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Abstract: The mesh transformation method is applied on a two dimensional elas-
tic crystal model to study the formation of laminated microstructure in austenite-
martensite phase transition when certain external loads are applied. Numerical ex-
periments show that simple laminated microstructures with various volume fractions
and twin width can be obtained by varying the loads. Numerical experiments also
show that second order laminated microstructure with branched needle-like laminates
can also be obtained by certain loads.
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1 Introduction

It is well known that many elastic crystals undergo austenitic-martensitic phase tran-
sitions across the transformation temperature. It is also observed that the phase
transition does not usually take place automatically unless the temperature drops
well below the transformation temperature, it somehow needs to be ”triggered”. An
external load can be applied to induce the phase transition.

For the static problem of austenitic-martensitic phase transitions, the well known
geometrically nonlinear theory given by Ball and James [1, 2] leads to the considera-
tion of minimizing the elastic energy

Fli ) = [ 1(Vu(a), 6(a) ds (1.1)
Q
in a set of admissible deformations
Uug; Q) = {u € W'P(; R™) : u = ug, on 8Q}, (1.2)

where 2 C R™ is a bounded open set with a Lipschitz continuous boundary 952, 9
is a subset of 0€), @ is a given temperature field and n < p < oo, and where the
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elastic energy density f(-, #) is such that there is a unique potential well above the
transformation temperature (6 > 67) and there are several symmetry related potential
wells below the transformation temperature (6 < 6r) [1, 2].

In the present paper, we consider a two dimensional model (n = m = 2)
f(Vu, 8) =2(C, 0), (1.3)

where C = (Vu)TVu € S* = {A € R**" : AT = A} is the right Cauchy-Green strain
tensor and

®(C, 0) = @(Cn — Cy)? — @(Cn — C32)?*|C11 — Cao
+ %(Cll —Cop) +eCh+g(trC —2)2, (1.4)
where
b(0) = (1 + acarctan u( — 07))doe?, (1.5)
o(0) = 201 + 1% 4 arctan (0 — 07))doe, (1.6)
d(0) = (1 + yaarctan (6 — 07))do, (1.7)

and where dg > 0, e > 0 and ¢ > 0 are the elastic moduli, ¢ is the transformation
strain, f7 is the transformation temperature,

2
am_, ©w>0,and vy<1 (1.8)

are the material constants used to reflect the change of elastic moduli and the energy
barriers as the temperature varies.

For properly given boundary data ug, if # < 67, the minimizing sequences of the
elastic energy F'(-; Q) in U(ug; Q) will be essentially consist of finely laminated twins
which are in the energy wells [1, 2]. Many numerical methods have been developed to
compute the laminated microstructure (see [3, 4, 5, 6, 7, 8] among many others). The
mesh transformation method is chosen for our purpose, since it minimized the mesh
dependence which can be a serious problem in the computation of microstructures
[9, 10].

To induce the phase transition, a load term is introduced into the total potential
energy

Fi(u; Q) :/Qf(Vu(x), 9(:3))(1:3—/89 £ uds, (1.9)

where ¢ is a surface tension applied on 0€21, and the minimizing procedure is performed
with certain load ¢ which is initially non-zero and vanishes later on at properly chosen
?time”.
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In section 2, the mesh transformation method is described. in section 3, numerical
experiments and results are given and discussed, and we see that the numerical com-
putations produce laminated microstructures which are qualitatively in agreement
with the physical experiments [11, 12].

2 The mesh transformation method

Consider the problem of minimizing the functional F(u; Q) = [, f(Vu(z))dz in
Ulup; Q). Let Tp(2) be a family of regular triangulations of € [13]. Let

T () = {bijections g: Q@ — Qg € Whe@)", ¢t e (WH>(Q))",
g9(0Q) = 09, and det Vg > 0,a.e. in Q} (2.1)

and
Th(2) = {g € T(Q) : g|k is affine VK € T;(Q)}. (2.2)

