, belongs to Pα(Ĉ, σ), where O is some special periodic
orbit produced from a calibrated sub-action and our local closing lemma away from critical points.
The quantitative analysis is, however, carried out in the canonical orbifold metric d on the related
potentials ϕ̃ and ψ, which are α-Hölder continuous with respect to d but not with respect to σ. In
the case of Lattès maps, the canonical orbifold metric is also a visual metric. The technical parts are
(1) to quantitatively avoid critical points crit f where the combinatorics are more involved in order to
apply our local closing lemma as well as uniform local expansion property, and (2) to quantitatively
avoid postcritical points post f where the conversion between d and σ is more involved. In fact, by
applying various properties of the canonical orbifold metric and considering the orbifold ramification
function, we get that the canonical orbifold metric and the chordal metric are “locally comparable away

from postcritical points”. We know that the identity map on Ĉ between these two metrics is never
bi-Lipschitz (see [BM17, Appendix A.10]).

It is worth noting that even though sometimes certain ergodic properties of some non-uniformly
expanding systems can be derived from associated symbolic models, and while an expanding Thurston
map is (up to a sufficiently high iterate) semi-conjugate to a subshift of finite type via cell decompositions
of S2 and is semi-conjugate to a full shift via the geometric coding tree, it is not clear how to retrieve
either the main theorems, or any one of the two main ingredients (i.e., the fine closing lemma in
Lemma 8.1 and the existence of a calibrated sub-action with correct Hölder exponent in Proposition 6.4)
for the proofs of the main theorems, or even the (local) Anosov closing lemma in Lemma 8.6 needed
in the proof of Lemma 8.1 from the corresponding results for the symbolic systems. Our analysis is
therefore focused on the phase space in order to retain as much information on the interactions between
the dynamics, combinatorics, and metric geometry as possible.

For future directions, the discussions from this section suggest a “dictionary” for the correspondences
between ergodic optimization and thermodynamical formalism. In this dictionary, the Bousch opera-
tors Lϕ, Lϕ, and Lϕ̃ translate to the corresponding Ruelle–Perron–Frobenius operators, the maximal
potential energy to the topological pressure, the maximizing measures (measures of maximal potential
energy) to the equilibrium states, the existence and construction of the calibrated sub-action in Proposi-
tion 6.4 to the existence and construction of the eigenfunction of the Ruelle–Perron–Frobenius operator

2For this reason, the Bousch operator is sometimes referred to as the Lax–Oleinik operator or the Lax operators.
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in [Li18, Theorem 5.16], and finally our main theorems may be considered as the (degenerated) counter-
part to the existence, uniqueness, and equidistribution of periodic points for the equilibrium state. Any
new entries in this dictionary would be interesting. Moreover, our recent work [DLZ23] with J. Ding on
a probabilistic version of the TPO Conjecture, known as the Hunt–Ott conjecture [HO96a, HO96b] and
the prior work [BZ16] suggest yet another “language” in the dictionary, namely, a probabilistic point
of view through random maximum mean cycle problems on (directed) graphs, where periodic orbits
corresponds to (directed) cycles, periodic maximizing measures to cycles with maximum mean-weight,
and the TPO and the Hunt–Ott Conjectures resemble the subcritical phenomena in [Di13, DSW15].

The local closing lemmas and local perturbation techniques we create in this paper should have
applications in settings beyond uniformly expanding and uniformly hyperbolic ones. For example,
Y. Huang and the first-named author have applied them to a countable setting and established the
Mañé lemma and a version of the TPO Conjecture for the Gauss map [HL23].

For a more general setting in low-dimensional dynamics, the topological Collet–Eckmann maps of
one real or complex variable form another popular class of non-uniformly expanding systems, which
has been extensively studied by S. Smirnov, F. Przytycki, J. Rivera-Letelier, W. Shen, and others. It
is natural to ask whether the TPO Conjecture holds for topological Collet–Eckmann maps with the
geometric potential. In this setting, one may want to apply fine inducing schemes developed in the
literature, but some structural stability result in the appropriate topology may also be needed, which
is currently unavailable.

On the other hand, T. Bousch established the TPO Conjecture for the space of potentials satisfying
the Walters condition in [Bou01] for the full shift. Similar to this space and the little Lipschitz spaces
Lip(X, dα) (α ∈ (0, 1)), it is interesting to consider other spaces of potentials larger than the Lipschitz
space Lip(X, d) such as the Dini potentials studied by A. Fan and Y. Jiang [FJ01a, FJ01b].

We now summarize the structure of this paper. In Section 2, some frequently-used notations are
recalled for the convenience of the reader. In Section 3, we give a brief review of expanding Thurston
maps, visual metrics, orbifolds, universal orbifold covering maps, Lattès maps, and the canonical orb-
ifold metric. We also discuss a symbolic model for a sufficiently high iterate of an expanding Thurston
map. Discussions on the little Lipschitz functions are limited to Sections 4 and 10. In Section 4, after
recalling some facts on little Lipschitz functions, we establish a general result asserting that lock(X, dα)
is equal to the dense interior of P(X) ∩ lip(X, dα) for each α ∈ (0, 1) and each continuous map on a
compact metric space (X, d) (Theorem 4.1). In Section 5, we state some assumptions on frequently-used
objects in the paper for us to refer back later in order to simplify the presentation. In Section 6, we
discuss the Bousch operators and some of their basic properties for general dynamical systems before
proving the existence of an eigenfunction for the Bousch operator, also known as a calibrated sub-action,
for an expanding Thurston map. We then establish the Livšic theorem, the Mañé lemma, and the bi-
lateral Mañé lemma in our context. In Section 7, we formulate and prove the uniform local expansion
property of expanding Thurston maps away from critical points, which is crucial in the quantitative
analysis in Sections 8 and 9. In Section 8, we establish in Lemma 8.1 a local closing lemma away
from critical points. The proof relies on a local Anosov closing lemma and a (global) Bressaud–Quas
closing lemma established in Subsection 8.2 and Subsection 8.3, respectively. Mechanisms to establish
a Bressaud–Quas closing lemma for a general dynamical system are also discussed. In Section 9, a
proof of Theorem 1.5 (i) is given, and then modifications necessary to establish Theorem 1.4 (i) are
described. Section 10 is devoted to the proofs of Theorems 1.3, 1.4 (ii), 1.5 (ii), 1.6, and 1.7.

An Appendix is added to give illustrations to the combinatorial structures of three examples of
expanding Thurston maps to help the reader to gain some intuition. The rest of the paper is completely
independent of the Appendix.
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and BJNSF No. 1214021. Y. Zhang is grateful to the Beijing International Center for Mathematical
Research (BICMR), Peking University for the hospitality, during his visits, when part of this work was
done. Y. Zhang was partially supported by NSFC Nos. 12161141002, 11871262, and 12271432.
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2. Notation

Let C be the complex plane and Ĉ be the Riemann sphere. We follow the convention that N :=

{1, 2, 3, . . . }, N0 := {0} ∪ N, and N̂ := N ∪ {+∞}, with the order relations <, ≤, >, ≥ defined in the
obvious way. For x ∈ R, we define ⌊x⌋ as the greatest integer ≤ x. As usual, the symbol log denotes
the logarithm to the base e, and logc the logarithm to the base c for c > 0. The cardinality of a set A
is denoted by cardA.

The collection of all maps from a set X to a set Y is denoted by Y X . We denote the restriction of a
map g : X → Y to a subset Z of X by g|Z .

For a map f : X → X and a real-valued function ϕ : X → R, we write Snϕ(x) :=
∑n−1

j=0 ϕ
(
f j(x)

)
for

x ∈ X and n ∈ N0. Note that by definition we always have S0ϕ = 0.
Let (X, d) be a metric space. For subsets A,B ⊆ X, we set d(A,B) := inf{d(x, y) |x ∈ A, y ∈ B},

and d(A, x) = d(x,A) := d(A, {x}) for x ∈ X. For each subset Y ⊆ X, we denote the diameter of Y by
diamd(Y ) := sup{d(x, y) |x, y ∈ Y }, the interior of Y by intY , and the max-plus characteristic function
of Y by 0Y , which maps each x ∈ Y to 0 ∈ R and vanishes otherwise. We use the convention that
0 = 0X when the space X is clear from the context. For each r > 0, we define N r

d (A) to be the open

r-neighborhood {y ∈ X | d(y,A) < r} of A, and N
r
d(A) the closed r-neighborhood {y ∈ X | d(y,A) ≤ r}

of A. For x ∈ X, we denote the open (resp. closed) ball of radius r centered at x by Bd(x, r) (resp.
Bd(x, r)).

We set C(X) to be the space of continuous functions from X to R, M(X) the set of finite signed
Borel measures, and P(X) the set of Borel probability measures on X. If we do not specify otherwise,
we equip C(X) with the uniform norm ‖·‖C0 . For a continuous map g : X → X, M(X, g) is the set of
g-invariant Borel probability measures on X. For each x ∈ X, we denote by δx the Dirac delta measure
on x given by δx(A) = 1 if x ∈ A and 0 otherwise for all Borel measurable set A ⊆ X.

We use Lip(X, dα) to denote the space of real-valued Hölder continuous functions on (X, d) with an
exponent α ∈ (0, 1]. For each ψ ∈ Lip(X, dα), we denote

(2.1) |ψ|dα := sup{|ψ(x) − ψ(y)|/d(x, y)α |x, y ∈ X, x 6= y},
and the Hölder norm is defined as ‖ψ‖dα, X := |ψ|dα + ‖ψ‖C0 .

For a Lipschitz map g : (X, d) → (X, d), we denote the Lipschitz constant by

(2.2) LIPd(g) := sup{d(g(x), g(y))/d(x, y) |x, y ∈ X with x 6= y}.

3. Preliminaries

We review the definitions of expanding Thurston maps and visual metrics, and discuss some combi-
natorial structures and key metric properties associated to expanding Thurston maps in Subsection 3.1.
We then recall the notions of orbifolds and universal orbifold covering maps associated to expanding
Thurston maps in Subsection 3.2, leading to the definition of Lattès maps and the canonical orbifold
metric in Subsection 3.3. These two subsections are crucial in the proof of Theorem 1.5, but not needed
for Theorem 1.4. Finally in Subsection 3.4, we quickly recall some notations from symbolic dynam-
ics and show that a sufficiently high iterate of an expanding Thurston map is a factor of a one-sided
subshift of finite type with a Hölder continuous factor map.

3.1. Thurston maps. In this subsection, we go over some key concepts and results on Thurston maps,
and expanding Thurston maps in particular. For a more thorough treatment of the subject, we refer
to [BM17].

Let S2 denote an oriented topological 2-sphere. A continuous map f : S2 → S2 is called a branched
covering map on S2 if for each point x ∈ S2, there exists a positive integer d ∈ N, open neighborhoods

U of x and V of y = f(x), open neighborhoods U ′ and V ′ of 0 in Ĉ, and orientation-preserving
homeomorphisms ϕ : U → U ′ and η : V → V ′ such that ϕ(x) = 0, η(y) = 0, and

(η ◦ f ◦ ϕ−1)(z) = zd

for each z ∈ U ′. The positive integer d above is called the local degree of f at x and is denoted by
degf (x).
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The degree of f is

(3.1) deg f =
∑

x∈f−1(y)

degf (x)

for y ∈ S2 and is independent of y. If f : S2 → S2 and g : S2 → S2 are two branched covering maps on
S2, then so is f ◦ g, and
(3.2) degf◦g(x) = degg(x) degf (g(x)), for each x ∈ S2,

and moreover,

(3.3) deg(f ◦ g) = (deg f)(deg g).

A point x ∈ S2 is a critical point of f if degf (x) ≥ 2. It follows immediately from the definition

of branched covering map above and the compactness of S2 that there are only finitely-many critical
points of f . The set of critical points of f is denoted by crit f . A point y ∈ S2 is a postcritical point of
f if y = fn(x) for some x ∈ crit f and n ∈ N. The set of postcritical points of f is denoted by post f .
Note that post f = post fn for all n ∈ N.

Definition 3.1 (Thurston maps). A Thurston map is a branched covering map f : S2 → S2 on S2

with deg f ≥ 2 and card(post f) < +∞.

We now recall the notation for cell decompositions of S2 used in [BM17] and [Li17]. A cell of
dimension n in S2, n ∈ {1, 2}, is a subset c ⊆ S2 that is homeomorphic to the closed unit ball Bn in
Rn. We define the boundary of c, denoted by ∂c, to be the set of points corresponding to ∂Bn under
such a homeomorphism between c and Bn. The interior of c is defined to be inte(c) = c \ ∂c. For each
point x ∈ S2, the set {x} is considered as a cell of dimension 0 in S2. For a cell c of dimension 0, we
adopt the convention that ∂c = ∅ and inte(c) = c.

We record the following three definitions from [BM17].

Definition 3.2 (Cell decompositions). Let D be a collection of cells in S2. We say that D is a cell
decomposition of S2 if the following conditions are satisfied:

(i) the union of all cells in D is equal to S2,

(ii) if c ∈ D, then ∂c is a union of cells in D,

(iii) for c1, c2 ∈ D with c1 6= c2, we have inte(c1) ∩ inte(c2) = ∅,
(iv) every point in S2 has a neighborhood that meets only finitely-many cells in D.

Definition 3.3 (Refinements). Let D′ and D be two cell decompositions of S2. We say that D′ is a
refinement of D if the following conditions are satisfied:

(i) every cell c ∈ D is the union of all cells c′ ∈ D′ with c′ ⊆ c,

(ii) for every cell c′ ∈ D′ there exits a cell c ∈ D with c′ ⊆ c.

Definition 3.4 (Cellular maps and cellular Markov partitions). Let D′ and D be two cell decomposi-
tions of S2. We say that a continuous map f : S2 → S2 is cellular for (D′,D) if for every cell c ∈ D′,
the restriction f |c of f to c is a homeomorphism of c onto a cell in D. We say that (D′,D) is a cellular
Markov partition for f if f is cellular for (D′,D) and D′ is a refinement of D.

Let f : S2 → S2 be a Thurston map, and C ⊆ S2 be a Jordan curve containing post f . Then the pair
f and C induces natural cell decompositions Dn(f, C) of S2, for n ∈ N0, in the following way:

By the Jordan curve theorem, the set S2\C has two connected components. We call the closure of one
of them the white 0-tile for (f, C), denoted by X0

w, and the closure of the other the black 0-tile for (f, C),
denoted by X0

b
. The set of 0-tiles is X0(f, C) :=

{
X0

b
, X0

w

}
. The set of 0-vertices is V0(f, C) := post f .

We set V
0
(f, C) := {{x} |x ∈ V0(f, C)}. The set of 0-edges E0(f, C) is the set of the closures of the

connected components of C \ post f . Then we get a cell decomposition

D0(f, C) := X0(f, C) ∪E0(f, C) ∪V
0
(f, C)

of S2 consisting of cells of level 0, or 0-cells.
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We can recursively define unique cell decompositions Dn(f, C), n ∈ N, consisting of n-cells such
that f is cellular for (Dn+1(f, C),Dn(f, C)). We refer to [BM17, Lemma 5.12] for more details. We
denote by Xn(f, C) the set of n-cells of dimension 2, called n-tiles; by En(f, C) the set of n-cells of
dimension 1, called n-edges; by V

n
(f, C) the set of n-cells of dimension 0; and by Vn(f, C) the set{

x
∣∣ {x} ∈ V

n
(f, C)

}
, called the set of n-vertices. The k-skeleton, for k ∈ {0, 1, 2}, of Dn(f, C) is the

union of all n-cells of dimension k in this cell decomposition.
We record Proposition 5.16 of [BM17] here in order to summarize properties of the cell decompositions

Dn(f, C) defined above.

Proposition 3.5 (M. Bonk & D. Meyer [BM17]). Let k, n ∈ N0, let f : S
2 → S2 be a Thurston map,

C ⊆ S2 be a Jordan curve with post f ⊆ C, and m = card(post f).

(i) The map fk is cellular for
(
Dn+k(f, C),Dn(f, C)

)
. In particular, if c is any (n + k)-cell, then

fk(c) is an n-cell, and fk|c is a homeomorphism of c onto fk(c).

(ii) Let c be an n-cell. Then f−k(c) is equal to the union of all (n+ k)-cells c′ with fk(c′) = c.

(iii) The 1-skeleton of Dn(f, C) is equal to f−n(C). The 0-skeleton of Dn(f, C) is the set Vn(f, C) =
f−n(post f), and we have Vn(f, C) ⊆ Vn+k(f, C).

(iv) card(Xn(f, C)) = 2(deg f)n, card(En(f, C)) = m(deg f)n, and card(Vn(f, C)) ≤ m(deg f)n.

(v) The n-edges are precisely the closures of the connected components of f−n(C)\f−n(post f). The
n-tiles are precisely the closures of the connected components of S2 \ f−n(C).

(vi) Every n-tile is an m-gon, i.e., the number of n-edges and the number of n-vertices contained in
its boundary are equal to m.

(vii) Let F := fk be an iterate of f with k ∈ N. Then Dn(F, C) = Dnk(f, C).
We also note that for each n-edge e ∈ En(f, C), n ∈ N0, there exist exactly two n-tiles X, X ′ ∈

Xn(f, C) such that X ∩X ′ = e.
From now on, if the map f and the Jordan curve C are clear from the context, we will sometimes

omit (f, C) in the notation above.
If we fix the cell decomposition Dn(f, C), n ∈ N0, we can define for each v ∈ Vn the n-flower of v as

(3.4) W n(v) :=
⋃

{inte(c) | c ∈ Dn, v ∈ c}.

Note that flowers are open (in the standard topology on S2). Let W
n
(v) be the closure of W n(v).

Remark 3.6. For n ∈ N0 and v ∈ Vn, we have

W
n
(v) = X1 ∪X2 ∪ · · · ∪Xm,

where m := 2degfn(v), and X1,X2, . . . Xm are all the n-tiles that contain v as a vertex (see [BM17,
Lemma 5.28]). Moreover, each flower is mapped under f to another flower in such a way that is similar
to the map z 7→ zk on the complex plane. More precisely, for n ∈ N0 and v ∈ Vn+1, there exist
orientation preserving homeomorphisms ϕ : W n+1(v) → D and η : W n(f(v)) → D such that D is the
unit disk on C, ϕ(v) = 0, η(f(v)) = 0, and

(η ◦ f ◦ ϕ−1)(z) = zk

for all z ∈ D, where k := degf (v). LetW
n+1

(v) = X1∪X2∪· · ·∪Xm andW
n
(f(v)) = X ′

1∪X ′
2∪· · ·∪X ′

m′ ,
where X1, X2, . . . , Xm are all the (n + 1)-tiles that contain v as a vertex, listed counterclockwise,
and X ′

1, X
′
2, . . . , X

′
m′ are all the n-tiles that contain f(v) as a vertex, listed counterclockwise, and

f(X1) = X ′
1. Then m = m′k, and f(Xi) = X ′

j if i ≡ j (mod k), where k = degf (v). (See also Case 3

of the proof of Lemma 5.24 in [BM17] for more details.) In particular, W n(v) is simply-connected.

