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Abstract. A numerical method using the truncation technique on the inte-
grand is developed for computing singular minimizers or singular minimizing
sequences in variational problems involving the Lavrentiev phenomenon. It
is proved that the method can detect absolute minimizers with various sin-
gularities whether the Lavrentiev phenomenon is involved or not. It is also
proved that, when the absolute infimum is not attainable, the method can pro-
duce minimizing sequences. Numerical results on the Manià’s example and a
2-dimensional problem involving the Lavrentiev phenomenon with continuous
Sobolev exponent dependence, are given to show the efficiency of the method.

1. Introduction

Singular minimizers are commonly seen in variational problems, and some of

the singular minimizers can be tricky to compute. For instance, consider the well

known example, given by Manià [17], of minimizing the integral functional

I(u) =

∫ 1

0

(u3 − x)2(u′)6 dx (1.1)

in the set of admissible functions

A1 = {u ∈ W 1,1(0, 1) : u(0) = 0, u(1) = 1}. (1.2)
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It is easy to verify that û = x
1
3 ∈ A1 is the unique minimizer of I(·) in A1, and

that I(û) = 0. To compute such a singular minimizer, the most obvious initial

approach is to use standard finite element methods. But the facts that

inf
u∈A1∩W 1,∞(0,1)

I(u) > inf
u∈A1

I(u) = 0, (1.3)

which is known as the Lavrentiev phenomenon, first found by Lavrentiev in 1926

[12], and that

lim
j→+∞

I(uj) = +∞, if uj ∈ A1 ∩W 1,p(0, 1), for some p > 3

2
,

and uj → û a.e. x ∈ (0, 1), (1.4)

which is proved by Ball and Mizel [3], show that typically such approaches can

neither detect the minimizer nor determine the infimum.

In general, for the problem of minimizing an integral functional

I(u) =

∫

Ω

f(x, u(x), Du(x)) dx (1.5)

in a set of admissible functions

Ap = {u ∈ W 1,p(Ω; Rm) : u = u0, x ∈ ∂Ω0} (1.6)

for some given 1 6 p 6 +∞, where Ω ⊂ Rn is a bounded open set with Lipschitz

continuous boundary ∂Ω and ∂Ω0 ⊂ ∂Ω with measn−1(∂Ω0) 6= 0, and where

f : Ω×Rm ×Rmn → R is a given real function, there are four possible cases:

(case 1): The problem does not involve the Lavrentiev phenomenon, i.e.

inf
u∈A1

I(u) = inf
u∈A∞

I(u), (1.7)

and the infimum of the problem is attainable for some p > 1;

(case 2): The problem does not involve the Lavrentiev phenomenon and

the infimum of the problem is not attainable for any p > 1;

(case 3): The problem involves the Lavrentiev phenomenon, i.e. there exist

1 6 q < r 6 +∞ such that

inf
u∈A1

I(u) = inf
u∈Aq

I(u) < inf
u∈Ar

I(u) = inf
u∈A∞

I(u), (1.8)

and the infimum of I(·) in Ap is attainable for a given p > 1;
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(case 4): The problem involves the Lavrentiev phenomenon and the infi-

mum of I(·) in Ap is not attainable for a given p > 1.

Various numerical methods for detecting singular minimizers involving the

Lavrentiev phenomenon have been developed in recent years [4, 13, 14, 15] (see

[5] for a survey and more references), and corresponding convergence theorems

were proved to guarantee that these methods can be successfully used in detecting

singular minimizers in case 3 when 1 < p 6 q (see (1.8)).

In the present paper, we designed a new truncation method and proved some

convergence theorems, which not only enable us to apply the truncation method

to all the four cases for all 1 6 p 6 +∞, but also enable us to develop some more

practical techniques to determine the truncation regions and parameters in the

process of applying the truncation method to computing singular minimizers, or

minimizing sequences when the infimum is unattainable, which may involve the

Lavrentiev phenomenon.

The rest of the paper is organized as follows. A lower semicontinuity theorem

[16], which is useful in the convergence analysis of the method, is given in Section

2. In Section 3, we establish the new truncation method and the convergence

theorems. In Section 4, the numerical results on the Manià’s example and a

2-dimensional problem with continuous Sobolev exponent dependence given by

Foss [10] are presented to show the efficiency of our method.

2. A lower semicontinuity theorem

We first introduce some definitions. Let Ω ⊂ Rn be bounded and open.

Definition 2.1. A function f : Ω × Rm × Rk −→ R ∪ {+∞} is called L ⊗
B-measurable, if it is measurable with respect to the σ-algebra generated by

products of measurable subsets of Ω and Borel subsets of Rm ×Rk.

Definition 2.2. A function f : Ω×Rm×Rk −→ R is a Carathédory function, if

(i) f(·, u, P ) is measurable for every u ∈ Rm, P ∈ Rk,

(ii) f(x, ·, ·) is continuous for almost every x ∈ Ω.

