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Abstract. Some micromagnetic phenomena can be modelled by a mini-
mization problem of a nonconvex energy. A numerical method to compute
the micromagnetic field, which gives rise to a finite dimensional uncon-
strained minimization problem, is given and analyzed. In our method, the
Maxwell’s equation defined on the whole space is solved by a finite element
method using artificial boundary, and the highly oscillatory magnetization
structure is approximated by an element-wise constant Young measure sup-
ported on a finite number of unknown points on the unit sphere. Numerical
experiments on some uniaxial and cubic anisotropic energy densities show
that the method is efficient.

1. Introduction

Some micromagnetic phenomena can be modelled by a minimization prob-

lem of a nonconvex energy [1, 2]

E(m) =

∫

Ω

ϕ(m) dx−
∫

Ω

H ·m dx +
1

2

∫

Rn

|∇um|2 dx, (1.1)

where ϕ : Rn → R1, with n = 2 or 3, is a non-negative continuous function

depending on material properties, m : Ω → Rn is an induced magnetic field

satisfying |m| = 1 almost everywhere in Ω, H is an applied external magnetic
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field, and um : Rn → R1 is the potential of the induced magnetic field satisfying

the Maxwell’s equation

div(−∇um + mχΩ) = 0, in H−1(Rn). (1.2)

Here, χΩ stands for the characteristic function of Ω. It is well known that

the above nonconvex variational problem typically can not attain the infimal

energy in the Lebesgue-type functions and the minimizing sequences of the

problem can develop microstructures, i.e. finer and finer highly oscillatory

magnetization structures [3]. However, if the measure valued solutions are

allowed, the relaxed problem is well posed [4, 5, 6, 7, 8, 9]. Denote ν = {νx}x∈Ω

a family of probability measure supported on Sn−1 which is weakly measurable,

i.e., x → ∫
Sn−1 v(A) νx(dA) is measurable for any v ∈ C(Sn−1). Let

A = {ν = {νx}x∈Ω : supp νx ⊂ Sn−1, a.e. x ∈ Ω}, (1.3)

and, for any ν ∈ A, let m(x) =
∫

Sn−1 Aνx(dA), for almost all x ∈ Ω, let um

be the solution to the Maxwell’s equation (1.2), and define a relaxed energy

functional by

RE(ν) =

∫

Ω

∫

Sn−1

ϕ(A) νx(dA) dx−
∫

Ω

H ·m dx +
1

2

∫

Rn

|∇um|2 dx. (1.4)

Then, the Young measure version of the relaxed problem of micromagnetics is

to minimize the relaxed energy RE(·) in the set A [5, 8, 9].

Numerical methods have been developed to solve the above relaxed prob-

lem. Kruž ík [10] used an element-wise constant three-atomic Young measures

for a regular triangulation of Ω ⊂ Rn. Kruž ík and Prohl [9] used an element-

wise constant multi-atomic Young measures of prescribed support according

to a triangulation of Sn−1 with an adaptive strategy which singles out the so-

called active atoms. In these methods, the dependence of um on m through

the Maxwell’s equation on the whole space Rn (see (1.2)) is explicitly given by

the Green’s formula [11], which, after the finite element discretization of Ω ,

is given by a summation of itergations defined on every element of the regular

triangulation of Ω.

In the present paper, we propose a new numerical method. In our method

we still use an element-wise constant multi-atomic Young measure for the

Young measure approximation, however, motivated by the fact that there is

always a Young measure ν ∈ A to the relaxed problem such that, for almost
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all x ∈ Ω, the measure νx is supported on a limited number of points, in fact

the number can be as low as n + 1 in general [4, 9] and the maximum number

can be estimated by the number of minima of the anisotropic energy density,

and by the idea of the mesh transformation method [12, 13, 14], the support

of our multi-atomic Young measure is limited to a fixed number of points

on Sn−1 which, instead of being prescribed, are taken as a part of unknown

to be decided in the optimization process. For the numerical solution of the

Maxwell’s equation (1.2), an artificial boundary with properly imposed (either

exact or approximate) boundary conditions (see for instance [16, 17, 18, 19,

20] among many others) is introduced to transform the unbounded domain

problem into a bounded domain problem, and then a standard conforming

finite element method [21] is applied to obtain a numerical solution of um. By

using the polar coordinates for the unit sphere Sn−1 and by writing the volume

fractions in a unconstrained form in a similar way as in [15], the discrete relaxed

problem can then be expressed in a form of a finite dimensional unconstrained

nonconvex optimization problem.

We notice here that, as is shown in [22], the use of piecewise constant

finite element magnetisation m and piecewise affine conforming finite element

potential u can cause instability of the discrete problem, especially when the

external magnetic field is small. The main reasons are that the set {div m =

0, in the discrete sense} is not empty and consists of pairs of oscillations, and

the additional oscillations between the minimum points of the anisotropic en-

ergy density do not increase the anisotropic energy
∫

Ω

∫
Sn−1 ϕ(A) νx(dA) dx.