We denote, for each x ∈ S2 and n ∈ Z, the n-bouquet of x

(3.5) Un(x) :=
⋃

{Y n ∈ Xn | there exists Xn ∈ Xn with x ∈ Xn, Xn ∩ Y n 6= ∅}

if n ≥ 0, and set Un(x) := S2 otherwise.
We can now give a definition of expanding Thurston maps.
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Definition 3.7 (Expansion). A Thurston map f : S2 → S2 is called expanding if there exists a metric
d on S2 that induces the standard topology on S2 and a Jordan curve C ⊆ S2 containing post f such
that

lim
n→+∞

max{diamd(X) |X ∈ Xn(f, C)} = 0.

Remarks 3.8. It is clear from Proposition 3.5 (vii) and Definition 3.7 that if f is an expanding
Thurston map, so is fn for each n ∈ N. We observe that being expanding is a topological property of
a Thurston map and independent of the choice of the metric d that generates the standard topology
on S2. By Lemma 6.2 in [BM17], it is also independent of the choice of the Jordan curve C containing
post f . More precisely, if f is an expanding Thurston map, then

lim
n→+∞

max
{
diam

d̃
(X)

∣∣X ∈ Xn
(
f, C̃

)}
= 0,

for each metric d̃ that generates the standard topology on S2 and each Jordan curve C̃ ⊆ S2 that
contains post f .

P. Häıssinsky and K. M. Pilgrim developed a notion of expansion in a more general context for finite
branched coverings between topological spaces (see [HP09, Section 2.1 and Section 2.2]). This applies
to Thurston maps and their notion of expansion is equivalent to our notion defined above in the context
of Thurston maps (see [BM17, Proposition 6.4]). Such concepts of expansion are natural analogues,
in the non-uniform setting, to some of the more classical notions, such as forward-expansive maps and
distance-expanding maps. Our notion of expansion is not equivalent to any such classical notion in the
context of Thurston maps. One topological obstruction comes from the presence of critical points for
(non-homeomorphic) branched covering maps on S2. In fact, as mentioned in the introduction, there
are subtle connections between our notion of expansion and some classical notions of weak expansion.
More precisely, one can prove that an expanding Thurston map is asymptotically h-expansive if and
only if it has no periodic points. Moreover, such a map is never h-expansive. See [Li15] for details.

For an expanding Thurston map f , we can fix a natural class of metrics d on S2 called visual metrics
for f . The construction of these metrics, inspired by Sullivan’s dictionary, are closely related to the
visual metrics on the boundary at infinity ∂∞G of a Gromov hyperbolic group G. For the existence and
properties of such metrics, see [BM17, Chapter 8]. For a visual metric d for f , there exists a unique
constant Λ > 1 called the expansion factor of d (under f) (see [BM17, Chapter 8] for more details).
One major advantage of a visual metric d is that in (S2, d) we have good quantitative control over the
sizes of the cells in the cell decompositions discussed above. We summarize several results of this type
([BM17, Proposition 8.4, Lemma 8.10, Lemma 8.11]) in the lemma below.

Lemma 3.9 (M. Bonk & D. Meyer [BM17]). Let f : S2 → S2 be an expanding Thurston map, and
C ⊆ S2 be a Jordan curve containing post f . Let d be a visual metric on S2 for f with expansion factor
Λ > 1. Then there exist constants C ≥ 1, C ′ ≥ 1, K ≥ 1, and n0 ∈ N0 with the following properties:

(i) d(σ, τ) ≥ C−1Λ−n whenever σ and τ are disjoint n-cells for n ∈ N0.

(ii) C−1Λ−n ≤ diamd(τ) ≤ CΛ−n for all n-edges and all n-tiles τ for n ∈ N0.

(iii) Bd(x,K
−1Λ−n) ⊆ Un(x) ⊆ Bd(x,KΛ−n) for x ∈ S2 and n ∈ N0.

(iv) Un+n0(x) ⊆ Bd(x, r) ⊆ Un−n0(x) where n = ⌈− log r/ log Λ⌉ for r > 0 and x ∈ S2.

(v) For every n-tile Xn ∈ Xn(f, C), n ∈ N0, there exists a point p ∈ Xn such that Bd(p,C
−1Λ−n) ⊆

Xn ⊆ Bd(p,CΛ−n).

Conversely, if d̃ is a metric on S2 satisfying conditions (i) and (ii) for some constant C ≥ 1, then d̃
is a visual metric with expansion factor Λ > 1.

Recall that Un(x) is defined in (3.5).
In addition, we will need the fact that a visual metric d induces the standard topology on S2

([BM17, Proposition 8.3]) and the fact that the metric space (S2, d) is linearly locally connected ([BM17,
Proposition 18.5]). A metric space (X, d) is linearly locally connected if there exists a constant L ≥ 1
such that the following conditions are satisfied:

(1) For all z ∈ X, r > 0, and x, y ∈ Bd(z, r) with x 6= y, there exists a continuum E ⊆ X with
x, y ∈ E and E ⊆ Bd(z, rL).
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(2) For all z ∈ X, r > 0, and x, y ∈ X \Bd(z, r) with x 6= y, there exists a continuum E ⊆ X with
x, y ∈ E and E ⊆ X \Bd(z, r/L).

We call such a constant L ≥ 1 a linear local connectivity constant of d.
In fact, visual metrics serve a key role in connecting the dynamical arguments with geometric prop-

erties for rational expanding Thurston maps, especially Lattès maps.
We first recall the following notions of equivalence between metric spaces.

Definition 3.10. Consider two metric spaces (X1, d1) and (X2, d2). Let g : X1 → X2 be a homeomor-
phism. Then

(i) g is bi-Lipschitz if there exists a constant C ≥ 1 such that for all u, v ∈ X1,

C−1d1(u, v) ≤ d2(g(u), g(v)) ≤ Cd1(u, v).

(ii) g is bi-Hölder if there exist constants α, β ∈ (0, 1] and C ≥ 1 such that for all u, v ∈ X1,

C−1d1(u, v)
1/β ≤ d2(g(u), g(v)) ≤ Cd1(u, v)

α.

(iii) g is a snowflake homeomorphism if there exist constants α > 0 and C ≥ 1 such that for all
u, v ∈ X1,

C−1d1(u, v)
α ≤ d2(g(u), g(v)) ≤ Cd1(u, v)

α.

(iv) g is a quasisymmetric homeomorphism or a quasisymmetry if there exists a homeomorphism
η : [0,+∞) → [0,+∞) such that for all pairwise distinct u, v, w ∈ X1,

d2(g(u), g(v))

d2(g(u), g(w))
≤ η

(
d1(u, v)

d1(u,w)

)
.

Moreover, the metric spaces (X1, d1) and (X2, d2) are bi-Lipschitz, snowflake, or quasisymmetrically
equivalent if there exists a homeomorphism from (X1, d1) to (X2, d2) with the corresponding property.

When X1 = X2 =: X, then we say the metrics d1 and d2 are bi-Lipschitz, bi-Hölder, snowflake,
or quasisymmetrically equivalent if the identity map from (X, d1) to (X, d2) has the corresponding
property.

Theorem 3.11 (M. Bonk & D. Meyer [BM10, BM17], P. Häıssinsky & K. M. Pilgrim [HP09]). An
expanding Thurston map is conjugate to a rational map if and only if the sphere (S2, d) equipped with

a visual metric d is quasisymmetrically equivalent to the Riemann sphere Ĉ equipped with the chordal
metric.

See [BM17, Theorem 18.1 (ii)] for a proof. The chordal metric is recalled below.

Remark 3.12. In fact, in [BM17, Lemma 18.10], M. Bonk and D. Meyer showed that for a rational

expanding Thurston map f : Ĉ → Ĉ, the chordal metric σ on the Riemann sphere Ĉ is quasisym-

metrically equivalent to to each visual metric d for f . Here the chordal metric σ on Ĉ is given by

σ(z, w) = 2|z−w|√
1+|z|2

√
1+|w|2

for z, w ∈ C, and σ(∞, z) = σ(z,∞) = 2√
1+|z|2

for z ∈ C. We also note

that the inverse of a quasisymmetric homeomorphism is quasisymmetric (see [He01, Proposition 10.6]),
and that quasisymmetric embeddings of bounded connected metric spaces are Hölder continuous (see

[He01, Section 11.1 and Corollary 11.5]). Consequently the identity map between (Ĉ, σ) and (Ĉ, d) is

bi-Hölder, and the class of Hölder continuous functions on Ĉ equipped with the chordal metric and that

on Ĉ equipped with any visual metric for f are the same (up to a change of the Hölder exponent).

Moreover, since the spherical metric on Ĉ given by the length element dσ = 2|dz|/
(
1 + |z|2

)
is bi-

Lipschitz equivalent to the chordal metric, we can replace the chordal metric by the spherical metric
in the discussion above.

A Jordan curve C ⊆ S2 is f -invariant if f(C) ⊆ C. We are interested in f -invariant Jordan curves that
contain post f , since for such a Jordan curve C, we get a cellular Markov partition (D1(f, C),D0(f, C))
for f . According to Example 15.11 in [BM17], such f -invariant Jordan curves containing post f need not
exist. However, M. Bonk and D. Meyer [BM17, Theorem 15.1] proved that there exists an fn-invariant
Jordan curve C containing post f for each sufficiently large n depending on f .
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Lemma 3.13 (M. Bonk & D. Meyer [BM17]). Let f : S2 → S2 be an expanding Thurston map, and

C̃ ⊆ S2 be a Jordan curve with post f ⊆ C̃. Then there exists an integer N(f, C̃) ∈ N such that for each

n ≥ N(f, C̃) there exists an fn-invariant Jordan curve C isotopic to C̃ rel. post f .

We now discuss some metric estimates for the dynamics induced by expanding Thurston maps.

Lemma 3.14. Let f : S2 → S2 be an expanding Thurston map, and d be a visual metric on S2 for f .
Then f is Lipschitz with respect to d with Lipschitz constant LIPd(f) > 1.

Proof. It is shown in [Li18, Lemma 3.12] that f is Lipschitz with respect to d. In order to show
LIPd(f) > 1, we argue by contradiction and suppose LIPd(f) ≤ 1. Fix an arbitrary Jordan curve
C ⊆ S2 containing post f . Then by Proposition 3.5 (i), diamd(X

n) ≥ diamd(f
n(Xn)) for each n-tile

Xn ∈ Xn(f, C). This contradicts with Lemma 3.9 (ii). �

The following lemma proved in [Li18, Lemma 3.13] generalizes [BM17, Lemma 15.25].

Lemma 3.15 (M. Bonk & D. Meyer [BM17], Z. Li [Li18]). Let f : S2 → S2 be an expanding Thurston
map, and C ⊆ S2 be a Jordan curve that satisfies post f ⊆ C and fnC(C) ⊆ C for some nC ∈ N. Let
d be a visual metric on S2 for f with expansion factor Λ > 1. Then there exists a constant C0 > 1,
depending only on f , d, C, and nC, with the following property:

If k, n ∈ N0, X
n+k ∈ Xn+k(f, C), and x, y ∈ Xn+k, then

(3.6)
1

C0
d(x, y) ≤ d(fn(x), fn(y))

Λn
≤ C0d(x, y).

We recall the following key estimate which also serves as a cornerstone for the analysis in theory of
thermodynamical formalism. See [Li18, Lemma 5.1] for a proof.

Lemma 3.16. Let f : S2 → S2 be an expanding Thurston map, and C ⊆ S2 be a Jordan curve that
satisfies post f ⊆ C and fnC(C) ⊆ C for some nC ∈ N. Let d be a visual metric on S2 for f with
expansion factor Λ > 1. Let φ ∈ Lip(S2, dα) be a real-valued Hölder continuous function with an
exponent α ∈ (0, 1]. Then for all n, m ∈ N0 with n ≤ m, Xm ∈ Xm(f, C), and x, y ∈ Xm, we have

|Snφ(x)− Snφ(y)| ≤
C0

1− Λ−α
|φ|dα d(fn(x), fn(y))α,

where C0 > 1 is a constant from Lemma 3.15.

3.2. Orbifolds. We consider orbifolds associated to Thurston maps. An orbifold is a space that is
locally represented as a quotient of a model space by a group action (see [Th80, Chapter 13]). For the
purpose of this work, we restrict ourselves to orbifolds on S2. In this context, only cyclic groups can
occur, so a simpler defintion (than that of W. P. Thurston) will be used. We follow closely the setup
from [BM17].

An orbifold is a pair O = (S, α), where S is a surface and α : S → N̂ = N ∪ {+∞} is a map such
that the set of points p ∈ S with α(p) 6= 1 is a discrete set in S, i.e., it has no limit points in S. We
call such a function α a ramification function on S. The set

(3.7) supp(α) := {p ∈ S |α(p) ≥ 2}
is the support of α. We will only consider orbifolds with S = S2, an oriented 2-sphere, in this paper.

The Euler characteristic of an orbifold O = (S2, α) is defined as

χ(O) := 2−
∑

x∈S2

(
1− 1

α(x)

)
,

where we use the convention 1
+∞ = 0, and note that the terms in the summation are nonzero on a finite

set of points. The orbifold O is parabolic if χ(O) = 0 and hyperbolic if χ(O) < 0.
Every Thurston map f has an associated orbifold Of = (S2, αf ), which plays an important role in

this section.

Definition 3.17. Let f : S2 → S2 be a Thurston map. The ramification function of f is the map

αf : S
2 → N̂ defined as

(3.8) αf (x) := lcm
{
degfn(y)

∣∣ y ∈ S2, n ∈ N, and fn(y) = x
}
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for x ∈ S2.

Here N̂ = N ∪ {+∞} with the order relations <, ≤, >, ≥ extended in the obvious way, and lcm

denotes the least common multiple on N̂ defined by lcm(A) = +∞ if A ⊆ N̂ is not a bounded set of
natural numbers, and otherwise lcm(A) is calculated in the usual way. Note that different Thurston
maps can share the same ramification function, in particular, we have the following fact from [BM17,
Proposition 2.16].

Proposition 3.18. Let f : S2 → S2 be a Thurston map. Then αf = αfn for each n ∈ N.

Definition 3.19 (Orbifolds associated to Thurston maps). Let f : S2 → S2 be a Thurston map. The

orbifold associated to f is a pair Of := (S2, αf ), where αf : S
2 → N̂ is the ramification function of f .

Orbifolds associated to Thurston maps are either parabolic or hyperbolic (see [BM17, Proposi-
tion 2.12]).

For an orbifold O = (S2, α), we set

(3.9) S2
0 := S2 \

{
x ∈ S2

∣∣α(x) = +∞
}
.

We record the following facts from [BM17], whose proofs can be found in [BM17] and references
therein (see Theorem A.26 and Corollary A.29 in [BM17]).

Theorem 3.20. Let O = (S2, α) be an orbifold that is parabolic or hyperbolic. Then the following
statements are satisfied:

(i) There exists a simply connected surface X and a branched covering map Θ: X → S2
0 such that

degΘ(x) = α(Θ(x)) for each x ∈ X.

(ii) The branched covering map Θ in (i) is unique. More precisely, if X̃ is a simply connected surface

and Θ̃ : X̃ → S2
0 satisfies deg

Θ̃
(y) = α

(
Θ̃(x)

)
for each y ∈ X̃, then for all points x0 ∈ X and

x̃0 ∈ X̃ with Θ(x0) = Θ̃(x̃0) there exists orientation-preserving homeomorphism A : X → X̃ with

A(x0) = x̃0 and Θ = Θ̃ ◦ A. Moreover, if α(Θ(x0)) = 1, then A is unique.

Definition 3.21 (Universal orbifold covering maps). Let O = (S2, α) be an orbifold that is parabolic
or hyperbolic. The map Θ: X → S2

0 from Theorem 3.20 is called the universal orbifold covering map
of O.

3.3. Lattès maps. For a rational expanding Thurston map f : Ĉ → Ĉ, the chordal metric σ (see
Remark 3.12 for the definition), which is bi-Lipschitz equivalent to the Euclidean metric away from the
infinity, is never a visual metric for f (see [BM17, Lemma 8.12]). In fact, for each visual metric d for

f , the visual sphere (S2, d) is snowflake equivalent to
(
Ĉ, σ

)
if and only if f is topologically conjugate

to a Lattès map (see [BM17, Theorem 18.1 (iii)] and Definition 3.22 below).
Recall that we call two metric spaces (X1, d1) and (X2, d2) are bi-Lipschitz, snowflake, or quasisym-

metrically equivalent if there exists a homeomorphism from (X1, d1) to (X2, d2) with the corresponding
property (see Definition 3.10).

We recall a version of the definition of Lattès maps.

Definition 3.22. Let f : Ĉ → Ĉ be a rational Thurston map on the Riemann sphere Ĉ. If f is
expanding and the orbifold Of = (S2, αf ) associated to f is parabolic, then it is called a Lattès map.

See [BM17, Chapter 3] and [Mil06] for other definitions and more properties of Lattès maps.

Remark 3.23. For a Lattès map f : Ĉ → Ĉ, the universal orbifold covering map Θ: C → Ĉ of the

orbifold Of =
(
Ĉ, αf

)
associated to f is holomorphic (see [BM17, Theorem A.26, Definition A.27, and

Corollary A.29]). Let d0 be the Euclidean metric on C. Then the canonical orbifold metric ωf of f is
the pushforward of d0 by Θ, more presicely,

ωf (p, q) := inf
{
d0(z, w)

∣∣ z ∈ Θ−1(p), w ∈ Θ−1(q)
}

for p, q ∈ Ĉ (see Section 2.5 and Appendices A.9 and A.10 in [BM17] for more details on the canonical

orbifold metric). Let σ be the chordal metric on Ĉ as recalled in Remark 3.12. By [BM17, Proposi-

tion 8.5], ωf is a visual metric for f . By [BM17, Lemma A.34],
(
Ĉ, ωf

)
and

(
Ĉ, σ

)
are bi-Lipschitz
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equivalent, i.e., there exists a bi-Lipschitz homeomorphism h : Ĉ → Ĉ from
(
Ĉ, ωf

)
to

(
Ĉ, σ

)
. Moreover,

by the discussion in [BM17, Appendix A.10], h cannot be the identity map.

3.4. Symbolic dynamics for expanding Thurston maps. In this subsection, we give a brief review
on the dynamics of one-sided subshifts of finite type and discuss a symbolic model for sufficiently large
iterations of expanding Thurston maps. We refer the reader to [Ki98] for a beautiful introduction to
symbolic dynamics. For a discussion on results on subshifts of finite type related to our context, see
[PP90, Ba00].

Let S be a finite nonempty set, and A : S × S → {0, 1} be a matrix whose entries are either 0 or 1.
We denote the set of admissible sequences defined by A by

Σ+
A := {{xi}i∈N0 |xi ∈ S, A(xi, xi+1) = 1, for each i ∈ N0}.

Fix a number θ ∈ (0, 1). We equip the set Σ+
A with a metric dθ given by dθ({xi}i∈N0 , {yi}i∈N0) = θN

for {xi}i∈N0 6= {yi}i∈N0 , where N is the smallest integer with xN 6= yN . The topology on the metric
space

(
Σ+
A, dθ

)
coincides with that induced from the product topology, and is therefore compact.

The left-shift operator σA : Σ
+
A → Σ+

A (defined by A) is given by

σA({xi}i∈N0) := {xi+1}i∈N0 for {xi}i∈N0 ∈ Σ+
A.

