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Abstract. We report some numerical results on the computation of needle-
like microstructrues at mesoscopic scale obtained by applying the mesh trans-
formation method, which basically includes a mesh optimization into the finite
element approximations, on a nonquasiconvex elastic crystal model. Numer-
ical experiments show that the branched needle-like microstructures can be
well resolved near the interfaces between twinned layers of martensite and a
single variant of martensite, which are in good qualitative agreement with the
physical experiments.

1. Introduction

Crystalline microstructure is a typical phenomenon commonly found in solid

crystal materials. A geometrically nonlinear theory [1, 2] models the phenomenon

by a problem of minimizing a potential energy

F (u; Ω) =

∫

Ω

f(∇u(x)) dx (1.1)

with a nonquasiconvex energy density f : Rmn → R1 on a set of admissible

functions

U(u0; Ω) = {u ∈ W 1,p(Ω; Rm) : u = u0, on ∂Ω0}, (1.2)

where Ω ⊂ Rn is a bounded open set with a Lipschitz continuous boundary ∂Ω,

∂Ω0 is a subset of ∂Ω with positive (n− 1)-dimensional measure and 1 < p < ∞.

It is well known that such a variational problem fails, in general, to have a

solution, and the minimizing sequences of the potential energy can develop finer
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and finer oscillations and lead to microstructures [1, 2], which are characterized

by the gradient Young measure [3]. To compute the microstructures, or rather

the highly oscillating minimizing sequences of F (·, Ω) in U(u0; Ω), is challenging

and is of great interests both in theory and in applications. Great progress has

been made in recent years, and many numerical methods have been established

(see among many others [4]-[23]). Numerical analyses and experiments revealed

that the numerical results often depend strongly on the mesh and shape func-

tions, and can sometimes lead to pseudo-microstructures [7, 11, 14]. A rotational

transformation method established by Li [15] and the discontinuous finite ele-

ment method established by Gobbert and Prohl [17] somehow reduce the mesh

dependence of the numerical results. The rotational transformation method is re-

cently further developed into a mesh transformation method [18] and a periodic

relaxation method [19] which turn out to be very successful in computing macro-

scopic information, i.e. the gradient Young measure, of the twinned laminated

microstructures.

While the periodic relaxation method is efficient in computing twinned lam-

inates at macroscopic scale, it is not designed to capture the mesoscopic phe-

nomenon of microstructures, for example the needle-like microstructure near the

interfaces between twinned layers and single variant of martensite [22]-[26]. How-

ever we shall see in the present paper that the idea of the mesh transformation

method (see [18, 19]) can be applied for such a purpose. Basically, the advantage

of the mesh transformation method is that it allows the mesh to be aligned with

the interfaces during the process of optimization, so that a sharper numerical

approximation can be made and a much relaxed discrete optimization problem is

produced.

In section 2, we shall introduce the mesh transformation method and prove

its convergence. In section 3, some numerical results, which are obtained by ap-

plying the mesh transformation method to a two-dimensional model for elastic

crystals and using the conjugate gradient method to solve the resulted discrete

optimization problem, are presented to show the efficiency of the method in com-

puting at the mesoscopic scale the needle-like microstructures and their bending

and branching near the interfaces between the twinned layers of martensite and

single variant of martensite, which are in good qualitative agreement with the

experiment of Chu and James [24, 27].
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It is worth noticing that, instead of resulting from the balance of the elastic

energy and the surface energy across twin boundaries as in [28], or a fixed length

scale of twinned layers in the boundary data as in [23], our computation shows

that initially existing twinned layers can also branch and produce needle-like

microstructures as the initially existing twinned layers approach the interfaces of

laminate-single variant of martensite. Of course, what the method produces are

local minimizers or metastable states of the elastic energy. Numerical evidence

shows that there can be many stable local minimizers or metastable states which

have bending and branching needles.

