
SIMULTANEOUS NUMERICAL APPROXIMATION OF
MICROSTRUCTURES AND RELAXED MINIMIZERS

ZHIPING LI

SCHOOL OF MATHEMATICAL SCIENCES, PEKING UNIVERSITY,
BEIJING 100871, P.R.CHINA

Abstract. The problem of minimizing multiple integral functionals with
nonquasiconvex integrands is considered. A numerical method, which is
based on an alternative minimizing problem to the relaxed problem and thus
uses no quasiconvex envelope of the integrands nor its numerical approx-
imation in the computation, is introduced to approximate simultaneously
the highly oscillating minimizing sequences, or in other words microstruc-
tures, and the minimizers of the corresponding relaxed problem. Existence
and convergence of the discrete solutions are proved and an error estimate
is obtained. A numerical example is given.

1. Introduction

In many physical problems, for example in material sciences and nonlinear

elasticity, one is lead to consider problems of minimizing nonquasiconvex ener-

gies [1, 2], or in other words, the problem of minimizing an integral functional

F (u) =

∫

Ω

f(x, u(x),∇u(x)) dx (1.1)

with nonquasiconvex integrand f : Ω×Rm×Rn×m → R in a set of admissible

functions

A = {u ∈ W 1,p(Ω; Rm) : u = u0, on ∂Ω}. (1.2)

It is well known that in general such problems fail to have a solution [3, 4, 5].

However, the minimizing sequences of F (·) in A, which consist of finer and

finer oscillations, can converge in the sense of Young measures and lead to

microstructures [1, 6, 7]. The minimizing sequences of F (·) in A are also
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found to be closely related to the minimizers of the relaxed problem, which

is the minimizing problem obtained by replacing the original integrand f by

its quasiconvex envelope, that is the greatest quasiconvex function less than

or equal to f [5, 7, 8]. In fact, under certain general hypotheses, it is proved

that the limit of every weakly convergent minimizing sequence of F (·) is a

minimizer of the relaxed problem and vice versa [5, 7, 8, 11].

It is extremely difficult in practice to compute such highly oscillating min-

imizing sequences by a numerical method based on a straight forward dis-

cretization of (1.1) and (1.2). An alternative is to make use of the relationship

between the microstructure and the relaxed minimizer, that is the minimizer of

the relaxed problem. Many efforts have been made on the numerical methods

for approximating microstructures for multiwell problems under proper affine

boundary conditions (see for example [12, 13, 14, 15, 16] among many others).

Efforts have also been made on the numerical methods for the computation of

microstructures for general problems under nonlinear boundary conditions by

making use of the numerical solutions to the relaxed problem [17, 18].

The main purpose of the present paper is to develop, for the problem of min-

imizing an integral functional F ()̇ with nonquasiconvex integrand in A with

general boundary conditions, a numerical method, which uses no quasiconvex

envelope of the energy density nor its numerical approximation during the

computation, to approximate the highly oscillating minimizing sequences and

the minimizers of the corresponding relaxed problem, or in other words the

microstructures and relaxed minimizers, simultaneously. The idea is to approx-

imate the relaxed minimizer by a relatively coarse mesh and the microstructure

by a refined mesh, and to improve the approximations successively by using

only the current information of the two approximating discrete solutions, more

precisely, the two approximations are taking turns to be improved and each

uses only the information of the current position of the other. To achieve the

aim, we first introduce, in Sec. 2, an alternative minimizing problem which is

equivalent to the relaxed problem in the sense that they have exactly the same

set of minimizers. The properties of the new problem and the corresponding

functionals are studied in Sec. 2 to provide us a theoretical base for the discrete

problems and the numerical method to be introduced in Sec. 3 and Sec. 4. In

Sec. 3, the existence and convergence of solutions to the discrete problems are

proved and an error estimate is obtained. A numerical method to compute
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the discrete solutions is investigated in Sec. 4, and a numerical example with

nonlinear boundary conditions is given to show the effectiveness of the method.

The idea of approximating the relaxed minimizer with a coarse mesh and

the microstructures with a fine mesh can be traced back to Kohn and Vogelius

[18]. In [18], the relaxed minimizer on the coarse mesh is calculated by first

finding the quasiconvex envelope of the integrand constructively and analyti-

cally and then to solve the relaxed problem numerically. Since this works only

when the quasiconvex envelope can be found analytically, its application is

restricted. In contrast, the method given in this paper needs no information

on the quasiconvex envelope and solves the problem completely numerically,

and thus can be applied to solve general problems.