The pair
(
Σ+
A, σA

)
is called the one-sided subshift of finite type defined by A. The set S is called the

set of states and the matrix A : S × S → {0, 1} is called the transition matrix.
Let X and Y be topological spaces, and consider two maps f : X → X and g : Y → Y . We say that

the topological dynamical system (X, f) is a factor of the topological dynamical system (Y, g) if there
is a surjective continuous map π : Y → X such that π ◦ g = f ◦ π. We call the map π : Y → X a factor
map.

We will now consider a one-sided subshift of finite type associated to an expanding Thurston map
and an invariant Jordan curve on S2 containing post f . Recall from the discussions in Subsection 3.1
that such an invariant Jordan curve may not exist for an expanding Thurston map, but does exist for
each of its sufficiently high iterate. We will need the following technical lemma.

Lemma 3.24. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2 satisfying
f(C) ⊆ C and post f ⊆ C. Let {Xi}i∈N0 be a sequence of 1-tiles in X1(f, C) satisfying f(Xi) ⊇ Xi+1 for
all i ∈ N0. Then for each n ∈ N, we have

(3.10)
(
(f |X0)

−1 ◦ (f |X1)
−1 ◦ · · · ◦ (f |Xn−2)

−1
)
(Xn−1) =

n−1⋂

i=0

f−i(Xi) ∈ Xn(f, C).

Moreover, card
⋂
i∈N0

f−i(Xi) = 1.

Proof. Let d be a visual metric on S2 for f .
We call a sequence {ci}i∈N0 of subsets of S2 admissible if f(ci) ⊇ ci+1 for all i ∈ N0.
We prove (3.10) by induction.
For n = 1, (3.10) holds trivially for each admissible sequence of 1-tiles {Xi}i∈N0 in X1.
Assume that (3.10) holds for each admissible sequence of 1-tiles {Xi}i∈N0 in X1 and for n = m for

some m ∈ N. We fix such a sequence {Xi}i∈N0 . Then {Xi+1}i∈N0 is also admissible. By the induction
hypothesis, we denote

Xm :=
(
(f |X1)

−1 ◦ (f |X2)
−1 ◦ · · · ◦ (f |Xm−1)

−1
)
(Xm) =

m−1⋂

i=0

f−i(Xi+1) ∈ Xm.

Since f(X0) ⊇ X1 and Xm ⊆ X1, we get from Proposition 3.5 (i) and (ii) that f is injective on X1,

and thus
m⋂
i=0

f−i(Xi) = X0 ∩ f−1(Xm) ∈ Xm+1, and (f |X0)
−1(Xm) = X0 ∩ f−1(Xm) ∈ Xm+1.

The induction is complete. We have established (3.10).

Note that
n−1⋂
i=0

f−i(Xi) ⊇
n⋂
i=0

f−i(Xi) ∈ Xn+1 for each n ∈ N. By Lemma 3.9 (ii),
⋂
i∈N0

f−i(Xi)

is the intersection of a nested sequence of closed sets with radii convergent to zero, thus it contains
exactly one point in S2. �
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Proposition 3.25. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2

satisfying f(C) ⊆ C and post f ⊆ C. Let d be a visual metric on S2 for f with expansion factor Λ > 1.
Fix θ ∈ (0, 1). We set S△ := X1(f, C), and define a transition matrix A△ : S△ × S△ → {0, 1} by

A△(X,X
′) :=

{
1 if f(X) ⊇ X ′,

0 otherwise

for X, X ′ ∈ X1(f, C). Then f is a factor of the one-sided subshift of finite type
(
Σ+
A△
, σA△

)
defined by

the transition matrix A△, where the factor map π△ : Σ
+
A△

→ S2 is a surjective Hölder continuous map
defined by

(3.11) π△ ({Xi}i∈N0) = x, where {x} =
⋂

i∈N0

f−i(Xi).

Here Σ+
A△

is equipped with the metric dθ defined in Subsection 3.4, and S2 is equipped with the visual
metric d.

Proof. We denote by {Xi}i∈N0 ∈ Σ+
A△

an arbitrary admissible sequence.

Since f(Xi) ⊇ Xi+1 for each i ∈ N0, by Lemma 3.24, the map π△ is well-defined.
Note that for each m ∈ N0 and each {X ′

i}i∈N0 ∈ Σ+
A△

with Xm+1 6= X ′
m+1 and Xj = X ′

j for each

integer j ∈ [0,m], we have {π△({Xi}i∈N0), π△({X ′
i}i∈N0)} ⊆

m⋂
i=0

f−i(Xi) ∈ Xm+1 by Lemma 3.24. Thus

it follows from Lemma 3.9 (ii) that π△ is Hölder continuous.
To see that π△ is surjective, we observe that for each x ∈ S2, we can find a sequence

{
Xj(x)

}
j∈N of

tiles such that Xj(x) ∈ Xj , x ∈ Xj(x), and Xj(x) ⊇ Xj+1(x) for each j ∈ N. Then it is clear that{
f i
(
Xi+1(x)

)}
i∈N0

∈ Σ+
A△

and π△

({
f i
(
Xi+1(x)

)}
i∈N0

)
= x.

We observe that

{(f ◦ π△)({Xi}i∈N0)} =f

( ⋂

j∈N0

f−j(Xj)

)
⊆

⋂

j∈N

f−(j−1)(Xj)

=
⋂

i∈N0

f−i(Xi+1) = {(π△ ◦ σA△
)({Xi}i∈N0)}.

Therefore it follows that π△ ◦ σA△
= f ◦ π△. �

4. Little Lipschitz spaces and the locking property

The aim of this section is to show the following theorem in a general setting.

Theorem 4.1. Let T : X → X be a continuous map on a compact metric space (X, d) and α ∈ (0, 1).
Then the set lock(X, dα) of functions with the locking property in lip(X, dα) is equal to the interior of
P(X) ∩ lip(X, dα) (in the induced topology of lip(X, dα) as a subspace of Lip(X, dα)), and lock(X, dα)
is dense in P(X) ∩ lip(X, dα).

The strategy of the proof is a two-step perturbation argument. For every φ ∈ P(X)∩ lip(X, dα) with
a maximizing measure supported on a periodic orbit O, we first perturb it by suppressing it by a scalar
multiple of the distance function dβ(·,O), then show that the resulting function φt := φ − tdβ(·,O)
stays in lock(X, dα) after another arbitrary small perturbation ψ ∈ lip(X, dα). The difficulty lies in
the fact that if β = α, then dβ(·,O) is no longer in lip(X, dα). On the other hand, even though
dβ(·,O) ∈ lip(X, dα) for all β ∈ (α, 1], the Wasserstein distance type of control of J. Bochi and the
second-named author [BZ15, Lemma 2] cannot be used directly as there is a mismatch in exponents
between the dβ(·,O) and ψ. Our approach is to split the small arbitrary perturbation ψ ∈ lip(X, dα)
into two parts ψ = ψβ + τ , where ψβ ∈ Lip(X, dβ) has small β-Hölder norm and τ has arbitrarily
small uniform norm. Such a splitting is possible thanks to a Lipschitz extension theorem stated in
Theorem 4.6.

We first recall the definition of little Lipschitz functions.
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Definition 4.2. Let X be a compact metric space, the little Lipschitz space lip(X, d) is defined to be
the subspace of Lip(X, d) (equipped with the Lipschitz norm ‖·‖d,X) consisting of those functions φ
with the property that for every ǫ > 0 there exists δ > 0 such that

|φ(x) − φ(y)|
d(x, y)

≤ ǫ

for all x, y ∈ X with 0 < d(x, y) ≤ δ. The functions in lip(X, d) are called little Lipschitz functions or
locally flat Lipschitz functions.

It is clear that a function φ is in lip(X, d) (resp. Lip(X, d)) if and only if sup{|φ(x)−φ(y)| | d(x, y) ≤
r} = o(r) (resp. sup{|φ(x)− φ(y)| | d(x, y) ≤ r} = O(r)) as r → 0.

We consider connections between little Lipschitz spaces and big Lipschitz spaces in the next two
propositions. The first one is classical (see for example, [Sh64, Subsection I.1]).

Proposition 4.3. Let (X, d) be a compact metric space. Then lip(X, d) is a closed subalgebra of
Lip(X, d) which contains the constant functions.

We will rely on the following important result. See [BCD87, Corollary 3.7], [We96, Corollary 1.5],
and [We18, Corollary 8.28].

Proposition 4.4. Let (X, d) be a compact metric space and let α ∈ (0, 1). Then Lip(X, d) is a dense
subset of lip(X, dα) (equipped with the norm ‖·‖dα,X).

Next, we record a basic covering theorem (see for example, [He01, Theorem 1.2]).

Theorem 4.5 (Covering Theorem). Every family F of balls of uniformly bounded diameter in a metric
space X contains a disjoint subfamily G such that

(4.1)
⋃

B∈F

B ⊆
⋃

B∈G

5B.

Here 5B denotes the ball with the same center but 5 times the radius as that of B.

The following extension theorem for Lipschitz functions dates back to a result of T. Botts and
E. McShane recorded in [Sh64, Proposition 1.4]. We state here the version from [Ha92, Proposition 3].
See also [BCD87, Lemma 3.3].

Theorem 4.6 (Lipschitz extension theorem). Let (X, d) be a metric space and β ∈ (0, 1). Then for
every finite set F ⊆ X, every function ϕ on F , and every number C > 2, there exists a function
ψ ∈ Lip(X, d) with the properties ψ|F = ϕ and ‖ψ‖dβ , K ≤ C ‖ϕ‖dβ , F .3

We write

〈φ, µ〉 :=
∫
φdµ for φ ∈ C(X) and µ ∈ M(X).

Next, we record the following strengthened version of [BZ15, Lemma 2] which follows from Lemma 2
and its proof in [BZ15].

Proposition 4.7. Let T : X → X be a continuous map on a compact metric space (X, d) and α ∈ (0, 1].
Let O be a periodic orbit of T . Write µO := 1

cardO

∑
x∈O δx ∈ M(X,T ). Then for each β ∈ [α, 1] there

exists a constant CO,β ≥ 1 such that for every ν ∈ M(X,T ), we have

sup

{ 〈φ, ν − µ〉
|φ|dβ

∣∣∣∣φ ∈ Lip(X, dβ), |φ|dβ 6= 0

}
≤ CO,β〈dβ(·,O), ν〉.

Moreover, CO,β can be chosen as CO,β := (diamd(X)/λα)
β ≤ diamd(X)/λα, where λα ∈ (0,diamd(X))

is a constant satisfying the condition that for all i ∈ {0, 1, . . . , cardO−1} and x, y ∈ X with d(x, y) <
λα, the following inequality holds:

d
(
T i(x), T i(y)

)
< 2−1/αmin{d(w, z) |w, z ∈ O, w 6= z}.

Note that the number λα in the statement above exists due to the uniform continuity of T .
We are now ready to prove Theorem 4.1.

3Note that the difference in the definition of Hölder norm results in the difference in the lower bound on C.
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Proof of Theorem 4.1. By definition, the set lock(X, dα) is open in lip(X, dα) and is contained in P(X).
It suffices to show that lock(X, dα) is dense in P(X) ∩ lip(X, dα).

Consider an arbitrary potential φ ∈ P(X) ∩ lip(X, dα). Let O be a periodic orbit of T such that
µO := 1

cardO

∑
x∈O δx is a maximizing measure for φ.

Fix arbitrary t, δ, ǫ ∈ (0, 1/5), and β ∈ (α, 1).
Consider arbitrary ψ ∈ lip(X, dα) with

(4.2) ‖ψ‖dα,X ≤ ǫ.

By the compactness of X and the covering theorem (Theorem 4.5), there exists a finite set F ⊆ X such
that

(4.3)
⋃

x∈F

Bd(x, 5δ) = X

and the balls Bd(x, δ), x ∈ F , are pairwise disjoint. By the Lipschitz extension theorem in Theorem 4.6
(applied to β, F , and ϕ := ψ|F ), there exists a function ψβ ∈ Lip(X, dβ) such that

(4.4) ψβ|F = ψ|F and ‖ψβ‖dβ , X ≤ 3 ‖ψ|F ‖dβ , F
Note that by (4.2) and (4.3), we have

(4.5) ‖ψ|F ‖dβ , F ≤ ǫ+ |ψ|F |dα (min{d(x, y) |x, y ∈ F, x 6= y})α−β ≤ ǫ+ ǫδα−β .

Define τ := ψ − ψβ ∈ Lip(X, dα). Then by (4.4), (4.2), (4.5), and the fact that δ ∈ (0, 1/5), we have

(4.6) ‖τ‖C0(X) ≤ (5δ)α |ψ|dα + (5δ)β |ψβ|dβ ≤ ǫ(5δ)α + 3(ǫ+ ǫδα−β)(5δ)β ≤ 35ǫδα.

Set φt := φ − tdβ(·,O). For every ν ∈ M(X,T ) \ {µO}, by (4.6), the fact that µO is a maximizing
measure for φ, Proposition 4.7, (4.4), (4.5), and (4.8) we have

〈φt + ψ, ν〉 = 〈φ, ν〉 − t〈dβ(·,O), ν〉 + 〈ψβ, ν〉+ 〈τ, ν〉
≤ 〈φ, µO〉+ 〈ψβ , ν〉 − t〈dβ(·,O), ν〉 + 35ǫδα

≤ 〈φ, µO〉+ 〈ψβ , µO〉+
(
diamd(X)

λα
|ψβ |dβ − t

)
〈dβ(·,O), ν〉 + 35ǫδα

≤ 〈φt, µO〉+ 〈ψ, µO〉 − 〈τ, µO〉+
(
diamd(X)

λα
|ψβ |dβ − t

)
〈dβ(·,O), ν〉 + 35ǫδα

≤ 〈φt + ψ, µO〉+
(
3(ǫ+ ǫδα−β)

diamd(X)

λα
− t

)
〈dβ(·,O), ν〉 + 70ǫδα,

where λα ∈ (0,diamd(X)) is a constant depending only on T , α, and O from Proposition 4.7 (applied
to T , α, O).

Since t, δ, ǫ ∈ (0, 1/5), and β ∈ (α, 1) are arbitrary, for each fixed δ, we can choose β sufficiently
close to α such that

(4.7) δα−β ≤ 2.

On the other hand, for each fixed t, we can choose

(4.8) ǫ := 10−1tλα/diamd(X).

Hence

〈φt + ψ, ν〉 ≤ 〈φt + ψ, µO〉+
(
9ǫ

diamd(X)

λα
− t

)
〈dβ(·,O), ν〉 + 70ǫδα

≤ 〈φt + ψ, µO〉 − 10−1t〈dβ(·,O), ν〉 + 70ǫδα.

Since δ ∈ (0, 1/5) is arbitrary, we conclude that 〈φt + ψ, ν〉 < 〈φt + ψ, µO〉.
Since ν ∈ M(X,T ) is arbitrary, the measure µO is the unique maximizing measure for φt + ψ

for all ψ ∈ lip(X, dα) with ‖ψ‖dα,X ≤ ǫ. On the other hand, dβ(·,O) ∈ Lip(X, dβ) ⊆ lip(X, dα) by

Proposition 4.4. Hence φt = φ−tdβ(·,O) ∈ lock(X, dα). Recall that t ∈ (0, 1/5) is arbitrary. Therefore,
lock(X, dα) is dense in P(X) ∩ lip(X, dα). �
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5. The Assumptions

We state below the hypotheses under which we will develop our theory in most parts of this paper.
We will repeatedly refer to such assumptions in the later sections. We emphasize again that not all
assumptions are used in every statement in this paper.

The Assumptions.

(1) f : S2 → S2 is an expanding Thurston map.

(2) C ⊆ S2 is a Jordan curve containing post f with the property that there exists nC ∈ N such
that fnC(C) ⊆ C and fm(C) * C for each m ∈ {1, 2, . . . , nC − 1}.

(3) d is a visual metric on S2 for f with expansion factor Λ > 1 and a linear local connectivity
constant L ≥ 1.

(4) α ∈ (0, 1].

(5) φ ∈ Lip(S2, dα) is a real-valued α-Hölder continuous function with respect to the visual metric
d.

Observe that by Lemma 3.13, for each f in (1), there exists at least one Jordan curve C that
satisfies (2). Since for a fixed f , the number nC is uniquely determined by C in (2), in the remaining
part of the paper we will say that a quantity depends on C even if it also depends on nC .

Recall that the expansion factor Λ of a visual metric d on S2 for f is uniquely determined by d and
f . We will say that a quantity depends on f and d if it depends on Λ.

Note it follows from Remark 3.8 and Lemma 3.9 that a metric d on S2 satisfies (3) if and only if d
is a visual metric for fn with expansion factor Λn > 1 and a linear local connectivity constant L ≥ 1
for some (or each) n ∈ N. Even though the value of L is not uniquely determined by the metric d, in
the remainder of this paper, for each visual metric d on S2 for f , we will fix a choice of linear local
connectivity constant L. We will say that a quantity depends on the visual metric d without mentioning
the dependence on L, even though if we had not fixed a choice of L, it would have depended on L as
well.

In the discussion below, depending on the conditions we will need, we will sometimes say “Let f , C,
d, φ, α satisfy the Assumptions in Section 5.”, and sometimes say “Let f and d satisfy the Assumptions
in Section 5.”, etc.

6. The Livšic theorem, the Mañé lemma, and the bilateral Mañé lemma

In this section, we give a definition of Bousch operators and discuss some of their basic properties
for general dynamical systems before proving in Proposition 6.4 the existence of an eigenfunction for
the Bousch operator, also known as a calibrated sub-action, for an expanding Thurston map. Finally,
we deduce the Livšic theorem, the Mañé lemma, and the bilateral Mañé lemma in our context.

Recall that a map T : X → Y is finite-to-one if card
(
T−1(y)

)
< +∞ for all y ∈ Y .

Let T : X → X be a finite-to-one surjective continuous map on a compact metric space (X, d), and
ψ : X → R a real-valued continuous function. Recall that RX denotes the set of all functions from X
to R. The Bousch operator Lψ : RX → RX for T and ψ is given by

(6.1) Lψ(u)(x) := max
{
ψ(y) + u(y)

∣∣ y ∈ T−1(x)
}
,

for u ∈ RX and x ∈ X. We define

(6.2) ψ := ψ − β(ψ),

where β(ψ) is the maximal potential energy given by

(6.3) β(ψ) = βT (ψ) := sup
µ∈M(X,T )

∫
ψ dµ = max

µ∈M(X,T )

∫
ψ dµ.

The last identity follows from the weak∗-compactness of M(X,T ). When the map T is clear from
the context, we often omit the subscript T in βT (ψ). We denote the (nonempty) set of ψ-maximizing
measures by

(6.4) Mmax(T, ψ) :=

{
µ ∈ M(X,T )

∣∣∣∣
∫
ψ dµ = β(ψ)

}
.
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Lemma 6.1. Let T : X → X be a finite-to-one surjective continuous map on a compact metric space
(X, d). Fix some c ∈ R, n ∈ N, ψ ∈ C(X), u ∈ RX , and a set A ⊆ RX . Then the following statements
are satisfied:

(i) Lψ(u+ c) = c+ Lψ(u).
(ii) Ln

ψ
(u)(x) + nβ(ψ) = Lnψ(u)(x) = max{Snψ(y) + u(y) | y ∈ T−n(x)} for each x ∈ X.