Definition 2.3. A sequence of functions fM : Ω×Rm×Rk −→ R∪{+∞} is said

to converge to f : Ω×Rm×Rk −→ R∪{+∞} locally uniformly in Ω×Rm×Rk,

if there exists a sequence of measurable subsets Ωl ⊂ Ω with measn(Ω\Ωl) → 0
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as l →∞ such that, for each l and any compact subset G ⊂ Rm ×Rk,

fM(x, u, P ) → f(x, u, P ) unifomly on Ωl ×G as M → +∞.

Throughout the rest of this paper ⇀ denotes the weak convergence of the

sequences. The following theorem is a special case of a more general theorem

given by Li in [16].

Theorem 2.1. Let 1 6 p 6 +∞ and 1 6 q 6 +∞. Let f : Ω× Rm × Rk −→ R

satisfy

(i) f(·, ·, ·) is a Carathédory function,

(ii) f(x, u, ·) is convex,

(iii) f(x, u, P ) > a(x), a(·) ∈ L1(Ω).

Let fM : Ω×Rm ×Rk −→ R satisfy

(a) fM(·, ·, ·) are L⊗B-measurable,

(b) fM → f locally uniformly in Ω×Rm ×Rk,

(c) fM(x, u, P ) > b(x), for some b(·) ∈ L1(Ω).

Let {uM}, u ∈ Lp(Ω; Rm) and {PM}, P ∈ Lq(Ω; Rk) be such that

uM → u in Lp(Ω; Rm) and PM ⇀ P in Lq(Ω; Rk).

Then ∫

Ω

f(x, u, P ) dx 6 lim inf
M→+∞

∫

Ω

fM(x, uM , PM) dx.

3. The truncation method and the convergence theorems

Assume that the integrand f satisfies the following hypotheses.

(H1) f : Ω×Rm ×Rmn → R is a Carathédory function;

(H2) There exists a a(·) ∈ L1(Ω) such that f(x, u, P ) > a(x) for all (x, u, P ) ∈
Ω×Rm ×Rmn;

(H3) f(x, u, ·) is convex for all (x, u) ∈ Ω×Rm;

(H4) Let gK(x) = sup|u|6K,|P |6K |f(x, u, P )|, then gK(·) ∈ L1(Ω).

By (H2), without loss of generality, we may assume that f is non-negative. Let

T h be a regular triangulation [6] of Ω with h being the mesh size and let Ωh =⋃
K∈T h K. For simplicity, assume Ωh = Ω and ∂Ω0h = ∂Ω0, where ∂Ω0h is the
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union of all (n − 1)-dimensional faces in T h whose interior have a nonempty

intersection with ∂Ω0. Define

Ah = {u ∈ C(Ω) : u|K is affine, ∀ K ∈ T h},
Ah(u0h; ∂Ω0) = {u ∈ Ah : u = u0h on ∂Ω0},

where u0h ∈ Ah satisfy

u0h → u0 in W 1,p(Ω; Rm), as h → 0.

The truncation method for computing the minimizer of I(·) in Ap is to solve

the finite problem of minimizing

IM(uh) =

∫

Ω

fM(x, uh, Duh) dx (3.1)

in Ah(u0h; ∂Ω0), where fM is a truncation function of f which replaces f by

certain slower growth functions on regions where the function uh, especially its

gradient Duh is so large that the growth of the integrand may be out of control.

The theory established in this section on the truncation method provides us

with a guide on how to determine the truncation regions and the slower growth

substitution functions so that the computation can be successful and efficient.

Let {T hM}∞M=1 be a given family of regular triangulations of Ω with hM → 0

as M → +∞. Denote

T hM
n = {K : K is a n-dimensional element in T hM}.

Lemma 3.1. Let 1 6 p < +∞. Let T̃ hM
n be subsets of T hM

n such that the sets

Ω̃hM
=

⋃
K∈eT hM

n
K satisfy

+∞∑
M=1

measn(Ω̃hM
) < +∞. (3.2)

Let the truncation function fM(x, u, P ; p) be defined by

fM(x, u, P ; p) =

{
f(x, u, P ), x ∈ Ω\Ω̃hM

min{αhM
(x)(1 + |P |p), f(x, u, P )}, x ∈ Ω̃hM

,
(3.3)

where αhM
∈ L∞(Ω) and αhM

> αhM
(x) > α1 > 0, a.e. in Ω. Then

(a) fM(·, ·, ·; p) are L⊗B-measurable;
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(b) fM(x, u, P ; p) > b(x), for some b(·) ∈ L1(Ω);

(c) fM → f locally uniformly in Ω×Rm ×Rmn.

Proof. Since both f(x, u, P ) and αhM
(x)(1+ |P |p) are Carathédory functions and

hence L ⊗ B-measurable, it is not difficult to verify that fM(·, ·, ·; p) are L ⊗ B-

measurable.

