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Abstract. A multiscale model and numerical method for computing mi-
crostructures with large and inhomogeneous deformation is established, in
which the microscopic and macroscopic information is recovered by coupling
the finite order rank-one convex envelope and the finite element method. The
method is capable of computing microstructures which are locally finite order
laminates. Numerical experiments on a double well problem show that plenty
of stress free large deformations can be achieved by microstructures consisting
of piecewise simple twin laminates.

1. Introduction

It is well known that, below the transformation temperature, many elastic

crystals transform to a lower symmetric martensitic phase which allows them

to have stress free large deformations exhibiting microstructures consisting of

fine mixtures of martensitic variants. For the static problem of martensitic mi-

crostructures, the well known geometrically nonlinear continuum theory [1, 2]

leads to the consideration of minimizing the elastic energy

F (u; Ω) =

∫

Ω

f(∇u(x)) dx (1.1)

in a set of admissible deformations

U(u0; Ω) = {u ∈ W 1,p(Ω; Rm) : u = u0, on ∂Ω0}, (1.2)
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where Ω ⊂ Rn, with n = 2 or 3, is a bounded open set with a Lipschitz continuous

boundary ∂Ω, ∂Ω0 is a subset of ∂Ω with positive (n − 1)-dimensional measure

and n < p < ∞, and where the Ericksen-James elastic energy density f(·) has

several symmetry related energy wells [1, 2, 5] and is of the form [4]

f(∇u) = Φ(C), (1.3)

where C = (∇u)T∇u ∈ Sn = {A ∈ Rn×n : AT = A}, which is the set of symmetric

matrices in Rn, is the right Cauchy-Green strain tensor.

For properly given linear boundary data u0, the minimizing sequences of the

elastic energy F (·; Ω) in U(u0; Ω) will essentially consist of finely laminated twins

which are in different energy wells [1, 2]. The numerical computation of laminated

microstructures is by no means trivial [16, 23] and has been attracting many

researches in the past two decades (see [23] for a survey on the classical conforming

and nonconforming finite element methods, see [9, 10, 11, 12, 17, 18, 19, 20, 25]

among many others for other approaches).

For large nonlinear macroscopic deformations consisting of inhomogeneous

microstructure, the numerical computation encounters much greater challenge.

In [15], an attempt was made by coupling a coarse mesh approximation of macro-

scopic deformation with a fine mesh approximation of microstructure. However,

since the scale of microstructure is much smaller than that of macroscopic de-

formation, a high accuracy approximation with such a method usually leads to

unbearable computational work. In the present paper, considering the multi-

scale nature of the deformation, we establish a multiscale computational model

which uses the mesh transformation method [20, 21, 22] for the approximation

of the macroscopic deformation and the finite order rank-one convex envelope

scheme [18] to reveal the information of the microstructure. The idea of ap-

plying the mesh transformation method is to involve the mesh distribution into

the minimization procedure to limit the mesh dependence of the finite element

approximation, which can often be a serious problem in numerical computation

of microstructures [6, 7, 17, 23]. Theoretically, the multiscale method given in

this paper is capable of computing microstructures which are locally finite order

laminates as observed in many elastic crystals.
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The rest of the paper is organized as follows. In section 2, the finite order

rank-one convex envelopes are defined and analyzed, and the corresponding re-

laxed problem is proposed. In section 3, the multiscale computational model and

the numerical algorithm are established and analyzed. In section 4, numerical

experiments on a double well problem are given to show that plenty of stress

free large deformations can be achieved by microstructures consisting of piece-

wise simple twin laminates, which justifies the necessity of developing such kind

of multiscale methods as established in this paper.

2. Relaxation by finite order rank-one convex envelopes

As is well known that one of the main difficulties in the numerical approxi-

mation of the non-convex variational problem is that the infimum of F (·; Ω) in

U(u0; Ω) is generally unattainable and the minimizing sequences produce finer and

finer oscillations which leads to the so called gradient Young measure solutions

[1, 2, 23]. To avoid this difficulty, one may consider the problem of minimizing

the relaxed energy functional

QF (u; Ω) =

∫

Ω

Qf(∇u(x)) dx (2.1)

in U(u0; Ω), where Qf(·) is the quasiconvex envelope of f(·), i.e. the greatest qua-

siconvex function less than or equal to f [8, 24]. Under certain general growth and

coerciveness conditions, the relaxed problem is solvable and the solutions, termed

as relaxed minimizers, turn out to be the weak limits of minimizing sequences of

the original problem [1, 2, 24], which can also be viewed as the macroscopic ver-

sion of the gradient Young measure solutions. Other than the loss of microscopic

information, the fatal shortcoming of this approach in applications is that quasi-

convex envelope Qf(·) is generally unavailable and its numerical computation is

no less difficult than the original problem.

Notice that typical microstructures observed in martensite crystals are lami-

nated microstructures, which include simple laminates and some finite orders of

laminates in laminates. Since these laminated microstructures can be completely

resolved by the finite order rank-one convex envelopes Rkf(·) given below (see also

[18]), it is well founded that, in the computation of martensitic microstructures,
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we consider the problem of minimizing the relaxed energy functional

RkF (u; Ω) =

∫

Ω

Rkf(∇u(x)) dx (2.2)

in U(u0; Ω).