To overcome this difficulty, we add an extra term λ
∫

Ω
|m − H|2 dx, where

λ > 0 is a small parameter, to the energy functional in computation to sup-

press the element level oscillations. To further reduce the artificial oscillations

in the numerical result, we use the local average of m instead of m itself

as the numerical result of the induced macro-magnetic field. Of course, our

method can also be used with piecewise constant finite element magnetisation

m and piecewise affine non-conforming finite element potential u without any

difficulty.

The rest of the paper is arranged as follows. In section 2, the method

of using unknown multi-atomic points for Young measure approximation is

introduced. In section 3, the method for the artificial boundary and finite

element approximation of the Maxwell’s equation (1.2) is given. In section 4,
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the discrete relaxed problem is formulated and analyzed. Finally, in section 5,

some numerical examples are given to show the efficiency of the method where

the conjugate gradient method combined with a linear search is applied to

solve the discrete optimization problem.

2. Young measure approximation

First, we introduce some definitions and basic results (see [7, 9]).

We denote f = g ⊗ ψ if f(x,A) = g(x)ψ(A) for almost all x ∈ Ω and all

A ∈ Sn−1 with g ∈ L1(Ω) and ψ ∈ C(Sn−1).

Let T1
h1

be a regular triangulation of Ω with mesh size h1 [21], and let T2
h2

be a regular triangulation of Sn−1 with mesh size h2. Then, Th = T1
h1
× T2

h2

defines a triangulation on Ω× Sn−1 with mesh size h = (h1, h2).

Define a projector P 1
h1

: L1(Ω; C(Sn−1)) → L1(Ω; C(Sn−1)) by

[P 1
h1

f ](x,A) =
1

K

∫

K

f(y,A) dy, if x ∈ K ∈ T1
h1

,

and define a projector P 2
h2

by

[P 2
h2

f ](x,A) =

Nh2∑
i=1

f(x,Ai) vi(A),

where vi are element-wise affine basis functions derived from the barycen-

tric coordinates of finite elements in T2
h2

(see [21]), which satisfy vi(Ai) = 1,

vi(Aj) = 0 if i 6= j for all 1 ≤ i, j ≤ Nh2 , and
∑Nh2

i=1 vi(A) = 1 for all A ∈ Sn−1.

It is easily seen that Ph = P(h1,h2) = P 1
h1

P 2
h2

= P 2
h2

P 1
h1

defines a projector which

provides an Ω-element-wise constant and Sn−1-element-wise affine approxima-

tion. The adjoint projector P ∗
h : A → A is defined by

〈P ∗
h ν, f〉 = 〈ν, Ph f〉,

where A is defined by (1.3) and

〈ν, f〉 =

∫

Ω

∫

Sn−1

f(x,A) νx(dA) dx.
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We denote P ∗
hA ⊂ A by Ah (see [7] Sect. 3.5, see also [9]). It is shown in [7]

that

Ah = {νh = {νh|K}K∈T1
h1

, νh|K =

Nh2∑
i=1

λK, i δAi
, ∀K ∈ T1

h1
}, (2.1)

where λK, i are non-negative constants satisfying
∑Nh2

i=1 λK, i = 1 for all K ∈
T1

h1
, and where δAi

is the Dirac measure supported at Ai ∈ Sn−1.

It is also shown in [7] that

lim
h→0

‖Phf − f‖L1(Ω; C(Sn−1)) = 0, ∀f ∈ L1(Ω; C(Sn−1)), (2.2)

and thus we have

|〈ν − P ∗
hν, f〉| = |〈ν, f − Phf〉|
≤ ‖ν‖(L1(Ω; C(Sn−1)))∗‖f − Phf‖L1(Ω; C(Sn−1)) → 0, as h → 0, (2.3)

i.e. weak∗-limh→0 P ∗
hν = ν in (L1(Ω; C(Sn−1)))∗ (see [7, 9]).

For any µh ∈ Ah, let mh|K∈T1
h1

=
∫

Sn−1 Aµh
K(dA), let umh

be the solution

to the Maxwell’s equation (1.2), and define

RE(µh) =

∫

Ω

∫

Sn−1

ϕ(A) µh(dA) dx−
∫

Ω

H ·mh dx +
1

2

∫

Rn

|∇umh
|2 dx.

(2.4)

Then, the semi-discrete Young measure version of the relaxed problem of mi-

cromagnetics is to minimize the relaxed energy RE(·) in the set Ah (see [9]).

