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Abstract. A numerical method is established to solve the problem of min-
imizing a nonquasiconvex potential energy. Convergence of the method is
proved both in the case on its own and in the case when it is combined with
a weak boundary condition. Numerical examples are given to show that the
method, especially when applied together with a continuation method and
some other numerical techniques, is not only successful and efficient in solving
problems with laminated microstructures but also capable of computing more
complicated microstructures.

1. Introduction

Microstructure is a phenomenon found in many physical problems, such as

those which involve phase transitions and hysteresis [1, 2]. A related mathemat-

ical problem is to minimize a potential energy

F (u; Ω) =

∫

Ω

f(x, u(x), ∇u(x)) dx (1.1)

with nonquasiconvex energy density f : Ω×Rm×Rmn → R1 on a set of admissible

functions

U(u0; Ω) = {u ∈ W 1,p(Ω; Rm) : u = u0, on ∂Ω}, (1.2)

where Ω ⊂ Rn is a bounded open set with a Lipschitz continuous boundary ∂Ω

and 1 < p < ∞.

It is well known that such a variational problem fails, in general, to have a

solution, and the minimizing sequences of the potential energy can develop finer

and finer oscillations and lead to microstructures [1, 3, 4], which are characterized

by the Young measures [5]. To compute the microstructures, or rather the highly
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oscillating minimizing sequences of F (·, Ω) in U(u0; Ω), is challenging and is of

great interests both in theory and in applications. Great progress has been made

in recent years, and many numerical methods have been established (see [6]-[24]

among many others, see [15] for more references).

It is known that, by applying an iterative method with a piecewise affine fi-

nite element approximation, the numerical computation of microstructures for a

problem involving an inhomogeneous energy density and nonlinear boundary con-

ditions can be transformed into the numerical computations of microstructures

for a group of related homogeneous problems, i.e. the problems with energy

densities of the form f(∇u) and with linear boundary conditions. Hence, It is

of essential importance to establish efficient numerical methods for computing

microstructures for homogeneous problems, which is the focus of this paper.

For problems involving microstructures, numerical analyses and experiments

revealed that the numerical results often depend strongly on the mesh and shape

functions, and can sometimes lead to pseudo-microstructures [4, 10, 15]. A rota-

tional transformation method established by Li [21] somehow reduces the mesh

dependence of the numerical results, and it turns out to be successful in comput-

ing laminated microstructures. In the present paper, the idea of the rotational

transformation method is further extended into a mesh transformation method
where the rotational transformation of the mesh is replaced by a piecewise linear

transformation. Basically the mesh transformation method gives more freedom

in searching for a minimizer of the corresponding discrete problem and allows

the mesh to be aligned with the interfaces between phases or phase variants,

for example the mesh can be transformed to fit arbitrary volume fractions of

a simple laminate (see section 3), and thus not only reduces further the mesh

dependence but also reduces the possibility of being trapped into a local mini-

mizer. Furthermore, compared with the rotational transformation method, the

mesh transformation method provides more flexibility for the computation of mi-

crostructures which are not simple laminates (see section 3 and see [24] for more

involved applications).

In section 2, the mesh transformation method is established and analyzed,

convergence of the method is proved. We also consider to replace the ”hard”

boundary condition u|∂D = Ax by adding a boundary integral term β
∫

∂D
|u −

Ax| dx to the potential energy. The mesh transformation method combined with

this technique shows better performance in the numerical experiments and is

also proved to be convergent. The mesh transformation method combines with

more subtle boundary technique for periodic boundary conditions can be found
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in [23]. In section 3, the implementation of the mesh transformation method and

the applications of some other techniques, such as the incremental crystallization

method [21] and the continuation method, are discussed, and the numerical results

for two model problems are given.

2. The method and its analysis

Let Ω ⊂ Rn be a bounded open set with a Lipschitz continuous boundary. Let

f : Rmn → R1 be a continuous function which satisfies the following hypotheses

for a constant p > 1:

(h1): max{0, a1 + b1|ξ|p} ≤ f(ξ) ≤ a2 + b2|ξ|p,
(h2): |f(ξ)− f(η)| ≤ C(1 + |ξ|p−1 + |η|p−1)|ξ − η|,

where a1 ∈ R1, a2 > 0, b2 ≥ b1 > 0 and C > 0 are constants. Consider the

problem of minimizing the functional

F (u; Ω) =

∫

Ω

f(∇u(x)) dx (2.1)

on a set of admissible functions with a linear boundary condition

U(A; Ω) = {u ∈ W 1,p(Ω; Rm) : u(x) = Ax, on ∂Ω}, (2.2)

where A ∈ Rmn is a given matrix, which may be assumed to be 0 if f(·) is replaced

by f(A + ·) ( c.f. [8]), however to help the readers to see clearly how the matrix

A is involved in the computation we simply leave it as it is.

