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Abstract

Numerical studies of multiple voids growth are carried out on a nonlinear

hyper-elastic 2D cylinder subjected to an expansionary boundary condition.

For certain compressible hyper-elastic material, our numerical experiments

on the case of two voids revealed that both the positions and initial sizes of

the pre-existing voids can have significant effects on the final grown configu-

ration. We found that, for the initial voids of macroscopic scale both factors

affect the final result in a continuous manner and two grown voids of com-

parable size are commonly observed, and for the initial voids of mesoscopic

scale the size effect is no longer continuous and one of the grown voids is

always found significantly greater than the other, while for the initial voids

of microscopic scale the position effect is essentially decisive on the voids

growth and the center positioned void always grows much more rapidly. We

also found that the size and position effects are stronger if the material is

less compressible, or the load, with the smaller principle stress in alignment

with the two voids, is less symmetric.
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1 Introduction

Void growth and cavitation phenomenon has long been considered as a key element

in studying fracture mechanism. Early studies focused on the growth of a single

void. In 1958, Gent and Lindley [2] had explained the cavitation phenomenon

as the dramatic enlargement of small pre-existing voids by analyzing a infinite

incompressible elastic shell. Similar studies on elastic-plastic materials can be found

in [9, 12]. In 1982, Ball [1] analyzed the radially symmetric solution for a round ball

configuration and found that a cavity can also be created in the originally intact

body in such a way that the total stored energy of the elastic body can be most

efficiently reduced. In 2002, Sivaloganathan [13] had introduced the configurational

force to the cavitation, and found that, under certain hypotheses, the center is the

unique energetically favorable cavitation point for the standard cavitation problem

defined on a round ball [1]. This result together with its theoretical hypotheses has

been numerically verified recently by Lian and Li [5].

Because of the obvious great interest both in theory and applications, the prob-

lem of the growth and interactions of multiple pre-existing voids has been attracting

attentions of researchers in various fields for decades. The problem is relatively bet-

ter studied by developing cell models for elastic-plastic materials with periodically

distributed pre-existing voids. Firstly came the results on the position effect of the

voids distribution. In 1972, Needleman [11] analyzed a square array of cylindrical

voids. In 1977, Gurson [3] considered a spherical volume with a concentric spher-

ical void. Cylindrical cell models have also been used by Tvergaard [14], [16] in

studies of plastic flow localization. The qualitative effect of two size scales of voids

was studied in a cell model in 1982 by Tvergaard [15], in which large scale voids

are represented by holes with specified size and spacing and small-scale holes are

represented by a porous material. In 1996, the size effect was studied by Tver-

gaard [17] for an elastic-plastic model containing periodically distributed voids of

two different sizes. He showed that: for a rather large void volume fraction the

voids’ interaction leads to relatively more rapid growth of the smaller voids; while

in a range of smaller void volume fractions, the trend is opposite; and if the initial

void volume fraction is very small, the effect of the voids’ interaction dies out and

the voids will grow in the same speed.

There are also studies of multiple voids growth and interactions in elastomers

(c.f. [10]). More recently, there are some subtle studies on the cavitation criterion

and onset-of-cavitation surface of compressible and incompressible hyper-elastic
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elastomers under nonsymmetric load [6, 7, 8]. Generally speaking, the numerical

study of voids growth with large growth rate for elastic materials is much harder,

because the deformation field is much less regular than that of the plastic or elastic-

plastic materials, in fact, both the first and second order deformation gradients are

singular on the surface of cavities and nearly singular when the voids growth ratio

is very large, which is often the case for the growth of very small pre-existing

voids. Another difficulty, as was pointed out in [18, 4, 5], is that the standard finite

elements such as linear and bilinear conforming finite elements may typically fail

to provide an orientation preserving approximation to a large ratio void growth. In

2010, Xu and Henao [18] developed a non-conforming finite element method for the

cavitation problem and demonstrated numerical examples of multiple grown voids.

In 2011, Lian and Li [5] developed an iso-parametric finite element method and

made an initiative study on the size effect for multiple pre-existing macroscopic

voids, which basically showed that the growth of a sufficiently large pre-existing

void can significantly suppress the growth of other much smaller pre-existing voids.