Take b(x) = min{a(x), α1}, then b(·) ∈ L1(Ω) and fM(x, u, P ; p) ≥ b(x).

To prove (c), let

Ωl = Ω\(
+∞⋃

j=l

Ω̃hj
). (3.4)

It is obvious that Ωl are measurable and Ωl ⊂ Ω. By (3.2) and (3.4), we have

measn(Ω \ Ωl) 6
+∞∑

j=l

measn(Ω̃hj
) → 0, as l → +∞.

It follows from (3.3) and (3.4) that, for each l,

fM(x, u, P ; p) = f(x, u, P ), ∀x ∈ Ωl as long as M > l.

This completes the proof. ¤

Corollary 3.1. Let 1 6 p < +∞. Let fM be given by (3.3) with Ω̃hM
satisfying

(3.2). Define

IM(u; p) =

∫

Ω

fM(x, u, Du; p) dx.

Let {uM}, u ∈ W 1,p(Ω; Rm) be such that

uM ⇀ u in W 1,p(Ω; Rm), as M → +∞.

Then

I(u) ≤ lim inf
M→+∞

IM(uM ; p).

Proof. The conclusion follows directly from Theorem 2.1 and Lemma 3.1. ¤

Definition 3.1. u ∈ W 1,p(Ω; Rm) (1 6 p < +∞) is said to be a partial regular

function with singular set E(u), if Du ∈ L∞(Ω \ F ; Rmn) for any open set F ⊃
E(u), and Du /∈ L∞(Ω \G; Rmn) for any open set G such that G ∩ E(u) 6= ∅.
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In what follows in this paper, to simplify the notation, we denote by E a

set with zero n-dimensional Lebesgue measure and finite (n − 1)-dimensional

Hausdorff measure, especially we always assume that the singular set E(u) in

question satisfies measn E(u) = 0 and its (n− 1)-dimensional Hausdorff measure

is finite.

Definition 3.2. Let E be given. The sequence of sets Ω̃E
hM

=
⋃

K∈eT hM
n (E)

K,

where T̃ hM
n (E) ⊂ T hM

n , is called an admissible finite element covering of E if

there exist 0 < C2(hM) 6 C1(hM) satisfying
∑+∞

M=1 C1(hM) < +∞ such that

(D1) E ⊂ Ω̃E
hM

,

(D2) ∀K ∈ Ω̃E
hM

, dist(E, K) 6 C1(hM),

(D3) ∀K ∈ Ω \ Ω̃E
hM

, dist(E, K) > C2(hM),

where dist(E, K) is the distance between the two sets.

Definition 3.3. Let 1 6 p < +∞. The sequence of truncation functionals

IE
M(u; p) =

∫

Ω

fE
M(x, u, Du; p) dx, (3.5)

where the truncation functions fE
M are defined by

fE
M(x, u, P ; p) =

{
f(x, u, P ), x ∈ Ω\Ω̃E

hM

min{αhM
(x)(1 + |P |p), f(x, u, P )}, x ∈ Ω̃E

hM
,

(3.6)

with αhM
∈ L∞(Ω) and αhM

> αhM
(x) > α1 > 0 a.e. in Ω, is said to be

consistent with the set E if {Ω̃E
hM
} is an admissible finite element covering of E.

Lemma 3.2. Let 1 6 p < +∞. Let ũ ∈ W 1,p(Ω; Rm) be a partially regular func-

tion with singular set E(ũ) ∈ E and satisfy f(x, ũ,Dũ) ∈ L1(Ω). Let IE
M(·; p) be

consistent with the singular set E with {Ω̃E
hM
} being the corresponding admissible

finite element covering of E. Let uh ∈ Ah(u0h; ∂Ω0) satisfy

uh → ũ in W 1,p(Ω; Rm), as h → 0, (3.7)

and be uniformly bounded in W 1,∞(Ω\Ω̃E
hM

; Rm) for each M . Then for any ε > 0,

there exist a non-increasing function M(ε) > 0 and a function h(ε,M) > 0 with
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h(·,M) non-decreasing and h(ε, ·) non-increasing such that

|IE
M(uh; p)− I(ũ)| < ε, if M > M(ε) and 0 < h < h(ε,M). (3.8)

Proof.

IE
M(uh; p)− I(ũ) =

∫

Ω

[fE
M(x, ũ,Dũ; p)− f(x, ũ,Dũ)]dx

+

∫

Ω

[fE
M(x, uh, Duh; p)− fE

M(x, ũ,Dũ; p)] dx

, I1(M) + I2(h,M).