Define the functional F'(-,-; Q) by

F(a,g; ©) =/Qf(Vﬂ(i)(Vg(f))_l))deth(fC) dz. (2.3)
By changing the variables

z=g(7), u(z)=1a(g""(z)), (2.4)

we are lead to the following discrete problem

find (@n, grn) € Up(ug o gn; Q) x Tx(2) such that

- : - (2-5)
F(Uh,,gh; Q) = lnf(ﬁ,g)EUh(uoog; Q)xTh(02) F(uag; Q)

(MTM) {
This is the so called mesh transformation method (for the convergence analysis and
other applications of the mesh transformation method, see [6, 7, 14]), which is equiva-
lent to minimizing the elastic energy F'(-; 2) among all finite element function spaces
introduced by % (D) and T (D), in particular on those whose mesh are aligned with
the twin boundaries, and thus is capable of producing much better numerical results
than working on a fixed finite element function space, especially when the volume
fractions are changing and twin boundaries are bending.

3 Numerical experiments and results

Consider the problem of minimizing the total potential energy

Fy(u; ) = /Q F(Vu(), 0(z)) dz — t(u), (3.1)
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in the set of admissible deformations

Up(Q) = {u € WH(Q; R™) : (u(z) — z)|sq_ - n(r/4) = 0,
(u(z) — )|y -(—m/4) =0}, (3.2)

where the reference configuration 2 = R(w/4)D with D = (-2, 2) x (-1, 1), 0Q_ =
R(r/4){x : ©1 = —2, |zo] < 1}, n = R(w/4){x : z1 = 0, z2 = 2}, and where
R(a) is the rotational matrix corresponding to anticlockwise rotation o and n(a) =
(cos(a), sin(a))? (see figure 1), and where the elastic energy density f(Vu(z), 0(x))
is defined by (1.3)-(1.7) with the elastic constants a = 2.02/w, p = 0.25, v = 0,
e = 0.05, dy = 500, e = 3.5 and ¢ = 15, the transformation temperature 7 = 70°C.
In our numerical experiments, we take (x) = 60°C, and we consider bending and
shear loads of which the corresponding potentials ¢(u) are given by

Hu) = ty(u) = 21, (%TW _ arctan (%)) (3.3)

and
o wO - e
w=eto = [ (g =uer) o9
respectively, where £ = R(n/4){z : 21 =2, zo = -1}, ( = R(w/4){z: z1 =2, 12 =
1} and 0Q4 = R(w/4){z : ©1 =2, |z2| < 1} (see figure 1).

n(314) ? 0"

0Q,
Q. = Q +n

n(rv4)

0Q”

Figure 1: The reference configuration of the problem.
Let Tn,m(Q2) = Tx(Q2) be a family of regular triangulations defined by

v m(Q) = Th(Q) = Tn(R(r/4) D) = {R(r/4)K : VK € Tp(D)}, (35)
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where % (D) = SN’M(D), for h = hym = ﬁ\/lu\/.ﬂ + N2 with N >2and M > 2,
is a family of regular triangulations of D introduced by the lines

y= -1+ 2Zi, 0<i<M;

z= -2+ %J, 0<j<N; (3.6)
y= h(z+2)+1— 4k  0<k< M )
y = %($—2)—1+%k, 0<k<W'

The mesh transformation method described in section 2 is applied to discretize
the problem, and the conjugate gradient method is used in the minimizing process. To
avoid the elements being deformed too much and too fast where the initial deformation
gradient is well away from the wells, the mesh transformation map g is kept fixed
in the beginning of the minimizing process until the drop of the elastic energy is
getting lost of its initial momentum. To guarantee that the condition det Vg(z) > 0
is satisfied in the minimization process, it is checked on each element in the linear
search along the direction given by the conjugate gradient method and the step length
is reduced whenever necessary. Remember that our purpose is not to find a minimizer
of Fy(+; Q) in Up (12), the external load is only used to induce the phase transition. So
the external load is subjected to change during the minimizing process and will be
removed after a certain number of iterations when the phase transition is complete and
certain microstructure has formed. Then the minimizing process will be continued on
a refined mesh for the problem with respect to ¢(u) = 0 until convergence is achieved,

i.e. when certain convergence criteria (say |VF|l2 < 107%) is satisfied.