Without loss of generality, assume

Ω ⊂ B(0; 1), (2.3)

where B(0; 1) = {x ∈ Rn : ‖x‖2 < 1} is the open unit ball of Rn. Define

D = (−1, 1)n. (2.4)

We have obviously

Ω ⊂ B(0; 1) ⊂ B(0;
√

n ) =
⋂

R∈SO(n)

R(D), (2.5)

where SO(n) is the set of all n×n rotational transformation matrices R with the

determinant det R = 1. The hypercube D will serve as the working domain for

our numerical computation.
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For a given R ∈ SO(n), define

T (D; R) = { bijections L : D → R(D) |L ∈ W 1,∞(D), L−1 ∈ W 1,∞(R(D))

and det∇L > 0, a.e. in D},
and

T (D) = {L ∈ T (D; R) : for some R ∈ SO(n)}.
Lemma 2.1. For any L ∈ T (D), we have

inf
u∈U(A;L(D))

F (u; L(D)) = inf
u∈U(A;Ω)

1

meas(Ω)
F (u; Ω), (2.6)

where meas(·) is the Lebesgue measure in Rn.

Proof. It is well known (cf. [25, 26]) that

Qf(A) = inf
u∈U(A;Ω′)

1

meas(Ω′)
F (u; Ω′)

for all bounded open set Ω′ ⊂ Rn, where Qf(·) is the quasiconvex envelope of

f(·) [25, 27]. Thus the lemma follows, since meas(D) = meas(L(D)) = 1 for all

L ∈ T (D). ¤

Lemma 2.2. For any L ∈ T (D) and ū ∈ U(A; L(D)), let u(x) : D → Rm be

defined by

u(x) = ū(L(x))− AL(x). (2.7)

Then u ∈ U(0; D) and
∫

D

f(A +∇u(x)(∇L(x))−1) det∇L(x) dx = F (ū; L(D)). (2.8)

Proof. The relation u ∈ U(0; D) follows directly from (2.7) and (2.2). By a change

of variables, we have (2.8). ¤

As a direct corollary of lemmas 2.1 and 2.2, we have

Corollary 2.1. Let L ∈ T (D). Define

F (u, L; D) =

∫

D

f(A +∇u(x)(∇L(x))−1)) det∇L(x) dx. (2.9)

Then

inf
u∈U(0;D)

F (u, L; D) = inf
u∈U(A;Ω)

1

meas(Ω)
F (u; Ω). (2.10)
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Let Th be regular triangulations of D with mesh sizes h [28]. Let

Th(D) = {L ∈ T (D) : L|K is affine for all K ∈ Th}, (2.11)

Uh = {u ∈ (C(D))m : u|K is affine ∀K ∈ Th} (2.12)

and
Uh(A; D) = {u ∈ Uh : u|∂D = Ax}. (2.13)

In the mesh transformation method, we solve the following discrete problem :

(DP )

{
find (u, L) ∈ Uh(0; D)× Th(D) such that

F (u, L; D) = inf(u′,L′)∈Uh(0; D)×Th(D) F (u′, L′; D).
(2.14)

Theorem 2.1. Let limi→∞ hi = 0 and limi→∞ εi = 0. Let the functions (uhi
, Lhi

)

∈ Uhi
(0; D) × Thi

(D) be a sequence of approximate solutions to (DP) (see re-

mark 2.1) with

F (ūhi
, Lhi

(D)) ≤ inf
(u,L)∈Uhi

(0; D)×Thi
(D)

F (u, L; D) + εi.

Then

lim
i→∞

F (ūhi
, Lhi

(D)) = lim
i→∞

F (uhi
, Lhi

; D) = inf
u∈U(A;D)

F (u, D), (2.15)

where ūhi
(x) = uhi

(L−1
hi

(x)) + AL−1
hi

(x) (see (2.7)).

Proof. It follows from lemma 2.1 that

inf
u∈U(A;D)

F (u; D) = inf
u∈U(0;D)

F (u, Lhi
; D) ≤ F (uhi

, Lhi
; D). (2.16)

On the other hand, for the identity I : D → D, we have

F (uhi
, Lhi

; D) ≤ inf
u∈Uhi

(0;D)
F (u, I; D) + εi. (2.17)

By the standard finite element approximation theory [28], we have

lim
hi→0

inf
u∈Uhi

(0;D)
F (u, I; D) = inf

u∈U(0;D)
F (u, I; D). (2.18)

Combining (2.18) with (2.16), (2.17), (2.8) and (2.10), we obtain (2.15). ¤

Corollary 2.2. As a consequence of lemma 2.1, lemma 2.2 and theorem 2.1, we

have

Qf(A) =
1

meas(Ω)
inf

u∈U(A;Ω)
F (u; Ω)

= lim
h→0

inf
(u,L)∈Uh(0; D)×Th(D)

F (u, L; D),

where Qf(·) is the quasiconvex envelope of f(·) [25, 26, 27].
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Let (uh, Lh) ∈ Uh(0; D) × Th(D) be a sequence of solutions to (DP) with

h → 0, then they can be used to construct a minimizing sequence of F (·, Ω) in

U(A; Ω) in the following standard way (see for example [26]). Assume h ¿ 1,

let Rh ∈ SO(n) be such that Lh ∈ T (D; Rh). Define

Ω(h) = {x : x ∈ h(2Rhz + Lh(D)) ⊂ Ω for some z ∈ Zn},
where Z is the set of all integers. Let ϕh : Ω → R1 be a truncation function

defined by

ϕh(x) =

{
1, if x ∈ Ωh,

0, otherwise.