Let f : Rmn → R1 ∪ {∞} be continuous.

Definition 2.1. Let R1f : Rmn → R1 ∪ {∞} be defined by

R1f(A) = inf{λf(A0) + (1− λ)f(A1) : λ ≥ 0, A = λA0 + (1− λ)A1,

rank(A0 − A1) ≤ 1}, (2.3)

and let Rkf : Rmn → R1 ∪ {∞} be defined by

Rkf(A) = R1(Rk−1f)(A). (2.4)

Rkf is called the k-th order rank-one convex envelope of f .

Definition 2.2. The sequence

(λi1 , λi1i2 , . . . , λi1i2···ik , Ai1i2···ik), iν ∈ {0, 1}, 1 ≤ ν ≤ k

is said to satisfy (Rk) if

λi1···iν ≥ 0, ∀ν = 1, · · · , k, λ0 + λ1 = 1,

λi1···iν−10 + λi1···iν−11 = 1, for ν = 2, · · · , k,

and if the following conditions are satisfied:

(i): Ai1i2···ik ∈ Rmn, rank(Ai1···ik−10 − Ai1···ik−11) ≤ 1,

(ii): let Ai1···iν = λi1···iν0Ai1···iν0 + λi1···iν1Ai1···iν1, then

rank(Ai1···iν−10 − Ai1···iν−11) ≤ 1, ∀ν = k − 1, · · · , 2.

For direct computation of the k-th order rank-one convex envelopes, the fol-

lowing equivalent definition can be used.

Definition 2.3. Rkf : Rmn → R1 ∪ {∞} is said to be the k-th order rank-one

convex envelope of f , if

Rkf(A) = inf{
1∑

i1,...,ik=0

λi1λi1i2 · · ·λi1i2···ikf(Ai1i2···ik) :
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1∑
i1,...,ik=0

λi1λi1i2 · · ·λi1i2···ikAi1i2···ik = A,

(λi1 , λi1i2 , . . . , λi1i2···ik , Ai1i2···ik) satisfy (Rk)}. (2.5)

Lemma 2.1. [18] We have

f ≥ R1f ≥ R2f ≥ · · · ≥ Rkf ≥ · · · ≥ Rf ≥ Qf, (2.6)

where Rf is called the rank-one convex envelope of f [8], and

lim
k→∞

Rkf(A) = Rf(A), ∀A ∈ Rmn. (2.7)

Theorem 2.1. [18] For any k ≥ 1 and any u0 ∈ W 1,p(Ω; Rm), we have

inf
u∈U(u0, Ω)

∫

Ω

Rkf(∇u(x)) dx = inf
u∈U(u0, Ω)

∫

Ω

f(∇u(x)) dx. (2.8)

One of the advantages of relaxation by the finite order rank-one convex en-

velopes is that Rkf(·) is computable. Let A ∈ Rmn, define

Ai1···ik = A +
∑

j∈Ii1···ik

γj−((1− i(j)) sin2(τj−)− i(j) cos2(τj−))φj− ⊗ θj− , (2.9)

where the index set Ii1···ik = {i1, i1i2, . . . , i1i2 · · · ik} and

i(j) = iν , if j = i1 · · · iν for ν = 1, 2, · · · k, (2.10)

j− =

{
−, if j = i1,

i1 · · · iν−1, if j = i1 · · · iν ,
(2.11)

θj− ∈ Sn−1, φj− ∈ Sm−1, τj− ∈ S1 and γj− ∈ R1, (2.12)

and define

λj = (1− i(j)) cos2(τj−)− i(j) sin2(τj−), j ∈ Ii1···ik , (2.13)

then, it is easily verified that (λi1 , λi1i2 , . . . , λi1i2···ik , Ai1···ik) satisfy (Rk) and

A =
1∑

i1,...,ik=0

λi1λi1i2 · · ·λi1i2···ikAi1i2···ik . (2.14)
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Theorem 2.2. [18] Let A ∈ Rmn. Let Ai1···ik and λj, j ∈ Ii1···ik be defined by

(2.9) and (2.13) respectively. Then, we have

Rkf(A) = inf
1∑

i1,...,ik=0

λi1λi1i2 · · ·λi1···ikf(Ai1···ik), (2.15)

where the infimum is taken among all {(θj− , φj− , τj− , γj−), j ∈ Ii1···ik} given by

(2.12).