(iii) Lψ(sup{v(·) | v ∈ A})(x) = sup{Lψ(v)(x) | v ∈ A} for each x ∈ X.

(iv) lim
i→+∞

Lψ(ui)(x) = Lψ
(
lim

i→+∞
ui(·)

)
(x) for each x ∈ X and each pointwise convergent sequence

{ui}i∈N of functions in RX .

Proof. Statement (i) follows immediately from (6.1).
The first identity in statement (ii) follows immediately from (6.2). We use induction to establish

second identity. The case n = 1 follows from (6.1). Assume that statement (ii) is verified for some
n = m ∈ N. Then by (6.1),

Lm+1
ψ (u)(x) = max

y∈T−1(x)

{
ψ(y) + max

z∈T−m(y)
{Smψ(z) + u(z)}

}

= max
y∈T−1(x)

{
max

z∈T−m(y)
{Sm+1ψ(z) + u(z)}

}

= max
z∈T−(m+1)(x)

{Sm+1ψ(z) + u(z)}.

Next, statement (iii) follows from the following simple observation:

Lψ(sup{v(·) | v ∈ A})(x) = max
y∈T−1(x)

{ψ(y) + sup{v(y) | v ∈ A}}

= max
y∈T−1(x)

{sup{ψ(y) + v(y) | v ∈ A}}

= sup
{

max
y∈T−1(x)

{ψ(y) + v(y) | v ∈ A}
}

= sup{Lψ(v)(x) | v ∈ A}.
Finally, we verify statement (iv). Let v : X → R be the pointwise limit of ui as i tends to +∞. Fix

arbitrary x ∈ X and ǫ > 0. Since T is finite-to-one, we can find N ∈ N such that for each integer n ≥ N
and each y ∈ T−1(x), |un(y) − v(y)| < ǫ. Fix arbitrary integer n ≥ N . We choose z1, z2 ∈ T−1(x)
satisfying Lψ(un)(x) = ψ(z1) + un(z1) and Lψ(v)(x) = ψ(z2) + v(z2). Then by (6.1),

Lψ(un)(x)− Lψ(v)(x) ≤ ψ(z1) + un(z1)− ψ(z1)− v(z1) = un(z1)− v(z1) < ǫ and

Lψ(un)(x)− Lψ(v)(x) ≥ ψ(z2) + un(z2)− ψ(z2)− v(z2) = un(z2)− v(z2) > −ǫ.
Statement (iv) now follows. �

The statements in the following lemma is well-known, see for example, [Bou01, Theorem 1], [Je06,
Theorem 4.7], and [Co16, Lemma 2.1]. We include a proof for the convenience of the reader.

Lemma 6.2. Let T : X → X be a finite-to-one surjective continuous map on a compact metric space
(X, d). Fix arbitrary continuous functions ϕ, u ∈ C(X). Then the following statements are satisfied:

(i) Mmax(T, ϕ) = Mmax(T, ϕ+ c+ u− u ◦ T ) for each constant c ∈ R.

(ii) If Lϕ(u) = u, then the function ϕ̃ := ϕ+ u− u ◦ T satisfies the following properties:

(a) β(ϕ̃) = max
{∫
ϕ̃dµ

∣∣µ ∈ M(X,T )
}
= 0,

(b) ϕ̃(x) ≤ 0 for each x ∈ X,

(c) the set K :=
⋂+∞
j=0 T

−j
(
ϕ̃−1(0)

)
is a nonempty compact T -forward-invariant set, and

(d) Mmax(T, ϕ) = Mmax(T, ϕ̃) = {µ ∈ M(X,T ) | suppµ ⊆ K}.
Proof. (i) Fix a constant c ∈ R. Denote ψ := ϕ + c + u − u ◦ T . For each µ ∈ M(X,T ), we have∫
ψ dµ = c+

∫
ϕdµ. Thus β(ψ) = c+β(ϕ) (see (6.3)). Consequently, by (6.4), for each µ ∈ Mmax(T, ϕ),∫

ψ dµ = c+

∫
ϕdµ = c+ β(ϕ) = β(ψ),



24 ZHIQIANG LI, YIWEI ZHANG

i.e., µ ∈ Mmax(T, ψ). Similarly, Mmax(T, ψ) ⊆ Mmax(T, ϕ). Statement (i) follows.

(ii) Assume u ∈ C(X) satisfies Lϕ(u) = u.

(a) Since µ is T -invariant, β(ϕ̃) = max
µ∈M(X,T )

∫
(ϕ+u−u◦T ) dµ = max

µ∈M(X,T )

∫
ϕ dµ = −β(ϕ)+β(ϕ) = 0.

(b) Since Lϕ(u) = u, we get from (6.1) that for each x ∈ X, u(T (x)) = Lϕ(u)(T (x)) ≥ ϕ(x) + u(x).
Thus by the definition of ϕ̃, we have ϕ̃(x) ≤ 0 for each x ∈ X.

(c) By the definition of K, it follows immediately from the continuity of T and ϕ̃ that K is compact.
By the definition of K, it is also clear that K is T -forward invariant. The fact that K is nonempty will
follow directly from statement (ii)(d) below and the fact that Mmax(T, ϕ) is nonempty.

(d) The first identity follows from statement (i). To establish the second identity, we first note
that by (6.4) and statements (ii)(a) and (b), every µ ∈ M(X,T ) with suppµ ⊆ K ⊆ ϕ̃−1(0) is
in Mmax(T, ϕ̃). Conversely, by statement (ii)(a), every µ ∈ Mmax(T, ϕ̃) satisfies

∫
ϕ̃dµ = 0. By

statement (ii)(b), suppµ is a subset of the compact set ϕ̃−1(0). It now follows from the T -invariance
of µ that suppµ ⊆ ⋂+∞

j=0 T
−j

(
ϕ̃−1(0)

)
= K. �

Lemma 6.3. Let f , C, d, L, α, φ satisfy the Assumptions in Section 5. Then there exist a constant
C1 > 1 depending only on f , d, C, and α such that for each u ∈ Lip(S2, dα) and each n ∈ N, we have
Lnφ(u) ∈ Lip(S2, dα) and

(6.5)
∣∣Lnφ(u)

∣∣
dα

≤ C1

(
|φ|dα + |u|dα

)
.

Proof. Fix an arbitrary function u ∈ Lip(S2, dα) and n ∈ N. Let X0 be either the black 0-tile X0
b
or

the white 0-tile X0
w in X0. For each Xn ∈ Xn with fn(Xn) = X0, by Proposition 3.5 (i), (fn)|Xn

is a homeomorphism of Xn onto X0. So for x, y ∈ X0, there exist unique points x′, y′ ∈ Xn with
x′ ∈ f−n(x) and y′ ∈ f−n(y). Recall Lemma 6.1 (ii). By assuming that x′ is a preimage of x under fn

with the property that
Lnφ(u)(x) = Snφ(x

′) + u(x′),

we get from Lemma 6.1 (ii), Lemma 3.16, and Lemma 3.15 that

Lnφ(u)(x)− Lnφ(u)(y) ≤ Snφ(x
′) + u(x′)− Snφ(y

′)− u(y′)

≤ C0(1− Λ−α)−1 |φ|dα d(x, y)α + |u|dα d(x′, y′)α

≤ C0(1− Λ−α)−1 |φ|dα d(x, y)α + |u|dα Cα0 Λ−nαd(x, y)α

≤ 2C0(1− Λ−α)−1
(
|φ|dα + |u|dα

)
d(x, y)α,

where Λ > 1 is the expansion factor of d under f , and C0 > 1 is a constant depending only on f , C, and
d from Lemma 3.15. Similarly, by assuming that y′ is a preimage of y under fn with the property that
Lnφ(u)(y) = Snψ(y

′) + u(y′), we get Lnφ(u)(x) − Lnφ(u)(y) ≥ −
(
|Snφ|dα + |u|dα

)
Cα0 Λ

−nαd(x, y)α. Hence

(6.6)
∣∣Lnφ(u)(x) − Lnφ(u)(y)

∣∣ ≤ 2C0(1− Λ−α)−1
(
|φ|dα + |u|dα

)
d(x, y)α.

Next, we consider arbitrary x ∈ X0
w and y ∈ X0

b
. Since the metric space (S2, d) is linearly locally

connected with a linear local connectivity constant L ≥ 1, there exists a continuum E ⊆ S2 with
x, y ∈ E and E ⊆ Bd(x,Ld(x, y)) (see Subsection 3.1). We can then fix a point z ∈ C ∩ E. Then
x, z ∈ X0

w and y, z ∈ X0
b
. Thus we have

∣∣Lnφ(u)(x)− Lnφ(u)(y)
∣∣ ≤

∣∣Lnφ(u)(x) − Lnφ(u)(z)
∣∣ +

∣∣Lnφ(u)(y)− Lnφ(u)(z)
∣∣

≤ (d(x, z)α + d(y, z)α)2C0(1− Λ−α)−1
(
|φ|dα + |u|dα

)
(6.7)

≤ 2(diamd(E))α2C0(1 − Λ−α)−1
(
|φ|dα + |u|dα

)

≤ 8LαC0(1− Λ−α)−1
(
|φ|dα + |u|dα

)
d(x, y)α.

Finally Lnφ(u) ∈ Lip(S2, dα) follows from (6.6) and (6.7). On the other hand, by choosing C1 :=

8LαC0(1− Λ−α)−1 > 1, we get (6.5). �

Inspired by the construction of eigenfunctions of the Ruelle–Perron–Frobenius operators (c.f. [Li18,
Theorem 5.16]), we find a fixed point uφ of the Bousch operator Lφ (also known as a calibrated sub-action

for f and φ).
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Proposition 6.4. Let f , C, d, α, φ satisfy the Assumptions in Section 5. Then the function uφ : S
2 → R

given by

(6.8) uφ(x) := lim sup
n→+∞

Ln
φ
(0)(x), x ∈ S2,

satisfies the following properties:

(i) |uφ(x)| ≤ 2C1 |φ|dα diamd(S
2)α for each x ∈ S2,

(ii) uφ ∈ Lip(S2, dα) with |uφ|dα ≤ C1 |φ|dα ,
(iii) Lφ(uφ) = uφ.

Here C1 > 1 is a constant depending only on f , d, C, and α from Lemma 6.3.

Proof. We write D := C1 |φ|dα diamd(S
2)α in this proof.

To establish statement (i), we fix a point x ∈ S2 and a measure µ ∈ Mmax(f, φ). Recall from
Lemma 6.1 (ii), for each n ∈ N,

(6.9) Ln
φ
(0)(x) = max

{
Snφ(y)

∣∣ y ∈ f−n(x)
}
.

To show that uφ(x) 6= −∞, we choose, for each n ∈ N, a point yn ∈ S2 on which Snφ attains its
maximum value. Then for each n ∈ N, by Lemma 6.3, (6.2), and (6.9),

sup
{
Lm
φ
(0)(x)

∣∣m ∈ N, m ≥ n
}

≥ Ln
φ
(0)(x) ≥ Ln

φ
(0)(fn(yn))−

∣∣Ln
φ
(0)

∣∣
dα
d(x, fn(yn))

α

≥ max
{
Snφ(z)

∣∣ z ∈ f−n(fn(yn))
}
− C1 |φ|dα diamd(S

2)α

≥ Snφ(yn)−D ≥
∫
Snφdµ−D =

∫
Snφdµ− nβ(φ)−D = −D

Hence uφ(x) = lim supn→+∞Ln
φ
(0)(x) ≥ −D.

Next, we will show that uφ(x) ≤ 2D. If φ is a constant, then by (6.9) and (6.8), we get that uφ = 0

and statement (i) holds. On the other hand, if φ is not a constant, then D > 0.
We will establish the following claim.

Claim. There exists a point x0 ∈ S2 such that uφ(x0) ≤ 0.

Assuming the claim and that φ is not a constant, by (6.8) we can fix an integer N ∈ N with the
property that for each integer n ≥ N , sup

{
Lm
φ
(0)(x0)

∣∣m ∈ N, m ≥ n
}
≤ D. Then by Lemma 6.3,

sup
{
Lm
φ
(0)(x)

∣∣m ∈ N, m ≥ n
}

≤ sup
{
Lm
φ
(0)(x0) +

∣∣Lm
φ
(0)

∣∣
dα
d(x, x0)

α
∣∣m ∈ N, m ≥ n

}

≤ sup
{
Lm
φ
(0)(x0) + C1 |φ|dα diamd(S

2)α
∣∣m ∈ N, m ≥ n

}

≤ sup
{
Lm
φ
(0)(x0)

∣∣m ∈ N, m ≥ n
}
+D ≤ 2D.

Thus uφ(x) = lim supn→+∞Ln
φ
(0)(x) ≤ 2D. Since x ∈ S2 is arbitrary, statement (i) is verified.

To establish the claim above, we argue by contradiction and suppose that uφ(w) > 0 for all w ∈ S2.
Thus for each w ∈ S2, there exists an integer nw ∈ N with the property that

max
{
Snwφ(z)

∣∣ z ∈ f−nw(w)
}
≥ uφ(w)/2.

It follows from the continuity of φ and f , Proposition 3.5 (i), and Lemma 3.9 (ii) that for each w ∈ S2,
there exists a number δw > 0 such that for each y ∈ Bd(w, δw),

max
{
Snwφ(z)

∣∣ z ∈ f−nw(y)
}
≥ uφ(w)/3.

By compactness, we choose finitely-many points x1, x2, · · · , xk ∈ S2 such that
⋃k
i=1B(xi, δxi) = S2.

Denote

(6.10) c := min{u(xi)/(3nxi) | i ∈ {1, 2, · · · , k}} > 0.
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For each y ∈ S2 \ {x1, x2, · · · , xk}, set ny := nxi , where xi is an arbitrarily chosen point from
{x1, x2, · · · , xk} satisfying y ∈ Bd(xi, δxi). Then for each y ∈ S2,

(6.11) max
{
Snyφ(z)

∣∣ z ∈ f−ny(y)
}
≥ nyc.

Fix an arbitrary z0 ∈ S2. By (6.11), we can recursively choose zi ∈ S2, i ∈ N, with the following two
properties: (a) zi ∈ f−nzi−1 (zi−1) and (b) Snzi−1

φ(zi) ≥ nzi−1c.

On the other hand, consider a sequence {νi}i∈N of probability measures given by

νi :=
1

mi

mi−1∑

j=0

δfj(zi),

wheremi := nz0+nz1+· · ·+nzi−1 and δfj(zi) is the Dirac delta measure at f j(zi). By Alaoglu’s theorem,

there exists a subsequence νi1 , νi2 , · · · , νil , · · · of {νi}i∈N that converges in the weak∗ topology to a
probability measure ν ∈ P(S2). We then deduce the f -invariance of ν from the observation that for
each continuous function w ∈ C(S2) and each i ∈ N,

∣∣∣∣
∫
w dνi −

∫
w df∗(νi)

∣∣∣∣ ≤
2

mi
‖w‖C0

Hence by (6.2), (6.3), property (b) above, and (6.10),

0 ≥
∫
φdν = lim

l→+∞

1

mil

mil
−1∑

j=0

φ
(
f j(zil)

)
= lim

l→+∞

1

mil

il−1∑

j=0

Snzj
φ(zj+1)

≥ lim
l→+∞

1

mil

il−1∑

j=0

nzjc = c > 0.

This is a contradiction. The claim is therefore established.

Next, we verify statement (ii). Fix an arbitrary pair of distinct points x, y ∈ S2 and an arbitrary
number ǫ > 0. By (6.8), we can find an integer N ∈ N such that the following inequalities hold:

∣∣LN
φ
(0)(x)− uφ(x)

∣∣ < ǫ and

sup
{
Ln
φ
(0)(y)

∣∣ n ∈ N, n ≥ N
}
− uφ(y) < ǫ.

Then by Lemma 6.3,

uφ(x)− uφ(y) ≤ LN
φ
(0)(x) + ǫ+ ǫ− sup

{
Ln
φ
(0)(y)

∣∣n ∈ N, n ≥ N
}

≤ LN
φ
(0)(x)− LN

φ
(0)(y) + 2ǫ

≤
∣∣LN

φ
(0)

∣∣
dα
d(x, y)α + 2ǫ

≤ C1 |φ|dα d(x, y)α + 2ǫ.

Similarly, we can find an integer M ∈ N such that the following inequalities hold:
∣∣LM

φ
(0)(y)− uφ(y)

∣∣ < ǫ and

sup
{
Lm
φ
(0)(x)

∣∣m ∈ N, m ≥M
}
− uφ(x) < ǫ.

Then by Lemma 6.3,

uφ(x)− uφ(y) ≥ sup
{
Lm
φ
(0)(x)

∣∣m ∈ N, m ≥M
}
− ǫ− LM

φ
(0)(y)− ǫ

≥ LM
φ
(0)(x)− LM

φ
(0)(y)− 2ǫ

≥ −
∣∣LM

φ
(0)

∣∣
dα
d(x, y)α − 2ǫ

≥ −C1 |φ|dα d(x, y)α − 2ǫ.

Since ǫ > 0 is arbitrary, statement (ii) now follows.
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Finally, by Lemma 6.1, for each x ∈ S2,

Lφ(uφ)(x) = Lφ
(

lim
n→+∞

sup
{
Lm
φ
(0)(x)

∣∣m ∈ N, m ≥ n
})

= lim
n→+∞

sup
{
Lm+1
φ

(0)(x)
∣∣m ∈ N, m ≥ n

}

= uφ(x).

Statement (iii) is therefore verified. �

We now establish the Mañé and bilateral Mañé lemmas for expanding Thurston maps.

Proof of Theorem 1.2. We observe that it suffices to investigate the case when f is an expanding
Thurston map on the S2 equipped with a visual metric d since the other case when f is a postcritically-
finite rational map with no periodic critical points on the Riemann sphere equipped with the chordal
or spherical metric follows from the former case and the bi-Hölderness of a quasisymmetry (see Theo-
rem 3.11 and Remark 3.12). So from now on we consider f in the former case.

We first verify the Mañé lemma and then use it to deduce the bilateral Mañé lemma a using similar
argument as in [Bou02].

Assume that φ ∈ Lip(S2, dα) for some α ∈ (0, 1]. Then it follows immediately from Proposition 6.4,
(6.2), and Lemma 6.2 (ii) that exists a function w ∈ Lip(S2, dα) such that φ(x)−w(x)+(w◦f)(x) ≤ β(φ)
for all x ∈ X. The Mañé lemma follows.

We now proceed to verify the bilateral Mañé lemma. By the Mañé lemma applied to −φ and to φ,
there exist w1, w2 ∈ Lip(S2, dα) such that

−φ(x)− w1(x) + (w1 ◦ f)(x) ≤ β(−φ) and

φ(x)− w2(x) + (w2 ◦ f)(x) ≤ β(φ)

for all x ∈ X. We set ψ := φ−w1+w1◦f and w3 := w1+w+2. Then it is easy to check that β(ψ) = β(φ)
and β(−ψ) = β(−φ). Thus we have that −β(−ψ) ≤ ψ(x) and ψ(x)−w3(x)+ (w3 ◦f)(x) ≤ β(ψ) for all
x ∈ S2. By [Bou02, Theorem 1], this guarantees that there exists a function v ∈ Lip(S2, dα) such that
−β(−ψ) ≤ ψ(x)− v(x)+ (v ◦ f)(x) ≤ β(ψ) for all x ∈ S2. Finally, by setting u := v+w1 ∈ Lip(S2, dα),
we get that

−β(−φ) = −β(−ψ) ≤ φ(x)− u(x) + (u ◦ f)(x) ≤ β(ψ) = β(φ)

for all x ∈ S2, establishing the bilateral Mañé lemma. �

To see the Livšic theorem for expanding Thurston maps as a consequence of the bilateral Mañé
lemma for these maps, we first need to verify the following lemma.