Define ûh : Ω → Rm by

ûh(x) = ϕh(x)huh(L
−1
h (h−1x)) + Ax, (2.19)

where L−1
h is defined on the whole space of Rn by a periodic extension

L−1
h (x′) = L−1

h (x), ∀x′ ∈ Rn, x ∈ Lh(D̄) and
1

2
(x′ − x) ∈ Rh(Zn). (2.20)

Theorem 2.2. Let (uh, Lh) ∈ Uh(0; D) × Th(D) be a sequence of approximate

solutions to (DP) (see theorem 2.1) with h → 0. Let ûh be defined by (2.19).

Then
ûh ∈ U(A; Ω), ûh → Ax in Lp(Ω; Rm) (2.21)

and
lim
h→0

F (ûh; Ω) = inf
u∈U(A;Ω)

F (u; Ω). (2.22)

Proof. The relation (2.21) follows directly from the definition of ûh. Let Rh ∈
SO(n) be such that Lh ∈ T (D; Rh), and let Zh = {z ∈ Zn : h(2Rhz + Lh(D)) ⊂
Ω}. Then, a straight forward calculation yields

F (û; Ω) = F (Ax; Ω \ Ω(h)) + F (ûh; Ω(h))

= F (Ax; Ω \ Ω(h)) +
∑

z∈Zh

F (ûh; hLh(D))

= F (Ax; Ω \ Ω(h)) +
∑

z∈Zh

hnF (uh, Lh; D). (2.23)

Since limh→0 meas(Ω \ Ω(h)) = 0 and
∑

z∈Zh

hn = meas(Ω(h)),

(2.22) follows from (2.23) and corollary 2.2. ¤
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As a consequence of theorem 2.2, by solving the discrete problems (DP) (see

(2.14)), we obtain a minimizing sequence {ûh} (see (2.19)) of F (·; Ω) in U(A; Ω).

However, in numerical computations, the strict satisfaction of the boundary con-

dition u|∂D = 0 causes energy accumulation in the area near the boundary and

can even sometimes cause difficulties in the formation of oscillations, or in other

words numerical microstructures. To reduce such a boundary effect, we consider,

instead of the problem (DP), the following discrete problem :

(DPI)

{
find (u, L) ∈ Uh(D)× Th(D) such that

Fα,r(u, L; D) = inf(u′,L′)∈Uh(D)×Th(D) Fα,r(u
′, L′; D),

(2.24)

where α > 0 and 0 < r < p are parameters to be given in the computation and

Fα,r(u, L; D) = F (u, L; D) + αh−r

∫

∂L(D)

|u(L−1(x))|pdx. (2.25)

It is obvious that for all α > 0 and 0 < r < p

inf
(u′,L′)∈Uh(D)×Th(D)

Fα,r(u
′, L′; D) ≤ inf

(u′,L′)∈Uh(0; D)×Th(D)
F (u′, L′; D). (2.26)

Lemma 2.3. Let (ũhi
, Lhi

) ∈ Uhi
(D) × Thi

(D) be a sequence of solutions (see

remark 2.1) to (DPI) with limi→∞ hi = 0. Then,

lim
i→∞

F (ũhi
, Lhi

; D) = lim
i→∞

Fα,r(ũhi
, Lhi

; D) = inf
u∈U(A;D)

F (u; D), (2.27)

and the sequence {|∇ũhi
(∇Lhi

)−1|p det∇Lhi
}∞i=1 are equi-uniformly integral con-

tinuous [29] in the sense that for any given ε > 0, there exists δ(ε) > 0 such that

for all i and any measurable set E ⊂ D

∫

E

|∇ũhi
(x) (∇Lhi

(x))−1|p det∇Lhi
(x) dx < ε, if meas(Lhi

(E)) < δ.

Proof. Let Rhi
∈ SO(n) be such that Lhi

∈ T (D; Rhi
). Since SO(n) is a compact

set in R2×2, without loss of generality, we may assume that for some R ∈ SO(n)

Rhi
→ R in R2×2. (2.28)

Denote Phi
= R R−1

hi
and define ūhi

: R(D) → Rm by

ūhi
(x) = Ax + ũhi

(L−1
hi

(P−1
hi

x)). (2.29)
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Then, by a change of variables of integration and noticing that det Phi
= 1, we

have

F (ūhi
; R(D)) =

∫

D

f(A +∇ũhi
(x) (∇Lhi

(x))−1P−1
hi

) det∇Lhi
(x) dx. (2.30)