By (3.6), we have

|I1(M)| =

∣∣∣∣∣
∫
eΩE

hM

[fE
M(x, ũ,Dũ; p)− f(x, ũ,Dũ)] dx

∣∣∣∣∣

6 2

∫
eΩE

hM

|f(x, ũ,Dũ)| dx. (3.9)

It follows from f(x, ũ,Dũ) ∈ L1(Ω) that for any ε > 0, there exists a δ1(ε) > 0,

such that
∫

Ω′
|f(x, ũ,Dũ)|dx < ε, ∀Ω′ ⊂ Ω with measn(Ω′) < δ1(ε). (3.10)

Since the (n − 1)-dimensional Hausdorff measure of E is finite and {Ω̃E
hM
} is

an admissible finite element covering of E, we have limM→+∞ measn(Ω̃E
hM

) = 0.

Thus, by (3.9) and (3.10), there exists a non-increasing positive function M(·)
such that

measn(Ω̃E
hM

) < δ1(
ε

4
) and |I1(M)| < ε

2
, ∀M > M(ε). (3.11)

By (3.6), we have

I2(h,M) =

∫
eΩE

hM

[fE
M(x, uh, Duh; p)− fE

M(x, ũ,Dũ; p)] dx

+

∫

Ω\eΩE
hM

[f(x, uh, Duh)− f(x, ũ,Dũ)] dx

, I21(h,M) + I22(h,M).

8



To estimate I21(h,M), we first notice that, as a consequence of (3.7), |Duh|p are

equi-integrable on Ω, and thus, for any ε > 0 and given αhM
> α1 > 0, there

exists a δ2(ε,M) > 0, such that for any Ω′ ⊂ Ω, we have

∫

Ω′
αhM

|Duh|p dx < ε, ∀h > 0 if measn(Ω′) < δ2(ε,M). (3.12)

We claim that for any ε > 0, M > 0, there exists a h1(ε,M) > 0 with h1(·,M)

non-decreasing and h1(ε, ·) non-increasing such that

|I21(h,M)| < ε

4
, ∀h ∈ (0, h1(ε,M)). (3.13)

Suppose otherwise. Then, there would be ε0 > 0, M0 > 0 and a decreasing

sequence {h0
j} with limj→+∞ h0

j = 0 such that |I21(h
0
j ,M0)| > ε0

4
for all j. By

(3.7), without loss of generality, we may assume

uh0
j
→ ũ and Duh0

j
→ Dũ a.e. in Ω,

and thus, by (3.6) and (H1), we have

[fE
M0

(x, uh0
j
, Duh0

j
; p)− fE

M0
(x, ũ,Dũ; p)] → 0 a.e. x ∈ Ω. (3.14)

Let

G(ε0,M0, h
0
j) = {x ∈ Ω : |fE

M0
(x, uh0

j
, Duh0

j
; p)−fE

M0
(x, ũ,Dũ; p)| > ε0

16 measn(Ω)
}.

By (3.14), there exists J0 = J(ε0,M0) > 0 such that

measn(G(ε0,M0, h
0
j)) < min{ ε0

16ᾱhM0

, δ1(
ε0

16
), δ2(

ε0

16
,M0)}, ∀j > J0. (3.15)
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As a consequence of (3.6), (3.10), (3.12) and (3.15), we have

|I21(h
0
j ,M0)| 6

∫
eΩE

hM0
∩G(ε0,M0,h0

j )

(ᾱhM0
(1 + |Duh0

j
|p) + |f(x, ũ,Dũ)|) dx

+

∫
eΩE

hM0
∩(Ω\G(ε0,M0,h0

j ))

|fE
M0

(x, uh0
j
, Duh0

j
; p)− fE

M0
(x, ũ,Dũ; p)| dx

6 ε0

16ᾱhM0

ᾱhM0
+

ε0

8
+

ε0

16 measn(Ω)
measn(Ω \G(ε0,M0, h

0
j))

<
ε0

4
, ∀j > J0. (3.16)

This is a contradiction.

We also claim that for any ε > 0, M > 0, there exists a h2(ε,M) > 0 with

h2(·,M) non-decreasing and h2(ε, ·) non-increasing such that

|I22(h,M)| < ε

4
, ∀h ∈ (0, h2(ε,M)). (3.17)

Suppose otherwise. Then, there would be ε1 > 0, M1 > 0 and a decreasing

sequence {h1
j} with limj→+∞ h1

j = 0 such that |I22(h
1
j ,M1)| > ε1

4
for all j. By

(3.7), without loss of generality, we may assume

uh1
j
→ ũ and Duh1

j
→ Dũ a.e. in Ω,

and thus, by (H1), we have

[f(x, uh1
j
, Duh1

j
)− f(x, ũ,Dũ)] → 0 a.e. x ∈ Ω. (3.18)

By (H4) and noticing that by assumption there exists a C(M1) > 0 such that

|uh(x)| 6 C(M1) and |Duh(x)| 6 C(M1) a.e. x ∈ Ω \ Ω̃E
hM1

, ∀h,

we have

|f(x, uh1
j
, Duh1

j
)−f(x, ũ,Dũ)| 6 gC(M1)(x)+|f(x, ũ,Dũ)| ∈ L1(Ω\Ω̃E

hM1
). (3.19)

It follows from (3.18), (3.19) and the dominated convergence theorem [11] that

lim
j→+∞

|I22(h
1
j ,M1)| = 0.