The numerical evidences also indicate that, while the growth of a single pre-existing

small void follows a simple principle that it tends to grow bigger if its initial size is

increased or it is moved closer toward the center of the ball, the positions and initial

sizes of multiple pre-existing voids can interact and compete in a more complicated

way.

In the present paper, we will elaborate the sophisticated interacting and com-

peting relationship between the position and size effects for a two voids growth

problem defined on a nonlinear compressible hyper-elastic 2D cylinder subjected

to an expansionary boundary condition. We will see that, for the initial voids of

macroscopic scale both factors affect the final result in a continuous manner and

two grown voids of comparable size are commonly observed, and for the initial

voids of mesoscopic scale the size effect is no longer continuous and one of the

grown voids is always found significantly greater than the other, while for the ini-

tial voids of microscopic scale the position effect is essentially decisive on the final

grown configuration. We will also see that the size and position effects are stronger

if the material is less compressible, or the load, with the smaller principle stress in

alignment with the two voids, is less symmetric, and vice versa. It is worth men-

tioning here that our algorithm, which is based on the quadratic iso-parametric

finite element method developed in [5] and a meshing technique adopted in this

paper, can successfully compute growth of pre-existing voids as small as 10−9 in

diameter with the corresponding void growth rate reaching the level of 109, and
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this, as far as we know, make it possible for the first time to numerical study 2D

micro-voids’ extremely large growth and interactions in nonlinear elasticity.

The rest of the paper is organized as follows. In section 2, we simply introduce

the mathematical model for the voids growth problem. The numerical experiments

and results are presented and discussed in section 3. The concluding remarks are

made in section 4.

2 Problem Formulation and Discretization

Let Ω = {x : |x| < 1} ⊂ R2 being the unit ball in R2, let xi ∈ Ω, i = 0, . . . , n, be

n+ 1 distinct given points, and let 1 ≫ εi > 0, i = 0, . . . , n be given real numbers

which satisfy Bεi(xi) = {x : |x − xi| < εi} ⊂ Ω and Bεi(xi) ∩ Bεj(xj) = ∅ for all

i, j ∈ {0, . . . , n} and i ̸= j. Let the stress free reference configuration of an elastic

2D multi-voids cylinder be given by Ωε = Ω \
n∪

i=0

Bεi(xi) ⊂ R2, where Bεi(xi) ⊂ Ω,

i = 0, . . . , n, are the pre-existing voids of diameters ε = {εi}ni=0 centered at specified

points {xi}ni=0.

Denote the initial and current position of material points by x and u(x) re-

spectively, and denote the deformation gradient ∇u(x) by F . For simplicity, we

consider the elastic stored-energy density function W : M2×2
+ → R of the form [13]

W (F ) =
2

3
|F |

3
2 +

β

2
(detF − 1)2 + (detF )−1, (1)

where M2×2
+ denotes the real 2 × 2 matrices with positive determinant and | · |

denotes the Euclidean norm (|A|2 = trace(ATA)), β ∈ (0, ∞) is the bulk modulus

which reflect the compressibility of the material. In general the material is less

compressible for greater β. The elastic energy density (1) is polyconvex and satisfies

lim
detF→∞

W (F )/ detF = +∞ and lim
detF→+0

W (F ) = +∞,

which are the important features shared by many elastomer materials. The stress

of the material at deformation gradient ∇u can be calculated by

DFW (∇u) =
∣∣∇u

∣∣−1/2∇u+
(
β(det∇u− 1)− (det∇u)−2

)
adj∇uT, (2)

where adjA is the adjoint matrix of A. To better understand the mechanical

response of the material when thin wall structure forms between grown voids, we

show in Figure 1(a) and 1(b) the stress-strain relationship of the material with
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the bulk modulus β = 1 and for special deformations with diagonal deformation

gradients ∇u = diag(d/u22, u22), where σij ≡ (DFW (∇u))ij and uij ≡ ∂jui. In

particular we have that, for u22 sufficiently large, when d = det∇u ≈ the root

of βd3 − βd2 − 1 = 0 (≈ 1.5 if β = 1, and ≈ 1.1 if β = 10), the material is

approximately subject to uniaxial tension, which is the case on the surface of a

grown void where tension free boundary condition is proposed.
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Figure 1: Stress-strain relations of the material in special uniaxial cases.