Lemma 6.5. Let f : S2 → S2 be an expanding Thurston map. Then the set

{µ ∈ M(S2, f) |µ is supported on a periodic orbit of f}
is dense in M(S2, f) (in the weak∗ topology).

Proof. It follows from a theorem of K. Sigmund ([Sig74, Theorem 1]) that it suffices to verify that f
has the specification property in the sense of K. Sigmund (see the definition in [Sig74, Section 2]). Such
specification property is closed under factors ([Sig74, Proposition 1]) and the full shift on the space of
bi-infinite sequences of finitely-many symbols has this property (see [Sig74, Section 2]). Thus it suffices
to see that f is a factor of such a full shift. By Theorem 9.1 in [BM17], f is a factor of the full shift on
the space of one-sided infinite sequences of deg f symbols, which in turn is a factor of the full shift on
the space of bi-infinite sequences. The lemma now follows. �

Proof of Theorem 1.1. It is trivially true that (ii) implies (i). To see that (i) implies (ii), we assume
that Snφ(x) = 0 for each periodic point x ∈ S2 of period n ∈ N. Then by Lemma 6.5 and (6.3), we get
β(φ) = 0. Statement (ii) follows now from the bilateral Mañé lemma (Theorem 1.2 (ii)). �

Remark 6.6. Note that as can be seen in the proofs of Theorems 1.2 and 1.1, if φ ∈ Lip(X, dα) for
some visual metric d and exponent α ∈ (0, 1], then the corresponding function u can be chosen from
Lip(X, dα).
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7. Uniform local expansion away from critical points

In this section, we formulate and establish in Lemma 7.2 the uniform local expansion property of
expanding Thurston maps away from critical points, which is crucial in the quantitative analysis in
Sections 8 and 9. The proof relies on an interplay between the combinatorial objects and the visual
metrics. Instead of tiles or flowers, we first link the dynamics and metric geometry using “quasi-round”
bouquets.

Let f : S2 → S2 be an expanding Thurston map and C ⊆ S2 be a Jordan curve with post f ⊆ C. Then
it follows from Remark 3.6 and Proposition 3.5 that flowers iterate nicely under f , or more precisely,

(7.1) f(W n(x)) =W n−1(f(x))

for each n ∈ N and each x ∈ Vn(f, C). Compared with flowers, bouquets Un(x) defined in (3.5) serve a
better role in linking the combinatorial structures induced by f and C to the geometry of visual metrics.
We therefore establish a similar result to (7.1) for Un(x) in the following lemma.

Lemma 7.1. Let f : S2 → S2 be an expanding Thurston map and C ⊆ S2 be a Jordan curve containing
post f . For all x ∈ S2 and n ∈ Z, we have

(7.2) f(Un(x)) = Un−1(f(x)).

Here Um(x) is defined in (3.5) using m-tiles in the cell decompositions Dm(f, C).
Proof. Fix arbitrary x ∈ S2 and n ∈ Z. If n < 0, then Un(x) = S2 by definition. It is also clear that
U0 = S2. Thus we can assume, without loss of generality, that n ≥ 1.

It follows quickly from (3.5), Proposition 3.5 (i), Definition 3.4, and Definition 3.2 that f(Un(x)) ⊆
Un−1(x). So it suffices to show that f(Un(x)) ⊇ Un−1(x).

We define, for all y ∈ S2 and m ∈ N0,

(7.3) Y m(y) :=
⋃

{Xm ∈ Xm | y ∈ Xm}.

We claim that Y n−1(f(x)) =
⋃{f(Xn) |Xn ∈ Xn, x ∈ Xn} = f(Y n(x)).

Indeed, we establish the claim by observing that it suffices to verify the first identity by discussing
the following three cases.

Case 1. x ∈ inte(Xn) for some n-tile Xn ∈ Xn. Then the first identity in this case follows from
Proposition 3.5 (i) and Definition 3.2 (iii).

Case 2. x ∈ inte(en) for some n-edge en ∈ En. Then the first identity in this case follows from
Proposition 3.5 (i) and Definition 3.2 (iii).

Case 3. x ∈ Vn, i.e., x is some n-vertex. Then by Remark 3.6, Y n(x) = W
n
(x), where W

n
(x) is

the closure of the n-flower W n(x) defined in (3.4). It also follows from Remark 3.6 that Y n−1(f(x)) =

W
n−1

(f(x)) =
⋃{f(Xn) |Xn ∈ Xn, x ∈ Xn}.

The claim is now established.
Note that it follows from (3.5) that

(7.4) Um(x) = {Xm ∈ Xm |Xm ∩ Y m(x) 6= ∅}
for each m ∈ N0. So for each y ∈ Y n(x), we know that y is in the (topological) interior int(Un(x))
of Un(x). Since f is a branched covering map, it is open, i.e., it sends open sets to open sets (see
for examples [BM17, Appendix A.6] and [HP09, Lemma 2.1.2]). It follows that f(y) ∈ int(f(Un(x))).
Combined with the claim above, we get

Y n−1(f(x)) = f(Y n(x)) ⊆ int(f(Un(x))).

Thus for each Xn−1
0 ∈ Xn−1 with Xn−1

0 ∩ Y n−1(f(x)) 6= ∅, we have inte
(
Xn−1

0

)
∩ f(Un(x)) 6= ∅.

Since f(Un(x)) =
⋃{f(Xn) |Xn ∈ Xn, Xn ⊆ Un(x)} and by Proposition 3.5 (i), Definition 3.4, and

Definition 3.2, f(Xn) ∈ Xn−1 for each Xn ∈ Xn, we conclude that inte
(
Xn−1

0

)
∩ f

(
Xn

0

)
6= ∅ for

some n-tile Xn
0 ⊆ Un(x). This would contradict with Definition 3.2 unless Xn−1

0 = f
(
Xn

0

)
. Hence

Xn−1
0 ⊆ f(Un(x)).
Therefore, it follows from (7.4) that Un−1 ⊆ f(Un(x)), and the proof is complete. �
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Deducing from Lemma 7.1, we are able to strengthen the uniform local injectivity property of ex-
panding Thurston maps proved in [Li15, Lemma 5.5] to the uniform local expansion property.

Lemma 7.2 (Uniform local injectivity and expansion away from the critical points). Let f , d, Λ satisfy
the Assumptions in Section 5. Let C ⊆ S2 be a Jordan curve with post f ⊆ C. Then there exist numbers
C2 ∈ (0, 1), δ1 ∈ (0, 1], and a function ι : (0, δ1] → (0,+∞) with the following properties:

(i) lim
δ→0

ι(δ) = 0.

(ii) For each δ ≤ δ1, the map f restricted to any open ball of radius δ centered outside the ι(δ)-

neighborhood of crit f is injective, i.e., f |Bd(x,δ) is injective for each x ∈ S2 \N ι(δ)
d (crit f).

(iii) For all δ ∈ (0, δ1], x, y ∈ S2, and n ∈ N the following statement holds:

If for each j ∈ {0, 1, . . . , n− 1}, f j(x) ∈ S2 \N ι(δ)
d (crit f) and d

(
f j(x), f j(y)

)
< C2δ, then

(7.5) C2Λ
nd(x, y) ≤ d(fn(x), fn(y)) ≤ C−1

2 Λnd(x, y).

Proof. By [Li15, Lemma 5.5], there exists a number δ1 ∈ (0, 1] and a function ι : (0, δ1] → (0,+∞) such
that statements (i) and (ii) hold. It remains to establish statement (iii).

Define

(7.6) C2 := min
{
K−2Λ−1, K−1Λ−2δ−1

1

}
∈ (0, 1),

where K ≥ 1 is a constant depending only on f , C, and d from Lemma 3.9 (applied to f , C, and d).
Fix arbitrary δ ∈ (0, δ1], x, y ∈ S2, and n ∈ N. Assume that f j(x) ∈ S2 \ N ι(δ)

d (crit f) and

d
(
f j(x), f j(y)

)
< C2δ for each j ∈ {0, 1, . . . , n− 1}.

Fix an arbitrary j ∈ {0, 1, . . . , n− 1}. Let mj ∈ Z be the largest integer with f j(y) ∈ Umj
(
f j(x)

)
.

Thus f j(y) /∈ Umj+1
(
f j(x)

)
. By Lemma 3.9 (iii), such an integer mj exists and

(7.7) K−1Λ−mj−1 ≤ d
(
f j(x), f j(y)

)
< KΛ−mj .

Thus

(7.8) K−1Λ−mj−1 ≤ d
(
f j(x), f j(y)

)
< C2δ ≤ C2δ1 ≤ K−1Λ−2,

the last inequality follows from (7.6). So −mj − 1 < −2, i.e., mj ≥ 2.
It also follows from (7.8) and (7.6) that

(7.9) δ ≥ C−1
2 K−1Λ−mj−1 ≥ KΛ−mj .

Thus by (7.9) and Lemma 3.9 (iii), Um
(
f j(x)

)
⊆ Bd

(
f j(x),KΛ−m

)
⊆ Bd

(
f j(x), δ

)
for each integer

m ≥ mj.
By statement (ii), f is injective on Bd

(
f j(x), δ

)
. Thus we get from Lemma 7.1 and our choice of mj

that

f j+1(y) ∈ f
(
Umj

(
f j(x)

))
= Umj−1

(
f j+1(x)

)
and(7.10)

f j+1(y) /∈ f
(
Um+1

(
f j(x)

))
= Um

(
f j+1(x)

)
for each integer m ≥ mj .(7.11)

Hence mj+1 = mj − 1 for all j ∈ {0, 1, . . . , n− 2} and consequently mn−1 = m0 − n+ 1.
By (7.10), (7.11) (both with j := n− 1 and m := mj), and Lemma 3.9 (iii),

(7.12) K−1Λ−(m0−n+1) ≤ d(fn(x), fn(y)) ≤ KΛ−(m0−n).

By (7.7) (with j := 0), we get

(7.13) K−1Λ−m0−1 ≤ d(x, y) ≤ KΛ−m0 .

Therefore it follows from (7.6), (7.12), and (7.13) that

C2Λ
n ≤ K−2Λn−1 ≤ d(fn(x), fn(y))

d(x, y)
≤ K2Λn+1 ≤ C−1

2 Λn.

This completes the proof. �
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8. Fine closing lemmas

The main goal of this section is to establish in Lemma 8.1 a local closing lemma that produces, for
a nonempty compact forward-invariant set K disjoint from critical points, a periodic orbit O close to
K in terms of its (r, θ)-gap defined below. This result relies on two other forms of closing lemmas,
namely, a local Anosov closing lemma (Subsection 8.2) and a (global) Bressaud–Quas closing lemma
(Subsection 8.3). Even though a global version of the Anosov closing lemma for expanding Thurston
maps is available in [Li18, Lemma 8.6], it only holds for sufficiently high iterations of the map and
sufficiently long periodic pseudo-orbits. It is crucial in our proof of Lemma 8.1 to be able to close
periodic pseudo-orbits of arbitrary length for the map itself. Therefore we formulate and prove a local
version of the Anosov closing lemma (Lemma 8.6) from scratch. It closes periodic pseudo-orbits away
from critical points to avoid the more complicated combinatorics near critical points. The proof relies
on considerations over combinatorial structures like tiles, flowers, and bouquets. In Subsection 8.3,
we define the Bressaud–Quas shadowing property for general dynamical systems and prove that it can
be passed on to related systems via the factor relation and iterations. We establish this property for
expanding Thurston maps in Theorem 8.11. Lemma 8.1 is then proved in Subsection 8.4.

8.1. Local closing lemma away from critical points. Let T : X → X be a map on a compact
metric space (X, d). For each periodic orbit O of T , its gap is defined as

(8.1) ∆(O) = ∆d(O) := min{d(x, y) |x, y ∈ O, x 6= y}.
Here we adopt the convention that min ∅ = +∞. For positive numbers r, θ ∈ R, the (r, θ)-gap of O is

(8.2) ∆r, θ(O) = ∆d
r, θ(O) := min{r, θ ·∆(O)}.

We often omit the superscript d if it does not cause confusion.

Lemma 8.1. Let f , C, d satisfy the Assumptions in Section 5. Let K ⊆ S2 be a nonempty compact
f -forward-invariant set disjoint from crit f . Fix some real numbers r > 0, θ > 0, α ∈ (0, 1], and τ > 0.
Then there exists a periodic orbit O of f with

(8.3)
∑

x∈O

d(x,K)α ≤ τ · (∆r, θ(O))α.

8.2. Local Anosov closing lemma. In order to establish our local Anosov closing lemma for expand-
ing Thurston maps, we first provide a mechanism to locate periodic points using flowers in Lemma 8.2,
then relate flowers to bouquets in Lemma 8.3 before establishing a version of local Anosov closing lemma
for sufficiently long periodic pseudo-orbits in Lemma 8.4 using tiles, flowers, and bouquets. Finally, in
Lemma 8.6 our local Anosov closing lemma is proved for periodic pseudo-orbits of all lengths.

We first demonstrate in the next lemma a mechanism to produce a periodic point. The proof relies
on the expansion property of expanding Thurston maps. Note that the closure of a flower may not
necessarily be simply connected. As a result, it takes extra care to locate periodic points from the
combinatorial structures.

Lemma 8.2. Let f : S2 → S2 be an expanding Thurston map and C ⊆ S2 be a Jordan curve containing
post f . Then for all m, n ∈ N with m ≥ n and each m-vertex vm ∈ Vm(f, C) with W

m
(vm) ⊆

Wm−n(fn(vm)), if fn restricted to Wm(vm) is injective, then there exists x ∈ W
m
(vm) such that

fn(x) = x.

Recall that W
m
(vm) denotes the closure of Wm(vm).

Proof. Fix m, n ∈ N and vm ∈ Vm as in the statement of this lemma. Assume that fn restricted to
Wm(vm) is injective. By Proposition 3.5 (iii), vm−j := f j(vm) ∈ Vm−j for each j ∈ {1, 2, . . . , n}.

Fix an arbitrary integer i ∈ {1, 2, . . . , n}. Recall from Remark 3.6 that f i(Wm(vm)) =Wm−i
(
vm−i

)
.

Then f mapsWm−i+1
(
vm−i+1

)
injectively toWm−i

(
vm−i

)
. It follows from Remark 3.6 again that f re-

stricted toWm−i+1
(
vm−i+1

)
has an continuous inverse denoted as gi : W

m−i
(
vm−i

)
→Wm−i+1

(
vm−i+1

)
.

Define a map g : Wm−n(vm−n) → Wm(vm) to be g := gn ◦ gn−1 ◦ · · · ◦ g2 ◦ g1. Then g is the inverse of
fn|Wm(vm) and g is a homeomorphism.
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Next, we recursively construct vj ∈ Vm+jn satisfying that for each j ∈ N0,

W
m+jn

(vj) ⊆Wm+(j−1)n(vj−1) ⊆Wm−n(vm−n) and(8.4)

Wm+jn(vj) = g
(
Wm+(j−1)n(vj−1)

)
.(8.5)

We set v−1 := vm−n and v0 := vm. Then the base step (i.e., j = 0) has already been verified above.
For the recursive step, we assume that such vj ∈ Vm+jn has been constructed for some j ∈

N0. Then by Proposition 3.5 (ii), vj+1 := g(vj) ∈ Vm+(j+1)n. In particular, vj+1 ∈ Wm+jn(vj).
We observe that it follows from (3.4), Remark 3.6, Proposition 3.5 (i), (ii), and Definition 3.2 (iii)
that for all l, k ∈ N0 and v ∈ Vk, f−l

(
W k(v)

)
=

⋃
v′∈f−l(v)W

k+l(v′), and that for distinct ver-

tices v1, v2 ∈ f−l(v) we have W k+l(v1) ∩W k+l(v2) = ∅. Hence g
(
Wm+jn(vj)

)
= Wm+(j+1)n(vj+1)

and Wm+(j+1)n(vj+1) ⊆ Wm+jn(vj). Moreover, since g is a homeomorphism and W
m+jn

(vj) ⊆
Wm+(j−1)n(vj−1) ⊆Wm−n(vm−n), we get W

m+(j+1)n
(vj+1) ⊆Wm+jn(vj) ⊆Wm−n(vm−n).

The recursive construction is complete.

We have constructed a nested sequence
{
W

m+jn
(vj)

}
j∈N0

of closed sets. By Lemma 3.9 (ii), the

intersection
⋂
j∈N0

W
m+jn

(vj) contains exactly one point, say x. It follows from (8.5) that g(x) = x.

Therefore, fn(x) = x. �

We relate flowers and bouquets of similar levels in the following lemma from [Li18, Lemma 8.5],
which will be crucial in the proof of Lemma 8.4 below.

Lemma 8.3. Let f : S2 → S2 be an expanding Thurston map and C ⊆ S2 be a Jordan curve containing
post f . Then there exists a number κ ∈ N0 such that the following statement holds:

For each x ∈ S2, each n ∈ N0, and each n-tile Xn ∈ Xn(f, C), if x ∈ Xn, then there exists an
n-vertex vn ∈ Vn(f, C) ∩Xn with Un+κ(x) ⊆W n(vn).

We establish below a form of local Anosov closing lemma away from critical points. Due to the
combinatorial structures used in the proof, we are only able to close sufficiently long pseudo-orbits.

Lemma 8.4. Let f , d, Λ satisfy the Assumptions in Section 5. Let C ⊆ S2 be a Jordan curve with
post f ⊆ C. Then there exist numbers M0 ∈ N and β0 > 1 such that for each η ∈ (0, 1) there exists a
number δ2 ∈ (0, 1) with the following property:

For each δ ∈ (0, δ2], if x ∈ S2 and l ∈ N satisfy l ≥M0, d
(
x, f l(x)

)
≤ δ, and d

(
f i(x), crit f

)
≥ η for

all i ∈ {0, 1, . . . , l}, then there exists y ∈ S2 such that f l(y) = y and d(f i(x), f i(y)) ≤ β0δΛ
−(l−i) ≤ η/2

for each i ∈ {0, 1, . . . , l}.
Proof. Fix f , C, d, and η as in the statement of this lemma.

By Lemma 7.2, we can fix a positive number δ2 satisfying

(8.6) ι
(
4K2Λκ+1δ2

)
< η/2 and δ2 < min{δ1, η}

/(
8K2Λκ+1

)
.

In particular,

(8.7) 4K2Λκ+1δ2 < δ1.

Here K ≥ 1, κ ∈ N0, and δ1 ∈ (0, 1] are constants depending only on f , C, and d from Lemma 3.9,
Lemma 8.3, and Lemma 7.2, respectively, and ι : [0, δ1] → (0,+∞) is a function depending only on f ,
C, and d from Lemma 7.2. Define

(8.8) M0 :=
⌊
logΛ

(
4K2

)⌋
+ κ ∈ N0.