By Theorem 2.2, to calculate Rkf(A) is to solve a nonlinear unconstrained

optimization problem with (m + n)(2k − 1) variables. For example, the first and

second order rank-one convex envelope can be written as

R1f(A) = inf{cos2(τ)f(A+γ sin2(τ)φ⊗θ)+sin2(τ)f(A−γ cos2(τ)φ⊗θ)}, (2.16)

R2f(A) = inf{ cos2(τ0) cos2(τ)f(A + γ sin2(τ)φ⊗ θ + γ0 sin2(τ0)φ0 ⊗ θ0)

+ sin2(τ0) cos2(τ)f(A + γ sin2(τ)φ⊗ θ − γ0 cos2(τ0)φ0 ⊗ θ0)

+ cos2(τ1) sin2(τ)f(A− γ cos2(τ)φ⊗ θ + γ1 sin2(τ1)φ1 ⊗ θ1)

+ sin2(τ1) sin2(τ)f(A− γ cos2(τ)φ⊗ θ − γ1 cos2(τ1)φ1 ⊗ θ1)}.
(2.17)

Denote

∆k = {(θj− , φj− , τj− , γj−) ∈ Sn−1 × Sm−1 × S1 ×R1, j ∈ Ii1···ik}, (2.18)

let δk ∈ ∆k and

fk(A; δk) =
1∑

i1,...,ik=0

λi1λi1i2 · · ·λi1···ikf(Ai1···ik), (2.19)

where Ai1···ik and λj, j ∈ Ii1···ik are defined by (2.9) and (2.13), then the k-th

order rank-one convex envelope can be written as

Rkf(A) = inf
δk∈∆k

fk(A, δk). (2.20)

Another key advantage of relaxation by the finite order rank-one convex en-

velopes is that the quantities involved in the optimization have obvious physical

meanings. For example, θs are the unit normals to the interfaces between the lam-

inates, and cos2(τ)s and sin2(τ)s are the volume fractions of the corresponding
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laminates, etc. In fact, the information on microstructures consisting of laminates

in laminates of order no greater than k can be recovered by computing Rkf(A).

Theorem 2.3. Let f : Rmn → R1 ∪ {∞} be continuous and satisfy

(H1): f(·) is bounded from below and
f(B)

‖B‖ → ∞, as ‖B‖ → ∞.

Then, for any given A ∈ Rmn and integer k ≥ 1, there exist δk(A) ∈ ∆k such that

fk(A, δk(A)) = inf
δk∈∆k

fk(A, δk). (2.21)

Proof. By definition 2.1, we only need to show that the theorem holds for k = 1

and R1f(·) is continuous and satisfies the hypothesis (H1), which are proved by

the following lemmas. ¤

Lemma 2.2. Let f : Rmn → R1 ∪ {∞} be continuous and satisfy the hypothesis

(H1), then there exist δ1(A) ∈ ∆1 such that

f1(A, δ1(A)) = inf
δ1∈∆1

f1(A, δ1). (2.22)

Proof. Without loss of generality, we may assume R1f(A) < f(A), since otherwise

any δ̂1 = (θ, φ, τ, γ) ∈ Sn−1 × Sm−1 × S1 × {0} is a solution of (2.22).

Let {δi = (θi, φi, τ i, γi)}∞i=1 be a minimizing sequence of f1(A, ·) in ∆1. If

{γi} is bounded, then by extracting a convergent subsequence of {δi} and by the

continuity of f(·), it is easily seen that the infimum in (2.22) is attainable.

We claim that {γi} can not be unbounded. Otherwise, suppose γi → ∞ as

i →∞. Then, if sin2(τ i) and cos2(τ i) are bounded away from 0, we have

‖Ai
0‖ = ‖A + γi sin2(τ i)φi ⊗ θi‖ → ∞, (2.23)

‖Ai
1‖ = ‖A− γi cos2(τ i)φi ⊗ θi‖ → ∞, (2.24)

and thus, by (H1), f1(A, δi) →∞, which is a contradiction. On the other hand,

suppose sin2(τ i) → 0 and sin2(τ i)γi → b for some constant b ∈ R1 ∪ {±∞}. If

b = 0, we have

f1(A, δi(A)) ≥ cos2(τ i)f(A + γi sin2(τ i)φi ⊗ θi) → f(A), (2.25)
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this contradicts the assumption that R1f(A) < f(A). If b ∈ R1 \ {0}, since δi is

a minimizing sequence and f(·) is bounded from below, we have

sin2(τ i)f(A− γi cos2(τ i)φi ⊗ θi) ≤ C, ∀i, (2.26)

where C > 0 is a constant independent of i, thus, recalling that cos2(τ i) → 1 and

γi →∞, as i →∞, we have, for sufficiently large i

f(A− γi cos2(τ i)φi ⊗ θi) ≤ C

|b| |γ
i| ≤ 2C

|b| |γ
i| cos2(τ i)

≤ 4C

|b| ‖A− γi cos2(τ i)φi ⊗ θi‖. (2.27)

This leads to a contradiction to (H1). b = ±∞ leads to (2.23) and (2.24), which

by (H1) contradict to the assumption that δi is a minimizing sequence. Similarly,

the case cos2(τ i) → 0 can be ruled out. ¤

Lemma 2.3. If f(·) is continuous and satisfies (H1), then its first order rank-one

convex envelope R1f(·) is also continuous and satisfies (H1).

Proof. Let A be given, and let {Bi} be a sequence satisfying limi→∞ ‖Bi‖ = 0.