The specific problem we consider is to minimize the total elastic energy

E(u) =

∫
Ωε

W (∇u(x))dx (3)

in a set of admissible deformations

U =
{
u ∈ W 1,1(Ωε;R2) is a bijection : u|Γ0 = λx, det∇u > 0 a.e.

}
, (4)

where Γ0 = ∂Ω = {x : |x| = 1} is the expansionary boundary and λ > 1 is the

expansion rate.

The corresponding mixed displacement/traction boundary value problem of the

Euler-Lagrange equation is :

div(DFW (∇u)) = 0, in Ωε, (5)

DFW (∇u)ν = 0, on ∪n
i=0 Γi, (6)

u(x) = λx, on Γ0, (7)

where ν denotes the unit exterior normal with respect to Ωε, Γi = ∂Bεi(xi), i =

0, · · · , n, are the boundaries of the pre-existing voids.
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One of the key element we use to numerically solving the Euler-Lagrange equa-

tion (5) is to combine the quadratic iso-parametric finite element discretization [5]

with a properly designed meshing technique. This is inspired by the fact that a

mesh, which is locally radially symmetric around each small pre-existing void and

consists of curved triangular elements established according to the corresponding

local polar coordinates of each void, plays a crucial role in accommodating locally

large expansion dominant deformations [4, 5]. In our numerical experiments, we

synthesized an Easymesh produced mesh and a locally radially symmetric mesh

[4] around each pre-existing void to obtain a cavitation accommodating mesh with

quadratic triangular elements on Ωε in the following way:

• First, we use the Easymesh to produce a mesh J ′ on Ωε̂ with relatively

larger voids. Then, we transform the straight sided triangular elements close

to ∪n
0Γi into quadratically curved ones according to the corresponding polar

coordinates of Γi, i = 0, 1, . . . , n [5]. Figure 2(a) illustrates an example of

such a mesh with x0 = (0.0, 0.0), x1 = (0.3, 0.0) and ε̂0 = ε̂1 = 0.1.

• Next, we introduce a few layers of locally radially symmetric mesh Ji with

quadratically curved triangular elements consistent with the local polar co-

ordinates on the circular ring region {x : εi ≤ |x− xi| ≤ ε̂i} around the ith

void, i = 1, · · · , n.

• The final mesh is defined as J = J ′ ∪(
n∪

i=0

Ji). Figure 2(b) shows an example,

which has two layers of local polar coordinates consistent quadratic mesh

added for each void.

We remark here that, when the growth ratio is very large, which is typical if

the pre-existing void is small, the above technique is necessary for our algorithm to

guarantee that, on a mesh with reasonably many degrees of freedom, the obtained

deformation u is orientation preserving, or equivalently det∇u > 0, which is a

very important physical requirement yet is often ignored by many researchers in

the computation of voids’ growth. Recently, it is shown in [18] that the linear finite

element method (in fact any straight sided finite element method) is computation-

ally impractical to achieve the orientation preserving property in the neighborhood

of voids with very large growth ratio.
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(a) A mesh J ′ produce by Easymesh.
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(b) The final mesh J .

Figure 2: A cavitation accommodating mesh for two voids.

3 Numerical Experiments and Results

We focus on the case of two pre-existing voids. In most of our numerical experi-

ments, we consider radially symmetric expansion with expansion rate λ = 2, and

the bulk modulus is set to β = 1. First, we will investigate the pure position

effect in Section 3.1 by considering two pre-existing voids of equal size. Then, we

will study in Section 3.2 the pure size effect by positioning the two pre-existing

voids symmetrically with respect to the origin. In Section 3.3, we will see how

the position and size effects compete in the voids’ growth on different initial size

scales of the pre-existing voids. Some typical evolution processes of voids’ growth

and interactions are shown in Section 3.4. The effect of compressibility and loss of

radial symmetry of the expansion will be examined in Section 3.5.

3.1 Pure Position Effect

Let x0 = (−0.4, 0), x1 = (z, 0), ε0 = ε1 = 0.01. Some typical numerical results are

illustrated in Figure 3. Our numerical experiments show that, if |z| > 0.4 the void

0 grows faster, otherwise the void 1 grows faster, and in particular, if z ∈ (−0.4, 0]

the grown void 1 can overwhelmingly dominate the final configuration as shown in

Figure 3(a) and Figure 4(a), where vi represents the final volume of the grown void

i, i = 0, 1.