Recall from Lemma 3.9 (iii) that for each z ∈ S2 and each n ∈ N0, we have

(8.9) Bd
(
z,K−1Λ−n

)
⊆ Un(z) ⊆ Bd(z,KΛ−n).

Fix arbitrary δ ∈ (0, δ2], x ∈ S2, and l ∈ N satisfying l ≥M0, d
(
x, f l(x)

)
≤ δ, and d

(
f i(x), crit f

)
≥ η

for all i ∈ {0, 1, . . . , l}. Set
(8.10) N := ⌊− logΛ(2Kδ)⌋ − κ.

Note that it follows from δ ∈ (0, δ2], K ≥ 1, η ∈ (0, 1), and (8.6) that N ∈ N0.
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x

f l(x)

UN+κ
(
f l(x)

)

Figure 8.1. Closing a periodic pseudo-orbit I: UN+κ
(
f l(x)

)
.

x

f l(x)

UN+κ
(
f l(x)

)

XN

vN

WN(vN )

Figure 8.2. Closing a periodic pseudo-orbit II: XN .

We first construct an (N+ l)-flowerWN+l
(
vN+l

)
containing x whose closure is contained in its image

under f l as detailed below. Compare Figure 8.1 through Figure 8.3 for the construction.
Let XN ∈ XN be an N -tile containing f l(x). By Lemma 8.3, there exists an N -vertex vN ∈ VN∩XN

such that UN+κ
(
f l(x)

)
⊆WN(vN ) (see Figure 8.2). By Proposition 3.5, there exist XN+l ∈ XN+l and

vN+l ∈ VN+l∩XN+l such that x ∈ XN+l, f l
(
XN+l

)
= XN , and f l

(
vN+l

)
= vN (see Figure 8.3). Then

x ∈ WN+l
(
vN+l

)
by Proposition 3.5 (i). Since d

(
x, f l(x)

)
≤ δ, l ≥ M0, and W

N+l(vN+l) ⊆ UN+l(x),

we get from (8.9), (8.10), and (8.8) that if z ∈WN+l
(
vN+l

)
, then

d
(
f l(x), z

)
≤ d

(
f l(x), x

)
+ d(x, z) ≤ δ + 2KΛ−(N+l)

≤ Λ−(N+κ)

2K
+

2KΛ−(N+κ)

4K2
≤ K−1Λ−(N+κ).(8.11)
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UN+κ
(
f l(x)

)

XN

vN

WN(vN )

WN+l(vN+l)

XN+l

vN+l

Figure 8.3. Closing a periodic pseudo-orbit III: XN+l.

x

f l(x)

vN

WN(vN )

WN+l(vN+l)vN+l

y

Figure 8.4. Closing a periodic pseudo-orbit IV: y.

Thus by (8.9), (8.11), f l
(
vN+l

)
= vN , and (7.1), we get (see Figure 8.3)

(8.12) W
N+l(

vN+l
)
⊆ UN+κ

(
f l(x)

)
⊆WN

(
vN

)
= f l

(
WN+l

(
vN+l

))
.

Next, we claim that f l is injective on WN+l
(
vN+l

)
.

Indeed, we consider an arbitrary integer i ∈ {0, 1, . . . , l}. Since x ∈WN+l
(
vN+l

)
and consequently

f i(x) ∈ f i
(
WN+l

(
vN+l

))
, we get from Remark 3.6, (3.5), and Proposition 3.5 that

f i
(
WN+l

(
vN+l

))
⊆ UN+l−i

(
f i(x)

)
.

By (8.9), (8.10), and δ ∈ (0, δ2), we get

UN+l−i
(
f i(x)

)
⊆ Bd

(
f i(x),KΛ−N−l+i

)

⊆ Bd
(
f i(x), 2K2δΛκ−l+1+i

)
⊆ Bd

(
f i(x), 2K2δ2Λ

κ+1
)
.(8.13)
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Thus by d
(
f i(x), crit f

)
≥ η, (8.6), (8.7), and Lemma 7.2 (ii), f is injective on UN+l−i

(
f i(x)

)
⊇

f i
(
WN+l

(
vN+l

))
. The claim now follows.

Hence by (8.12), the claim above, Lemma 8.2, and x ∈WN+l
(
vN+l

)
, there exists y ∈W

N+l
(vN+l) ⊆

UN+l(x) such that f l(y) = y. See Figure 8.4.
We set

(8.14) β0 := 2K2Λκ+1 ≥ 1.

It suffices now to verify that d
(
f i(x), f i(y)

)
≤ β0δΛ

−(l−i) ≤ η/2 for each i ∈ {0, 1, . . . , l}. Indeed,

by Remark 3.6, (3.5), the fact that x, y ∈W
N+l(

vN+l
)
, and Lemma 7.1, we get

f i(y) ∈ f i
(
UN+l(x)

)
= UN+l−i

(
f i(x)

)

for each i ∈ {0, 1, . . . , l}. Thus by (8.13), (8.14), and (8.6),

d
(
f i(x), f i(y)

)
≤ 2K2δΛκ+1−(l−i) = β0δΛ

−(l−i) ≤ β0δ2 ≤ η/2.

The proof is now complete. �

Lemma 8.5. Let f , d, Λ satisfy the Assumptions in Section 5. Let C ⊆ S2 be a Jordan curve with
post f ⊆ C. For all x, y ∈ S2 and n ∈ N0, we have

d(fn(x), fn(y)) ≤ K2Λn+1d(x, y),

where K ≥ 1 is a constant depending only on f , C, and d from Lemma 3.9.

Proof. Fix arbitrary x, y ∈ S2 and n ∈ N0. It suffices to consider n ≥ 1. Recall U0(z) = S2 for all
z ∈ S2. For each j ∈ N0, denote by mj ∈ N0 the largest integer with f j(y) ∈ Umj

(
f j(x)

)
. Thus

f j(y) /∈ Umj+1
(
f j(x)

)
. By Lemma 3.9 (iii), such an integer mj exists and

K−1Λ−mj−1 ≤ d
(
f j(x), f j(y)

)
< KΛ−mj .

By Lemma 7.1, for each j ∈ N0, f
j+1(y) ∈ f

(
Umj

(
f j(y)

))
= Umj−1

(
f j+1(y)

)
. So mj+1 ≥ mj − 1.

Therefore, d(fn(x), fn(y)) < KΛ−mn ≤ KΛ−m0+n ≤ K2Λn+1
(
K−1Λ−m0−1

)
≤ K2Λn+1d(x, y). �

In order to close pseudo-orbits of period smaller than M0, we need a local Anosov closing lemma
(away from critical points) using Lemma 8.4 above and the uniform local expansion property (see
Lemma 7.2).

Lemma 8.6 (Local Anosov Closing Lemma). Let f , d, Λ satisfy the Assumptions in Section 5. Let
C ⊆ S2 be a Jordan curve containing post f . Fix a real number η > 0. Then there exists a constant
δ3 ∈ (0, 1) such that the following statement holds:

For each δ ∈ (0, δ3], if x ∈ S2 and l ∈ N satisfy d
(
x, f l(x)

)
≤ δ and d

(
f i(x), crit f

)
≥ η for all

i ∈ {0, 1, . . . , l}, then there exists y ∈ S2 such that f l(y) = y and d(f i(x), f i(y)) ≤ β0δΛ
−(l−i) ≤ η/2

for each i ∈ {0, 1, . . . , l}. Here β0 > 1 is a constant from Lemma 8.4 depending only on f , C, and d.
Proof. Fix f , C, d, and η as in the statement of this lemma.

By Lemma 7.2, we can fix a positive number δ′ < min{δ2, δ1, η} satisfying

(8.15) ι(δ′) < η/2.

Here the constant δ1 ∈ (0, 1] and the function ι : [0, δ1] → (0,+∞) are from Lemma 7.2 depending only
on f , C, and d; and the constant δ2 ∈ (0, 1) is from Lemma 8.4 depending only on f , C, d, and η. Define

(8.16) δ3 := min

{
δ′
Λ−M2

0−1

4M0
C2K

−2,
η

8β0
,
δ′

4β0

}
< δ2.

Here C2 ∈ (0, 1), K ≥ 1, and M0 ∈ N are constants depending only on f , C, and d from Lemma 7.2,
Lemma 3.9, and Lemma 8.4, respectively.

Fix arbitrary δ ∈ (0, δ3), x ∈ S2, and l ∈ N. Assume that d(x, f l(x)) ≤ δ and d
(
f i(x), crit f

)
≥ η for

all i ∈ {0, 1, . . . , l}. Write z := f l(x).
The case when l ≥ M0 follows immediately from Lemma 8.4. Thus, without loss of generality, we

can assume that l < M0 and M0 ≥ 2.
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Since d(x, z) ≤ δ < δ3, we get from Lemma 8.5 and (8.16) that for each i ∈ {0, 1, . . . , lM0},

(8.17) d
(
f i(x), f i(z)

)
≤ K2Λi+1d(x, z) < K2Λi+1δ3 ≤

C2δ
′Λ−M2

0+i

4M0
≤ C2δ

′

4M0
.

Hence by the triangular inequality, for each j ∈ {1, 2, . . . , M0} and k ∈ {0, 1, . . . , l},

(8.18) d
(
fk(x), f lj+k(x)

)
≤

j−1∑

m=0

d
(
f lm+k(x), f lm+k(z)

)
≤ jC2δ

′

4M0
≤ C2δ

′

4
.

In particular, since d
(
fk(x), crit f

)
≥ η, δ′ ≤ η, and C2 ∈ (0, 1), we get

(8.19) d
(
f i(x), crit f

)
> 3η/4 for all i ∈ {0, 1, . . . , lM0 + l}.

On the other hand, it follows from (8.18) that d
(
x, f lM0(x)

)
≤ δ′. Since δ′ < δ2, by Lemma 8.4, there

exists y ∈ S2 such that f lM0(y) = y and

(8.20) d
(
f i(x), f i(y)

)
≤ β0δΛ

−(lM0−i)

for each i ∈ {0, 1, . . . , lM0}. In particular when i ∈ {0, 1, . . . , l} we have d
(
f i(x), f i(y)

)
≤ β0δΛ

−(l−i).

It now suffices to show that f l(y) = y. We argue by contradiction and assume that f l(y) 6= y. Then
by (8.20), δ ∈ (0, δ3), and (8.16), for each i ∈ {0, 1, . . . , lM0}, we have

(8.21) d
(
f i(x), f i(y)

)
≤ β0δ ≤ η/8.

We now get from (8.15), (8.19), and (8.21) that f i(y) ∈ S2 \N ι(δ′)
d (crit f) for each i ∈ {0, 1, . . . , lM0}.

Next, we verify that for each i ∈ {0, 1, . . . , lM0} we have

d
(
f i(y), f l+i(y)

)
≤ C2δ

′.

We establish this bound by discussing in the following two cases:

Case 1. We assume i ≤ lM0 − l. Then by (8.21), (8.17), δ ∈ (0, δ3), and (8.16), we get

d
(
f i(y), f l+i(y)

)

≤ d
(
f i(y), f i(x)

)
+ d

(
f i(x), f l+i(x)

)
+ d

(
f l+i(x), f l+i(y)

)

≤ β0δ3 +
C2δ

′

4
+ β0δ3 ≤

C2δ
′

4
+
C2δ

′

4
+
C2δ

′

4
≤ C2δ

′.

Case 2. We assume lM0 − l < i ≤ lM0. Then n := l + i − lM0 ∈ [1, l]. By (8.21), (8.17), (8.18),
δ ∈ (0, δ3), (8.16), and the fact that f lM0(y) = y, we get

d
(
f i(y), f l+i(y)

)

≤ d
(
f i(y), f i(x)

)
+ d

(
f i(x), f l+i(x)

)
+ d

(
f l+i(x), fn(x)

)
+ d(fn(x), fn(y))

≤ β0δ3 +
C2δ

′

4
+
C2δ

′

4
+ β0δ3 ≤

C2δ
′

4
+
C2δ

′

4
+
C2δ

′

4
+
C2δ

′

4
= C2δ

′.

Finally, we recall again that f lM0(y) = y. Thus we have f i(y) ∈ S2\N ι(δ′)
d (crit f) and d

(
f i(y), f l+i(y)

)
≤

C2δ
′ for all i ∈ N0.

Hence we can apply the uniform local expansion property from Lemma 7.2 (iii) to get

d
(
y, f l(y)

)
= d

(
f lM0k(y), f lM0k+l(y)

)
≥ C2Λ

lM0kd
(
y, f l(y)

)

for all k ∈ N. This can only be true when y = f l(y), a contradiction.
We have now concluded that y = f l(y). �
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8.3. Bressaud–Quas closing lemma.

Definition 8.7. Let T : X → X be a map on a metric space (X, d). We say that the dynamical system
(X,T ) has the Bressaud–Quas shadowing property if for every nonempty compact T -forward-invariant
set K and every number κ > 0, there exists a number ǫ0 > 0 such that for each ǫ ∈ (0, ǫ0), we can find
a periodic orbit O of T of period p < (1/ǫ)κ contained entirely in the ǫ-neighborhood N ǫ

d(K) of K.

We first prove some properties of the Bressaud–Quas shadowing property.

Proposition 8.8. Let f : X → X and g : Y → Y be maps on compact metric spaces (X, dX ) and
(Y, dY ), respectively. Assume that (X, f) is a factor of (Y, g) with a Hölder continuous factor map
π : Y → X. If (Y, g) has the Bressaud–Quas shadowing property, then so does (X, f).

Proof. Assume that π is β-Hölder continuous, β ∈ (0, 1]. Denote

|π|β := sup
{
|dX(π(x), π(y))|/dY (x, y)β

∣∣ x, y ∈ Y, x 6= y
}
.

We fix a nonempty compact f -forward-invariant set K′ ⊆ X. Denote K := π−1(K′). Then K is
nonempty compact and satisfies π(g(K)) = f(π(K)) = f(K′) ⊆ K′. Thus K is g-forward-invariant.

Fix an arbitrary κ′ > 0. Let ǫ0 > 0 be the constant from the Bressaud–Quas shadowing property

applied to (Y, g), K, and κ := κ′β/2. Without loss of generality, we assume that ǫ0 ≤ |π|−2/β
β .

Set ǫ′0 := |π|β · (ǫ0)β ≤ |π|−1
β . Fix an arbitrary ǫ′ ∈ (0, ǫ′0) and write ǫ :=

(
ǫ′/ |π|β

)1/β
. Then 0 < ǫ <

(
ǫ′0/ |π|β

)1/β
= ǫ0. Thus by the Bressaud–Quas shadowing property of (Y, g) (applied to K, κ, and ǫ)

from the hypothesis, there exists a periodic orbit O of g of period p < (1/ǫ)κ = (|π|β /ǫ′)κ
′/2 ≤ (1/ǫ′)κ

′

contained in the ǫ-neighborhood of K. The last inequality follows from |π|β ≤ 1/ǫ′0 < 1/ǫ′. Then

O′ := π(O) is a periodic orbit of f of period p′ ≤ p < (1/ǫ′)κ
′

, contained in N
|π|βǫ

β

d (K′) = N ǫ′

d (K′). �

Proposition 8.9. Let f : X → X be a map on a compact metric space (X, d) and n ∈ N. Assume
that f is Lipschitz with respect to d. Denote F := fn. Then (X, f) has the Bressaud–Quas shadowing
property if and only if (X,F ) has the Bressaud–Quas shadowing property.

Proof. The forward implication is straightforward. To show the backward implication, we fix a nonempty
compact f -forward-invariant set K ⊆ S2. Then F (K) ⊆ K. By the Bressaud–Quas shadowing property,
for each κ > 0, there exists ǫ0(F, κ) > 0 such that for each ǫ ∈ (0, ǫ0(F, κ)), we can find a periodic orbit
OF =

{
x, F (x), . . . , F p−1(x)

}
of F satisfying p := cardOF < (1/ǫ)κ and OF ⊆ N ǫ

d(K).
Fix an arbitrary number κ > 0. Set

(8.22) ǫ0(f, κ) := min
{
ǫ0(F, κ/4), (LIPd(f))

−n, n−2/κ
}
∈ (0, 1].

Fix an arbitrary number ǫ ∈ (0, ǫ0(f, κ)). Then we also have ǫ2 ∈ (0, ǫ0(F, κ/4)). There exists a
periodic orbit OF of F satisfying

(8.23) cardOF <
(
1/ǫ2

)κ/4
= (1/ǫ)κ/2 and OF ⊆ N ǫ2

d (K).

Define Of :=
⋃n
i=1 f

i(OF ). Then Of is a periodic orbit of f , and by (8.23) and (8.22), cardOf ≤
n · cardOF < n(1/ǫ)κ/2 < (1/ǫ)κ. On the other hand, it follows from (8.23), Lemma 3.14, and (8.22)

that Of ⊆ N
ǫ2(LIPd(f))

n

d (K) ⊆ N ǫ
d(K). �

Theorem 8.10 (Bressaud–Quas [BQ07]). Let
(
Σ+
A, σA

)
be a one-sided subshift of finite type defined

by a transition matrix A. Equip Σ+
A with a metric d = dθ, θ ∈ (0, 1), as given in Subsection 3.4. Then(

Σ+
A, σA

)
has the Bressaud–Quas shadowing property.

X. Bressaud and A. Quas first established a form of the above closing lemma for one-sided full
shift in [BQ07, Theorem 4]. A Bressaud–Quas Closing Lemma in the current form for hyperbolic
homeomorphisms is formulated in [BG19, Theorem 7.3] and proved in [BG19, Appendix A.6]. A proof
of Theorem 8.10 above can be obtained verbatim the same from the proof in [BG19, Appendix A.6] if
we (1) replace (Y, d) by

(
Σ+
A, σA

)
, f and T by the shift map σA, “expansive” by “forward-expansive”,

(2) update the reference for Lipschitz shadowing lemma to [PU10, Corollary 4.2.4] that applies to one-
sided subshift of finite type, (3) observe that (A.27) follows from [Ki98, Section 1.4] in our context, and
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finally (4) observe that in our context, for sufficiently small ε > 0, each periodic (ε, dn, σA)-pseudo-orbit
is a periodic (εn, d, σA)-pseudo-orbit where εn := θnǫ and n ∈ N.

Combining Lemma 3.13, Proposition 3.25, Lemma 3.14, Theorem 8.10, Proposition 8.8, and Propos-
tion 8.9, we immediately conclude that expanding Thurston maps have the Bressaud–Quas shadowing
property.

Theorem 8.11 (Bressaud–Quas closing lemma for expanding Thurston maps). Let f , C, d satisfy the
Assumptions in Section 5. Then (S2, f) has the Bressaud–Quas shadowing property. More precisely,
for every nonempty compact f -forward-invariant set K ⊆ S2 and every κ > 0, there exists a number
ǫ0 > 0 such that for each ǫ ∈ (0, ǫ0), we can find a periodic orbit O of period p < (1/ǫ)κ contained
entirely in the ǫ-neighborhood N ǫ

d(K) of K.

8.4. Proof of Lemma 8.1. We combine our Local Anosov Closing Lemma and Bressaud–Quas closing
lemma to establish Lemma 8.1.