By the sequential weak∗ compactness of A, the sequential weak∗ semicontinu-

ity of RE(·) and weak∗ continuity of P ∗
h , it is easily seen that the semi-discrete

relaxed problem admits a solution for any h with h1, h2 > 0 (see [9]). We

also have the following convergence result for the solutions of the semi-discrete

relaxed problem (see also [9])

Theorem 2.1. Let ϕ ∈ C0(Sn−1) and H ∈ L2(Ω). Then

lim
h→0

inf
µh∈Ah

RE(µh) = inf
µ∈A

RE(µ). (2.5)

Proof. Let ν ∈ A be a solution to the relaxed problem, let νh = P ∗
hν ∈ Ah and

let µh ∈ Ah be a solution to the semi-discrete relaxed problem. Then, we have

0 ≤ RE(µh)−RE(ν) ≤ RE(νh)−RE(ν)
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= 〈νh − ν, 1⊗ ϕ〉 − 〈νh − ν, H⊗ id〉+
1

2
(|umh

|21,2,Rn − |um|21,2,Rn)

≤ 〈ν, Ph(1⊗ ϕ−H⊗ id)− (1⊗ ϕ−H⊗ id)〉+ ‖m−mh‖L2(Ω;Rn)

≤ ‖ν‖(L1(Ω; C(Sn−1)))∗(‖Ph(1⊗ ϕ)− 1⊗ ϕ‖L1(Ω; C(Sn−1))

+‖Ph(H⊗ id)−H⊗ id‖L1(Ω; C(Sn−1))) + ‖m−mh‖L2(Ω;Rn), (2.6)

where mh(x) = mh|K for x ∈ K ∈ T1
h1

with mh|K =
∫

Sn−1 Aνh
K(dA) =

∑Nh2
i=1 λK, i(ν

h
K)δAi

and m(x) =
∫

Sn−1 Aνx(dA). It follows from (2.2) that the

first term on the right hand side of (2.6) converges to zero as h → 0. For the

second term on the right hand side of (2.6), we have

‖m−m(h1, h2)‖L2(Ω;Rn) ≤ ‖m−m(h1, 0)‖L2(Ω;Rn) +

‖m(h1, 0) −m(h1, h2)‖L2(Ω;Rn), (2.7)

and it is easily seen that limh1→0 ‖m−m(h1, 0)‖L2(Ω;Rn) = 0, hence we only need

to show that the second term on the right hand side of (2.7) converges to zero

as h2 → 0.

Let w ∈ L2(Ω; Rn), by the definitions, we have
∫

Ω

(m(h1, h2) −m(h1, 0)) ·w dx = 〈(P ∗
(h1, h2) − (P ∗

(h1, 0))ν, w ⊗ id〉

= 〈ν, (P(h1, h2) − (P(h1, 0))(w ⊗ id)〉 = 〈ν, P 1
h1

w ⊗ (P 2
h2

id− id)〉

=
∑

K∈T1
h1

∫

K

∫

Sn−1

(
1

|K|
∫

K

w(y) dy

)
·



Nh2∑
i=1

Aivi(A)− A


 νx(dA) dx.(2.8)

Since
∑Nh2

i=1 Aivi(A) is the element-wise affine interpolation of A and ν is a

probability measure on Sn−1, it is easily seen that

∫

Sn−1

|
Nh2∑
i=1

Aivi(A)− A| νx(dA) ≤ h2.

Therefore, by (2.8), we have

|
∫

Ω

(m(h1, h2) −m(h1, 0)) ·w dx| ≤ (

∫

Ω

|w| dx) h2 ≤ ‖w‖L2(Ω;Rn)

√
|Ω|h2.

This leads to

‖m(h1, h2) −m(h1, 0)‖L2(Ω;Rn) ≤
√
|Ω|h2, (2.9)
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and the proof is complete.

Theorem 2.1 guarantees the convergence of the conforming finite element

approximation for general Young measure solutions as h → 0.

Remember that the Young measure ν, which we want to approximate, has

the property that νx is supported at most at n + 1 points on Sn−1, and the

discrete Young measure solution to the semi-discrete relaxed problem typically

supported at a very few atoms (the so called active set) [9], therefore it is

inefficient to work on the set Ah. In [9], an adaptive active set strategy via

Weierstrass maximum principle is used to single out the active atoms. Here we

provide another approach, in which only limited number of atoms AK, i ∈ Sn−1,

1 ≤ i ≤ k are used on each element K in T1
h1

, however these atoms are a set

variables instead of being fixed on the nodes of T2
h2

. More precisely, for a given

integer k ≥ 1, we define

Ak
h1

= {νh1, k = {νh1, k|K}K∈T1
h1

, νh1, k|K =
k∑

i=1

λK, i δAK, i
,

AK, i ∈ Sn−1, ∀ 1 ≤ i ≤ k, and ∀K ∈ T1
h1
}, (2.10)

where λK, i are non-negative constants satisfying
∑k

i=1 λK, i = 1 for all K ∈
T1

h1
, and we propose the following semi-discrete Young measure version of the

relaxed problem

(SDRP): minimize the relaxed energy RE(·) in the set Ak
h1

, (2.11)

where RE(·) is given by (2.4) with mh|K∈T1
h1

=
∑k

i=1 λK, iAK, i, and umh
being

the solution to the Maxwell’s equation (1.2).

Theorem 2.2. Let ϕ ∈ C0(Sn−1) and H ∈ L2(Ω). Then the problem (SDRP)

admits a solution for any h1 > 0 and k ≥ 1.

Proof. The theorem follows from the sequential weak∗ compactness of Ak
h1

and

the sequential weak∗ semicontinuity of RE(·).