By lemma 2.2, there exist δ ∈ ∆1 and {δi} ⊂ ∆1 such that

R1f(A) = cos2(τ)f(A + γ sin2(τ)φ⊗ θ)+

sin2(τ)f(A− γ cos2(τ)φ⊗ θ), (2.28)

and

R1f(A + Bi) = cos2(τ i)f(A + Bi + γi sin2(τ i)φi ⊗ θi)+

sin2(τ i)f(A + Bi − γi cos2(τ i)φi ⊗ θi). (2.29)

Since we always have

R1f(A + Bi) ≤ cos2(τ)f(A + Bi + γ sin2(τ)φ⊗ θ)+

sin2(τ)f(A + Bi − γ cos2(τ)φ⊗ θ), (2.30)

by (2.28) and the continuity of f(·), we have

lim sup
i→∞

R1f(A + Bi) ≤ R1f(A). (2.31)
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On the other hand, since f(A+Bi) is bounded, with a similar argument as in the

proof of lemma 2.2, it is easily verified that γi must be bounded and thus there

exists a subsequence of {δi}, again denoted by {δi}, and δ∞ ∈ ∆1 such that

lim
i→∞

δi = δ∞, and lim inf
i→∞

R1f(A + Bi) = f1(A, δ∞).

By (2.20), this implies that

lim inf
i→∞

R1f(A + Bi) = f1(A, δ∞) ≥ R1f(A). (2.32)

The continuity of R1f(·) follows from (2.31) and (2.32).

Now, let {Ai} satisfy limi→∞ ‖Ai‖ = ∞ and δi ∈ ∆1 be the corresponding

minimizers. Let

Ai
0 = Ai + γi sin2(τ i)φi ⊗ θi, Ai

1 = Ai − γi cos2(τ i)φi ⊗ θi. (2.33)

We have

cos2(τ i)‖Ai
0‖+ sin2(τ i)‖Ai

1‖ ≥ ‖Ai‖ → ∞ (2.34)

and

R1f(Ai)

‖Ai‖ =
cos2(τ i)f(Ai

0) + sin2(τ i)f(Ai
1)

‖ cos2(τ i)Ai
0 + sin2(τ i)Ai

1‖
. (2.35)

If both ‖Ai
0‖ and ‖Ai

1‖ are unbounded, then (2.35) and f(·) satisfies (H1) imply

that

R1f(Ai)

‖Ai‖ → ∞. (2.36)

If ‖Ai
0‖ (or ‖Ai

1‖) is bounded, then

‖ sin2(τ i)Ai
1‖

‖Ai‖ → 1 (or
‖ cos2(τ i)Ai

0‖
‖Ai‖ → 1) (2.37)

holds, this also leads to (2.36).

R1f(·) is bounded from below is the direct consequence of the definition of

R1f(·) and f(·) is bounded from below. ¤

Definition 2.4. Let f ∈ C2(Rmn). δk(A) ∈ ∆k is called a regular local minimizer

of fk(A, ·) if

∂fk(A, δk(A))

∂δk

= 0 (2.38)
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and

∂2fk(A, δk(A))

∂δ2
k

(ξ, ξ) > 0, ∀ξ 6= 0. (2.39)

Lemma 2.4. Let f ∈ C2(Rmn). Suppose δk(A) is a regular local minimizer of

fk(A, ·) for a given A ∈ Rmn. Then, there exists a neighborhood N(A) of A and

a function δk ∈ C1(N(A); ∆k) such that, for all B ∈ N(A), δk(B) is a regular

local minimizer of fk(B, ·) and we have

d fk(A, δk(A))

dA
=

∂fk(A, δk)

∂A
|δk=δk(A). (2.40)

Proof. The existence of a unique continuously differentiable regular local mini-

mizer δk(B) follows directly from the implicit function theorem [14], the definition

of fk(·) and f ∈ C2(Rmn). (2.40) is a consequence of (2.38). ¤

Theorem 2.4. Let f ∈ C2(Rmn) and A ∈ Rmn. Suppose δk(B) is a regular local

minimizer of fk(B, ·) and Rkf(B) = fk(B, δk(B)) in a neighborhood of A. Then,

we have

dRkf(A)

dA
=

∂fk(A, δk)

∂A
|δk=δk(A). (2.41)

Proof. The theorem is a corollary of lemma 2.4. ¤

Remark 2.1. In applications, instead of the absolute minimizers of fk(A, ·) which

define Rkf(A), the local minimizers of fk(A, ·) can be used to describe metastable

microstructures of laminates in laminates of order k.

3. Multiscale computational model and algorithm

The stress free large deformations of martensite crystals, for example large

deformations of shape memory alloys below the transformation temperature, are

usually formed of microstructures which are locally laminates in laminates of

finite order km, and in such a case the macroscopic deformation can be resolved

by the solution of the relaxed problem

(RkP )

{
Find u ∈ U(u0; Ω) such that

RkF (u; Ω) = infv∈U(u0; Ω) RkF (v; Ω),
(3.1)
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for k ≥ km, and the microscopic information on the local laminates in laminates

can be recovered by δk(∇u) ∈ ∆k. Since the macroscopic deformation u does

not have fine oscillations, the numerical approximation of the relaxed problem is

much easier than that of the original one.