It follows from (2.30) and (h1) that

|F (ūhi
; R(D))| ≤ C

∫

D

(1 + |∇ũhi
(x) (∇Lhi

(x))−1|p) det∇Lhi
(x) dx

≤ C (1 + F (ũhi
, Lhi

; D)). (2.31)

By (h1), (h2), (2.26),(2.31) and corollary 2.2, we have

|F (ūhi
; R(D))− F (ũhi

, Lhi
; D)|

≤C

∫

D

(1 + |A +∇ũhi
(x) (∇Lhi

(x))−1P−1
hi
|p

+ |A +∇ũhi
(x) (∇Lhi

(x))−1|p)|Phi
− I| det∇Lhi

(x) dx

≤C |Phi
− I|(1 + F (ūhi

; R(D)) + F (ũhi
, Lhi

; D)) ≤ C |Phi
− I|. (2.32)

(2.26), (2.28), (2.32) and corollary 2.1-2.2 imply

lim sup
i→∞

F (ūhi
; R(D)) ≤ inf

u∈U(A; R(D))
F (u; R(D)). (2.33)

It follows from (2.33) and (h1) that {ūhi
}∞i=1 are bounded in W 1,p(R(D); Rm).

Thus, without loss of generality, we may assume [25] that

ūhi
⇀ u∞, in W 1,p(R(D); Rm), (2.34)

Where ’⇀’ means ’converges weakly to’. Since, by (2.25), (2.26) and (2.29),
∫

∂D

|ūhi
− Ax|p dx =

∫

∂Lhi
(D)

|ũhi
(L−1

hi
(x))|p dx ≤ C hr

i , (2.35)

(2.34) and the Sobolev imbedding theorem [30] imply that u∞ ∈ U(A; R(D)).

Let

QF (u; R(D)) =

∫

R(D)

Qf(∇u(x)) dx, for u ∈ W 1,p(R(D); Rm).

Then, by (2.34), we have [26, 31]

QF (u∞; R(D)) ≤ lim inf
i→∞

QF (ūhi
; R(D)) ≤ lim inf

i→∞
F (ūhi

; R(D)). (2.36)

By (2.33), (2.36) and

inf
u∈U(A; R(D))

QF (u; R(D)) = inf
u∈U(A; R(D))

F (u; R(D)) (2.37)
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(cf. [26, 31]), we have

inf
u∈U(A; R(D))

QF (u; R(D)) = QF (u∞; R(D)) = lim
i→∞

QF (ūhi
; R(D)). (2.38)

Now, (2.27) follows from (2.26), (2.28), (2.32), (2.33), (2.37) and (2.38). It is a

result given by Kinderlehrer and Pedregal [32, 33] that (2.34), (2.38) and (h1) im-

ply that {|∇ūhi
|p}∞i=1 are equi-uniformly integral continuous, and thus the lemma

holds as a consequence. ¤

Lemma 2.4. (Poincaré-Friedrichs inequality) For d < 1 and R ∈ SO(n), let

D(d, R) = {x ∈ R(D) : dist(x, ∂R(D)) < d}. Let u ∈ W 1,p(R(D); Rm). Then,

we have

‖u‖p
0,p,D(d,R) ≤ 2p−1(‖u‖p

0,p,∂R(D) +
1

p
dp|u|p1,p,D(d,R)). (2.39)

Proof. Without loss of generality, we assume that R = I. Let x′ ∈ [−1, 1]n−1.

For xn ∈ (−1, −1 + d) and u ∈ C1(D̄; Rm), we have

|u(x′, xn)|p = |u(x′,−1) +

∫ xn

−1

∂u(x′, xn)

∂xn

dxn|p

≤ 2p−1(|u(x′,−1)|p + |
∫ xn

−1

∂u(x′, xn)

∂xn

dxn|p)

≤ 2p−1(|u(x′,−1)|p + (xn + 1)p−1

∫ xn

−1

|∂u(x′, xn)

∂xn

|p dxn).

Integrating over D−(d, n) = {x ∈ D(d) : xn ∈ (−1, −1 + d)}, we obtain

‖u‖p
0,p,D−(d,n) ≤ 2p(‖u‖p

0,p,∂D−n
+

1

p
dp|u|p1,p,D−(d,n)),

where ∂D−
n = {x ∈ ∂D : xn = −1}. Applying the above argument on the other

parts of ∂D, summing up the obtained results and considering that C1(D̄; Rm)

is dense in W 1,p(D; Rm) [30], we have the conclusion. ¤

Theorem 2.3. Let (ũhi
, Lhi

) ∈ Uhi
× Thi

(D) be a sequence of solutions (see

remark 2.1) to (DPI) with limi→∞ hi = 0. Let uhi
: D → Rm be defined by

uhi
(x) = ψhi

(Lhi
(x)) ũhi

(x), (2.40)

where ψhi
∈ C∞(Lhi

(D̄)) are truncation functions satisfying

ψhi
(x) =

{
0, if x ∈ ∂Lhi

(D),

1, if dist(x, ∂Lhi
(D)) ≥ hs

i ,
(2.41)
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|∇ψhi
(x)| ≤ C h−s

i , ∀x ∈ Lhi
(D̄), (2.42)

and where C > 1 and 0 < s < r/p are constants. Then uhi
∈ U(0; D) and

lim
i→∞

F (uhi
, Lhi

; D) = inf
u∈U(A; D)