Theorem 2.3. Let ϕ ∈ C0(Sn−1) and H ∈ L2(Ω; Rn). Then

lim
h1→0, k→∞

inf
µh1, k∈Ak

h1

RE(µh1, k) = inf
µ∈A

RE(µ). (2.12)
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Proof. Let µh1, k ∈ Ak
h1

be a solution to (SDRP) and let µ(h1, h2) be such

that RE(µ(h1, h2)) = infν(h1, h2)∈A(h1, h2)
RE(ν(h1, h2)). Since A(h1, h2) ⊂ Ak

h1
for all

k ≥ Nh2 , we have

RE(µh1, k) ≤ RE(µ(h1, h2)), ∀k ≥ Nh2 .

This together with Theorem 2.1 proves (2.12).

Corollary 2.1. If a minimizer ν(h1, h2) of RE(·) in A(h1, h2) has no more than

k(h1, h2) active atoms, then we have

inf
µh1, k∈Ak

h1

RE(µh1, k) ≤ inf
µ(h1, h2)∈A(h1, h2)

RE(µ(h1, h2)), ∀k ≥ k(h1, h2). (2.13)

Proof. The relation (2.13) follows from the fact that ν(h1, h2) is contained in the

set Ak
h1

.

Since a discrete Young measure typically supported at a very few atoms,

Corollary 2.1 implies that very small k can be used in practical computations.

Corollary 2.2. Let k(h1, h2) be the smallest possible number of active atoms a

minimizer of RE(·) in A(h1, h2) can have. Suppose that there exist constants

h̄1, h̄2 > 0 and k0 ≥ 1 such that, for any h1 ∈ (0, h̄1) and h2 ∈ (0, h̄2), the

inequality k(h1, h2) ≤ k0 is satisfied. Then, we have

lim
h1→0

inf
µh1, k0∈Ak0

h1

RE(µh1, k0) = inf
µ∈A

RE(µ). (2.14)

Proof. The conclusion is a direct consequence of Theorem 2.1 and Corol-

lary 2.1.

In the case when the nonconvex energy density ϕ and the external magnetic

field H are sufficiently smooth, and the solution m is also sufficiently smooth,

the convergence rates of the semi-discrete relaxed problem can be obtained.

Corollary 2.3. Let the nonconvex energy density ϕ ∈ C0(Sn−1) be Lipschize

continuous and the external magnetic field H ∈ W 1,2(Ω; Rn). Let ν ∈ A be

a minimizer of RE(·) in A and suppose that m ∈ W 1,2(Ω; Rn) where m is
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defined by m(x) =
∫

Sn−1 Aνx(dA). Let µh ∈ Ah be a minimizer of RE(·) in

Ah. Then, we have

|RE(ν)−RE(µh)| = O(h1 + h2), ∀h1, h2 > 0. (2.15)

Furthermore, let µh1, k ∈ Ak
h1

be a minimizer of RE(·) in Ak
h1

. Then, we have

|RE(ν)−RE(µh1, k)| = O(h1 + h2), ∀h1 > 0, k ≥ k(h1, h2). (2.16)

Especially, under the assumptions of Corollary 2.2, we have

|RE(ν)−RE(µh1, k)| = O(h1), ∀h1 > 0, k ≥ k0. (2.17)

Proof. The conclusions of the corollary follows from (2.6), (2.7), (2.9), (2.13),

the smoothness assumptions on ϕ, H and m, and the standard finite element

approximation results for functions in Sobolev spaces [21].

Remark 2.1. Regularity assumptions of m ∈ W 1,2(Ω; Rn) and the existence

of k0 are not known to the authors to hold in the general setting.

3. Artificial boundary and finite element approximation

In this section we condider the solution of the Maxwell’s equation

div(−∇u + mχΩ) = 0, in H−1(Rn), (3.1)

u → 0, as |x| → ∞. (3.2)

Let

Ωi = {x : |x| < R},
Ωe = R2 \ Ω̄i, and

ΓR = {x : |x| = R}
with R large enough such that Ω̄ ⊂ Ωi. Clearly, if u(R, θ) ∈ H1/2(ΓR) is

given on the boundary ΓR, then the restriction of u on Ωi is a solution to the

following problem:

div(−∇u + mχΩ) = 0, in Ωi, (3.3)

u = u(R, θ), on ΓR. (3.4)
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In fact, the problem (3.3)-(3.4) has a unique weak solution u for any given

u(R, θ) ∈ H1/2(ΓR), which defines on ΓR a function

∂u

∂n

∣∣∣∣
ΓR

∈ H−1/2(ΓR),

Where n is the unit exterior normal of Ωi defined on ΓR.

On the other hand, we can define a bounded operator

E : H1/2(ΓR) → H−1/2(ΓR),

∂u

∂n

∣∣∣∣
ΓR

= E(u|ΓR
)

as follows. Consider the problem:

−∆u = 0, in Ωe, (3.5)

u = u(R, θ), on ΓR, (3.6)

u → 0 as |x| → ∞, (3.7)

It is well known that the solution of this problem can be written as

u(r, θ) =
a0

2
+

∞∑
n=1

(
R

r

)
(an cos nθ + bn sin nθ) (3.8)

with

a0 =
1

π

∫ 2π

0

u(R, φ)dφ = 0.