The numerical results indicate that, while the void closer to the center of the

ball, which is the energetically most favorable cavitation point, tends to grow faster,
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(a) x1 = (0.0, 0).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) x1 = (0.4, 0).

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) x1 = (0.69, 0).

Figure 3: Pure position effect for two pre-existing voids with x0 = (−0.4, 0).
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(b) Pure size effect.

Figure 4: Pure position and size effects on the final volumes’ ratio.

it is the relative position that dramatically affects the final configuration. In fact,

the numerical experiments show that the growth of the void positioned at an en-

ergetically less favorable cavitation point will be more severely suppressed if it is

approached by the other void from the energetically more favorable direction. In

other words, the interaction between the two voids is always in favor of the one

closer to the center of the ball, and the final volume ratio of the two grown voids

is getting increasingly greater as the initial distance between the two pre-existing

voids is decreased.

3.2 Pure Size Effect

Let x0 = (−0.4, 0), x1 = (0.4, 0), and ε0 = 0.01, we will see how the size ε1

affect the growth of the two symmetrically positioned pre-existing voids. Some
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typical numerical results on the final configuration are illustrated in Figure 5. Our

numerical experiments show that, for symmetrically positioned two pre-existing

voids, the relatively greater initial size leads to faster growth of the corresponding

void. In fact, as is shown in Figure 4(b), the final volume ratio v1/v0 of the two

grown voids is a super linear increasing function of the initial size ratio ε1/ε0.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a) ε1 = 0.01.
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(b) ε1 = 0.02.
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(c) ε1 = 0.08.

Figure 5: Pure size effect for x0 = (−0.4, 0), x1 = (0.4, 0), ε0 = 0.01.

3.3 Position vs Size, from Macro to Micro Scales

In this subsection, we elaborate the competitive relationship between the position

and size effect on different size scales. We use the terms macro, meso and micro for

different length scales appeared in the numerical experiments, which do not nec-

essarily represent the real physical length scales. For simplicity, we set x0 = (0, 0)

and x1 = (z, 0). However, the phenomenon revealed by the numerical experiments

can generally be observed if |x0| < |x1| and |x0| ≪ |x1 − x0|.
We start with the macroscopic scale when 0.1 ≥ εi ≥ 0.04, i = 0, 1. Some typical

numerical results for the case of macroscopic scale are illustrated in Figure 6(a) and

Figure 7(a). Our numerical experiments show that, in the macroscopic case, the

volumes of the two grown voids are generally comparable and depend continuously

on the positions and initial sizes of the pre-existing voids, and the volume ratio

v1/v0 is approximately a cubic function of the size ratio ε1/ε0.

Next, we consider the mesoscopic scale when 10−4 ≤ ε0 ≤ 10−2. Some typical

numerical results for the case of mesoscopic scale are illustrated in Figure 6(b), Fig-

ure 6(c) and Figure 7(b). Our numerical experiments show that, in the mesoscopic
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(b) ε0 = 0.01, ε1 = 0.01
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(c) ε0 = 0.01, ε1 = 0.02

Figure 6: The grown voids with typical initial sizes (z = 0.4).
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(b) Mesoscopic scale, ε0 = 0.01.

Figure 7: Typical size effects on different scales (z = 0.4).

case, there exists a critical size εcri1 (ε0, z) such that

v1
v0

≫ 1, if ε1 > εcri1 ;

≪ 1, if ε1 < εcri1 ,
(8)

and (see Table 1)

v1ε
2
0

v0ε21

> 1, if ε1 > εcri1 ;

< 1, if ε1 < εcri1 ,
(9)

In other words, on mesoscopic scale, the volume ratio v1/v0 is no longer a continuous

function on the size ratio ε1/ε0, although there might still be two observable grown

voids, one of them is always much bigger than the other (see (8)), and we see in (9)

that, if ε1 < εcri1 , the growth is in favor of the pre-existing void closer to the center

of the ball, and the size effect takes in dominant charge only when ε1 > εcri1 . In fact,

one can generally observe a sharp switch from a centric dominant solution as shown
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in Figure 6(b) to an eccentric dominant solution as shown in Figure 6(c) when ε1

increasingly passes the critical value εcri1 . This is in contrast to the continuous

change in the macroscopic case (see Figure 8(a) for a comparison).