2. The mesh transformation method

Let Ω ⊂ Rn be a polyhedron and let ∂Ω be its boundary. Let ∂Ω0 be a subset of

∂Ω with positive (n−1)-dimensional measure. Let f : Rmn → R1 be a continuous

function which satisfies the following hypotheses for a constant p > 1:

(h1): max{0, a1 + b1|ξ|p} ≤ f(ξ) ≤ a2 + b2|ξ|p,
(h2): |f(ξ)− f(η)| ≤ C(1 + |ξ|p−1 + |η|p−1)|ξ − η|,

where a1 ∈ R1, a2 > 0, b2 ≥ b1 > 0 and C > 0 are constants. Consider the

problem of minimizing the functional

F (u; Ω) =

∫

Ω

f(∇u(x)) dx (2.1)

on a set of admissible functions

U(u0; Ω) = {u ∈ W 1,p(Ω; Rm) : u(x) = u0(x), on ∂Ω0}, (2.2)

where u0 is a given Lipschitz continuous boundary data.

Define

T (Ω) = {bijections L : Ω̄ → Ω̄|L ∈ W 1,∞(Ω; Rn), L−1 ∈ W 1,∞(Ω; Rn),

L(∂Ω0) = ∂Ω0, and det∇L > 0, a.e. in Ω}.

For any L ∈ T (Ω) and u ∈ U(u0; Ω), let A ∈ Rmn and let ū(x) : Ω → Rm be

defined by

ū(x) = u(L(x))− AL(x). (2.3)

Then it is easily seen that ū ∈ U(ū0; Ω), where ū0(x) = u0(L(x))− AL(x),
∫

Ω

f(A +∇ū(x)(∇L(x))−1) det∇L(x) dx = F (u; Ω), (2.4)

3



and

inf
ū∈U(ū0;Ω)

F (ū, L; Ω) = inf
u∈U(u0;Ω)

F (u; Ω), (2.5)

where

F (ū, L; Ω) =

∫

Ω

f(A +∇ū(x)(∇L(x))−1)) det∇L(x) dx. (2.6)

Let Th(Ω) be regular triangulations of Ω with mesh sizes h [31]. Let

Th(Ω) = {L ∈ T (Ω) : L|K is affine ∀K ∈ Th(Ω)}, (2.7)

Uh(Ω) = {u ∈ C(Ω; Rm) : u|K is affine ∀K ∈ Th(Ω)} (2.8)

and

Uh(v; Ω) = {u ∈ Uh(Ω) : u|∂Ω0 = v}. (2.9)

In the mesh transformation method, we consider the linear boundary condition

u|∂Ω0 ≡ u0 = Ax and solve the following discrete problem:

(DP )

{
find (u, L) ∈ Uh(0; Ω)× Th(Ω) such that

F (u, L; Ω) = inf(u′,L′)∈Uh(0; Ω)×Th(Ω) F (u′, L′; Ω).
(2.10)

Theorem 2.1. Let the sequences hi > 0 and εi > 0 satisfy limi→∞ hi = 0 and

limi→∞ εi = 0. Let the functions (ūhi
, Lhi

) ∈ Uhi
(0; Ω)× Thi

(Ω) be a sequence of

approximate solutions to (DP) (see remark 2.1) with

F (ūhi
, Lhi

; Ω) ≤ inf
(ū,L)∈Uhi

(0; Ω)×Thi
(Ω)

F (ū, L; Ω) + εi.

Then

lim
i→∞

F (uhi
, Lhi

(Ω)) = lim
i→∞

F (ūhi
, Lhi

; Ω) = inf
u∈U(u0;Ω)

F (u, Ω), (2.11)

where uhi
(x) = ūhi

(L−1
hi

(x)) + Ax and u0(x) = A x for x ∈ ∂Ω0 (see (2.3)).