Then we have

∂u(R, θ)

∂r
=

∞∑
n=1

− n

R
(an cos nθ + bn sin nθ) (3.9)

and

∂2u(R, θ)

∂θ2
=

∞∑
n=1

(−n2)(an cos nθ + bn sin nθ). (3.10)

From (3.10) we obtain

an = − 1

πn2

∫ 2π

0

∂2u(R, φ)

∂φ2
cos nφdφ,
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bn = − 1

πn2

∫ 2π

0

∂2u(R, φ)

∂φ2
sin nφdφ.

Therefore,

∂u(R, θ)

∂n
=

∞∑
n=1

1

πnR

∫ 2π

0

∂2u(R, φ)

∂φ2
cos n(θ − φ)dφ ≡ Eu.

Using this boundary condition we can reduce the original problem to the fol-

lowing equivalent problem:

div(−∇u + mχΩ) = 0, in Ωi, (3.11)

∂u

∂n
= Eu, on ΓR, (3.12)

∫ 2π

0

u(R, φ)dφ = 0. (3.13)

Let

V =

{
v ∈ H1(Ωi) :

∫ 2π

0

u(R, φ)dφ = 0

}
.

Then (3.11)-(3.13) has the weak formulation{
Find u ∈ V, such that

a(u, v) + b(u, v) = f(v) ∀v ∈ V,
(3.14)

where

a(u, v) =

∫

Ωi

∇u∇vdx, f(v) =

∫

Ωi

m∇vdx,

b(u, v) =
∞∑

n=1

1

nπ

∫ 2π

0

∫ 2π

0

cos n(θ − φ)
∂u(R, θ)

∂θ

∂v(R, φ)

∂φ
dθdφ.

The bilinear form a(u, v) + b(u, v) is symmetric, continuous, and V-elliptic on

V × V [17], using Lax-Milgram theorem we have

Theorem 3.1. Problem (3.14) has a unique solution.

For the finite element approximation, let Vh ⊂ V be a piecewise linear

finite element subspace, we consider the approximation of problem (3.14):{
Find uh ∈ Vh, such that

a(uh, vh) + bN(uh, vh) = f(vh) ∀vh ∈ Vh,
(3.15)
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where

bN(uh, vh) =
N∑

n=1

1

nπ

∫ 2π

0

∫ 2π

0

cos n(θ − φ)
∂uh(R, θ)

∂θ

∂vh(R, φ)

∂φ
dθdφ.

Similarly, we have

Theorem 3.2. Problem (3.15) has a unique solution.

Remark 3.1. Theorem 3.2 says that for a given discrete magnetisation m, the

finite element solution of the potential u is uniquely determined by the solution

of (3.15). However, since the set {div m = 0, in the discrete sense} is not

empty, we can not conclude from the theorem that the coupled discrete problem

has a unique solution, even when the original problem has a unique solution

(for example in the case of uniaxial energy density).

By a standard argument for finite element approximations of elliptic prob-

lems [21] and by a similar argument as in [17], it is not difficult to obtain the

following convergence result.

Theorem 3.3. Assume that u ∈ H1(Ωi) ∩H1/2(ΓR), then

‖u− uh‖1,Ωi
≤ C{ inf

vh∈Vh

‖u− vh‖1,Ωi
+ sup

wh∈Vh

b(u,wh)− bN(u, wh)

‖wh‖1,Ωi

} → 0,

as h → 0. (3.16)

Furthermore, the following error estimate holds [17].

Theorem 3.4. Assume that u ∈ H2(Ωi) ∩Hk−1/2(ΓR), k ≥ 2, then

‖u− uh‖1,Ωi
≤ C(h‖u‖2,Ωi

+
1

Nk−1
‖u‖k−1/2,ΓR

). (3.17)

Remark 3.2. In general, u is very smooth near ΓR. Thus, the second term in

(3.17) is much smaller than the first term, i.e., a small N would be enough for

the computation. This applies also for the case when m ∈ L2(Ω).

Remark 3.3. In the convergence analysis in the next section, for the simplicity

of the notations, we always assume that N is sufficiently large that the error

term respect to N is negligible.

12



4. Discrete relaxed problem and its numerical analysis

Before introduce the complete discrete relaxed problem, we first rewrite

the set Ak
h1

. For simplicity, we restrict to the case n = 2, the case n = 3 can

be discussed in a similar way.