Proof of Lemma 8.1. Fix the set K, real numbers r > 0, θ > 0, α ∈ (0, 1], and τ > 0 as in the statement
of this lemma.

We will construct recursively a finite sequence O0, O1, . . . , Om of periodic orbits, the last of which
satisfies (8.3). For each i ∈ {0, 1, . . . , m}, we denote

(8.24) Σi :=
∑

x∈Oi

d(x,K)α and ∆i := ∆r, θ(Oi).

The following constants defined below will be needed in the proof:

η := min{d(K, x)/2 |x ∈ crit f} > 0,(8.25)

D := 1 +
βα0 θ

−α

1− Λ−α
· 1
τ
> 1,(8.26)

c := 1/(2 + 2 log2(D)) ∈ (0, 1/2),(8.27)

κ := cα > 0,(8.28)

ǫ := min
{
1, ǫ0/2, η

2, τ2/αmin
{
r2, θ2δ23

}}
∈ (0, 1],(8.29)

where δ3 ∈ (0, 1) is a constant depending only on f , C, d, and K from Lemma 8.6 (applied to f , C, d,
and η), β0 > 1 is a constant depending only on f , C, and d from Lemma 8.4, and ǫ0 > 0 is a constant
from Theorem 8.11 applied to f , C, d, K, and κ. Thus ǫ0 depends only on f , C, d, K, and α.

Applying Theorem 8.11 to f , C, d, and K with κ and ǫ defined above, we can find a periodic orbit
O0 of f of period

(8.30) p0 < ǫ−cα

contained in N ǫ
d(K). If O0 satisfies Σ0 ≤ τ∆α

0 , then O0 is the orbit O we are looking for. So without
loss of generality, we may assume that

(8.31) Σ0 > τ∆α
0 .

Note that by (8.31), (8.24), (8.30), (8.29), and (8.27), we have

(8.32) τ∆α
0 < Σ0 ≤ p0ǫ

α < ǫ−cα+α ≤ ǫα/2 ≤ ηα.

Base step. We have found a periodic orbit O0 with τ∆α
0 < Σ0 ≤ ǫα/2 ≤ ηα.

Recursive step. Assume that we have found a periodic orbit Ok−1, for some k ∈ N, such that
pk−1 := cardOk−1 ≤ 2−k+1p0, Σk−1 ≤ Dk−1Σ0, and τ∆

α
k−1 < Σk−1 < ǫα/2 ≤ ηα.

Then by the recursion hypothesis and (8.29),

(8.33) ∆k−1 < τ−1/αǫ1/2 ≤ min{r, θδ3}.
It follows that ∆k−1 = θ ·∆(Ok−1) and pk−1 = cardOk−1 is at least 2, since otherwise we would have
∆k−1 = r (see (8.2)). We choose distinct points x, x′ ∈ Ok−1 with the properties that d(x, x′) =
∆(Ok−1) = θ−1∆k−1 and x′ = fn(x) for some positive integer n ≤ pk−1/2.

By (8.33), d(x, x′) = θ−1∆k−1 ≤ δ3. On the other hand, min{d(Ok−1, z) | z ∈ crit f} ≥ η by
Σk−1 ≤ ηα, (8.24), and (8.25). Then by Lemma 8.6 and the recursion hypothesis, we get a periodic
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point y of f of period pk ≤ n ≤ pk−1/2 ≤ 2−kp0. Let Ok be the orbit of y under f . Finally, to verify
the recursion hypothesis for Ok, we get from (8.24), α ∈ (0, 1], Lemma 8.6, d(x, x′) = θ−1∆k−1, the
recursion hypothesis for Ok−1, (8.2), (8.33), and (8.26),

Σk ≤
n−1∑

i=0

d
(
f i(y),K

)α ≤
n−1∑

i=0

(
d
(
f i(x),K

)α
+ d

(
f i(x), f i(y)

)α)

≤ Σk−1 + βα0 d(x, x
′)α

n−1∑

i=0

Λ−α(n−i) ≤ Σk−1 +
βα0 θ

−α

1− Λ−α
∆α
k−1

≤
(
1 +

βα0 θ
−α

1− Λ−α
· 1
τ

)
Σk−1 = DΣk−1 ≤ DkΣ0.

Since k ≤ log2(p0), we get from (8.32), (8.30), (8.27), and (8.29),

(8.34) Σk ≤ Σ0p
log2(D)
0 ≤ ǫαp

1+log2(D)
0 < ǫ(1−c(1+log2(D)))α = ǫα/2 ≤ ηα.

Finally, if Σk ≤ τ∆α
k , then Ok is the periodic orbit we are looking for. So without loss of generality,

we can assume that τ∆α
k < Σk, and this completes the recursive step.

If this procedure continues until an orbit Om which consists of exactly one fixed point of f , then by
(8.34), (8.29), (8.2), and (8.1),

Σm < ǫα/2 ≤ τrα = τ∆α
m.

Hence this orbit Om is what we are looking for. �

9. Proofs of the first parts of Theorems 1.4 and 1.5

In this section, we first give a proof of Theorem 1.5 (i), then describe the modifications needed on this
proof to establish Theorem 1.4 (i). The remaining parts of these theorems will be proved in Section 10.

In the proof of Theorem 1.5 (i), we show that for an arbitrary α-Hölder continuous potential ϕ ∈
Lip(Ĉ, σα) with respect to the chordal metric σ, any perturbation of the form ϕ′ = ϕ− ǫσ(·,O)α, with

ǫ > 0 sufficiently small, belongs to Pα(Ĉ, σ), where O is some special periodic orbit produced by our
local closing lemma away from critical points. The quantitative analysis is, however, carried out in
the canonical orbifold metric d on the related potentials ϕ̃ and ψ, which are α-Hölder continuous with
respect to d but not with respect to σ. In the case of Lattès maps, the canonical orbifold metric is
also a visual metric. The technical parts are (1) to quantitatively avoid critical points crit f where
the combinatorics are more involved in order to apply our local closing lemma as well as uniform
local expansion property and (2) to quantitatively avoid postcritical points post f where the conversion
between d and σ is more involved. In fact, by applying various properties of the canonical orbifold
metric and considering the orbifold ramification function, we get that the canonical orbifold metric and
the chordal metric are “locally comparable away from postcritical points”. We know that the identity

map on Ĉ between these two metrics is never bi-Lipschitz (see [BM17, Appendix A.10]).

Proof of Theorem 1.5 (i). J. Bochi and the second-named author demonstrated in [BZ15, Proposition 1]
that for every continuous map T : X → X on a compact metric space (X, d), the set Lock(X, d) is equal
to the interior of P(X) ∩ Lip(X, d) and Lock(X, d) is dense in P(X) ∩ Lip(X, d) (with respect to the

Lipschitz norm). Thus it suffices to show that, in our setting, Lock(Ĉ, σα) is dense in P(Ĉ)∩Lip(Ĉ, σα).
Recall that Lattès maps are in particular (rational) expanding Thurston maps. Let d be the canonical

orbifold metric of f on Ĉ. Then d is a visual metric (see Remark 3.23). Let Λ > 1 be the expansion
factor of d (under f). Let C ⊆ S2 be a Jordan curve containing post f satisfying the condition that
fnC(C) ⊆ C for some integer nC ∈ N (see Lemma 3.13). Here nC is assumed to be the smallest of such
integers associated to C.

In this proof, for each periodic orbit O of f we define a measure µO supported on O as

(9.1) µO :=
1

cardO
∑

x∈O

δx ∈ M(Ĉ, f).
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By inequality (A.43) in [BM17, Appendix A.10], there exist constants C3 ≥ 1 and η ∈ (0, 1) such
that

(9.2) C−1
3 σ(x, y) ≤ d(x, y) ≤ C3σ(x, y)

η

for all x, y ∈ Ĉ. Thus

(9.3) Lip(Ĉ, σα) ⊆ Lip(Ĉ, dα) ⊆ Lip(Ĉ, σηα).

Fix an arbitrary ϕ ∈ Lip(Ĉ, σα) ⊆ Lip(Ĉ, dα) with no ϕ-maximizing measure in Mmax(f, ϕ) sup-
ported on a periodic orbit of f .

Let uϕ ∈ Lip(Ĉ, dα) be a calibrated sub-action for ϕ and f (i.e., a fixed point of Lϕ) from Proposi-
tion 6.4. Since f is Lipschitz with respect to d (see Lemma 3.14), define

(9.4) ϕ̃ := ϕ− β(ϕ) + uϕ − uϕ ◦ f ∈ Lip(Ĉ, dα),

where β(ϕ) is defined in (6.3). Then

(9.5) ϕ̃(x) ≤ 0 for all x ∈ Ĉ,

and the set

(9.6) K :=
+∞⋂

j=0

f−j
(
ϕ̃−1(0)

)

is a nonempty compact f -forward-invariant set (see Lemma 6.2 (ii)).
If K contains a periodic orbit O of f , then by Lemma 6.2, the measure µO defined in (9.1) satisfies∫
ϕ̃ dµO = 0 = β(ϕ̃), and consequently µO ∈ Mmax(f, ϕ̃) = Mmax(f, ϕ). Thus from our assumption

on ϕ, we get that K does not contain any periodic orbit of f . In particular, K ∩ (crit f ∪ post f) = ∅.
Recall from Subsection 3.1 that crit f and post f are finite sets. Denote a constant ι depending only

on f , d, and ϕ as the following:

(9.7) ι := min{d(x,K) |x ∈ crit f ∪ post f} > 0.

Note that the ramification function αf (z) = 1 for all z ∈ Ĉ \ post f (see Definition 3.17). Recall
the notion of singular conformal metrics from [BM17, Appendix A.1]. By Proposition A.33 and the
discussion proceeding it in [BM17, Appendix A.10], the following statements hold:

(1) The canonical orbifold metric d is a singular conformal metric with a conformal factor ρ that
is continuous and positive everywhere except at the points in supp(αf ) ⊆ post f (see (3.7)).

(2) d(z1, z2) = inf
γ

∫
γρdσ, where the infimum is taken over all σ-rectifiable paths γ in Ĉ joining z1

and z2.

(3) For each z ∈ Ĉ \ supp(αf ), there exists a neighborhood Uz ⊆ Ĉ containing z and a constant
Cz ≥ 1 such that C−1

z ≤ ρ(u) ≤ Cz for all u ∈ Uz.

It follows from the above statements, (9.2), and a compactness argument that there exists a constant
C4 > 1 depending only on f , d, and K such that

(9.8) C−1
4 σ(x, y) ≤ d(x, y) ≤ C4σ(x, y) for all x, y ∈ Ĉ \N ι/2

d (post f).

Claim 1. There exists δ0 ∈ (0, 1] depending only on f , C, and d such that for all n ∈ N and x, y ∈ Ĉ,

if for each j ∈ {0, 1, . . . , n− 1} we have f j(x) /∈ N
ι/2
d (crit f) and d

(
f j(x), f j(y)

)
< C2δ0, then for each

i ∈ {0, 1, . . . , n}, we have

C2Λ
id(x, y) ≤ d

(
f i(x), f i(y)

)
≤ C−1

2 Λid(x, y),

where C2 ∈ (0, 1) is a constant depending only on f , C, and d from Lemma 7.2.

Claim 1 follows immediately from Lemma 7.2.

Fix an arbitrary positive real number

(9.9) ǫ < min{ι/8, 1}.
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Define constants

C5 :=
(|ϕ̃|dα + C3)C

α
4

C4
2 (1− Λ−α)

,(9.10)

λ := C2
2 min

{
1

8LIPd(f)
,
C2δ0
ι

}
<

1

8
,(9.11)

τ := min

{
1,

ǫ

|ϕ̃|dα Cα4
,

ǫC−α
4

(1 + C5ǫ−1) |ϕ̃|dα

}
≤ 1,(9.12)

θ := min

{
C2
2

3LIPd(f)
,
1

3
Λ−1

}
<

1

3
.(9.13)

By Lemma 8.1, there exists a periodic orbit O of f of a period p := cardO satisfying

(9.14)
∑

x∈O

d(x,K)α ≤ τ · (∆λι, θ(O))α.

By (9.7), (9.14), (9.12), (8.2), and (9.11), we have

(9.15) min{d(x, crit f ∪ post f) |x ∈ O} ≥ ι−max
x∈O

d(x,K) ≥ ι− λι ≥ 7

8
ι.

Define potentials

ϕ′ := ϕ− ǫσ(·,O)α ∈ Lip(Ĉ, σα) ⊆ Lip(Ĉ, dα) and(9.16)

ψ := ϕ̃− ǫσ(·,O)α = ϕ′ − β(ϕ) + uϕ − uϕ ◦ f ∈ Lip(Ĉ, dα).(9.17)

Here (9.16) follows from (9.3) and the hypothesis that ϕ ∈ Lip(Ĉ, σα), whereas (9.17) follows from

(9.16), the fact that f is Lipschitz with respect to d, and uϕ ∈ Lip(Ĉ, dα).
Note that by Lemma 6.2 (i) and (9.17),

(9.18) Mmax(f, ϕ
′) = Mmax(f, ψ).

Claim 2. The measure µO defined in (9.1) is in Mmax(f, ψ), i.e., β(ψ) = γ, where

(9.19) γ :=

∫
ψ dµO =

1

p

∑

x∈O

ψ(x) =
1

p

∑

x∈O

ϕ̃(x) < 0.

We observe that the last equality follows from (9.17), whereas the last inequality follows from (9.5),
(9.6), and our assumption that K contains no periodic orbit of f .

Assuming that Claim 2 holds. Then Claim 2 and (9.17) imply ψ ∈ Pα(Ĉ, d). Thus by (9.18) and

(9.16), ϕ′ ∈ Pα(Ĉ, σ). On the other hand, by (9.16),
∥∥ϕ− ϕ′

∥∥
σα, Ĉ = ‖ǫσ(·,O)α‖

σα, Ĉ ≤ ǫ(1 + diamσ(Ĉ)
α).

Since ǫ from (9.9) can be chosen arbitrarily small and ϕ′ ∈ Lip(Ĉ, σα) (see (9.16)), we finally conclude

that ϕ is in the closure of Pα(Ĉ, σ) in Lip(Ĉ, σα) with respect to the Hölder norm.

Hence it suffices to establish Claim 2. By the definition of γ in (9.19), it suffices to show that
β(ψ) ≤ γ. Fix an arbitrary point y ∈ S2. We analyze below the value of ψ(y) according to the location
of y.

We first observe that by (9.19) and (9.14), we have

(9.20) p|γ| ≤
∑

x∈O

|ϕ̃(x)− 0| ≤
∑

x∈O

|ϕ̃|dα d(x,K)α ≤ |ϕ̃|dα τ · (∆λι, θ(O))α.

By (9.20), (9.12), (8.2), (9.11), and LIPd(f) > 1 (see Lemma 3.14), we have

ρ :=C4ǫ
−1/α|γ|1/α ≤ C4(|ϕ̃|dα τ/ǫ)1/α∆λι, θ(O)(9.21)

≤∆λι, θ(O) ≤ λι ≤ C2
2 min{C2δ0, ι/8} < ι/8.

Let U := N
ρ
d(O) ⊆ N

ι/8
d (O).
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If y /∈ U ∪N ι/2
d (crit f ∪ post f), then by (9.8), σ(y,O) ≥ C−1

4 d(y,O) > C−1
4 ρ, and consequently by

(9.17), (9.5), (9.21), and (9.19), we have

(9.22) ψ(y) = ϕ̃(y)− ǫσ(y,O)α ≤ −ǫσ(y,O)α < −ǫC−α
4 ρα = −|γ| = γ.

If y ∈ N
ι/2
d (crit f ∪ post f), then we will choose a point y′ /∈ U ∪ N

ι/2
d (crit f ∪ post f) satisfying

σ(y′,O) < σ(y,O) in the following way. We first fix a point z ∈ O with d(y, z) = d(y,O). Let Γ be the
geodesic arc (with respect to the chordal metric σ) connecting y and z with the minimal length. By

the definition of ι in (9.7) and the fact that U ⊆ N
ι/8
d (O), it is clear that we can choose a point y′ ∈ Γ

satisfying y′ /∈ U ∪N ι/2
d (crit f ∪ post f). Then σ(y′,O) < σ(y,O). Hence it follows from (9.22) that

(9.23) ψ(y) = ϕ̃(y)− ǫσ(y,O)α ≤ −ǫσ(y,O)α < −ǫσ(y′,O)α < γ.

Recall a characterization of β(ψ) (see [Boc19, Equation (30)]):

β(ψ) = sup
x∈Ĉ

inf
n∈N

Snψ(x)

n
.

This follows immediately from a lemma of Y. Peres [Pe88, Lemma 2]. See [Mo13, Theorem A.3] for a
proof of a generalization of the above characterization.

Thus in order to show that β(ψ) ≤ γ, by the estimates (9.22) for y /∈ U ∪ N
ι/2
d (crit f ∪ post f),

(9.23) for y ∈ N
ι/2
d (crit f ∪ post f), and the equality 1

pSpψ(y) = γ for y ∈ O, it suffices to prove that if

y ∈ U \ O then there exists N ∈ N such that SNψ(y) ≤ Nγ.
To this end, we assume now that y ∈ U \ O. So 0 < d(y,O) ≤ ρ. By (9.21), (8.2), and (9.13),

ρ ≤ ∆λι, θ(O) ≤ 1
3∆(O). So by (8.1) there is a unique point z ∈ O which is closest to y among points

in the periodic orbit O.
Let N ∈ N ∪ {+∞} be the smallest positive integer satisfying

(9.24) d
(
fN−1(y), fN−1(z)

)
≥ C−2

2 ∆λι, θ(O),

or set N = +∞ if such a positive integer does not exist. Note that N ≥ 2 since d(y,O) ≤ ∆λι, θ(O).
We use the convention that N − 1 = N when N = +∞. Then by (8.2) and (9.11), for all j ∈ N0 with
j < N − 1,

(9.25) d
(
f j(y),O

)
≤ d

(
f j(y), f j(z)

)
<

∆λι, θ(O)

C2
2

≤ λι

C2
2

≤ min

{
C2δ0,

ι

8LIPd(f)

}
.

In particular, d
(
f j+1(y),O

)
≤ d

(
f j+1(y), f j+1(z)

)
≤ ι/8. Thus by (9.7), (9.14), (9.12), (8.2), and

Lemma 3.14, for all i ∈ N0 with i < N , we get that for each x ∈ crit f ∪ post f ,

d
(
x, f i(y)

)
≥d(x,K) − d

(
f i(y),K

)

≥ι−min
{
d
(
f i(y), o

)
+ d(o,K)

∣∣ o ∈ O
}

≥ι− d
(
f i(y),O

)
−max{d(o,K) | o ∈ O}

≥7ι

8
−∆λι, θ(O) ≥ 7ι

8
− λι,

and therefore,

(9.26) d
(
crit f ∪ post f, f i(y)

)
>
ι

2
.

It follows from Claim 1, (9.25), and (9.26) that for all i ∈ N0,

(9.27) C2Λ
id(y, z) ≤ d

(
f i(y), f i(z)

)
≤ C−1

2 Λid(y, z) provided i < N.