In cases when the integrands are of the form f(∇u) and the boundary con-

ditions are affine, the relaxed minimizer is known to be simply the same affine

function as the boundary data. Thus, in such cases, there is no need to cal-

culate the coarse mesh approximation, only the fine mesh approximated mi-

crostructures need to be calculated and this can be done by applying the

existing numerical methods such as those given in [12, 13, 14, 17]. For general

problems, these numerical techniques can also be applied to calculate on the

fine mesh the function wi
h1

= ui
h1
−vi

h0
which is the oscillating component of the

current approximated microstructure, where vi
h0

is the current approximated

relaxed minimizer (see Sec.4).

2. Alternative minimizing problems

Let Ω ⊂ Rn be a bounded connected open set with Lipschitz continu-

ous boundary ∂Ω. Let W 1,p(Ω) be the usual Sobolev space [19], and let

W 1,p(Ω; Rm) = (W 1,p(Ω))m. Let the integrand f : Ω × Rm × Rn×m → R

satisfy the hypotheses

(H1): f is continuous and there exist constants C, Ĉ ∈ R, 0 < C1 < C2

and 1 < p < +∞ such that for all (x, u, P ) ∈ Ω×Rm ×Rn×m

C + C1(|u|p + |P |p) ≤ f(x, u, P ) ≤ Ĉ + C2(|u|p + |P |p).

(H2): Either f(x, u, P ) = f(x, P ) or

|f(x, u1, P )− f(x, u2, P )| ≤ ω(x, |u1 − u2|)β(|P |),
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where ω : Ω × R → R+ is a Carathéodory function, ω(x, 0) = 0, and

β(·) is increasing and nonnegative.

Denote the quasiconvex envelope of f(x, u, ·) by f̂(x, u, ·) and define F̂ :

A→ R by

F̂ (v) =

∫

Ω

f̂(x, v(x),∇v(x)) dx. (2.1)

It is well known that, under the hypotheses (H1) and (H2), F̂ (·) is the greatest

sequentially weakly lower semicontinuous functional less than or equal to F (·)
(see [5], [7]-[11] for more general results in this direction). It is worth noticing

that this is why the hypothesis (H2), which does not explicitly appear in the

arguments in the paper, is required for our purpose. As a consequence, we also

have the following property.

Lemma 2.1. ([5, 7, 8]) Let f : Ω× Rm × Rn×m → R satisfy (H1) and (H2).

Then, for any v ∈ A, there is a sequence {ui}∞i=1 ⊂ A such that

ui ⇀ v in W 1,p(Ω; Rm),

where ”⇀” means ”converges weakly to”, and

F̂ (v) = lim
i→∞

F (ui).

For α > 0, define functionals Fα : A× A→ R and F̂α : A→ R by

Fα(u, v) = F (u) + α

∫

Ω

|u(x)− v(x)|pdx, (2.2)

and

F̂α(v) = inf
u∈AFα(u, v) (2.3)

respectively. Instead of considering the problem of minimizing F (·) in A and

the problem of minimizing F̂ (·) in A, we consider the problem of minimizing

Fα(·) in A× A and the problem of minimizing F̂α in A. The following results

reveal some important properties about the relationship of these functionals

and of the corresponding minimizing problems.

Lemma 2.2. For any α > 0,

inf
(u,v)∈A×A

Fα(u, v) = inf
u∈AF (u). (2.4)
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Proof. It follows from

Fα(u, u) = F (u) ∀u ∈ A
that

inf
(u,v)∈A×A

Fα(u, v) ≤ inf
u∈AF (u).

On the other hand, since

Fα(u, v) ≥ F (u) ∀(u, v) ∈ A× A,

we have

inf
(u,v)∈A×A

Fα(u, v) ≥ inf
u∈AF (u).

Hence the conclusion of the lemma follows. ¤

Lemma 2.3. Let f : Ω× Rm × Rn×m → R satisfy (H1) and (H2). Then, we

have

F̂α(v) ≤ F̂ (v) ∀v ∈ A and α > 0, (2.5)

lim
α→+∞

F̂α(v) = F̂ (v) ∀v ∈ A. (2.6)

Proof. For any v ∈ A, by lemma 2.1, there exists a sequence {ui}∞i=1 ⊂ A such

that

ui ⇀ v in W 1,p(Ω; Rm),
∫

Ω

f̂(x, v(x),∇v(x)) dx = lim
i→∞

∫

Ω

f(x, ui(x),∇ui(x)) dx.

Since, by (2.3),

F̂α(v) ≤ Fα(ui, v) ∀i,
we have

F̂α(v) ≤ F̂ (v).

This proves (2.5).