F (u; D). (2.43)

Proof. It is obvious that uhi
∈ U(0; D). Let

Ls
hi

(D) = {x ∈ Lhi
(D) : dist(x, ∂Lhi

(D)) ≥ hs
i}

and denote L−1
hi

(Lhi
(D) \ Ls

hi
(D)) = D \ L−1

hi
(Ls

hi
(D)) by Ds

hi
. Since uhi

= ũhi
on

D \Ds
hi

, it follows from (h2) and the Hölder’s inequality [30] that

|F (uhi
, Lhi

; D)− F (ũhi
, Lhi

; D)| = |F (uhi
, Lhi

; Ds
hi

)− F (ũhi
, Lhi

; Ds
hi

)|

≤C [(meas(Lhi
(Ds

hi
)))

p−1
p + (

∫

Ds
hi

|A +∇uhi
(∇Lhi

)−1|p det∇Lhi
dx)

p−1
p

+ (

∫

Ds
hi

|A +∇ũhi
(∇Lhi

)−1|p det∇Lhi
dx)

p−1
p ]

· (
∫

Ds
hi

|(∇uhi
−∇ũhi

)(∇Lhi
)−1|p det∇Lhi

dx)
1
p

=C (I
p−1

p

1 + I
p−1

p

2 + I
1
p

3 ) I
1
p

4 . (2.44)

It follows from (2.41), (2.42) and the Hölder’s inequality that

I4 ≤ C (

∫

Ds
hi

|∇ũhi
(∇Lhi

)−1|p det∇Lhi
dx + h−ps

i

∫

Lhi
(Ds

hi
)

|ũhi
(L−1

hi
(x))|p dx)

≤ C (I21 + h−ps
i I22), (2.45)

I2 ≤ C (I1 + I21 + h−ps
i I22), (2.46)

Since

meas(Lhi
(Ds

hi
)) ≤ C hs

i , (2.47)

it follows from lemma 2.3 that

lim
i→∞

I1 = lim
i→∞

I21 = lim
i→∞

I3 = 0. (2.48)

By lemma 2.4,

I22 ≤ C (

∫

∂Lhi
(D)

|ũhi
(L−1

hi
(x))|p dx + hps

i

∫

Ds
hi

|∇ũhi
(∇Lhi

)−1|p det∇Lhi
dx).

10



By (2.25), (2.26) (2.47) and lemma 2.3, this gives

lim
i→∞

h−ps
i I22 ≤ lim

i→∞
C (hr−ps

i +

∫

Ds
hi

|∇ũhi
(∇Lhi

)−1|p det∇Lhi
dx) = 0. (2.49)

Thus, (2.43) follows as a consequence of (2.44)-(2.49) and lemm 2.3. ¤

Theorem 2.4. Let (ũh, Lh) ∈ Uh(D) × Th(D) be a sequence of solutions (see

remark 2.1) to (DPI) with h → 0. Let uh : Rn → Rm be defined by (2.40). Let

ûh : Ω → Rm be defined by (2.19). Then

ûh ∈ U(A; Ω), and ûh → Ax in Lp(Ω; Rm) (2.50)

and

lim
h→0

F (ûh; Ω) = inf
u∈U(A;Ω)

F (u; Ω). (2.51)

Proof. With the same arguments as in the proof of theorem 2.2, and by theo-

rem 2.3, we have the result. ¤

Remark 2.1. The minima of (DP) and (DPI) may not be attainable. However,

this is not of practical concern, since the results of this section remain valid as

long as the numerical solutions to (DP) and (DPI) satisfy

lim
h→0

(F (uh, Lh; Ω)− inf
(u′,L′)∈Uh(0; D)×Th(D)

F (u′, L′; D)) = 0 (2.52)

and

lim
h→0

(Fα,r(ũh, Lh; Ω)− inf
(u′,L′)∈Uh(D)×Th(D)

Fα,r(u
′, L′; D)) = 0 (2.53)

respectively.