Let j ≥ 1 be an integer and k = 2j. Let K ∈ T1
h1

and for i = 1, 2, 3, . . . , 2j

let θK, i ∈ [−π, π]/{−π, π}, i.e. −π and π are considered to be the same

point in the set, define A(θK, i) ∈ S1 by

A(θK, i) =

(
cos(θK, i)

sin(θK, i)

)
. (4.1)

For any K ∈ T1
h1

, let αK = {αK, l}j
l=1 with αK, l ∈ [−π/2, π/2], l = 1, . . . , j,

and let i = 1 + i12
0 + i22

1 + . . . + ij2
j−1 with il ∈ {0, 1} for l = 1, . . . , j, define

λ(αK , i) =

j∏

l=1

cs(il, αK, l), (4.2)

where the function cs(ξ, β) is defined by

cs(ξ, β) =

{
cos2(β), if ξ = 0,

sin2(β), if ξ = 1.
(4.3)

Denote ~θ = {θK, i : K ∈ T1
h1

, i = 1, . . . , k} and ~α = {αK : K ∈ T1
h1
}, it is

easily verified that

Ak
h1

= Ak
h1

(~θ, ~α) = {νh1, k = {νh1, k|K}K∈T1
h1

:

νh1, k|K =
k∑

i=1

λ(αK , i) δA(θK, i)}. (4.4)

For any µh1, k ∈ Ak
h1

(~θ, ~α), let mh1, k|K∈T1
h1

=
∑k

i=1 A(θK, i) λ(αK , i), let

uh1
mh1, k

be the finite element solution to the problem (3.15), and let HK =
∫

K
H dx for all K ∈ T1

h1
, define

REh1(µ
h1, k) =

∑

K∈T1
h1

k∑
i=1

ϕ(A(θK, i)) λ(αK , i) |K|

13



−
∑

K∈T1
h1

HK ·
k∑

i=1

A(θK, i) λ(αK , i) |K|+ 1

2

∫

Rn

|∇uh1
mh1, k

|2 dx. (4.5)

Remark 4.1. It is easily seen that the only difference between RE(·) and

REh1(·) for a discrete Young measure µh1, k ∈ Ak
h1

(~θ, ~α) is that in the last

term the solution to the Maxwell’s equation is replaced by its finite element

solution.

The complete discrete Young measure version of the relaxed problem can

now be given as follows

(DRP):

{
minimize the discrete relaxed energy REh1(·)
in the set Ak

h1
(~θ, ~α).

(4.6)

Theorem 4.1. Let ϕ ∈ C0(Sn−1) and H ∈ L2(Ω). Then, the problem (DRP)

admits a solution for any h1 > 0 and any k = 2j with j ≥ 1.

Proof. The theorem follows from the compactness of Ak
h1

(~θ, ~α), the compact-

ness of the finite element function space Uh1 , and the continuity of REh1(·) in

Ak
h1

(~θ, ~α).

Theorem 4.2. Let ϕ ∈ C0(Sn−1) and H ∈ L2(Ω; Rn). Let j ≥ 1 and k = 2j.

Then, we have

lim
h1→0, j→∞

inf
µh1, k∈Ak

h1
(~θ, ~α)

REh1(µ
h1, k) = inf

µ∈A
RE(µ). (4.7)

Proof. Let ν ∈ A be a minimizer of RE(·) in A, let ν(h1, h2) = P ∗
(h1, h2)ν, and let

νh1, k ∈ Ak
h1

be a minimizer of RE(·) in Ak
h1

. Denote m =
∫

Sn−1 A ν(dA) and

m̃h =
∫

Sn−1 Aν(h1, h2)(dA). Then, we have

| inf
µh1, k∈Ak

h1
(~θ, ~α)

REh1(µ
h1, k)− inf

µh1, k∈Ak
h1

RE(µh1, k)|

≤ |REh1(ν
(h1, h2))−RE(ν(h1, h2))|

+|RE(ν(h1, h2))−RE(ν)|+ |RE(ν)−RE(νh1, k)|

≤ 1

2
|
∫

Rn

(|∇uh1
m̃h
|2 − |∇um̃h

|2) dx|+ I1 + I2, (4.8)

14



It follows from the continuity of RE(·) and P ∗
(h1, h2), that I1 converges to zero

as h = (h1, h2) → 0. I2 converges to zero is a consequence of Theorem 2.3.

For the first term on the right hand side of (4.8), we have

|
∫

Rn

(|∇uh1
m̃h
|2 − |∇um̃h

|2) dx| ≤ |
∫

Rn

(|∇uh1
m̃h
|2 − |∇uh1

m |2) dx|

+|
∫

Rn

(|∇uh1
m |2 − |∇um|2) dx|+ |

∫

Rn

(|∇um|2 − |∇um̃h
|2) dx|

≤ 2 ‖m̃h −m‖2
0,2,Ω + |

∫

Rn

(|∇uh1
m |2 − |∇um|2) dx|.

Thus, the theorem is proved by the continuity of P ∗
(h1, h2) and Theorem 3.3.

Corollary 4.1. Let ϕ ∈ C0(Sn−1) and H ∈ L2(Ω; Rn). Let k(h1, h2) be defined

as in Corollary 2.2. Suppose that there exist constants h̄1, h̄2 > 0 and k0 ≥ 1

such that, for any h1 ∈ (0, h̄1) and h2 ∈ (0, h̄2), the inequality k(h1, h2) ≤ k0 is

satisfied. Let j0 ≥ 1 and k = 2j0 ≥ k0. Then, we have

lim
h1→0

inf
µh1, k∈Ak

h1
(~θ, ~α)

REh1(µ
h1, k) = inf

µ∈A
RE(µ). (4.9)

Proof. The theorem follows directly from the inequality (4.8), Corollary 2.2

and Theorem 3.3.