For α > 0, by (2.3) there exists a uα ∈ A such that

Fα(uα, v) ≤ F̂α(v) +
1

α
.

By (H1), this implies that

uα ⇀ v in W 1,p(Ω; Rm) as α →∞.

5



Thus, by the sequentially weakly lower semicontinuity of F̂ (·), we have

F̂ (v) ≤ lim inf
α→∞

F̂ (uα) ≤ lim inf
α→∞

F (uα)

≤ lim inf
α→∞

Fα(uα, v) ≤ lim inf
α→∞

F̂α(v).

This and (2.5) give (2.6). ¤

Theorem 2.1. Let f : Ω× Rm × Rn×m → R satisfy (H1) and (H2). Then, v

is a minimizer of F̂ (·) in A if and only if

F̂α(v) = F̂ (v) ∀α > 0. (2.7)

Proof. Let v be a minimizer of F̂ (·) in A. Let α > 0 be given. By the definition

of F̂α(v), there is a sequence {ui}∞i=1 ⊂ A such that

lim
i→∞

Fα(ui, v) = F̂α(v). (2.8)

It follows from the hypothesis (H1) that ui are bounded in W 1,p(Ω; Rm) and

thus there exists a subsequence of {ui}∞i=1, again denoted by {ui}∞i=1, and a

function v̂ ∈ A such that

ui ⇀ v̂ in W 1,p(Ω; Rm).

By the sequentially weakly lower semicontinuity of F̂ (·) in W 1,p(Ω; Rm) and

(2.8), we have

F̂ (v̂) ≤ lim inf
i→∞

F̂ (ui) ≤ lim inf
i→∞

F (ui)

≤ lim
i→∞

Fα(ui, v) = F̂α(v).

Since v is a minimizer of F̂ (·) in A, this and lemma 2.3 give (2.7).

Now, suppose v is not a minimizer of F̂ (·) in A. Let v̂ ∈ A be such that

F̂ (v̂) < F̂ (v). (2.9)

Let {ui}∞i=1 ⊂ A be such that

lim
i→∞

Fα(ui, v̂) = F̂α(v̂). (2.10)

By the hypothesis (H1), without loss of generality, we may assume that

ui ⇀ ṽ in W 1,p(Ω; Rm), (2.11)
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for some ṽ ∈ A. By the Sobolev’s imbedding theorem [19], (2.11) implies

ui → ṽ in Lp(Ω; Rm). (2.12)

Thus, by the definition of F̂α(·), (2.10), (2.12) and lemma 2.3, we have

F̂α(v) ≤ lim inf
i→∞

Fα(ui, v)

≤ lim
i→∞

Fα(ui, v̂) + lim
i→∞

α

∫

Ω

|ui − v|p dx

= F̂α(v̂) + α

∫

Ω

|ṽ − v|p dx

≤ F̂ (v̂) + α

∫

Ω

|ṽ − v|p dx.

Let

α1 =

{
(F̂ (v)− F̂ (v̂))/

∫
Ω
|ṽ − v|p dx if ṽ 6= v,

+∞ if ṽ = v.

Then for all α ∈ (0, α1), which by (2.9) is not an empty set, we have

F̂α(v) ≤ F̂ (v̂) + α

∫

Ω

|ṽ − v|p dx < F̂ (v).

This completes the proof of the theorem. ¤

Corollary 2.1. Let f : Ω × Rm × Rn×m → R satisfy (H1) and (H2). If v is

not a minimizer of F̂ (·) in A, then there exists α0 ∈ (0,∞] such that

F̂α(v) < F̂ (v) ∀α ∈ (0, α0).

Proof. Let α0 = sup{α > 0 : F̂α(v) < F̂ (v)}, which by theorem 2.1 is well

defined. It is easily seen that F̂α(v) is nondecreasing as a function of α, thus

the result follows. ¤
Definition 2.1. Let v, v̂ ∈ A, define

β(v, v̂) = lim inf
t→0+

t−1(F̂ (v + t (v̂ − v))− F̂ (v)).

If v ∈ A is such that

β(v, v̂) ≥ 0 ∀v̂ ∈ A,

then v is said to be a lower stationary point of F̂ (·) in A.
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Remark 2.1. If F̂ is Fréchet differentiable at v, then v is a lower stationary

point of F̂ (·) in A if and only if DF̂ (v) = 0.