3. Numerical Examples

In applying the mesh transformation method established in section 2, We need

to solve (DP) or (DPI) numerically. Since the numerical solutions are expected

to converge weakly in W 1,p(Ω; Rm) to the affine function Ax [26, 21], to enhance

the formation of such oscillations, we add a penalty term

βh−q

∫

D

|uh(x)|p det∇Lh(x) dx (3.1)

to the potential energy (see also [21]) where β > 0 and 0 < q < p are param-

eters. An optimization method, for example gradient iterative methods [6, 10]

and Methods using simulated annealing and Monte Carlo techniques [11, 12], can
11



then be applied to solve the obtained discrete problems. In the following numeri-

cal examples, the conjugate gradient method is used. To increase the accuracy of

the numerical approximation, after an initial convergent criterion is satisfied, the

parameters α in (2.24) and β in (3.1) can be reduced gradually as long as the in-

tegrals
∫

∂Lh(D)
|uh(x)|pdx and

∫
D
|uh(x)|p det∇Lh(x)dx do not increase too much

(for example less than 3 times) [21] which is usually the case when a ”good”

oscillation pattern is formed. The incremental crystallization method [21] can

also be applied in the optimization procedure, roughly speaking the optimization

is restricted to a subsequently increasing subsets D1 ⊂ D2 ⊂ · · · ⊂ Dk = D

of D and the algorithm goes on to the next domain only after certain conver-

gent criterion is satisfied. Another technique used in the following examples is

the continuation method. The idea is that problems with topologically similar

microstructures may be linked by a parameter and by tracing the varying mi-

crostructure we may very well obtain a microstructure which is otherwise very

difficult, if not impossible, to approximate numerically.

In the following examples, n = m = 2, D = (−1, 1)2 and a family of regular

triangulations Th(D) for hN = 2
√

2/N with N ≥ 2 is introduced by the lines





x = −1 + 2
N

i, 0 ≤ i ≤ N ;

y = −1 + 2
N

j, 0 ≤ j ≤ N ;

y = x− 2
N

k, −N + 1 ≤ k ≤ N − 1.

(3.2)

For numerical solutions (uh, Lh) ∈ Uh × Th(D), we denote

F̄h = F (uh, Lh; D), (3.3)

which should converge to Qf(A) (see (2.15), (2.27) and corollary 2.2), and denote

Ih(D) = (

∫

Lh(D)

|uh(L
−1
h (x))|2 dx)1/2, (3.4)

Ih(∂D) = (

∫

∂Lh(D)

|uh(L
−1
h (x))|2 dx)1/2, (3.5)

which are expected to be of the order of h when the mesh scale oscillations are

obtained.

Example 1. Let a = (−5
8
, 5

6
)T and n = (−4

5
, 3

5
)T . Let

B = a⊗ n =

(
1
2
−3

8

−2
3

1
2

)
. (3.6)

12



Let f : R2×2 → R be defined by

f(ξ) = 〈ξ −B, ξ −B〉 · 〈ξ + B, ξ + B〉, (3.7)

where 〈a, b〉 = tr (ξT η) is the inner product of R2×2. The linear boundary

conditions A(λ)x with

A(λ) = λB + (1− λ)(−B) = (2 λ− 1)B, 0 < λ < 1, (3.8)

are considered.

It is obvious that B and −B, which are in rank one connection (see (3.6)), are

the two potential wells of F (u; Ω), and it is easily seen [5, 26] that

QF (A(λ)) = 0, (3.9)

and the Young measure of a minimizing sequence of F (·; Ω) in U(A(λ); Ω) is

homogeneous and is given by

µλ(ξ) = λδB(ξ) + (1− λ)δ−B(ξ), (3.10)

where δE is the Dirac measure centered at E. Thus, the numerical solutions

(uλ
h, Lλ

h) ∈ Uh(D)×Th(D) to (DPI) (or (DP)) are expected to satisfy [5, 26] (see

also section 2)

A(λ) +∇uλ
h(∇Lλ

h)
−1 ⇀ µλ, in the sense of measure, (3.11)

F (uλ
h, L

λ
h; D) → 0. (3.12)

To reflect such a weak convergence of the numerical solutions, we use the following

notations:

e∞(uλ
h, L

λ
h; K) = min{|A(λ) +∇uλ

h(∇Lλ
h)
−1 ±B|}, ∀K ∈ Th(D),

Eλ
2,h = (

∑

K⊂C(k)

(e∞(uλ
h, L

λ
h; K))2 meas(Lλ

h(K)))1/2,

L±h (D,λ) = {x ∈ D : |A(λ) +∇uλ
h(x)(∇Lλ

h(x))−1 ∓B| = e∞(uλ
h, L

λ
h; K)},

eλ,h = max{|meas(L+
h (D, λ))

λ
− 1|, |meas(L−h (D, λ))

1− λ
− 1|}.

Numerical results with various λ and h =
√

2/8 (N = 16) obtained by solving

(DPI) with the penalty term (3.1), using the conjugate gradient method combined

with the incremental crystallization and continuation techniques, are shown in

table 1. The numerical results for a fixed λ = 0.6 and N = 8, 16, 32 are shown

in table 2. In the computation, we set αh−r = 2.5, βh−q = 0.12 and λ0 = 0.5

initially, and when the norm of the gradient of the energy drops to 10−5 we set λ

to its final value and allow αh−r and βh−q to decrease gradually to the order of
13



10−8 and 10−4 respectively as long as the increase of the corresponding integrals

Ih(D) and Ih(∂D) do not exceed 3 times of their original values.