Proof. It follows from (2.5) that

inf
u∈U(u0;Ω)

F (u; Ω) = inf
ū∈U(0; Ω)

F (ū, Lhi
; Ω) ≤ F (ūhi

, Lhi
; Ω). (2.12)

On the other hand, for the identity map I : Ω → Ω, we have

F (ūhi
, Lhi

; Ω) ≤ inf
ū∈Uhi

(0; Ω)
F (ū, I; Ω) + εi. (2.13)
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Now, let {ui} ⊂ W 1,p(Ω; Rm) be a minimizing sequence of F (u; Ω) in U(u0; Ω).

By the continuity of the functional F (u; Ω) in W 1,p(Ω; Rm), which is a conse-

quence of the hypothses (h1) and (h2), and the fact that C∞(Ω; Rm) ∩ U(0; Ω)

is dense in U(0; Ω) in the strong topology of W 1,p(Ω; Rm) [32], without loss of

generality it may be assumed that {ui} are smooth functions. By the standard

finite element interplation theory [31], we have

ui,h −→ ui, in W 1,p(Ω; Rm) as h → 0,

where ui,h is the finite element interpolating function of ui in U(u0; Ω). Thus, by

the continuity of the funtional F (u; Ω) in W 1,p(Ω; Rm), we have

lim
hi→0

inf
ū∈Uhi

(0; Ω)
F (ū, I; Ω) = inf

ū∈U(0; Ω)
F (ū, I; Ω) = inf

u∈U(u0;Ω)
F (u; Ω). (2.14)

This completes the proof. ¤

Remark 2.1. The minima of (DP) may not be attainable, since the mesh can be

so singularly deformed that the measure of some of the elements goes to zero.

Remark 2.2. We may use the conjugate gradient method to search for a minimizer

of (DP). Since it is a local method, only local minimizers can be found. In fact,

lack of surface energy, what we are most interested in are those most easily

formed local minimizers or metastable states of the elastic energy. As in the

case of the global convergence given by Theorem 2.1, we can also expect better

numerical results by the mesh transformation method for the metastable states

or local minimizers, since the method enriches the finite element function spaces

and thus can provide a better approximation. We also found in our numerical

experiments that allowing the mesh to move greatly improves the convergent

speed of the minimizing procedure.

3. Numerical Experiments and Results

In the following numerical examples, we use a modified Ericksen-James two

dimensional energy model for elastic crystals with f(A, θ) = Φ(AT A, θ) and

Φ(C, θ) =
b(θ)

4
(C11 − C22)

2 − c(θ)

8
(C11 − C22)

2|C11 − C22|

+
d(θ)

16
(C11 − C22)

4 + e C2
12 + g(tr C − 2)2, (3.1)
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where

b(θ) = (1 + α arctan µ(θ − θT ))d0ε
2,

c(θ) = 2(1 +
1 + 2γ

3
α arctan µ(θ − θT ))d0ε,

d(θ) = (1 + γα arctan µ(θ − θT ))d0,

and where d0 > 0, e > 0 and g > 0 are the elastic moduli, 0 < ε ¿ 1 is the

transformation strain, θT is the transformation temperature,

α ≈ 2

π
, µ > 0, and γ < 1

are the material constants used to reflect the change of elastic moduli and the

energy barriers as the temperature varies.

Figure 1 shows Φ(Cδ, θ) as a function of δ with α = 2.02/π, µ = 0.25, γ = 0,

ε = 0.05, d0 = 500 and θT = 70 oC for various θ, where

Cδ =

(
1 + δ 0

0 1− δ

)

It is not difficult to verify (see [29], see also [6, 7, 30]) that the energy density

f(∇u, θ) = Φ((∇u)T∇u, θ) has

(i): a unique potential well SO(2) for θ > θT ;

(ii): two symmetry related rotationally invariant potential wells SO(2)U0

and SO(2)U1 for θ < θT ,

where SO(2) is the set of all 2× 2 rotational matrices, and

U0 =

(√
1− ε 0

0
√

1 + ε

)
, U1 =

(√
1 + ε 0

0
√

1− ε

)
. (3.2)

Furthermore, U0 and R±U1 are in rank-one connection. More precisely, let η1 =√
1− ε and η2 =

√
1 + ε and let

R± =

(
η1η2 ±ε

∓ε η1η2

)
, (3.3)

then, we have

R±U1 = U0 + a± ⊗ n±, (3.4)
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Figure 1. The energy density Φ(Cδ, θ) with θT = 70 oC.

where a± =
√

2ε(η1, ∓η2)
T and n± = 1√

2
(1, ±1)T .