Theorem 2.2. Let f : Ω×Rm ×Rn×m → R satisfy (H1) and (H2). If v ∈ A
is not a lower stationary point of F̂ (·) in A, then

F̂α(v) < F̂ (v) ∀α > 0. (2.13)

Proof. Since v ∈ A is not a lower stationary point of F̂ (·) in A, there exists a

v̂ ∈ A, a sequence of positive numbers tµ with limµ→∞ tµ = 0 and β(v, v̂) < 0

such that

F̂ (v + tµ (v̂ − v)) ≤ F̂ (v) + tµβ(v, v̂) + o(tµ). (2.14)

For a fixed tµ, by lemma 2.1, there exists a sequence {ui}∞i=1 ⊂ A such that

ui ⇀ v + tµ (v̂ − v) in W 1,p(Ω; Rm), (2.15)

lim
i→∞

F (ui) = F̂ (v + tµ (v̂ − v)). (2.16)

It follows from (2.15) and Sobolev’s imbedding theorem [19] that

ui → v + tµ (v̂ − v) in Lp(Ω; Rm). (2.17)

Thus, by (2.14), (2.16) and (2.17), for any α > 0 and tµ

F̂α(v) ≤ lim
i→∞

Fα(ui, v)

= F̂ (v + tµ (v̂ − v)) + αtpµ

∫

Ω

|v̂ − v|pdx

≤ F̂ (v) + tµβ(v, v̂) + αtpµ

∫

Ω

|v̂ − v|pdx + o(tµ).

(2.18)

Since β(v, v̂) < 0 and tµ > 0 can be arbitrarily small, (2.18) implies (2.13). ¤

Corollary 2.2. Let f : Ω×Rm×Rn×m → R satisfy (H1) and (H2). If v ∈ A
is not a lower stationary point of F̂ (·) in A, then for any α > 0 and any

W 1,p−weak neighborhood D(v) of v in A

inf
u∈D(v)

Fα(u, v) < F̂ (v).

Proof. The conclusion follows directly from the proof of theorem 2.2. ¤
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Theorem 2.3. Let f : Ω× Rm × Rn×m → R satisfy (H1) and (H2). Then, a

necessary and sufficient condition for v ∈ A being a minimizer of F̂ (·) in A is

that v is a minimizer of F̂α(·) in A.

Proof. First, assume that v is a minimizer of F̂α(·) in A. Let {ui}∞i=1 ⊂ A be

such that

lim
i→∞

Fα(ui, v) = F̂α(v). (2.19)

By (2.19) and the hypothesis (H1), there is a subsequence of {ui}∞i=1, again

denoted by {ui}∞i=1, and a function ṽ ∈ A such that

ui ⇀ ṽ in W 1,p(Ω; Rm).

Thus we have, by the sequentially weakly lower semicontinuity of F̂ (·) in

W 1,p(Ω; Rm)

F̂ (ṽ) ≤ lim
i→∞

F (ui), (2.20)

and, by the Sobolev’s imbedding theorem [19]

ui → ṽ in Lp(Ω; Rm). (2.21)

We claim that ṽ = v, since otherwise, by (2.19)-(2.21), one would lead to

F̂α(ṽ) ≤ F̂ (ṽ) ≤ lim inf
i→∞

F (ui)

< lim inf
i→∞

F (ui) + α

∫

Ω

|ṽ − v|pdx

= lim inf
i→∞

Fα(ui, v) = F̂α(v),

which is a contradiction to the assumption that v is a minimizer of F̂α(·) in A.

Hence, by (2.19) and (2.20),

F̂ (v) ≤ lim inf
i→∞

F (ui) ≤ lim
i→∞

Fα(ui, v) = F̂α(v).

This and lemma 2.3 give

F̂ (v) = F̂α(v),

which, by theorem 2.2, implies that v is a minimizer of F̂ (·) in A.
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Next, assume that v is a minimizer of F̂ (·) in A. For any given v̂ ∈ A, let

{ui}∞i=1 ⊂ A be such that

lim
i→∞

Fα(ui, v̂) = F̂α(v̂). (2.22)

Then, by theorem 2.2 and (2.22),

F̂α(v) = F̂ (v) = inf
u∈A F̂ (u) ≤ lim inf

i→∞
F̂ (ui)

≤ lim inf
i→∞

F (ui) ≤ lim
i→∞

Fα(ui, v̂) = F̂α(v̂).