λ F̄h Eλ
2,h eλ,h Ih(D) Ih(∂D)

0.5 1.30× 10−11 4.90× 10−6 1.60× 10−6 3.75× 10−2 1.28× 10−3

0.6 7.47× 10−11 1.17× 10−5 1.02× 10−4 3.61× 10−2 3.99× 10−3

0.7 1.17× 10−11 4.65× 10−6 267× 10−3 3.18× 10−2 8.66× 10−3

0.8 4.39× 10−9 8.46× 10−5 7.43× 10−3 2.46× 10−2 1.39× 10−2

0.9 3.94× 10−7 5.43× 10−4 1.79× 10−3 1.81× 10−2 3.47× 10−2

Table 1. Numerical results for N = 16 with DPI+p+c.

N F̄h Eλ
2,h eλ,h Ih(D) Ih(∂D)

8 1.21× 10−12 1.49× 10−6 2.58× 10−3 7.22× 10−2 1.17× 10−3

16 7.47× 10−11 1.17× 10−5 1.02× 10−4 3.61× 10−2 3.99× 10−3

32 1.52× 10−12 1.68× 10−6 3.70× 10−5 1.80× 10−2 1.80× 10−3

Table 2. Numerical results for λ = 0.6 with DPI+p+c.

Method F̄h Eλ
2,h eλ,h Ih(D) Ih(∂D)

DPI+p+c 1.30× 10−11 4.90× 10−6 1.60× 10−6 3.75× 10−2 1.28× 10−3

DPI+p-c 6.42× 10−4 3.46× 10−2 8.86× 10−3 6.50× 10−2 1.79× 10−1

DPI-p+c 2.92× 10−12 2.32× 10−6 9.00× 10−4 3.62× 10−2 4.62× 10−3

DPI-p-c 3.87× 10−4 2.67× 10−2 6.07× 10−3 6.84× 10−2 1.76× 10−1

DP+p+c 8.18× 10−2 4.84× 10−1 1.05× 10−2 4.98× 10−2 null

DP-p+c 1.26× 10−1 7.06× 10−1 4.86× 10−2 5.25× 10−2 null

DP+p-c 8.18× 10−2 4.83× 10−1 1.05× 10−2 5.01× 10−2 null

DP-p-c 1.06× 10−1 5.66× 10−1 1.06× 10−2 6.85× 10−2 null

Table 3. Numerical results for λ = 0.6 with various methods.

In table 3, we compare the numerical results obtained by solving (DPI) (or

(DP)) with (or without) the penalty term (3.1) (referred to as ±p respectively),

using (or not using) the continuation technique (referred to as ±c respectively),

for λ = 0.6 and N = 16.
14
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Figure 1. Numerical microstructure for λ = 0.8 by DPI+p+c.
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Figure 2. Numerical microstructure for λ = 0.6 by DP−p−c.

A numerical microstructure for λ = 0.8 and N = 16 obtained by (DPI+p+c)

is shown in figure 1 and a numerical microstructure for λ = 0.6 and N = 16

obtained by (DP-p-c) is shown in figure 2. In both cases we can see clearly the

advantage of the mesh transformation method. From numerical results shown in

the tables and the figures, it is obvious that (DPI) works generally better than
15



(DP), and the continuation technique also shows its power, especially in the case

of (DPI) where the boundary effect is reduced to a minimum, and finally the

penalty term (3.1) reduces the error eλ,h which means a better approximation to

the Young measure µλ.

Example 2. Consider an optimal design problem [26, 34, 35] where the integrand

is given by

f(ξ) =

{
1 + |ξ|2, if ξ 6= 0,

0, if ξ = 0.
(3.13)

It is known [26, 34, 35] that in the case n = m = 2

Qf(ξ) =

{
1 + |ξ|2, if ρ(ξ) ≥ 1,

2 ρ(ξ)− 2| det ξ|, if ρ(ξ) ≤ 1,
(3.14)

where

ρ(ξ) = (|ξ|2 + 2| det ξ|)1/2. (3.15)

Let

B =

(
1 −1

2

−1
2

1
2

)
. (3.16)

We consider the affine boundary conditions associate with matrices

A(λ) = λB =

(
λ −λ

2

−λ
2

λ
2

)
. (3.17)

By (3.14),

Qf(A(λ)) =

{
1 + 7

4
λ2, if |λ| ≥ 2

3
,

1
2
|λ|(6− |λ|), if |λ| ≤ 2

3
.

(3.18)

Since there is a removable discontinuity point at the very heart, the unique po-

tential well of the integrand, f given by (3.13) is not a nice function for numerical

approximations. So, we consider of an application of the continuation method,

which is essential to the numerical approximations. Instead of dealing with f , we

introduce a sequence of integrands fk : R2×2 → R, k = 1, 2, . . . ,

fk(ξ) =

{
1 + |ξ|2, if |ξ| ≥ 1

k
,

(1 + k2)|ξ|2, if |ξ| ≤ 1
k
.