Last but not least, we consider the case of microscopic case when ε0 ≤ 10−4.

Our numerical experiments show that, similar as the mesoscopic case, there exists

a critical size εcri1 (ε0, z) such that (see Figure 8(b))

v1
v0

≫ 1, if ε1 > εcri1 ;

≪ 1, if ε1 < εcri1 ,
(10)

however, in microscopic case, the growth is always in favor of the pre-existing void

closer to the center of the ball (see Table 1), that is

v1ε
2
0 < v0ε

2
1, ∀ε1. (11)

ε0
v1ε

2
0

v0ε21
(ε1 ↗ εcri1 )

v1ε
2
0

v0ε21
(ε1 ↘ εcri1 )

1.0e-02 3.3986e-02 4.8414e+00

1.0e-03 9.9515e-04 7.7094e+00

1.0e-04 1.4906e-05 1.4584e-01

1.0e-05 1.5485e-07 2.3003e-03

1.0e-06 1.5259e-09 2.2172e-05

Table 1: The ratio of the growth speed of the two voids across εcri1 (z = 0.4).
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Figure 8: The behavior of v1/v0 as a function of ε1/ε0 for various ε0 (z = 0.4).

Our numerical experiments also show that the critical size εcri1 (ε0, z) is a con-

tinuous function and is a monotonically increasing function for both variables (see
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Figure 9(a) and Figure 9(b)). Figure 9(a) shows εcri1 (ε0, ·) as functions of z for

various fixed ε0, where we see that, for ε0 ≤ 10−4, εcri1 (ε0, ·) is almost independent

of ε0. More precisely, we see in Figure 9(b) that,

lim
ε0→0

εcri1 (ε0, z) = εcri1 (∞, z) > 10−3, if z ≥ 0.3. (12)

This indicates, in particular, if both of the pre-existing voids are sufficiently small,

only the centric dominant solution can be observed.
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Figure 9: εcri1 (ε0, z) as a function of ε0 and z.

3.4 Evolution Process of Voids’ Growth and Interactions

Even though the problem we solve is a static one, our iterative scheme is essentially

based on a weighted gradient flow [5], which follows a quasi-static path leading to

the equilibrium of the system. Hence, the iteration process, which approximately

traces the quasi-static evolution process of the voids’ growth and interactions, could

help us to better understand the numerical solution and corresponding physical pro-

cess. In presenting the numerical results of the iteration process, we chose to omit

the possibly oscillatory initial steps which are far away from a quasi static path,

and focus on the behavior of the process when it is approaching an equilibrium.

Figure 10 illustrates the evolution process of the formation of the thin wall

structure in the macroscopic case shown in Figure 6(a). In Figure 10(a), the fi-

nal (yet representative during the iteration process) mesh distribution on a middle

part of the thin wall is displayed, where we see that the deformed mesh is severely

stretched in one direction and compressed in another, but otherwise quite regularly
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Figure 10: The evolution process of a typical thin wall structure.

distributed on the thin wall. Figure 10(b) shows the evolution and convergence be-

havior of the thickness Tw of the thin wall, where It is the number of iterations.

Figure 10(c) shows the evolution process of the determinant of the average deforma-

tion gradient dK = det∇u|K on a typical element (marked by K in Figure 10(a)),

we see that dK converges to a value close to 1.5 as expected. Figure 10(d) and 10(e)

show the evolution process of the corresponding strain and stress on the element

K, and the final state is obviously close to a uniaxial tensile case. Figure 10(f)

demonstrates the path of the stress-strain relation during the evolution process,

where the numerical result follows the iteration process and the theoretical result

is calculated by setting in the formula (2) ∇u = diag(dK/u22, u22) with dK taking

values at corresponding iterations.

Figure 11(a) and 11(b) show typical evolution processes of the growing vol-

umes of pre-existing voids in macroscopic and mesoscopic scales respectively, while

Figure 11(c) and 11(d) demonstrate the evolution processes of the corresponding

volume ratios v1/v0. We see in Figure 11(a) and Figure 11(b) that the evolution

process can be divided into two stages. At the initial stage of evolution, the two
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Figure 11: Typical evolution processes of v0, v1 and v1/v0.

pre-existing voids grow pretty much independently at almost the same speed. The

nearly independent growth stage continues until the volumes reach certain level,

then the interaction between the two growing voids starts to play an obvious and

decisive role. At the interaction stage, one of the void is forced to grow in much

slower speed (see Figure 11(a)), and even start to shrink rapidly (see Figure 11(b)).