It is also well known [1, 2] that, if the affine boundary condition u(x) = A±
λ x,

where

A±
λ = (1− λ)U0 + λR±U1, 0 < λ < 1 (3.5)

is imposed on the boundary ∂Ω, then the Young measure derived from any min-

imizing sequence of the elastic energy F (u; Ω) is unique and is given by

µλ
x(ξ) ≡ µλ(ξ) = (1− λ)δU0(ξ) + λδR±U1

(ξ), (3.6)

where δE is the Dirac measure centered at E, and typical minimizing sequences

of F (·; Ω) are essentially given by the finer and finer twinned layers, where the

deformation gradient takes its values at U0 and R±U1 with the volume fractions

(1 − λ) and λ, modified only in a corresponding small neighbourhood of the

boundary ∂Ω by a linear interpolation so that the boundary condition can be

satisfied.
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In our numerical examples, the initial twinned layers are taken of the following

form (cf. [7, 11])

u−λ,δ(x) = U0x + δ
(∫ δ−1x·n−

0

σλ,δ(s) ds
)
a−, (3.7)

where σλ,δ(s) = σλ(δ
−1s) and

σλ(s) =

{
0, k ≤ s < k + 1− λ, ∀k ∈ I,

1, k − λ ≤ s < k, ∀k ∈ I,
(3.8)

and where I is the set of all integers. It is easily seen that the gradient of the

deformation u−λ,δ takes its values at U0 and R−U1 with the volume fractions (1−λ)

and λ and the width of a twinned layer is δ.

We can easily establish rank-one connections between the twinned martensite

A±
λ and a single variant of martensite. Let

θ0
λ = arctan

2λεη1η2

η2
1η

2
2 − λ2ε2

, (3.9)

θ1
λ = arctan

λε(1 + λ2ε2)η2
1η

2
2 − aε

(1 + (1 + a)λ2ε2)η1η2

, (3.10)

where a = 1 − λ + λε2, then it is easily verified that there exist ai
λ ∈ R2 and

ni
λ ∈ S1 = {x ∈ R2 : ‖x‖ = 1} such that

A−
λ −R(θi

λ)Ui = ai
λ ⊗ ni

λ, i = 0, 1, (3.11)

where, in (3.11) and in the rest of the paper,

R(θ) =

(
cos θ − sin θ

sin θ cos θ

)

is a rotational matrix, and we have for λ 6= 1

n0
λ · n− = O(ε2) and n1

λ · n− = O(ε). (3.12)

Let Ω = L0(α, β)D where D = (−a, a) × (−b, b) is a 2a × 2b rectangular

domain, L0(α, β) is defined by

L0(α, β)

(
x

y

)
= R(α)

(
x + y tan(α− β)

y

)
,
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where R(α) is a rotational matrix. It is easily seen that the domain Ω so defined

is a parallelogram with sides of length 2a and 2b
√

1 + tan2(α− β) perpendicular

to n(α±π/2) and n(β) respectively (see figure 2), where n(τ) = (cos(τ), sin(τ))T .

In the following examples, α is taken to be π/4 so that the laminate is parallel

to the sides of length 2a.

n(α + π/2)

n(β)
∂Ω

−

∂Ω
+

Ω

Figure 2. The reference configuration Ω (when α < β).