This proves that v is a minimizer of F̂α(·) in A. ¤

3. Existence and Convergence of Discrete Solutions

Throughout this section, for simplicity, (H1) and (H2) are assumed to be

satisfied by f(·, ·, ·) in Ω1 × Rm × Rn×m, where Ω1 ⊃ Ω̄ is a bounded open

set in Rn. Let {Thi
}∞i=1 be regular triangulations of Ω [20] with Ωhi

⊂ Ω1,

where Ωhi
is the interior of the set ∪K∈Thi

K, and mesh sizes hi > 0 satisfying

limi→∞ hi = 0. Denote

Ahi
= {u ∈ C(Ω̄hi

; Rm) : u|K is affine, ∀K ∈ Thi
,

and u(x) = u0(x) if x is a node on ∂Ωhi
}. (3.1)

Our method is to approximate the microstructures and relaxed minimizers

by solving the finite problem of minimizing the integral functional Fα(u, v)

in the set of admissible functions Ahj
× Ahi

with properly chosen α > 0 and

hi À hj > 0.

Theorem 3.1. For any given α > 0, j ≥ 1 and i ≥ 1, there exists a solution

to the problem of minimizing Fα(·, ·) in Ahj
× Ahi

.

Proof. The conclusion follows directly from the coerciveness and continuity of

the functional Fα(·, ·) in W 1,p(Ω; Rm) (see (H1)) and that Ahj
×Ahi

is of finite

dimension. ¤
Lemma 3.1. For any ε > 0, there exist I(ε) ≥ 1 and J(ε) ≥ 1 such that for

all α > 0

inf
(u,v)∈Ahj

×Ahi

Fα(u, v) ≤ inf
v∈A F̂ (v) + (α + 1)ε ∀i ≥ I(ε) and j ≥ J(ε).
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Proof. By (H1) and lemma 2.1, there exists a minimizer v̂ of F̂ (·) in A and a

sequence {uk} ⊂ A such that

uk ⇀ v̂ in W 1,p(Ω; Rm), (3.2)

F (uk) → F̂ (v̂). (3.3)

For given ε > 0, by (3.2), (3.3) and Sobolev’s imbedding theorem [19], there

exists k(ε) ≥ 1 such that

‖uk − v̂‖0,p <
1

3
ε

1
p ∀k ≥ k(ε), (3.4)

F (uk) ≤ F̂ (v̂) +
ε

2
∀k ≥ k(ε), (3.5)

where ‖ · ‖0,p is the usual norm of Lp(Ω; Rm). For uk(ε) and v̂, by the in-

terpolation properties of the finite element function spaces [20], there exists

(uk(ε))hj
∈ Ahj

and v̂hi
∈ Ahi

such that

‖(uk(ε))hj
− uk(ε)‖1,p → 0 as j →∞, (3.6)

‖v̂hi
− v̂‖1,p → 0 as i →∞, (3.7)

where ‖ · ‖1,p is the usual norm of W 1,p(Ω; Rm). By (3.6) and the continuity of

F (·) in W 1,p(Ω; Rm) (see (H1)), there exists J1(ε) ≥ 1 such that

F ((uk(ε))hj
) ≤ F̂ (v̂) + ε ∀j ≥ J1(ε). (3.8)

By (3.6) and (3.7), there exist J2(ε) ≥ 1 and I(ε) ≥ 1 such that

‖(uk(ε))hj
− uk(ε)‖1,p ≤ 1

3
ε

1
p ∀j ≥ J2(ε), (3.9)

‖v̂hi
− v̂‖1,p ≤ 1

3
ε

1
p ∀i ≥ I(ε). (3.10)

Let J(ε) = min{J1(ε), J2(ε)}. Then, by (3.8)-( 3.10),

Fα((uk(ε))hj
, v̂hi

) = F ((uk(ε))hj
) + α ‖(uk(ε))hj

− v̂hi
‖p

0,p

≤ F̂ (v̂) + (α + 1)ε ∀i ≥ I(ε) and j ≥ J(ε).

This completes the proof. ¤

Theorem 3.2. Let hj(k) > 0 and hi(k) > 0 satisfy limk→∞ hj(k) = 0 and

limk→∞ hi(k) = 0. Let (uk, vk) ∈ Ahj(k)
× Ahi(k)

be minimizers of Fα(·, ·) in

11



Ahj(k)
× Ahi(k)

. Then, there exists a subsequence of {(uk, vk)}, again denoted

by {(uk, vk)}, and a function v̂ ∈ A such that

uk ⇀ v̂ in W 1,p(Ω; Rm)

and

F̂ (v̂) = inf
v∈A F̂ (v).

Proof. In view of lemma 3.1, we have

lim
k→∞

Fα(uk, vk) = inf
v∈A F̂ (v).