The interaction stage can also be characterized by the rapid change of the volume

fractions (see Figure 11(c) and 11(d)).

3.5 Effect of Compressibility and Unsymmetry of Load

As shown in [6, 7, 8], the material compressibility and unsymmetry of load play

interesting roles in defect growth and onset-of-cavitation surfaces in elastomeric

solids. We expect that they will also affect the interactions between the growing

voids, and thus affect somehow the size and position effects. An intuitive ob-

servation suggests that, as the material becomes less compressible, the thin wall

structure between the two growing voids must become thinner to cope with the
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drop of volume increase on the surfaces of grown voids (see Section 2), hence the

interactions between fast growing voids must become stronger and thus sharpened

the size and position effects. Our numerical experiments show that this is indeed

the case. On the other hand, the effect of unsymmetry of load is more subtle, our

numerical experiments show that the unsymmetry of load can weaken or strengthen

the interactions between the grown voids if the load is applied in different directions

with respect to the two voids.

Figure 12 show some typical numerical results of pure size effect with the ex-

pansion rate λ = 2 and bulk modulus β = 9 (compared with Figure 5 where β = 1).

Figure 13(a) and 13(b) show how the volume ratios of pure size and pure position

effects are affected when the bulk modulus β varies. It is clearly seen that, in either

case, the final voids’ ratio v1/v0 tends to change faster for greater β.
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(c) ε1 = 0.08.

Figure 12: The size effect for x0 = (−0.4, 0), x1 = (0.4, 0), ε0 = 0.01, β = 9.0.
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Figure 13: The influence of bulk modulus on the position and size effects.
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Figure 14 show the size effect on different scales for various bulk modulus β

(see also Figure 7(b) for β = 1). We see that the critical size εcri1 (ε0, z, β) (here

ε0 = 0.01, z = 0.4) is a decreasing function of the bulk modulus β, and we have

εcri1 (0.01, 0.4, β) ≈ εcri1 (0.01, 0.4, 5) ≈ 0.0135 for all β ≥ 5.
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Figure 14: The size effect with ε0 = 0.01 and z = 0.4 for various β.
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(c) λh = 2.2, λv = 1.8182, β = 1.
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(d) λh = 1.8182, λv = 2.2, β = 1.

Figure 15: The position effect for x0 = (−0.4, 0), x1 = (0.0, 0), ε0 = ε1 = 0.01.
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Figure 15 and 16 show some typical numerical results of the position and size

effects for two horizontally aligned voids’ growth under ellipse shaped expansion

boundary conditions, where λh and λv are the horizontal and vertical expansion

rates along the two principle axes respectively. For the sake of comparison with the

symmetric case (see Figure 3(a) and 5(b)), λh and λv are set to satisfy λhλv = 4,

and β is set to 1. It is seen that, both the position and the size effects are clearly

weakened if the two voids are aligned with the long axis of the ellipse, while it is

obviously strengthened if the alignment axis is the short one.
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(c) λh = 2.2, λv = 1.8182, β = 1.
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Figure 16: The size effect for x0 = (−0.4, 0), x1 = (0.4, 0), ε0 = 0.01, ε1 = 0.02.

4 Summary

For a void growth problem defined on a 2D nonlinear hyper-elastic ball, which has

two pre-existing voids and is subjected to an expansionary boundary condition,

it is found that both the positions x0, x1 and sizes ε0, ε1 of the two pre-existing
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voids, namely void 0 and void 1, have significant impact on the final configuration.

Our numerical experiments indicate that, for fixed positions, the size effect can

be classified into three length scales, which are termed as macroscopic, mesoscopic

and microscopic scales. The numerical results are summarized as follows.

In the macroscopic scale, when both of the voids are big, the two voids will grow

in comparable speed, and the volume ratio of the grown voids depend continuously

on the positions and sizes of the two pre-existing voids. In this case, there are

always two grown voids of comparable size in the final configuration.