To solve the k-th order rank-one convex relaxation problem (RkP ) numeri-

cally, we use the finite element method to approximate the macroscopic deforma-

tion u. Let Th(Ω) be a family of regular triangulations of Ω with mesh size h [3].

For simplicity, we assume that for all h

Ω̄h ≡
⋃

K∈Th(Ω)

K = Ω̄ and ∂Ω0h = ∂Ω0,

where ∂Ω0h is the union of all n−1 faces in Th(Ω) whose interior has a nonempty

intersection with ∂Ω0. Let

Uh(u0; Ω) = {u ∈ (C(Ω̄))m : u|K is affine ∀K ∈ Th(Ω),

and u(x) = u0(x), if x is a node on ∂Ω0h}. (3.2)

Then, the solution of (RkP ) can be approximated by the solution of the following

finite element discrete problem:

(FRkP )

{
Find uh ∈ Uh(u0; Ω) such that

RkF (uh; Ω) = infvh∈Uh(u0; Ω) RkF (vh; Ω).
(3.3)

To reduce the mesh dependence of the finite element approximations, the mesh

transformation method [20] can be applied. Let

T (Ω) = {bijections g : Ω̄ → Ω̄ | g ∈ (W 1,∞(Ω))n, g−1 ∈ (W 1,∞(Ω))n,

g(∂Ω0) = ∂Ω0, and det∇g > 0, a.e. in Ω} (3.4)

and

Th(Ω) = {g ∈ T (Ω) : g|K is affine ∀K ∈ Th(Ω)}. (3.5)

Define the functional RkF (·, ·; Ω) by

RkF (ū, g; Ω) =

∫

Ω

Rkf(∇ū(x̄)(∇g(x̄))−1)) det∇g(x̄) dx̄. (3.6)

By changing the variables

x = g(x̄), u(x) = ū(g−1(x)), (3.7)
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we are lead to the following discrete problem

(MRkP )

{
find (ūh, gh) ∈ Uh(u0 ◦ gh; Ω)× Th(Ω) such that

RkF (ūh, gh; Ω) = inf(ū,g)∈Uh(u0◦g; Ω)×Th(Ω) RkF (ū, g; Ω).
(3.8)

The discrete problem (MRkP ) differs from that of (FRkP ) in that, instead of

minimizing the energy in a finite element function space defined on a fixed finite

element mesh given by Th(Ω), the energy is minimized among finite element

functions defined on all admissible mesh distributions introduced by the mesh

transformation mappings g ∈ Th(Ω).

Remark 3.1. T (Ω) and Th(Ω) can be modified to suit various kinds of boundary

conditions.

Recalling that the k-th order rank-one convex envelope Rkf is evaluated by

(2.20) which works on the microscale, we see that the discrete problem (MRkP )

is in fact a multiscale computational model. To compute the multiscale solu-

tion, the conjugate gradient method can be applied to solve (MRkP ), where

the values of Rkf(∇ū(x̄)(∇g(x̄))−1)|x̄∈K) along with the microstructure informa-

tion δk(∇ū(x̄)(∇g(x̄))−1)|x̄∈K) are obtained by solving the problem (2.20), and

the gradients
d

dA
Rkf(∇ū(x̄)(∇g(x̄))−1)|x̄∈K) are obtained by using the relation

(2.41). The solution process can be summarized as the following algorithm:

(1): initial the deformation and mesh mapping (ū0
h, g

0
h);

(2): set AK = ∇ū0
h(x̄)(∇g0

h(x̄))−1)|x̄∈K , ∀K ∈ Th(Ω);

(3): solve (2.20) to get Rkf(AK) and δk(AK) by golden section method;

(4): compute the relaxed energy RkF (ū0
h, g

0
h; Ω) by (3.6);

(5): compute DhRkF , the gradient of the relaxed energy respect to (ū0
h, g

0
h)

by using the relation (2.41), the definition of AK and the chain rule;

(6): if ‖DhRkF‖ < tolerance, take (ū0
h, g

0
h) and δk(AK), ∀K ∈ Th(Ω) as the

numerical solution, and terminate the process;

(7): compute the conjugate gradient direction Dc
hRKF and set (ū1,α

h , g1,α
h ) =

(ū0
h, g

0
h)− α ·Dc

hRKF ;

(8): using incomplete linear search to find an approximate minimizer ᾱ of

e(α) = RkF (ū1,α
h , g1,α

h ; Ω), where Rkf(Aα
K) and δk(A

α
K), ∀K ∈ Th(Ω), with
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Aα
K = ∇ū1,α

h (x̄)(∇g1,α
h (x̄))−1)|x̄∈K , are obtained by solving (2.20) using the

golden section search;

(9): set (ū0
h, g

0
h) = (ū1,ᾱ

h , g1,ᾱ
h ), RKF (ū0

h, g
0
h; Ω) = RKF (ū1,ᾱ

h , g1,ᾱ
h ; Ω), AK =

Aᾱ
K , δk(AK) = δk(A

ᾱ
K), ∀K ∈ Th(Ω), go to step (5).