This and (H1) imply that {uk} is bounded in W 1,p(Ω; Rm) and thus contains

a subsequence which converges weakly to a function v̂ ∈ W 1,p(Ω; Rm). Since

A is weakly closed in W 1,p(Ω; Rm), v̂ belongs to A. Therefore, it follows from

the sequentially weakly lower semicontinuity of F̂ (·) and F̂ (uk) ≤ F (uk) ≤
Fα(uk, vk) that

inf
v∈A F̂ (v) ≤ F̂ (v̂) ≤ lim

k→∞
Fα(uk, vk) = inf

v∈A F̂ (v).

This completes the proof. ¤

Remark 3.1. It is easy to verify that in theorem 3.2, we also have vk → v̂ in

Lp(Ω; Rm).

In practice, hj should be taken to be much smaller than hi so that the

solution to the problem of minimizing ‖uhj
− · ‖0,p in Ahi

contains only low

frequency components of uhj
and thus could be a better approximation of a

minimizer of F̂ (·) in A than uhj
. More precisely, we may expect vk → v̂ in

W 1,p(Ω; Rm). In fact, we have the following result.

Theorem 3.3. Suppose other than (H1) and (H2) the following two hypotheses

are also satisfied.

(H3): There is a minimizer v̂1 of F̂ (·) in A and a constant r > max{ np
n+p

, n
2
}

such that v̂1 ∈ W 2,r(Ω; Rm);

(H4): There are constants q ∈ (0, (2 + n(1
p
− 1

r
))p), δ > 0 and C1 > 0

such that

F (u)− inf
v∈AF (v) ≥ C1 min{δ, inf

v∈Â
‖u− v‖q

0,p},
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where Â = {v̂ ∈ A : F̂ (v̂) = infv∈A F̂ (v)}.
Suppose the regular triangulations {Thi

}∞i=1 of Ω satisfy the inverse assump-

tions [20]

hi

hK

≤ ν ∀i and K ∈ Thi
(3.11)

for a constant ν > 0. Then, there exist nondecreasing functions I(α) ≥ 1 and

J(i) ≥ 1, constants Ĉ1 > 0 and γ > 0, and a function Ĉ2(α) > 0, which is

bounded on every compact subset of (0, +∞), such that

F (uhj
) ≤ inf

v∈A F̂ (v) + (α + 1)Ĉ1h
(2+n( 1

p
− 1

r
))p

i , (3.12)

inf
v̂∈Â

‖vhi
− v̂‖1,p ≤ Ĉ2(α)hγ

i , (3.13)

provided i ≥ I(α), j ≥ J(i) and

Fα(uhj
, vhi

) = inf
(u,v)∈Ahj

×Ahi

Fα(u, v).

Proof. Let v̂1 ∈ W 2,r(Ω; Rm)∩A be a minimizer of F̂ (·) in A (see (H3)). Since

r > n/2, v̂1 ∈ C(Ω̄). Let v̂hi
∈ Ahi

be the interpolation of v̂1 in Ahi
, by the

interpolation properties of the finite element function spaces [20], there exists

a constant C2 > 0 such that

‖v̂hi
− v̂1‖1,p ≤ C2h

1+n( 1
p
− 1

r
)

i |v̂1|2,r, (3.14)

‖v̂hi
− v̂1‖0,p ≤ C2h

2+n( 1
p
− 1

r
)

i |v̂1|2,r. (3.15)

On the other hand, with the same argument as that in the proof of lemma 3.1,

there exists a sequence of functions ûhj
∈ Ahj

such that

ûhj
⇀ v̂1 in W 1,p(Ω; Rm), (3.16)

F (ûhj
) → F̂ (v̂1) = inf

v∈A F̂ (v). (3.17)

It follows from (3.15)-(3.17) that there exists J(i) ≥ 1 such that

Fα(ûhj
, v̂hi

) ≤ F̂ (v̂1) + (α + 1)(2C2)
ph

(2+n( 1
p
− 1

r
))p

i (1 + |v̂1|2,r)
p

∀i ≥ 1 and j ≥ J(i). (3.18)

Let Ĉ1 = (2C2(1 + |v̂1|2,r))
p, then (3.18) implies

13



inf
(u,v)∈Ahj

×Ahi

Fα(u, v) ≤ inf
v∈A F̂ (v) + (α + 1)Ĉ1h

(2+n( 1
p
− 1

r
))p

i

∀i ≥ 1 and j ≥ J(i). (3.19)

Let I(α) ≥ 1 be such that (see (H4))

(α + 1)Ĉ1h
(2+n( 1

p
− 1

r
))p

i ≤ C1δ ∀i ≥ I(α). (3.20)