However, when the void much closer to the center of the ball is sufficiently small,

the dependence of the growth speed and volume ratio on the initial positions and

sizes are no longer continuous, and one of the grown void will have much greater

volume than the other in the final configuration. This includes the mesoscopic and

microscopic cases, when we assume that |x0| < |x1| and |x0| ≪ |x1 − x0|.
In the microscopic scale, when ε0 is very small, the void 0, which is much closer

to the center of the ball, will always grow in faster speed, and there exists a critical

size εcri1 (ε0,x0,x1), which is usually much greater than ε0, such that, if ε1 is less

than the critical size, then the final configuration will be dominated by the void 0,

and vice vera. In particular, if the two pre-existing voids are both very small, then

the final configuration will be dominated by the grown void 0.

In the mesoscopic scale, when ε0 is somewhere between the macroscopic and

microscopic scales, there exists a critical size εcri1 (ε0,x0,x1), which is greater than

but usually in the same order as ε0, such that, if ε1 is less than the critical size,

then the void 0 will grow faster and the final configuration is dominated by the

grown void 0, and vice vera.

As the initial size of the pre-existing void decreases from the macroscopic scale

to the microscopic scale, the tensile strain level on the surface of the grown void

increases sharply. In particular, we see that, in the microscopic scale, the tensile

strain level on the surface of the grown void 0 is always much higher than that of

the grown void 1. Thus, in the growing process, it is more likely that the corre-

sponding stress on the growing void 0 will first exceed whatever fracture criterion

of a practical elastic material.

The size and position effects are obviously sharpened as the bulk modulus β

increases. The effect of unsymmetry of load is more subtle. Our numerical experi-

ments show that the size and position effects are weakened if the greater principle

stress is aligned with the two voids, and the effects are strengthened if the smaller

principle stress is the axis of alignment.

19



Acknowledgment: The research was supported by the NSFC projects 10871011,

11171008 and RFDP of China. The AFEPack is used in our computation for the

implement of the isoparametric finite element, we are grateful to Professor Ruo

Li of Peking University to help us on the use of the powerful software. We would

also like to thank the reviewers for their valuable comments and suggestions, which

helped greatly in improving the quality of our paper.

References

[1] J. M. Ball. Discontinuous equilibrium solutions and cavitation in nonlinear

elasticity. Philosophical Transactions of the Royal Society of London. Series

A, Mathematical and Physical Sciences, 306:557–611, 1982.

[2] A. N. Gent and P. B. Lindley. International rupture of bonded rubber cylinders

in tensions. Proceedings of the Royal Society. Series A, 249:195–205, 1958.

[3] A. L. Gurson. Continuum theory of ductile rupture by void nucleation and

growth: Part i—yield criteria and flow rules for porous ductile media. Journal

of Engineering Materials and Technology, 99(1):2–15, 1977.

[4] Yijiang Lian and Zhiping Li. A dual-parametric finite element method for

cavitation in nonlinear elasticity. Journal of Computational and Applied Math-

ematics, doi: 10.1016/j.cam.2011.05.020, 2011.

[5] Yijiang Lian and Zhiping Li. A numerical study on cavitations in nonlin-

ear elasticity - defects and configurational forces. Mathematical Models and

Methods in Applied Sciences, doi: 10.1142/S0218202511005830, 2011.

[6] Oscar Lopez-Pamies. Onset of cavitation in compressible, isotropic, hypere-

lastic solids. Journal of Elasticity, 94:115–145, 2009.

[7] Oscar Lopez-Pamies, Toshio Nakamura, and Martin I. Idiart. Cavitation in

elastomeric solids: I—a defect-growth theory. Journal of the Mechanics and

Physics of Solids, 59:1464–1487, 2011.

[8] Oscar Lopez-Pamies, Toshio Nakamura, and Martin I. Idiart. Cavitation in

elastomeric solids: II—onset-of-cavitation surfaces for neo-hookean materials.

Journal of the Mechanics and Physics of Solids, 59:1488–1505, 2011.

20



[9] F.A. McClintock. A criterion for ductile fracture by growth of holes. Journal

of Applied Mechanics, 41:964–970, 1968.

[10] J.C. Michel, O. Lopez-Pamies, P. Ponte Castañeda, and N. Triantafyllidis. Mi-
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