To reduce the discrete error, the initial mesh should be introduced to allow

the twins to bend equally easily to the either side. Naturally, in our numerical

experiments, the initial mesh is introduced by Th(Ω) which is a family of regular

triangulations defined by

Th(Ω) = Th(L0(α, β)D) = {L0(α, β)K : ∀K ∈ Th(D)}, (3.13)

where Th(D), for h = hN,M = 2
N ·M

√
(aM)2 + (bN)2 with N ≥ 2 and M ≥ 2, is

a family of regular triangulations of D introduced by the lines





y = −b + 2b
M

i, −M ≤ i ≤ M ;

x = −a + 2a
N

j, −N ≤ j ≤ N ;

y = b
a
x− 4b

N
k, −N

2
< k < N

2
;

y = −b
a

x + 4b
N

k, −N
2

< k < N
2
.

(3.14)

Let ∂Ω± = L0(α, β){(x, y) ∈ ∂D : x = ±a}, and let ∂Ω0 = ∂Ω+ ∪ ∂Ω−.
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Numerical experiments show, as is expected, that the finer initial mesh with

small random initial deformation generally leads to finer twinned layers, usually in

the mesh scale. To compute needle-like microstructures with a fixed length scale,

we started at a coarse mesh and refined the mesh by steps after the convergence is

achieved in each step. The initial mesh should be able to accommodate the thin

long needles which we expect to have, that requires a À b if M and N is taken of

the same scale. Our numerical experiments show that the needles so obtained are

stable, i.e. they keep topologically unchanged after mesh refinements, while in

the case when a À b is not satisfied needles are often difficult to form or unstable.

Noticing the periodicity of the twinned laminate, to further relax the discrete

problem, we can impose the boundary conditions in the following way (see [19]):

the mesh transformation L satisfies the periodic condition

(L− I)(L0(α, β)((x, b)T )) = (L− I)(L0(α, β)((x,−b)T )),∀x ∈ [−a, a], (3.15)

L(∂Ω±) = ∂Ω±, (3.16)

where I is the identity map, and the deformation ū(x) = u(L(x))−A−
λ Lx is also

asked to satisfy the periodic condition

ū(L0(α, β)(x, b)T ) = ū(L0(α, β)(x,−b)T ), ∀x ∈ [−a, a], (3.17)

ū(x) = 0, ∀x ∈ ∂Ω0. (3.18)

The problem is thus equivalent to computing, on a domain which is infinite in

the directions ±L0(α, β)(0, b)T , a solution which is periodic in the corresponding

directions with period 2b/ cos(α − β), and naturally this also allows us to focus

our computation on a couple of twins so that the scale of the computation and

the total cost are much reduced.

We emphasize here that our interest is to compute, under the given boundary

condition, those metastable states of F (·, Ω) which are associated to the initially

existing twinned layers. In our numerical experiments, the conjugate gradient

method, which is restarted at every 20 steps, was used together with a linear

search to solve the discrete problem (DP) (see (2.10)), where the mesh trans-

formation L was kept fixed until the energy gradient dropped to a certain level

(for example 10−4) so as to prevent the mesh from being distorted too much in

the region where the gradient of the initial energy is great. To guarantee that

the condition det∇Lh(x) > 0 is satisfied, i.e. to keep the orientation of each

element unchanged, we check the condition on each element while searching for

the minimizer and reduce the step length if necessary.
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To visualize the numerical results, we displayed, in the reference configuration

or in the deformed configuration, an element white where the right Cauchy-Green

strain tensor C = ∇uT∇u is sufficiently close to UT
0 U0 and black where the right

Cauchy-Green strain tensor C = ∇uT∇u is sufficiently close to UT
1 U1, which

represent the two single variants of the martensite phase, and we displayed an

element gray where the right Cauchy-Green strain tensor C = ∇uT∇u is neither

close enough to UT
0 U0 nor close enough to UT

1 U1, and the darkness depends on

the closeness to UT
0 U0 and UT

1 U1.

We consider the case for the laminate-single variant of martensite in which the

deformation gradient of the boundary data is rank-one connected to the average

deformation gradient of the initially given laminates as in [23], however we do

not limit our computation in a thin boundary layer (compare [23]), instead we

choose a physical configuration which is much longer in the direction parallel to

the laminate.