Let i ≥ I(α) and j ≥ J(i), and let (uhj
, vhi

) ∈ Ahj
× Ahi

be a minimizer of

Fα(·, ·) in Ahj
× Ahi

. Then, as a consequence of (3.19), we have (3.12) and

‖uhj
− vhi

‖0,p ≤ (
α + 1

α
Ĉ1)

1/ph
(2+n( 1

p
− 1

r
))

i . (3.21)

By (3.14), (3.20), (H4) and the fact that the set Â is weakly compact in

W 1,p(Ω; Rm), there exists a v̂ ∈ Â such that

‖uhj
− v̂‖0,p ≤ ((α + 1)C−1

1 Ĉ1)
1/qh

(2+n( 1
p
− 1

r
)) p

q

i

∀i ≥ I(α) and j ≥ J(i). (3.22)

Thus, it follows from (3.15), (3.21) and (3.22) that

‖vhi
− v̂hi

‖0,p ≤ C̃2(α)h1+γ
i , (3.23)

where

γ = min{1 + n(
1

p
− 1

r
), (2 + n(

1

p
− 1

r
))

p

q
− 1} > 0

C̃2(α) = (
α + 1

α
Ĉ1)

1/p + ((α + 1)C−1
1 Ĉ1)

1/q + C2|v̂1|2,r.

It follows from (3.23) and the inverse inequalities of the finite element function

spaces [20] that there exists C(n, ν) > 0 such that

‖vhi
− v̂hi

‖1,p ≤ C(n, ν)C̃2(α)hγ
i .

This and (3.14) give (3.13) with Ĉ2(α) = (1 + C(n, ν))C̃2(α). ¤
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4. Numerical Method for the Discrete Solutions

To solve the problem of minimizing Fα(·, ·) in Ahj
× Ahi

with hj ¿ hi, we

begin with the following theorem.

Theorem 4.1. Define

F̂α,hj
(v) = inf

u∈Ahj

Fα(u, v). (4.1)

Then, we have

inf
v∈Ahi

F̂α,hj
(v) = inf

(u,v)∈Ahj
×Ahi

F (u, v). (4.2)

Proof. Since the function spaces Ahj
and Ahi

are of finite dimension and the

functionals are continuous, there exist v̂ ∈ Ahi
and uj(v̂i) ∈ Ahj

such that

F̂α,hj
(v̂) = inf

v∈Ahi

F̂α,hj
(v) (4.3)

and

F̂α(uj(v̂i), v̂i) = inf
u∈Ahj

Fα(u, v̂i). (4.4)

It is easy to verify that

F̂α(uj(v̂i), v̂i) = inf
(u,v)∈Ahj

×Ahi

F (u, v). (4.5)

By combining the definition (4.1) with (4.3), (4.4) and (4.5), we get (4.2). ¤

In view of theorem 4.1, to find a minimizer of Fα(·, ·) in Ahj
× Ahi

with

hj ¿ hi, we start from a initial function v0 ∈ Ahi
and produce a sequence of

functions (uk, vk) ∈ Ahj
× Ahi

by solving the following problems recursively

Fα(uk, vk) = inf
u∈Ahj

Fα(u, vk), (4.6)

‖uk − vk+1‖0,p = inf
v∈Ahi

‖uk − v‖0,p. (4.7)

It is obvious that the sequence thus produced satisfies

Fα(uk+1, vk+1) ≤ Fα(uk, vk) ∀k, (4.8)

where the equality holds if and only if vk+1 = vk. For α sufficiently large, the

solutions to (4.6) are in a Lp−neighborhood of vk, and can be located by a

15



gradient type method starting from a small random perturbation of vk. In fact,

we only need to solve (4.6) locally to achieve (4.8). Generally, the procedure

leads to local minimizers of Fα(·, ·) in Ahj
× Ahi

. However, as suggested by

corollary 2.2, for hj ¿ hi sufficiently small, a fixed point of the above procedure

should be a good approximation to a stationary point of F̂ (·) in A. Therefore

we have reason to expect that the limit v∞ ∈ Ahi
of the sequence {vk} is a

good approximation to a local minimizer of F̂ (·) in A and the corresponding

u∞ ∈ Ahj
is a good approximation to a microstructure.