This is a contradiction.
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Now, (3.8) follows as a consequence of (3.11), (3.13) and (3.17) with h(ε,M) =

min{h1(ε,M), h2(ε,M), hM}. This completes the proof. ¤

Theorem 3.1. Let 1 6 p < +∞. Let

Ap
E = {u ∈ Ap : u is partial regular with singular set E(u) ⊂ E}. (3.20)

Let IE
M(·; p) be consistent with the set E, with {Ω̃E

hM
} being the corresponding

admissible finite element covering of E. Then for any ε > 0, there exist a non-

increasing function M(ε) > 0 and a function h(ε,M) > 0 with h(·,M) non-

decreasing and h(ε, ·) non-increasing such that

inf
uh∈Ah(u0h;∂Ω0)

IE
M(uh; p) < inf

u∈Ap
E

I(u) + 2ε, if M > M(ε) and 0 < h < h(ε,M).

(3.21)

Proof. Without loss of generality, we assume that, for any ε > 0, there exists a

ũε ∈ Ap
E such that

I(ũε) < inf
u∈Ap

E

I(u) + ε < +∞. (3.22)

Extending ũε to W 1,p
0 (Rn; Rm) by the extension theorem for Sobolev spaces [1],

recalling that ũε ∈ W 1,∞(Ω\F ; Rm) for any open set E ⊂ F ⊂ Ω, we may assume

that ũε ∈ W 1,∞(Rn\F ; Rm) for any open set E ⊂ F ⊂ Rn. Thus, by the denseness

of smooth functions in W 1,p
0 (Rn; Rm) [1] and the standard finite approximation

theories [6], there exist uε
h ∈ Ah(u0h; ∂Ω0) such that uε

h are uniformly bounded in

W 1,∞(Ω \ Ω̃E
hM

; Rm) for each M and

uε
h → ũε in W 1,p(Ω; Rm), as h → 0.

Hence, from Lemma 3.2 and (3.22), the conclusion of the theorem follows. ¤

With the above preparations, we can proceed to present our main results,

which briefly speaking conclude that a uniformly bounded sequence of finite el-

ement solutions leads to a minimizer (for the case 1 and case 3), while an un-

bounded one provides a minimizing sequence (for the case 2 and case 4).

Theorem 3.2. Suppose that û ∈ W 1,q(Ω; Rm) (1 6 q < +∞) is a minimizer of

I(·) in Ap (1 6 p 6 q) and û ∈ Ap
E (see (3.20)). Let {εj} be a decreasing sequence
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with limj→∞ εj = 0. Let IE
M(·; p) be consistent with the singular set E with {Ω̃E

hM
}

being the corresponding admissible finite element covering of E. Then

(1) There exist a non-increasing function M(ε) > 0 and a function h(ε,M) >

0 with h(·,M) non-decreasing and h(ε, ·) non-increasing such that

inf
u∈Ah(u0h;∂Ω0)

IE
M(u; p) < I(û) + εj, ∀M > M(εj) and ∀h ∈ (0, h(εj,M)), (3.23)

and, for all M > M(εj) and 0 < h 6 h(εj,M), there exist u
εj

h ∈ Ah(u0h; ∂Ω0)

such that u
εj

h are uniformly bounded in W 1,∞(Ω \ Ω̃E
hM

; Rm) for each M and

IE
M(u

εj

h ; p) < I(û) + 2 εj, ∀M > M(εj) and ∀h ∈ (0, h(εj,M)). (3.24)

(2) Let Mj > M(εj), 0 < hj 6 h(εj,Mj). Let ūj ∈ Ahj(u0hj ; ∂Ω0) be min-

imizers of IE
Mj

(·; p) in Ahj(u0hj ; ∂Ω0). Suppose that the sequence {ūj}+∞
j=1 is se-

quentially weakly precompact in W 1,r(Ω; Rm) for some p 6 r 6 q. Then, there

exists a function ū ∈ Ar and a subsequence of {ūj}+∞
j=1, again denoted by {ūj}+∞

j=1,

such that

ūj ⇀ ū in W 1,r(Ω; Rm), (3.25)

and

I(ū) = inf
u∈Ap

I(u) = lim
j→+∞

IE
Mj

(ūj; p). (3.26)

Proof. The conclusion (1) of the theorem follows from a similar argument as in

the proof of Theorem 3.1.