Example 1. Let Ω = L0(π/4, αλ,0)D where D = (−a, a) × (−b, b) with a = 3

and b = 0.05, and where αλ,0 is the angle between the vector n0
λ (see (3.11)) and

the x axis. The initial mesh is given by Th(Ω) = Th(L0(π/4, αλ,0)D) (see (3.13)

and (3.14)) with M0 = 16 and N0 = 12. Denote the nodes of the mesh Th(D) by

xij =

(
−a + 2a i

M0

−b + 2b j
N0

)
, 0 ≤ i ≤ M0, 0 ≤ j ≤ N0,

and denote the corresponding nodes of the mesh Th(Ω) by Xij = L0(π/4, αλ,0)xij.

By (3.11), the matrix R(θ0
λ)U0, which is a single variant of martensitic phase, is

rank one connected to the matrix A−
λ , which is the average of the gradients of

the twinning, and the rank one direction is n0
λ. This allows us to take the initial

deformation u0
λ,δ(x) for the conjugate gradient iteration in the piece-wise linear

finite element function space by setting

u0
λ,δ(Xij) =





u−λ,3δ(Xij), if i ≤ 3,

u−λ,3δ(Xij), else if i ≤ 11 and j ≤ 5,

u−λ,δ(Xij), else if i ≤ 11 and j > 5,

R(θ0
λ)U0 (Xij − d), else if 12 ≤ i ≤ 14,

R(θ0
λ)R

+U1 (Xij − d), otherwise,

(3.19)
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where δ = 8b/N0 and d = Xi0j0 with i0 = 14 and j0 = 6. In our numerical

experiments, we take λ = 0.5, and the temperature is fixed to 55 oC. The initial

mesh and the distribution of the initial deformation gradient on the reference

configuration Ω = L0(π/4, αλ,0)D are shown in Figure 3.
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Figure 3. The initial mesh and deformation gradient.

To apply the mesh transformation method with periodic relaxation boundary

conditions, we take

ū0
0(X) = u0

λ,δ(X)− A−
λ X, ∀X ∈ Ω, (3.20)

L0
0(X) = I(X), ∀X ∈ Ω, (3.21)

as the initial deformation and mesh transformation map, and search, by the conju-

gate gradient method, a minimizer (ū0, L0), where (ū0−ū0
0, L0) are finite element

functions in UhM0,N0
(Ω) × UhM0,N0

(Ω) satisfying the periodic conditions (3.15)-

(3.18), of the energy functional F (ū, L; Ω) defined by (2.6). When the iteration

is convergent, for example the energy falls no more than 10−12 in an iteration,

then the mesh is refined by setting Mi = 2Mi−1 and Ni = 2Ni−1, i = 1, 2, · · · .
The pair of initial deformation and mesh transformation map (ūi

0, Li
0) is taken

to be the linear interpolation of (ūi−1, Li−1) in UhMi,Ni
(Ω) × UhMi,Ni

(Ω), where
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(ūi−1, Li−1) is the approximate minimizer obtained by the conjugate gradient

method in UhMi−1,Ni−1
(Ω)×UhMi−1,Ni−1

(Ω) with (ūi−1− ūi−1
0 , Li−1) satisfying the

periodic conditions (3.15)-(3.18).

The convergence of the algorithm for the deformation and mesh transforma-

tion is shown in Table 1, where euk,p
ij = ‖ūi − ūi

0‖k,p and eLk,p
ij = ‖Li − Li

0‖k,p.

The convergence of the algorithm for the energy is shown in Figure 4, where Fig-

ure 4(a) shows the convergence of the conjugate gradient method in searching for

a minimizer in UhM0,N0
(Ω)×UhM0,N0

(Ω) and where Figure 4(b) shows the conver-

gence of the mesh refinements combined with searching for a minimizer (ūi, Li)

in UhMi,Ni
(Ω)× UhMi,Ni

(Ω) by the conjugate gradient method.