To avoid to be stuck in a local minimizer of F (·) in Ahi
, particularly to elim-

inate oscillations in vk and increase the stability of the method, the following

problem may be used to replace (4.7), that is to find a function vk+1 ∈ Ahi

such that

‖uk − vk+1‖p
0,p + γ‖∇vk+1 −∇vk+1‖p

0,p

= inf
v∈Ahi

(‖uk − v‖p
0,p + γ‖∇v −∇v‖p

0,p). (4.9)

where γ is a parameter and for each K ∈ Th ∇v|K is a weighted average of

∇v in a neighborhood of K. For example, ∇v|K can be defined by

∇v|K = σ(K)−1
∑

K′∈Th

σ(K, K ′)∇v|K′ ,

where σ(K,K ′) = {number of common nodes shared by K and K ′} and

σ(K) =
∑

K′∈Th
σ(K, K ′). The reason is established upon the observation

that if v∞i ∈ Ahi
converges strongly in W 1,p(Ω; Rm) to a function v ∈ A then

lim
i→∞

‖∇v∞i −∇v∞i ‖0,p = 0.

Since the speed of the convergence depends on the regularity of the function

v ∈ A to be approximated, which is not known in advance, the parameter γ,

which is used somehow to balance the two terms in (4.9), usually need to be

decided by experiments in computation.

For a better performance of the method, the parameter α should be related

to the refined mesh size hj. In the numerical example given below, we took

α = O(h
−3/2
j ). An analysis on such a relationship can be found in [17], where

16



microstructures are approximated by solving (4.6) with hi = hj and vk being

a given approximate relaxed minimizer.

Example. Let Ω = (0, 1)× (0, 1) ⊂ R2. Let

f(∇u) = ((u′x)
2 − 1)2 + (u′y)

2, (4.10)

A = {u ∈ W 1,4(Ω) : u(x, y) = 24(x− 0.5)2(y − 0.5)3, ∀(x, y) ∈ ∂Ω}. (4.11)

Let Nx > 1, Ny > 1 be integers. Let h = N−1
x and t = N−1

y . Introduce on Ω a

triangulation with 2NxNy triangles by the following lines





x = ih, i = 0, 1, . . . , Nx;

y = jt, j = 0, 1, . . . , Ny;

y = ht−1(x− kh), k = −Ny,−Ny + 1, . . . , Nx − 1.

Notice that there are two potential wells in f(·) and the boundary condition

is nonlinear. To simplify the computation, p in (4.9) is taken to be 2 instead

of 4.

First, a 20 × 20 coarse mesh (Nx = Ny = 20) was used to compute the

relaxed minimizer and, with a refinement parameter 3, a 60× 60 refined mesh

was used to compute the microstructure. v0(x, y) = 24(x− 0.5)2(y− 0.5)3 was

taken to be the initial function, and α in (4.6) and γ in (4.9) was set to 100

and 10−2 respectively in the computation. Then, with a refinement parameter

7 and with α = 1400 and γ = 10−3, a 140 × 140 refined mesh was used to

couple with the same coarse mesh to compute the relaxed minimizer and the

microstructure. The numerical results are shown in Fig 1, Fig 2 and Table 1,

where in Table 1 S-method represents the method developed in this paper.

Finally, a 50 × 50 coarse mesh (Nx = Ny = 50) was used to compute the

relaxed minimizer and, with a refinement parameter 3, a 150×150 refined mesh

was used to compute the microstructure. v0(x, y) = 24(x− 0.5)2(y− 0.5)3 was

again taken to be the initial function, while α and γ were set to 1500 and 10−3

respectively in the computation. The numerical results are shown in Fig 3 and

Table 1.

The numerical results suggest that, for reasonably chosen parameters, the

relaxed energy F̂ (v∞h ) depends mainly on the coarse mesh size hi and the

energy F (u∞h ) mainly depends on the refined mesh size hj.
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Figure 1. 20× 20 mesh solution for relaxed minimizer

Where in Table 1

A+(a) = meas{x ∈ Ω :
√

(u′x(x)− 1)2 + (u′y(x))2 < a},

A−(a) = meas{x ∈ Ω :
√

(u′x(x) + 1)2 + (u′y(x))2 < a}

are the measures of the regions in which the gradient of u∞h falls into a neigh-

borhood of the potential wells.
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Figure 2. 60× 60 mesh solution for microstructure

For comparison, we provide also the numerical results obtained by a numer-

ical method given by Li in [17], which is mentioned as Q-method in Fig 4,

Fig 5 and Table 1. Notice that it is because that the Q-method made use of

the quasiconvex envelope f̂ of f , which can be given explicitly in this case by

f̂(∇u(x)) =

{
f(∇u(x)), if |u′x| > 1;

(u′y(x))2, if |u′x| ≤ 1,
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Figure 3. 50× 50 mesh solution for relaxed minimizer

that the better numerical results were obtained. By comparing the numeri-

cal results, we see that the method given in this paper produced satisfactory

approximation to both the relaxed minimizer and the microstructure.
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