(3.25) is a consequence of the sequentially weakly precompactness of the

sequence {ūj}+∞
j=1, and it follows from

ūj|∂Ω0 = u0hj and u0hj → u0 in Lr(∂Ω; Rm),

that ū|∂Ω0 = u0 and thus ū ∈ Ar ⊂ Ap. Hence, by Corollary 3.1 we have

I(ū) 6 lim inf
j→+∞

IE
Mj

(ūj; p). (3.27)

On the other hand, by (3.23), we have

IE
Mj

(ūj; p) = inf
u∈A

hj (u
0hj ;∂Ω0)

IE
Mj

(u; p) < I(û) + εj,
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and thus

lim sup
j→+∞

IE
Mj

(ūj; p) 6 I(û) = inf
u∈Ap

I(u). (3.28)

This and (3.27) lead to (3.26). ¤

Remark 3.1. When r > 1, the boundedness of {ūj}+∞
j=1 in W 1,r(Ω; Rm) implies

that the sequence is sequentially weakly precompact in W 1,r(Ω; Rm). While in

the case when r = p = 1, if the singular set E is a (n − k)-dimensional locally

Lipschitz continuous manifolds for some k > 1 with measn−k(E) < ∞ and there

exists a non-increasing continuous function ξ : (0, +∞) → (0, +∞) satisfying
∫ 1

0
ξ(ρ) dρ < ∞ such that

|Dūj(x)| 6 ρ1−kξ(ρ), if dist(x,E) > ρ > 0, ∀j, (3.29)

then the sequence {ūj}+∞
j=1 is sequentially weakly precompact in W 1,1(Ω; Rm).

Theorem 3.3. Let 1 < p < +∞. Let {Li}+∞
i=1 be an increasing sequence satisfying

limi→+∞ Li = +∞. Define

Ap(Li) = {u ∈ Ap : |u|p1,p 6 Li}, (3.30)

Ap
h(Li) = {u ∈ Ah(u0h; ∂Ω0) : |u|p1,p 6 Li}. (3.31)

For each i > 0, suppose that ûi ∈ W 1,p(Ω; Rm) is a minimizer of I(·) in Ap(Li)

and ûi ∈ Ap
E (see (3.20)). Let {εj} be a decreasing sequence with limj→∞ εj = 0.

Then, for each i > 0,

(1) There exist a non-increasing function M(ε) > 0 and a function h(ε,M) >

0 with h(·,M) non-decreasing and h(ε, ·) non-increasing such that

inf
u∈Ap

h(Li)
IE
M(u; p) < I(ûi) + εj, if M > M(εj) and 0 < h 6 h(εj,M). (3.32)

(2) Let Mj > M(εj), 0 < hj 6 h(εj,Mj). Let ūi
j ∈ Ap

hj(Li) be minimizers of

IE
Mj

(·; p) in Ap
hj(Li). Then there exist a function ūi ∈ Ap(Li) and a subsequence

of {ūi
j}+∞

j=1, again denoted by {ūi
j}+∞

j=1, such that

ūi
j ⇀ ūi in W 1,p(Ω; Rm), as j → +∞,

and

I(ūi) = inf
u∈Ap(Li)

I(u) = lim
j→+∞

IE
Mj

(ūi
j; p). (3.33)
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(3) There exists a non-decreasing function j(i) satisfying limi→+∞ j(i) = +∞
such that

inf
u∈Ap

I(u) = lim
i→+∞

I(ūi) = lim
i→+∞

IE
Mj(i)

(ūi
j(i); p). (3.34)

Proof. For each i > 0, the conclusion (1) and (2) of the theorem follow from

a similar argument as in the proof of Theorem 3.2. The conclusion (3) of the

theorem follows from (3.30) and (3.33). ¤

Remark 3.2. The Theorem 3.3 can also be extended to cover the case when
p = 1, as long as there are given sequences of sets Bhj ,i ⊂ Ahj

(u0hj
; ∂Ω0) such

that ∪∞j=1Bhj ,i is precompact in A1 for all i and ∪∞i,j=1Bhj ,i = A1.

Remark 3.3. The condition that the parameter αhM
(x) > α1 > 0 a.e. in Ω is

not essential for the convergence theorems. However, in computation, it helps to

guarantee that the numerical solutions are uniformly bounded in Ap. Notice also

that, unlike that in [14], we do not require that αhM
go to infinity as M →∞.

Remark 3.4. The singular set E for an absolute minimizer is usually not known

in advance when the Lavrentiev phenomenon is involved, and thus it needs to be

decided in the process of computation. Fortunately, E is usually contained in the

set where the standard finite element solutions have large derivatives.

4. Numerical results

4.1. The Manià’s example. Consider the problem of minimizing

I(u) ,
∫ 1

0

f(x, u, u′)dx =

∫ 1

0

(u3 − x)2(u′)6dx

in A1 = {u ∈ W 1,1(0, 1) : u(0) = 0, u(1) = 1}, where Ω = (0, 1).

Divide Ω into N equal parts, then h = N−1, denote

xi = i h, i = 0, 1, . . . , N ; Ki = [xi−1, xi], i = 1, 2, . . . , N,

and

Ah = {u ∈ C( [0, 1] ) : u|Ki
is affine,∀ i = 1, 2, . . . , N ; u(0) = 0, u(1) = 1}.