Now by the definition of N and the lower bound in (9.27), we know that N is finite. On the other hand,
by (8.2), (9.13), Lemma 3.14, and the definition ofN in (9.24), we get that for each j ∈ {0, 1, . . . , N−2},

d
(
f j(y), f j(z)

)
<

∆λι, θ(O)

C2
2

≤ θ∆(O)

C2
2

≤ ∆(O)

3LIPd(f)
≤ ∆(O)

3
.
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In particular, d
(
fN−1(y), fN−1(z)

)
≤ LIPd(f) · d

(
fN−2(y), fN−2(z)

)
≤ ∆(O)/3. Thus by (8.1) and

(9.27), for each i ∈ {0, 1, . . . , N − 1},
(9.28) d

(
f i(y),O

)
= d

(
f i(y), f i(z)

)
∈
[
C2Λ

id(y, z), C−1
2 Λid(y, z)

]
.

We now proceed to show that SNψ(y) ≤ Nγ.
Let n ∈ N be the smallest positive integer satisfying

(9.29) d(fn(y), fn(z)) > ρC−2
2 .

Such an integer n exists and satisfies n ≤ N − 1 due to d(y, z) ≤ ρ < ρC−2
2 ≤ C−2

2 ∆λι, θ(O) (see (9.21))
and the definition of N above. Moreover, we have

(9.30) d
(
fn−1(y), fn−1(z)

)
≤ ρC−2

2 .

We will estimate two parts in the sum

(9.31) SN (γ − ψ)(y) = Sn(γ − ψ)(y) + SN−n(γ − ψ)(fn(y)) =: I+ II

separately.
For each j ∈ N satisfying j ∈ [n,N − 1], by (9.28), (9.29), and the fact that Λ > 1, we have

d
(
f j(y),O

)
= d

(
f j(y), f j(z)

)
≥ C2

2Λ
j−nd(fn(y), fn(z)) > ρ.

Thus f j(y) /∈ U , and by (9.22), γ − ψ
(
f j(y)

)
> 0 for each j ∈ {n, n + 1, . . . , N − 1}. By (9.26) and

(9.15), we have fN−1(y), fN−1(z) /∈ N
ι/2
d (post f). Hence by (9.17), (9.5), (9.8), (9.28), (9.24), and

C2 ∈ (0, 1), we have

II ≥ γ − ψ
(
fN−1(y)

)

= γ − ϕ̃
(
fN−1(y)

)
+ ǫσ

(
fN−1(y),O

)α

≥ γ + ǫC−α
4 d

(
fN−1(y), fN−1(z)

)α

≥ γ + ǫC−α
4 (∆λι, θ(O))α.

To estimate I, we write

(9.32) I = (nγ − Snψ(z)) + (Snψ(z)− Snψ(y)) =: III+ IV

and bound each part below.
We write n = pq + r for q, r ∈ N0 with 0 ≤ r ≤ p − 1. Then by (9.17), (9.5), and (9.19), we have

Snψ(z) ≤ Snϕ̃(z) = Spqϕ̃(z) + Srϕ̃(z) ≤ pqγ. Thus, considering γ < 0 (see (9.19)), we get

III ≥ rγ ≥ (p− 1)γ.

Next, by (9.17), (9.2), (9.28), (9.9), (9.30), (9.21), and (9.10), we have

|IV| ≤
n−1∑

j=0

∣∣ψ
(
f j(z)

)
− ψ

(
f j(y)

)∣∣

≤
n−1∑

j=0

(∣∣ϕ̃
(
f j(z)

)
− ϕ̃

(
f j(y)

)∣∣+ ǫσ
(
f j(y),O

)α)

≤
n−1∑

j=0

(∣∣ϕ̃
(
f j(z)

)
− ϕ̃

(
f j(y)

)∣∣+ ǫC3d
(
f j(y), f j(z)

)α)

≤
n−1∑

j=0

(|ϕ̃|dα + ǫC3)d
(
f j(y), f j(z)

)α

≤
n−1∑

j=0

(|ϕ̃|dα + C3)C
−2α
2 Λ−(n−1−j)αd

(
fn−1(y), fn−1(z)

)α

≤
n−1∑

j=0

(|ϕ̃|dα + C3)C
−2α
2 Λ−(n−1−j)αραC−2α

2
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≤ |ϕ̃|dα + C3

C4
2 (1− Λ−α)

· ρα

≤ |ϕ̃|dα + C3

C4
2 (1− Λ−α)

· Cα4 ǫ−1|γ|

≤ C5ǫ
−1|γ|.

Combining the above estimates for II, III, and IV, we get from (9.31), (9.32), (9.20), and (9.12) the
final estimate

Nγ − SNψ(y) = II+ III+ IV

≥ γ + ǫC−α
4 (∆λι, θ(O))α − (p− 1)|γ| − C5ǫ

−1|γ|
≥ ǫC−α

4 (∆λι, θ(O))α −
(
1 + C5ǫ

−1
)
p|γ|

≥
(
ǫC−α

4 −
(
1 + C5ǫ

−1
)
|ϕ̃|dα τ

)
(∆λι, θ(O))α

≥ 0.

Claim 2 is now established.
�

The proof of Theorem 1.4 (i) is verbatim the same as that of Theorem 1.5 (i) once we replace the
chordal metric σ by the visual metric d (while the counterparts in the proof of Theorem 1.4 (i) to some
inequalities and inclusions in the proof of Theorem 1.5 (i) become vacuously true as a result).

Combining Theorem 1.4 (i) with the fact that for a rational expanding Thurston map f : Ĉ → Ĉ on

the Riemann sphere Ĉ, the identity map between the chordal sphere (Ĉ, σ) and a visual sphere (Ĉ, d),
where d is any visual metric, is a quasisymmetry (see [BM17, Lemma 18.10]), and is therefore bi-Hölder
(see Definition 3.10 and Remark 3.12), we get the following result, which serves as a supplement to
Theorem 1.3. We recall that a subspace Y of a topological space X is dense in another subspace Z of
X if Z is a subset of the closure of Y in X [Gr67, Definition 2.14].

Theorem 9.1 (Density of periodic maximization for Misiurewicz–Thurston rational maps). Let f : Ĉ →
Ĉ be a Misiurewicz–Thurston rational map (i.e., a postcritically-finite rational map without periodic
critical points). Let σ and d be the chordal metric and a visual metric, respectively, on the Riemann

sphere Ĉ. Fix a number α ∈ (0, 1]. Then the set P(Ĉ)∩ Lip(Ĉ, σα) is dense in Lip(Ĉ, dα) with respect

to the α-Hölder norm. Moreover, there exists a number β ∈ (0, α) such that the set P(Ĉ)∩ Lip(Ĉ, σβ)
is dense in Lip(Ĉ, σα) with respect to the β-Hölder norm.

10. Proofs of genericity of the locking property in little Lipschitz spaces

In this section, we prove the remaining results from Section 1. We denote by cld(F ) the closure of a
subset F ⊆ Lip(X, d) in Lip(X, d). Recall that for a metric space (X, d) and a number α ∈ (0, 1], the
snowflake dα(x, y) := (d(x, y))α of d is also a metric with the same topology.

Theorem 10.1. Let T : X → X be a continuous map on a compact metric space (X, d). Assume
that P(X) ∩ Lip(X, d) is dense in Lip(X, d). Then P(X) ∩ lip(X, dβ) is dense in lip(X, dβ) for each
β ∈ (0, 1).

Proof. Fix an arbitrary β ∈ (0, 1). By Theorem 4.1 it suffices to show that lock(X, dβ) is dense in
P(X) ∩ lip(X, dβ).

Note that Lip(X, d) ⊆ Lip(X, dβ) and d(x, y) ≤ dβ(x, y) diamd(X)1−β for all x, y ∈ X. Then it is
straightforward to check that

(10.1) cldβ(F ) = cldβ (cld(F ))

for each subset F of Lip(X, d). Thus by (10.1), the density of P(X) ∩ Lip(X, d) in Lip(X, d), Propo-
sition 4.3, and Proposition 4.4,

cldβ (P(X) ∩ Lip(X, d)) = cldβ (cld(P(X) ∩ Lip(X, d))) = cldβ (Lip(X, d)) = lip(X, dβ).

Since Lip(X, d) ⊆ lip(X, dβ) and lip(X, dβ) is closed in Lip(X, dβ) (by Proposition 4.4 and Proposi-
tion 4.3), we get that cldβ (P(X) ∩ lip(X, dβ)) = lip(X, dβ). �
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We are now ready to establish the remaining results from Section 1.
Theorem 1.4 (ii) and Theorem 1.5 (ii) now follows from Theorem 10.1 together with Theorem 1.4 (i)

and Theorem 1.5 (i), respectively.

Proof of Theorem 1.3. Let d be a visual metric on Ĉ for f .

By [BM17, Lemma 18.10], the identity map between (Ĉ, σ) and (Ĉ, d) is a quasisymmetry, and is
therefore bi-Hölder (see Remark 3.12). Thus there exist numbers C6 > 0, C7 > 0, and 0 < γ < η < 1

such that for all x, y ∈ Ĉ,

(10.2) σ(x, y) ≤ C6d(x, y)
η ≤ C7σ(x, y)

γ

and

(10.3) Lip(Ĉ, σ) ⊆ Lip(Ĉ, dη) ⊆ Lip(Ĉ, σγ).

Fix an arbitrary β ∈ (0, γ).

By Theorem 4.1 it suffices to show that lock(Ĉ, σβ) is dense in P(Ĉ) ∩ lip(Ĉ, σβ).
By (10.2) and (10.3) it is straightforward to check that

(10.4) cldη (F ) ⊆ clσγ (F )

for each subset F of Lip(Ĉ, dη). Similarly, it follows from Lip(Ĉ, σγ) ⊆ Lip(Ĉ, σβ) and σγ(x, y) ≤
σβ(x, y) diamσ(Ĉ)γ−β for all x, y ∈ Ĉ that

(10.5) clσβ (F ) = clσβ (clσγ (F ))

for each subset F of Lip(Ĉ, σγ).
It follows from Proposition 4.3, Proposition 4.4, and (10.3) that

(10.6) clσβ (Lip(Ĉ, d
η)) = lip(Ĉ, σβ).

Then by (10.6), the density of P(Ĉ)∩Lip(Ĉ, dη) in Lip(Ĉ, dη), (10.4), (10.5), (10.3), Proposition 4.4,
and Proposition 4.3, we have

lip(Ĉ, σβ) = clσβ (Lip(Ĉ, d
η))

= clσβ (cldη (P(Ĉ) ∩ Lip(Ĉ, dη)))

⊆ clσβ (clσγ (P(Ĉ) ∩ Lip(Ĉ, dη)))

= clσβ (P(Ĉ) ∩ Lip(Ĉ, dη))

⊆ clσβ (P(Ĉ) ∩ Lip(Ĉ, σγ))

⊆ clσβ (P(Ĉ) ∩ lip(Ĉ, σβ))

⊆ lip(Ĉ, σβ).

Therefore clσβ (P(Ĉ) ∩ lip(Ĉ, σβ)) = lip(Ĉ, σβ). �

Proof of Theorem 1.7. It follows from Theorems 4.1 and 10.1 that the conclusion of this theorem follows
from the property that P(X)∩Lip(X, d) is dense in Lip(X, d) for each specific system. Indeed, the last
property for distance expanding maps follows from [Co16, Theorem A] and [BZ15]. Moreover, for Axiom
A attractors and Anosov diffeomorphisms, this property is established in [HLMXZ19, Theorem 2.1]. �

Proof of Theorem 1.6. Let f be a postcritically-finite rational maps without periodic critical points or
an expanding Thurston map on X, where (X, ρ) is the Riemann sphere equipped with the chordal

metric (Ĉ, σ) in the former case or the topological 2-sphere equipped with a visual metric (S2, d) in the
latter case. Consider α ∈ (0, 1] and φ ∈ Lip(X, ρα). Since there exists a unique equilibrium state µtφ
for each t ∈ R ([Li18, Theorem 1.1 and Corollary 1.2]), we get from the definition of equilibrium states
and (1.1) that

(10.7) hµtφ(f) + t

∫
φdµtφ ≥ hν(f) + t

∫
φdν
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for all ν ∈ M(X, f). Note the topological entropy htop(f) = log(deg f) < +∞, where deg f is the
topological degree of f ([HP09, BM17]). If µ = lim

i→+∞
µtiφ in the weak∗ topology for some sequence ti,

i ∈ N, of real numbers tending to +∞, we divide both sides of (10.7) by t = ti and get that
∫
φdµ = lim

i→+∞

∫
φdµtiφ ≥

∫
φdν.

Hence µ ∈ Mmax(f, φ). The theorem now follows from the above together with Theorems 1.3, 1.4,
and 1.5. �

Appendix A. Illustrations of combinatorial structures of expanding Thurston maps

The rest of the paper is completely independent of this Appendix, so readers fluent in expanding
Thurston maps can safely skip it. The purpose of this Appendix is to provide illustrations of the combi-
natorial objects we heavily rely on in this paper to readers less familiar with these maps for them to gain
some intuitions. We give three examples of expanding Thurston maps f and illustrate the associated
combinatorial structures from the cell decompositions Dn(f, C), n ∈ N0, of S

2 assuming the existence of
f -invariant Jordan curves C ⊆ S2 containing postcritical points post f . We emphasize here that such a
Jordan curve may not always exist for certain expanding Thurston maps (see [BM17, Example 15.11]),
but these combinatorial constructions are always available for all Jordan curves containing postcritical
points post f . We impose the additional assumption to simplify the illustrations.

A B

CD

E

FG H

I

J

(a) (b)

y

zx

v
•

•

•

•

(c)

Figure A.1. Example 1: Dn(f, C), n = 1 to 3.

The examples we choose are related to rational maps in different sense in terms of topological con-
jugacy and a weaker notion called Thurston equivalence. We refer the reader to [BM17, Definition 2.4]
for the precise definition of the latter notion.

With the permission of the authors, Figures A.3 and A.4 are adapted from Figures 12.7 and 1.3 of
their book [BM17], respectively.

Example 1. The first example is an expanding Thurston map topologically conjugate to a Lattès
map g given by

g(z) = 4
z(1 − z2)

(1 + z2)2
for z ∈ Ĉ.

We consider the topological 2-sphere S2 as a homeomorphic copy of the pillow P obtained from two
copies of the unit square [0, 1]2 ⊆ R2 ∼= C glued together along their boundaries (Figure A.1.(A)).
Denote A := (0, 0), B := (1, 0), etc. as marked on Figure A.1.(A). In particular, J denotes the center of
the square on the back side of the pillow. We divide each square into four small squares of equal size.
We define a continuous and orientation-preserving map f : P → P by requiring that f maps each of the
eight small squares by first enlarging it linearly by a factor of 2 and then mapping the resulting square
isometrically (with respect to the Euclidean metric) to the big square ABCD either on the front or the
back side of P (depending on the small square). The map f is uniquely determined if we specify that
the small square AEFG is mapped to the front side ABCD of P with A 7→ A, E 7→ B, F 7→ C, and
G 7→ D. In this case, for example, the small square EBHF is mapped to the big square BADC on
the back side of P with B 7→ A and H 7→ D. Then f is a Thurston map with the set of critical points
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crit f = {F, J, E, H, I, G} and the set of postcritical points post f = {A, B, C, D}. It is not difficult
to check that f is an expanding Thurston map. See [BM17, Section 1.1] for more details.

We denote the boundary of the big squares by C. The Jordan curve C is f -invariant and contains
post f . All the line segments (including the dotted ones on the back of P) represent the set f−1(C).
The map f and Jordan curve C induce the cellular Markov partitions Dn(f, C), n ∈ N0, as recalled in
Subsection 3.1. The set X0(f, C) of 0-tiles (resp. X1(f, C) of 1-tiles) consists of the two big (resp. eight
small) squares on the front side and back side of P. The set V0(f, C) of 0-vertices consists of A, B, C,
and D. Points A through J form the set V1(f, C) of 1-vertices.

The line segments in Figure A.1.(B) illustrate the set f−2(C) on either side of P. The 16 small
squares are 2-tiles. There are a total of 32 2-tiles in P.

Figure A.2. Example 2.

In Figure A.1.(C), the line segments illustrate the set f−3(C) on either side of P. Each small square,
such as the green one, is a 3-tile. Recall the notions of flowers and bouquets from (3.4) and (3.5). The
red 3-tiles (minus the boundary of their union) form a 3-flower W n(v) of a 3-vertex v ∈ V3(f, C). Three
3-bouquets U3(x), U3(y), and U3(z) are illustrated in blue. Their shapes depend on the (combinatorial)
locations of x, y, and z.

Example 2. The next example is obtained in a similar way. We take two copies of an equilateral
triangle of equal size in R2 and glue them together along their boundaries to form a topological 2-sphere
S2 (Figure A.2). The bisectors divide each equilateral triangle into six small triangles. We define a
continuous and orientation-preserving map f : S2 → S2 by requiring that f maps each of the twelve
triangles by first enlarging it linearly to the shape of the original equilateral triangles and then mapping
the resulting triangle isometrically (with respect to the Euclidean metric) to the equilateral triangle
either on the front or the back side of S2 (depending on the small triangle). The map f is uniquely
determined if we specify how one of the twelve small triangles is mapped. A map f constructed in this
way is an expanding Thurson map with three postcritical points. It is not obstructed, and in fact one
such f is Thurston equivalent to a rational map g given by

g(z) = 1− 54(z2 − 1)2

(z2 + 3)3
for z ∈ Ĉ.

However, f cannot be conjugate to a rational map since it has a periodic critical point (compare [BM17,
Proposition 2.3]). The boundary of the two original equilateral triangles is an f -forward-invariant
Jordan curve C containing post f . See [BM17, Examples 12.21 and 18.11] for more details.

In Figure A.3, the cell decompostions Dn(f, C), n = 1 to 6, are illustrated. The tiles are colored
black or white, some 4-flowers red, and some 4-bouquets blue.

Example 3. The last example is obtained from cutting, gluing, and pasting of a big pillow P and a
small pillow P0. Both pillows are marked the same way as the pillow in Figure A.1.(A). We cut the
edge GF of P open to create an opening of P. The boundary of the opening is homeomorphic to S1

consisting of two arcs e1 and e2 both of which start at G and end at F . The small pillow P0 is 1/2 the
scale of P. We cut the edge AB of P0 open in a similar way to form two arcs e′1 and e′2 both of which
start at A and end at B. Note that e1, e2, e

′
1, e

′
2 are of the same length. We glue e′1 to e1 and e′2 to

e2. The resulting surface is a topological 2-sphere S2. It contains 10 small squares. We can define an
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Figure A.3. Example 2: Dn(f, C), n = 1 to 6, adapted from [BM17].

expanding Thurston map f : S2 → S2 in a similar way as the two examples above which maps each of
the ten small squares to either the front or the back side of S2. The Jordan curve C on the original big
pillow P is the boundary of the front side and the back side of the resulting S2. It remains invariant
under f and contains post f . The cell decompostions Dn(f, C), n = 1, 2, 3, 4, of such a map f are
illustrated in Figure A.4. The tiles are colored white or grey, some 4-flowers red, and some 4-bouquets
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Figure A.4. Example 3: Dn(f, C), n = 1 to 3, adapted from [BM17].

blue. This map is obstructed, i.e., not Thurston equivalent to a rational map ([BHI21, Theorem 1.2]).
In particular, it is not topologically conjugate to a rational map.
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