Numerical experiments on crystalline microstructure problems show that the elas-

tic energy can often be completely relaxed even with fixed h and k. That means

there are abundant solutions to the finite order rank-one convex relaxed problem

(RkP ). Of course, in general, the algorithm can also be coupled with a mesh re-

finement and adaptivity strategy in applications to get a solution with smoother

or particularly shaped macroscopic deformation.

4. Numerical experiments and results

Let Ω = D = (−Xl/2, Xl/2) × (−Yl/2, Yl/2). Let TN,M(Ω) = Th(Ω) =

Th(D) be a family of regular triangulations introduced by the lines





y = −Yl

2
+ Yl

M
j, 0 ≤ i ≤ M ;

x = −Xl

2
+ Xl

N
j, 0 ≤ j ≤ N ;

y = NYl

MXl
(x + Xl

2
) + Yl

2
− 2Yl

M
k, 0 < k < M+N

2
;

y = −NYl

MXl
(x− Xl

2
)− Yl

2
+ 2Yl

M
k, 0 < k < M+N

2
.

(4.1)

Consider a two dimensional model for elastic crystals with the energy density

f(A) =

{
Φ(AT A), if det A > 0

+∞, if det A ≤ 0
(4.2)

and

Φ(C) = κ1(tr C − 2)2 + κ2C
2
12 + κ3((

C11 − C22

2
)2 − ε2)2 + κ4(log

det C

1− ε2
)2, (4.3)

where C = ∇uT ∇u is the right Cauchy-Green strain tensor, κi > 0, i = 1, 2, 3, 4

are constant elastic moduli, and ε > 0 is the transformation strain. Notice that

here the energy density differs from the Ericksen-James energy density [6, 7, 13]

in that the energy density is infinity when det A ≤ 0, which is actually a physical

requirement, and there is an additional term κ4(log det C
1−ε2 )2 to ensure that the

energy density so defined is continuous in the whole space. The energy wells of

the energy density defined by (4.2) and (4.3) are SO(2)U0 and SO(2)U1, while

13



the energy wells of the Ericksen-James energy density are O(2)U0 and O(2)U1,

where O(2) = {A ∈ R2×2 : AT A = I}, SO(2) = {A ∈ O(2) : det A = 1} and

U0 =

(√
1− ε 0

0
√

1 + ε

)
, U1 =

(√
1 + ε 0

0
√

1− ε

)
. (4.4)

Let η1 =
√

1− ε and η2 =
√

1 + ε and let

R± =

(
η1η2 ±ε

∓ε η1η2

)
, (4.5)

then it is easily verified that

R±U1 = U0 + a± ⊗ n±, (4.6)

where a± =
√

2ε(η1, ∓η2)
T and n± = 1√

2
(1, ±1)T , that is U0 and R±U1 are in

rank-one connection.

In our numerical experiments, we set κ1 = 10, κ2 = 3, κ3 = 1, κ4 = 10−8 and

ε = 0.1.

Theorem 4.1. Let A ∈ Rn×n and B = A+b⊗m for some b, m ∈ Rn. Suppose

det A > 0 and det B > 0. Then, det((1− λ)A + λB) > 0 for all λ ∈ [0, 1].

Proof. By the fact that the map Rn×n 3 A → det A is rank-one affine and

rank(A−B) ≤ 1, we have

det((1− λ)A + λB) = (1− λ) det A + λ det B. (4.7)

Equation (4.7) implies that det((1 − λ)A + λB) ≥ min{det A, det B} > 0, thus

the theorem follows. ¤

By Theorem 4.1, for the energy density satisfying f(A) = +∞ if det A ≤ 0,

the finite order rank-one convex envelopes can be equivalently defined as follows.

Definition 4.1. The sequence

(λi1 , λi1i2 , . . . , λi1i2···ik , Ai1i2···ik), iν ∈ {0, 1}, 1 ≤ ν ≤ k

is said to satisfy (R+
k ) if it satisfies (Rk) and a further condition

(iii): det Ai1···ik > 0, ∀iν ∈ {0, 1}, 1 ≤ ν ≤ k.

14



Definition 4.2. Rkf : Rmn → R1 ∪ {∞} is said to be the k-th order rank-one

convex envelope of f , if

Rkf(A) =





inf{∑1
i1,...,ik=0 λi1λi1i2 · · ·λi1i2···ikf(Ai1i2···ik) :∑1
i1,...,ik=0 λi1λi1i2 · · ·λi1i2···ikAi1i2···ik = A,

(λi1 , λi1i2 , . . . , λi1i2···ik , Ai1i2···ik) satisfy (R+
k )}, if det A > 0;

+∞, if det A ≤ 0.