Take 1 6 p < 1.5, let IE
M(u; p) be given by (3.5) and (3.6) with αhM

(x) ≡
αhM

> α1 = 10−4. Since the numerical solutions obtained by the standard finite

element methods have large derivatives near 0 and 1, we take E = {0, 1} and

14



Ω̃E
hM

= {K1, Kh−1
M
} initially. Numerical experiments with various values of the

truncation parameter αhM
show that {1} is not a singular point, while {0} is

indeed a singular point with the Lavrentiev phenomenon. It is interesting to

point out here that the numerical experiments show that the mesh does not need

to be further refined for a given Ω̃E
hM

. Thus by Theorem 3.2, to guarantee the

convergence, αhM
should be chosen so that ‖uhM

‖1,p,K1 are uniformly bounded if

1 < p < 1.5, and ‖uhM
‖1,1,K1 → 0 if p = 1 as is required by the equi-integrability

condition for a precompact set in W 1,1(0, 1). In our numerical experiments, we

use p = 1 and assume that the leading term of the singularity has the form γxs

and evaluate γ > 0 and s ∈ (0, 1) by the least square method using the nodal

values of the numerical solutions {uhM
(xi)}3

i=1 near the singularity. We choose

αhM
so that the l2-error between uhM

and γxs on {xi}3
i=1 is minimized.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

u(
x)

N=10 standard finite element 

N=50 standard finite element 

N=10 truncation method 

N=50 truncation method 

minimizer u(x)=x1/3 

Figure 1. Numerical solutions for h1 = 0.1 and h2 = 0.02.

The numerical solutions for h1 = 0.1 (N1 = 10) and h2 = 0.02 (N2 = 50)

obtained by the standard finite element method and the truncation method with

αh1 = 0.0008 and αh2 = 0.0009 respectively are shown in Figure 1. The conver-

gence behavior of the truncation method is shown in Figure 2.
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Figure 2. Convergence rates of the truncation method for
Manià’s example.

4.2. A 2-D example with continuous Sobolev exponent dependence.

Consider the problem [10] of minimizing the functional

I(u) ,
∫

Ω

f(x, y, u,Du)dxdy

=

∫

Ω

66

(
13

14

)14 (
y

y − 1

)14

|u| 14−3y
y−1 (|u| y

y−1 − x)2(ux)
14dxdy

in Ap = {u ∈ W 1,p(Ω; R) : u(0, ·) = 0, u(1, ·) = 1}, where 1 6 p 6 +∞ and

Ω = (0, 1) × (3
2
, 5

2
). Foss showed [10] that the problem has an amazing property

that the infimum of I(·) in Ap depends continuously on the Sobolev exponent p,

more precisely

inf
u∈Ap

I(u) =





0, 1 6 p < 3
2
;

p− 3
2
, 3

2
6 p < 5

2
;

1, 5
2

6 p,

(4.1)

furthermore he showed that for 1 6 p < 3
2
, the minimizer of I(u) in Ap is given

by û(x, y) = x
y−1

y , while for p > 3
2
, the infimum of the problem is unattainable.
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Moreover, minimizing sequences were analytically constructed [10] for p > 3
2
,

which coincide with û(x, y) = x
y−1

y on the sub-domain (0, 1)× (p, 5
2
).

Given LM and NM , let a rectangular mesh be given by

xM
i =

i

LM

, i = 0, 1, . . . , LM , and yM
j =

3

2
+

j

NM

, j = 0, 1, . . . , NM ,

and let T hM be the triangulation of Ω with hM = h(LM , NM) =

√
L2

M+N2
M

LMNM
given

by dividing each rectangle into an upper triangle and a lower triangle, which are

respectively above and below the diagonal with positive slope. Define

AhM
= {u ∈ C(Ω̄) ∩ Ap : u|K is affine,∀K ∈ T hM}.

0
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0.4
0.6

0.8
1

1.5

2

2.5
0

0.2

0.4

0.6

0.8

1

xy

u(
x,

y)

Figure 3. The standard finite element solution on the 20× 20 mesh.

Numerical experiments show that typical numerical solutions obtained by the

standard finite element methods have large derivatives near x = 0 as is shown

in Figure 3. Hence, we take the singular set E = {0} × [3
2
, 5

2
] and C1(hM) =

C2(hM) =
√

2
2

hM , i.e. Ω̃E
hM

= {(x, y) : (x, y) ∈ [xM
0 , xM

1 ]×[yM
0 , yM

NM
]}. Let IE

M(u; p)

be given by (3.5) and (3.6) with αhM
(x, y) > α1 = 10−2 for all (x, y) ∈ Ω̃E

hM
.