Corollary 4.2. Let the nonconvex energy density ϕ ∈ C0(Sn−1) be Lipschize

continuous and the external magnetic field H ∈ W 1,2(Ω; Rn). Let ν ∈ A be a

minimizer of RE(·) in A and suppose that m ∈ W 1,2(Ω; Rn) where m is defined

by m(x) =
∫

Sn−1 A νx(dA). Let j ≥ 1 and k = 2j, and let µh1, k ∈ Ak
h1

(~θ, ~α) be

a minimizer of REh1(·) in Ak
h1

(~θ, ~α). Let k(h1, h2) be defined as in Corollary 2.2.

Then, we have

|RE(ν)−REh1(µ
h1, k)| = O(h1 + h2), ∀h1 > 0, k = 2j ≥ k(h1, h2). (4.10)

Furthermore, under the assumptions of Corollary 4.1, we have

|RE(ν)−REh1(µ
h1, k)| = O(h1), ∀h1 > 0, k = 2j ≥ k0. (4.11)

Proof. The inequality (4.8) together with Corollary 2.3 and Theorem 3.4 leads

to the conclusion.

15



Remark 4.2. Since any function µh1, k ∈ Ak
h1

(~θ, ~α) is a function of the vari-

ables (~θ, ~α), the functions mh1, k|K∈T1
h1

=
∑k

i=1 A(θK, i) λ(αK , i) and the finite

element solution uh1
mh1, k

are also functions of (~θ, ~α). Therefore, the discrete

relaxed problem (DRP) is a finite dimensional nonconvex unconstrained op-

timization problem defined on (Sn−1)k × (S1)j with k = 2j. In computations,

we may simply take (~θ, ~α) ∈ Rk+j.

Remark 4.3. In the definition of (DRP), k = 2j can vary from element to

element, the number can be adjusted according to the number of active atoms

obtained in the computation.

5. Numerical examples

To solve the discrete relaxed problem (DRP) (4.6), which is a uncon-

strained nonconvex optimization problem of finite dimension, we apply the

following algorithm:

(1): set j = j0 ≥ 1, set k = 2j and set h1 = h0
1;

(2): set (~θ, ~α) = (~θ0, ~α0);

(3): compute REh1(µ
h1, k(~θ, ~α)) by (4.1) - (4.3) and by solving (3.15);

(4): compute d(~θ, ~α) =
∂ REh1(µ

h1, k(~θ, ~α))

∂ (~θ, ~α)
;

(5): if ‖d(~θ, ~α)‖ < TOL, go to step (7);

(6): search for a minimizer (~θ1, ~α1) of REh1 along the conjugate gradient

direction;

(7): if j is not sufficiently large, then set j = j + 1 and k = 2j, distribute

the new atoms accordingly, then go to step (3);

(8): if h1 is not sufficiently small, set h1 = h1/2, TOL = TOL/2, and

initiate the data on the fine mesh, then go to step (3).

We notice here that the problem (3.15) is in fact a system of linear equa-

tions of the form

K um = Gm, (5.1)
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where K is symmetric, and thus we have
∫

R2

|∇um|2 dx =

∫

Ω

m · ∇um dx = uT
mK um = mT GT K−1 Gm, (5.2)

and

∂
∫

R2 |∇um|2 dx

∂m
= 2 GT K−1 Gm. (5.3)

In the steps (3) and (4) of the algorithm, the equations (5.2) and (5.3) are

used to compute the corresponding terms.

The criteria for enlarging j in step (6) and reducing h1 in step (7) may

depend on the problem we solve. In general, we may enlarge j on an element,

if the number of active atoms is greater than 2j−1, and we may reduce h1 if

uh1 − uh1/2 is not sufficiently small.

To reduce the computational work, we may first replace the artificial

boundary condition (3.12) and (3.13) by a Dirichlet boundary condition

um = 0, on ΓR. (5.4)

and use the numerical result so obtained to provide an initial data for the

problem using artificial boundary condition. Our numerical experiments show

that this works well.

As mentioned in section 1, to suppress the artificial oscillations of the

numerical result of m, an additional energy term

λ

∫

Ω

|m−H|2 dx

is added to the energy functional. Our numerical experiments show that this

works well and improves the convergence behavior of the algorithm.

In the following, we are going to show some numerical examples.

Example 1. Let Ω = (−0.1, 0.1)× (−0.5, 0.5) and Ωi = {x ∈ R2 : |x| < 1},
that is we take R = 1. We take ϕ(m) = 10−2(m2

1 + (m2
2 − 1)2) and H =

(10−2, 0). We set j0 = 1 and TOL = 10−10. For the approximation of artificial

boundary, we take N = 5 for a coarse mesh and N = 9 for a refined mesh. λ

is initially set to 0.01 and reduced to 0.002 in the end.