Table 1. The convergence of the deformation and mesh transformation

i, j eu0,2
ij eu0,∞

ij eu1,2
ij eL0,2

ij eL0,∞
ij eL1,2

ij

0, 1 7.87× 10−5 7.41× 10−4 7.23× 10−3 5.51× 10−5 1.33× 10−3 3.24× 10−2

1, 2 2.00× 10−5 2.18× 10−4 1.94× 10−3 1.79× 10−5 7.16× 10−4 1.89× 10−2

2, 3 2.77× 10−6 4.79× 10−5 7.87× 10−4 1.83× 10−6 1.21× 10−4 4.50× 10−3

3, 4 3.38× 10−7 7.30× 10−6 3.55× 10−4 3.42× 10−7 1.21× 10−4 1.91× 10−3

Figure 5 shows the deformed mesh and the distribution of the deformation

gradient on the reference configuration L0(L0(π/4, αλ,0)D) for the numerical re-

sult (ū0, L0). In figure 6, we show on the deformed configuration the bending

and branching needle-like microstructure constructed from the numerical result

(ū3, L3) by a periodic extension.

Example 2. Let everything be the same as in Example 1 except that the initial

deformation u0
λ,δ(Xij) be given by

u0
λ,δ(Xij) =





u−λ,3δ(Xij), if i ≤ 11,

R(θ0
λ)U0 (Xij − d), else if 12 ≤ i ≤ 14,

R(θ0
λ)R

+U1 (Xij − d), otherwise,

(3.22)

where δ = 8b/N0 and d = Xi0j0 with i0 = 14 and j0 = 6. The initial mesh and

the distribution of the initial deformation gradient on the reference configuration

L0(π/4, αλ,0)D are shown in Figure 7(a).
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Figure 4. The convergence of the energy.

The numerical result of the corresponding (ū0, L0) on the reference configu-

ration is shown in Figure 7(b), and the corresponding bending and branching

needles on the deformed configuration constructed from (ū3, L3) by a periodic

extension is shown in Figure 7(c).

Example 3. Let everything be the same as in Example 1 except that the initial

deformation u0
λ,δ(Xij) be given by

u0
λ,δ(Xij) =





u−λ,3δ(Xij), if i ≤ 3,

u−λ,δ(Xij), else if i ≤ 11,

R(θ0
λ)U0 (Xij − d), else if 12 ≤ i ≤ 14,

R(θ0
λ)R

+U1 (Xij − d), otherwise,

(3.23)
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Figure 5. The deformed mesh and the distribution of deformation
gradient for the numerical result (ū0, L0).

−3 −2 −1 0 1 2 3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

x
1

y
1

Figure 6. The bending and branching needles constructed from
the numerical result (ū3, L3).
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where δ = 8b/N0 and d = Xi0j0 with i0 = 14 and j0 = 6. The initial mesh and

the distribution of the initial deformation gradient on the reference configuration

L0(π/4, αλ,0)D are shown in Figure 8(a).

The numerical result of the corresponding (ū0, L0) on the reference configu-

ration is shown in Figure 8(b), and the corresponding bending and branching

needles on the deformed configuration constructed from (ū3, L3) by a periodic

extension is shown in Figure 8(c).

Generally, different initial data lead to different branching needles. Compare

with the elastic energy of a pure variant of martensite at the temperature, that

is F (U0; Ω) = Φ(Cε, 55) meas(Ω) = −0.5265227× 10−3, we see in table 2 that the

longer branched needles (figure 6 and figure 8(c)) have obviously lower interface

energy S(ū4, L4; Ω) = F (ū4, L4; Ω)− F (U0; Ω) than that of the needles branched

only at the needle tips (figure 7(c)).
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Figure 7. The numerical results for Example 2.
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Table 2. The elastic energies for different needles

figure 6 7(c) 8(c)

F (ū4, L4; Ω) −0.5250724× 10−3 −0.5242411× 10−3 −0.5249441× 10−3

S(ū4, L4; Ω) 0.1450849× 10−5 0.2281639× 10−5 0.1578589× 10−5
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