For simplicity, αhM
(x, y) is taken to be piece-wise constant. Assume that the

leading term of the singularity has the form γ(y)xs(y) and evaluate γ(yM
j ) > 0
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and s(yM
j ) ∈ (0, 1), for j = 0, 1, . . . , NM , by the least square method using

the nodal values of the numerical solutions {uhM
(xM

i , yM
j )}3

i=1, j = 0, 1, . . . , NM

near the singular set E, αhM
(K) are so taken that the l2-error between uhM

and

γ(y)xs(y) on (xM
i , yM

j ) for 1 6 i 6 3 and 0 6 j 6 NM is minimized. To further

reduce the complexity, in our computation, we take

αhM
(K) =

{
α1

hM
, if K ⊂ Ω̃E

hM
is an upper triangle;

α2
hM

, if K ⊂ Ω̃E
hM

is a lower triangle.

First, we consider the case when 1 6 p < 3
2
. Our numerical experiments show

that in such a case h = hM is sufficient to guarantee convergence. Take p = 1.2.

For L1 = N1 = 20, the numerical solution uh1 produced by the truncation method

with αh1(K) ∈ {0.3, 2.0} is shown in Figure 4, and the point-wise relative error

between the numerical solution uh1 and the absolute minimizer û is shown in

Figure 5. For L2 = N2 = 40, the point-wise relative error of the numerical

solution uh2 produced by the truncation method with αh2(K) ∈ {0.75, 2.75} is

shown in Figure 6. The convergence behavior of the truncation method for p = 1.2

is shown in Figure 7.
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Figure 4. The numerical solution produced by the truncation
method for p = 1.2 and αh1(K) ∈ {0.3, 2.0} on the 20× 20 mesh.
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Figure 5. Point-wise relative error for p = 1.2 and L1 = N1 = 20.
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Figure 6. Point-wise relative error for p = 1.2 and L2 = N2 = 40.

Next, we consider the case when 3
2

6 p < 5
2
. Take p = 2.0. Recall that in

this case the unattainable infimum of I(·) in Ap is p − 3
2

= 0.5. Our numerical

experiments show that in such a case adaptively refined meshes do produce much

better numerical solutions. Starting from the initial 40× 40 uniform mesh (L1 =

N1 = 40), the numerical solution uh1 produced by the truncation method with
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Figure 7. Convergence rates of the truncation method for p = 1.2.

αh1(K) ∈ {0.75, 2.75} on a refined mesh is shown in Figure 8. As a comparison,

a function, which is taken from an analytically constructed minimizing sequence

given in [10], is interpolated on the same mesh and shown in Figure 9. Figure 10

shows the convergence rates of IE
M(uhM

; p) to the infimum 0.5 and the Lp errors

of [uhM
− û] and [DuhM

−Dû] on y > p with h(K) = hM everywhere except on

the refined area, where the original mesh is evenly refined in the faster variant

direction among x and y by a factor of 10 and h(K) =
√

101
200

hM .

Our numerical experiments clearly show that the numerical solutions uhM

successfully captured the key features of the minimizing sequence, more precisely,

uhM
has a sharp variance near the line y = p = 2.0, the sequence {uhM

} converges

to û(x, y) = x
y−1

y on the sub-domain where y > p = 2.0 and diverges in W 1,q(Ω)

for all q ∈ [1, ∞] (see Figure 11), and hence imply that in this case the infimum

is not attainable, at least if the singular set is limited on x = 0.

Similarly, we can obtain numerical solutions for the case p > 2.5 when the

unattainable infimum is 1.0. A typical numerical solution uh1 produced by the

truncation method on a mesh adaptively refined from the initial 40× 40 uniform

mesh (L1 = N1 = 40) is shown in Figure 12, which again matches well to the

corresponding minimizing sequences given in [10]. The convergence behavior of
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Figure 8. The numerical solution uh1 with αh1(K) ∈ {0.75, 2.75}
for p = 2.0 on a mesh refined from the 40× 40 uniform one.
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Figure 9. The interpolating function of a function taken from
an analytically constructed minimizing sequence for p = 2.0.

IE
M(uhM

; p) = I(uhM
) to the unattainable infimum 1.0 is shown in Figure 10, and

the divergence of {‖uhM
‖1,q} for p > 5

2
and q ∈ [1,∞] is shown in Figure 11.

Remark 4.1. In the case when p > 3
2
, even though Ω̃E

hM
= {(x, y) : (x, y) ∈

[xM
0 , xM

1 ] × [yM
0 , yM

MM
]}, the truncation function takes effect only when y > p,

since on Ω̃E
hM
∩ {(x, y) : y 6 p} the W 1,p-norm of uhM

is unbounded.
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and
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on y > p for p = 2.0.
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Figure 12. A typical numerical solution for p > 2.5.

Remark 4.2. We did not discuss the effect of numerical quadrature which can be

crucial in the computation of singular minimizers. In our computation, for the

1-dimensional problem we used three-point Gaussian quadrature formula and for

the 2-dimensional problem we used seven-point integration rule, which turned

out to be accurate enough. Our numerical experiments show that, for the 2-

dimensional problem, if only the three nodal points are used in the numerical

quadrature the algorithm fails to produce convergent numerical results.
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