(4.8)

It follows from Theorem 4.1 and Definition 4.2 that the microstructures con-
sists of laminates in laminates defined by the finite order rank-one convex en-

velopes are physically admissible, i.e. the determinants of the deformation gra-

dients of the laminates on various levels are all positive.

In our numerical experiments, the first order rank-one convex envelope R1f(·)
defined by Definition 4.2 is used. The algorithm given in Section 3 is applied

to compute the 2-scale numerical solution, which consists of piece-wise simple

laminated microstructures with the average deformation gradients of the form

R(α)A−
λ = R(α)((1− λ)U0 + λR−U1), (4.9)

or

R(β)A+
µ = R(β)((1− µ)U0 + µR+U1), (4.10)

where R(θ) ∈ SO(2) is the rotation matrix with rotation angle θ. It is easily

verified that rank(R(αλ,µ)A−
λ − A+

µ ) = 1, where

αλ,µ = arctan
(a

√
a2 + b2 − η2

1η
2
2 − bη1η2

b
√

a2 + b2 − η2
1η

2
2 + aη1η2

)
, (4.11)

and where in (4.11) a = η1η2(1− 2λµε2), b = (λ + µ)ε− 2λµε3.

Example 1. Take Xl = 32, Yl = 2, M = 1 and N = 16. Let the initial mesh

transformation map be the identity map, that is g0h(x̄) = x̄. Let

r(τ, θ, x̄) = τXl θ−1 − x̄2, θ(x̄) = (
x̄1

Xl

+
1

2
)θ

and let

ū0(x̄) = (−0.5Xl + r(τ, θ, x̄2) sin θ(x̄), −0.5Yl + r(τ, θ, x̄2)(1− cos θ(x̄))T ,

15



which maps D into a part of an upward bending annular region with the cen-

tral angle θ. Take the interpolation function ū0h of ū0 in Th(D) as the initial

deformation. The boundary conditions for gh and ūh are given by

gh(±0.5Xl, ±0.5Yl) = (±0.5Xl, ±0.5Yl)
T , (4.12)

ūh(−0.5Xl, −0.5Yl) = (−0.5Xl, −0.5Yl)
T , (4.13)

(ūh(−0.5Xl, 0.5Yl))1 = −0.5Xl. (4.14)

The numerical experiments show that, for any given θ ∈ [0, π/3] and τ ∈
(1 − ε, 1), the algorithm given in Section 3 leads to a stress free large deforma-

tion consisting of piecewise simple laminated microstructures. Similar numerical

results can be obtained, if we take

ū0(x̄) = (−0.5Xl + r(τ, θ, x̄2) sin θ(x̄), 0.5Yl − r(τ, θ, x̄2)(1− cos θ(x̄))T ,

whose image is a part of a downward bending annular region with the central

angle θ.

In Figure 1, the macroscopic deformed configurations of the numerical re-

sults for some given θ are shown, where the gradients AK of the macroscopic

deformation on the black and white elements are approximately of the form

R(α
K
)A−

λ
K

and R(β
K
)A+

µ
K

, ∀K ∈ Th(D) (4.15)

respectively. Furthermore, let K be ordered from left to right, then the following

relations hold approximately as shown in Table 1

µ
K

= λ
K+1

, if K = 0 mod (4); (4.16)

µ
K

= λ
K−1

, if K = 3 mod (4); (4.17)

α
K

= α
K+1

, for K = 1, 3 mod (4); (4.18)

α
K

= α
K−4

+ ∆αj, if K = 4j + i, for i ∈ {1, 2, 3, 4}. (4.19)

This agrees with the theory. In fact, by (4.11), in a 4 elements block K ∈
{4j, 4j + 1, 4j + 2, 4j + 3} the rotation angle increment ∆αj is given by

∆αj = αµ4j ,λ4j+1
− αλ4j+2,µ4j+3

= αµ4j ,µ4j
− αµ4j+3,µ4j+3

. (4.20)

Obviously, macroscopic deformation with varying curvature can be obtained if

µ4j and µ4j+3 varies from block to block accordingly.
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Figure 1. The macroscopic deformed configurations for various θ.

Table 1. Numerical results corresponding to Figure 1 (a)-(d).

(a) θ = π/12 (b) θ = π/3 (c) θ = π/6 (d) θ = π/6

µK , K = 0 mod (4) ≈ 0.42 ≈ 0.17 ≈ 0.31 ≈ 0.64

µK , K = 3 mod (4) ≈ 0.58 ≈ 0.83 ≈ 0.64 ≈ 0.31

α1 ≈ α2 ≈ −4.28× 10−2 −2.71× 10−2 −3.59× 10−2 −5.72× 10−2

α3 ≈ α4 ≈ 6.91× 10−2 1.37× 10−1 8.81× 10−2 −2.90× 10−4

∆αj ≈ 3.33× 10−2 1.33× 10−1 6.64× 10−2 −6.66× 10−2

elastic energy 1.14× 10−11 1.22× 10−11 5.48× 10−12 3.07× 10−12

L2-norm of stress 9.26× 10−7 7.74× 10−7 9.97× 10−7 8.14× 10−7

Example 2. Let Xl = 36, Yl = 2, M = 1 and N = 18, and let the initial

mesh transformation map be g0h(x̄) = x̄ as in Example 1. Let ū0(D
+) and

ū0(D
−) be a upward and downward bending annular region with central angle

17



θ respectively, where D+ = {x ∈ D : x1 ≥ 2} and D− = {x ∈ D : x1 ≤ −2},
and let ū0(x̄)|D\(D+∪D−) = x̄. Let ū0h be the interpolation of ū0 in T18,1(D). Let