Numerical experiments show that an exactly same element-wise two-atomic

Young measure is obtained whether j is set to be 1, 2 or 3.
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Figure 1 shows the potential um obtained on the coarse mesh, and Figure 2

shows the potential obtained on the refined mesh. It is clearly seen that for

the potential, there is no need to refine the mesh anymore. As a comparison,

we show in Figure 3 the potential obtained on the coarse mesh for the problem

with Dirichlet boundary condition (5.4). In Figure 4, we show the distribution

of m on Ω (on the left sub-plot) and the atomic Young measure (on the right

sub-plot), where two vectors in S1 and their volume fractions, which are close

to 1/2, on some selected elements are shown. In Figure 4, the number pair

(i, j) indicates that the corresponding Young measure is for the element respect

to the vector of the i-th row and j-th column in the left hand side sub-plot.

−1−0.8−0.6−0.4−0.200.20.40.60.81

−1

0

1

−1

−0.5

0

0.5

1

x 10
−3

Figure 1. The potential obtained on the coarse mesh.

We point out here that our numerical experiments show that, even though

most of the oscillations (microstructure) are captured by the atomic Young

measures obtained on the triangular finite elements, there are still some artifi-

cial oscillations, which are discrete divergence free only in the interior of Ω and

can not be suppressed by the additional energy term, show up in the element

level. However, since these oscillations are in the form of pairs in neighboring

elements, they can be easily removed from the numerical result by taking local

averages. In Figure 4 (as well as in other relevant figures below), the induced
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Figure 2. The potential obtained on the refined mesh.
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Figure 3. The potential with Dirichlet boundary condition ob-
tained on the coarse mesh.
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Figure 4. Distribution of m (left) and atomic Young measure (right)

magnetic vector field m is created on a rectangular mesh, which is obtained

by combining each pair of adjacent triangular elements of the triangulation of

Ω, by taking the average values of m on the pairs of triangular elements. This

shows a smoother induced macroscopic magnetic vector field.

Example 2. Again, let Ω = (−0.1, 0.1) × (−0.5, 0.5) and Ωi = {x ∈ R2 :

|x| < 1}. We still take ϕ(m) = 10−2(m2
1 +(m2

2−1)2), but take a different exte-

rior magnetic field H = 10−2(cos(yπ) sin(2.5xπ), sin(yπ) cos(2.5xπ)). We set

j0 = 1 and TOL = 10−10. Again, for the approximation of artificial boundary,

we take N = 5 for a coarse mesh and N = 9 for a refined mesh. λ is initially

set to 0.01 and reduced to 0.002 in the end.

Figure 5 shows the potential um obtained on the coarse mesh, and Figure 6

shows the potential obtained on the refined mesh. As a comparison, we show

in Figure 7 the potential obtained on the refined mesh for the problem with

Dirichlet boundary condition (5.4). In Figure 8, we show the distribution of

m on Ω (on the left sub-plot) and the atomic Young measure (on the right

sub-plot), where two vectors in S1 and their volume fractions, which vary from

1/6 to 5/6, on some selected elements are shown.
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Figure 5. The potential obtained on the coarse mesh for example 2.
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Figure 6. The potential obtained on the refined mesh for example 2.
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Figure 7. The potential with Dirichlet boundary condition ob-
tained on the refined mesh for example 2.
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Figure 8. Distribution of m (left) and atomic Young measure
(right) for example 2
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Remark 5.1. In our numerical experiments, we found that for the anisotropic

energy density ϕ(m) = 10−2(m2
1+(m2

2−1)2) and various exterior magnetic field

H, the Young measure obtained is always supported on two atoms regardless

of j taking to be 1, 2, 3, . . . . This indicates that for such problems j = 1 is

sufficient in computation.

Example 3. Let ϕ(m) = 10−2(m2
1 ·m2

2), that is the anisotropic energy density

is cubic. Let everything else be the same as in example 1.

For all j ≥ 1 the numerical results on the potential um are very close to

each other and appear to be close to those shown in Figure 1-Figure 3 and the

distribution of the macroscopic induced magnetic field m differs only slightly

from that shown in Figure 4 especially for j = 1. However, while a 2-atomic

Young measure similar to that obtained in example 1 shown in Figure 4 is

obtained for j = 1, a Young measure of up to 4 atoms on each element is

obtained when j ≥ 2 is taken (see Figure 9).
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Figure 9. Distribution of m (left) and 4-atomic Young measure
(right) for example 3

Example 4. Let ϕ(m) = 10−2(m2
1 ·m2

2), that is the anisotropic energy density

is cubic as in example 3, and let everything else be the same as in example 2.
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For all j ≥ 1 the numerical results on the potential um are similar to

those obtained for example 2 shown in Figure 5-Figure 7. As in example 3,

a 2-atomic Young measure is obtained for j = 1, and a Young measure of up

to 4 atoms is obtained for j ≥ 2. Figure 10 shows numerical results for the

distribution of the induced macroscopic magnetic field m and a Young measure

of up to 4 atoms on each element.
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Figure 10. Distribution of m (left) and 4-atomic Young mea-
sure (right) for example 4

The numerical experiments on example 3 and example 4 show that, for

2-dimensional cubic anisotropic energy, it is natural to take j = 2, that is to

take 4-atomic Young measure as the candidates for the numerical computation

of micromagnrtics.
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1997.
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