Example 1. Let the initial deformation ug(z) = z, for all z € €, that is the material
is initially in the austenite phase. Take N = 16 and M = 8. A bending load
with ¢, = 2.0 x 1072 is applied. The phase transition is complete in a few hundred
iterations, and a relatively stable simple laminated microstructure is formed in 6000
iterations. Then, we set t; = 0, and the convergence is achieved (|[VF|l2 < 4 x 1077)
in 8374 iterations, and we end up with a simple laminated microstructure with volume
fraction A =~ 0.5. The numerical result is shown in figure 2.

If after the bending load is removed, we apply a shear load with ¢, = 2.0 x 1072,
then the volume fraction of the laminates will change in the minimizing process. In
6000 iterations, the volume fraction changes to A = 0.65. Then, we set t{; = 0, and
continue the minimizing process until the convergence is achieved (|VF|| < 4x 1077
in 29281 iterations). The numerical result is shown in figure 3, where we can see that
the ratio of the volume fractions of the two martensite variants is about 2 : 1.

In our numerical experiments, we found that, at 60°C, a bending load with
strength ¢, < 1.257* is not strong enough to induce the austenite-martensite phase
transition, while a bending load with strength ¢, > 0.25 is too strong to produce a
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Figure 3: A simple laminated microstructure obtained by bending and shear.

well ordered microstructure. For the bending load of strength #, € (2.0 x 1074, 0.1),
different patterns of microstructures can be produced. Typically, for sufficiently large
and sufficiently small ¢, second order laminated microstructures can be produced,
while for ¢, around 2.0 x 102 if there are sufficiently many iterations before the load
is removed, a simple laminated microstructure is produced. We also found in our
numerical experiments that the application of the mesh transformation method is
essential to obtain a well formed second order laminated microstructure.

Example 2. As in example 1, let the initial deformation uy(z) = =, for all z € Q.
Take N = 32 and M = 16. A bending load with #;, = 1.5 x 102 is applied. The
phase transition is complete in a few hundred iterations, and a second order laminated
microstructure is formed in 4500 iterations (see figure 4).

Then, we set t, = 0 and refined the mesh to N = 128 and M = 64, and continue
the minimizing process. After 5500 iterations, we obtain a well formed second order
laminated microstructure as shown in figure 5. In further 185000 iterations (||VF||2 <
2 x 107°%), branched needles are formed near the interface of the two laminates (see
figure 6).
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Figure 4: A second order laminated microstructure obtained by applying bending
load with ¢, = 1.5 x 1072 in 4500 iterations.

Figure 5: A second order laminated microstructure obtained after the bending load
tp, = 1.5 x 1072 is removed (in 5500 iterations).

Figure 6: A second order laminated microstructure with branched needles obtained
for example 2 (in further 185000 iterations).
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Example 3. As in the above examples, let the initial deformation ug(z) = z, for
all z € . Take N = 32 and M = 16. A bending load with #, = 2.75 x 1072 is
applied. A second order laminated microstructure is formed in 500 iterations (see
figure 7). Then, we set t, = 0 and refined the mesh to N = 128 and M = 64, and
continue the minimizing process. After 2300 iterations, we obtain a well formed second
order laminated microstructure as shown in figure 8. In further 145000 iterations

(IVF|2 < 2 x 1073), branched needles are formed near the interfaces of the adjacent
laminates (see figure 9).

Figure 7: A second order laminated microstructure obtained by applying bending
load with ¢, = 2.75 x 10~2 in 500 iterations.

Figure 8: A second order laminated microstructure obtained after the bending load
tp = 2.75 x 1072 is removed (in 2300 iterations).

4 Discussions

Since the surface energy, or strain gradient, is not considered in the elastic energy
model used above, we face the fact that the energy minimizing sequences lead to finer
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Figure 9: A second order laminated microstructure with branched needles obtained
for example 3 (in further 145000 iterations).

and finer oscillations (microstructures) [1, 2], and thus what we obtain in computations
are local minimizers in which the laminates’ width scale is decided by the initial mesh
size h (generally of order O(h/2) [8]). As a special case, when the mesh is aligned
with the laminates, the laminates’ width scale is of the same order as that of the
initial mesh size h. By considering the surface energy, we can compute the size of
laminated microstructures [14].
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