the boundary condition of g0h be given by (4.12). Then, the algorithm given in

Section 3 leads to a stress free large deformation, as shown in Figure 2 (a), which

again consists of piecewise simple laminated microstructures of the form (4.15)

with the relations (4.17)-(4.19) approximately satisfied. The numerical results on

α
K
, β

K
, λ

K
and µ

K
for Example 2 are shown in Table 2.
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2−a

elastic energy = 2.6 × 10−10

L2 norm of stress = 3.1 × 10−6

−15 −10 −5 0 5 10 15

0

2

4

6

8

x
1

x
2

θ = π/6 2−b

elastic energy = 3.9 × 10−13

L2 norm of stress = 3.6 × 10−7

Figure 2. The macroscopic deformed configurations for Exam-
ple 2 and 3.

Example 1 and Example 2 show that, in general, the solution to the finite

order rank-one convex relaxation problem (3.1) is non-unique. In fact, the above

numerical experiments show that there are infinitely many piecewise simple lam-

inated microstructures which can macroscopically deform a thin string made of

martensite crystal into a stress free curve with its curvature bounded by a con-

stant depending on the string width and the transformation strain ε.

We point out here that the condition f(A) = +∞ if det A ≤ 0 is necessary

to guarantee that the numerical solution is physically admissible. In fact, for
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Table 2. Numerical results corresponding to Figure 2 (a).

K = 4i + 1 K = 4i + 2 K = 4i + 3 K = 4i + 4

i αK λK αK λK βK µK βK µK

0 0.2809 0.6084 0.2808 0.2744 0.3317 0.2745 0.3318 0.7059

1 0.1947 0.7059 0.1947 0.2516 0.2414 0.2516 0.2413 0.6894

2 0.1076 0.6893 0.1076 0.2543 0.1548 0.2543 0.1548 0.7068

3 0.01745 0.7067 0.01741 0.2613 0.06600 0.2613 0.06598 0.6297

4 −0.05542 0.6297 −0.05544 0.5144 0.04257 0.5144 0.04257 0.3744

5 −0.02775 0.3744 −0.02772 0.6991 0.1080 0.6991 0.1080 0.2355

6 0.06437 0.2355 0.06440 0.6923 0.1988 0.6923 0.1983 0.2611

7 0.1502 0.2611 0.1502 0.6954 0.2853 0.6954 0.2853 0.2396

8 0.2408 0.2396 0.2408 0.6843 0.3735 0.6843 0.3736 0.3272

the Ericksen-James energy density, other than the physically admissible energy

wells U0 and U1, there are two non-physical energy wells QU0 and QU1, where

Q ∈ O(2) is a diagonal matrix with entries 1 and −1, and it is not difficult to

verified that rank(U0 ±QU0) = rank(U1 ±QU1) = 1, and thus, if the gradient of

the macroscopic deformation has the form

A±,0
λ,α = R(α)((1− λ)U0 ± λQU0) or A±,1

λ,α = R(α)((1− λ)U1 ± λQU1), (4.21)

then a non-physical simple laminated microstructure with deformation gradients

R(α)U0 and ∓R(α)QU0 or R(α)U1 and ∓R(α)QU1 (4.22)

and volume fractions (1 − λ) and λ is formed correspondingly. Noticing that if

the volume fraction λ < 0.5, that is if the contribution of QUi part to the overall

deformation is relatively smaller, then det A±,i
λ,α > 0, we see that even physically

admissible macroscopic deformation can consists of non-physical laminated mi-

crostructures.

Example 3. Consider the Ericksen-James energy density, that is f(A) = Φ(AT A)

with κ4 = 0. Take Xl = 32, Yl = 1, M = 1 and N = 16. Let g0h(x̄) = x̄. Let ū0

and ū0h be defined in the same way as in Example 1 with τ = 0.95 and θ = π/6.

Then, the algorithm leads to a non-physical solution shown in Figure 2 (b), where

the gradients of the macroscopic deformation on the black and white elements
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are approximately of the form A+,0
λ,α and A−,1

λ,α respectively, with λ ≈ 0.055 and α

satisfying approximately the relation (4.19) for ∆αj ≈ 0.065. For example the

gradient A9 of the macroscopic deformation on the 9-th element is

A9 =

(
0.92387307 −0.13035023

0.13098280 0.93965785

)

and for α = 0.1394, λ = 0.05515

A−,1
λ,α =

(
0.92407349 −0.13181856

0.12965678 0.93948064

)
.
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