(3.19)
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It is easily seen that

Qf − 2
√

2
1

k2
≤ fk ≤ fk+1 ≤ f, ∀k. (3.20)

Hence, for all open set Ω ∈ R2 and A ∈ R2×2, we have [26]

lim
k→∞

inf
u∈U(A; Ω)

Fk(u; Ω) = inf
u∈U(A; Ω)

F (u; Ω), (3.21)

where Fk(u; Ω) =
∫
Ω

fk(∇u(x)) dx.

Let uk ∈ U(A; Ω) satisfy

Fk(uk; Ω) ≤ inf
u∈U(A; Ω)

Fk(u; Ω) + εk, (3.22)

with limk→∞ εk = 0. Then, it follows from (3.20)−(3.22) that

lim sup
k→∞

Fi(uk; Ω) ≤ inf
u∈U(A; Ω)

F (u; Ω). (3.23)

Since, by (3.23) and (h1), {uk}∞k=1 are uniformly bounded in W 1,p(Ω; R2) and

since a affine boundary condition is considered, without loss of generality, we may

assume that there exists a homogeneous Young measure µ on R2×2, which is a

probability measure [5], such that

lim
k→∞

Fi(uk; Ω) =

∫

Ω

〈fi(·), µ〉 dx = meas(Ω)〈fi(·), µ〉, ∀i. (3.24)

On the other hand, for a probability measure µ on R2×2, it follows from

0 ≤ 〈f(·)− fi(·), µ〉 ≤ µ({ξ ∈ R2×2 : 0 < |ξ| < i−1}), (3.25)

and

lim
i→∞

µ({ξ : 0 < |ξ| < i−1}) = µ(
∞⋂
i=1

{ξ : 0 < |ξ| < i−1}) = µ(∅) = 0. (3.26)

Combining (3.23)−(3.26), we obtain

∫

Ω

〈f(·), µ〉 dx = inf
u∈U(A; Ω)

F (u; Ω). (3.27)

The above analysis indicates that while a sequence {uk}∞k=1, which satisfies

(3.22) and has a homogeneous Young measure representation µ, is generally not

a minimizing sequence of F (·; Ω) in U(A; Ω), a modification can be made to

{uk}∞k=1 to produce such a minimizing sequence which has the Young measure

representation µ.
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In our numerical experiments the method (DPI+p), i.e. (DPI) with the penalty

term (3.1), is applied. To solve the discrete problem for large k, the continua-

tion method is again applied. We either take λ as a parameter or consider the

parameterized integrands

fk,l(ξ) =

{
1 + |ξ|2, if |ξ| ≥ l

k
,

(1 + l−2k2)|ξ|2, if |ξ| ≤ l
k
.

(3.28)

The parameters λ or l in (3.28) will be varied incrementally from their initial

values, say λ0 = 0.025 and l0 = k
1+‖A(λ)‖ , to the final value of λ and 1 respectively,

and in each step a convergent criterion, say the norm of the energy gradient less

than 10−4, is to be satisfied. Both of the processes, encourage the deformation

gradients to fall into the energy well, which is very small for large k, and thus

greatly improve the performance of the algorithm. It should be brought into

attention here however that the value k is limited by the mesh size h, in other

words, to solve the problem with large k the mesh size h must be sufficiently

small. In showing the numerical results, we denote the relative error of F̄h by

Er(F̄h) and define

C(k) = {ξ ∈ R2×2 : |ξ| ≤ 1

k
},

e∞(uλ
h, L

λ
h; K) = |A(λ) +∇uλ

h(∇Lλ
h)
−1||K , for K ⊂ C(k),

Eλ
∞,h(C(k)) = max

K⊂C(k)
e∞(uλ

h, L
λ
h; K),

Eλ
2,h(C(k)) = (

∑

K⊂C(k)

(e∞(uλ
h, L

λ
h; K))2 meas(Lλ

h(K)))1/2.

In table 4, numerical results for k = 30, N = 16 and various λ are shown. Table

5 shows the numerical results for λ = 0.3, k = 30 and N = 8, 16, 32, 64, and it is

clearly shown that Ih(D) and Ih(∂D) decrease as N increases (or equivalently as

h decreases), this means the weakly convergence of the finite element solutions.

Table 6 shows the numerical results for N = 16, λ = 0.3 and k = 15, 30, 60.

In table 6, we see that Er(F̄h) decreases as k increases, this indicates the finite

element solutions satisfy (3.21), we see also the gradients in the wells C(k) (see

Eλ
∞,h(C(k)) and Eλ

2,h(C(k))) converge sharply to 0 as k increases, this implies the

convergence of the Young measure.

Numerical microstructures for λ = 0.3 obtained by the algorithm with different

initial data and the combinations of the rotation transformation method, the

incremental crystallization method and the continuation method are shown in
18



λ Er(F̄h) Eλ
∞,h(C(k)) Eλ

2,h(C(k)) Ih(D) Ih(∂D)

0.05 7.62× 10−2 9.93× 10−3 6.10× 10−5 1.79× 10−2 4.21× 10−2

0.15 3.08× 10−3 3.04× 10−2 1.02× 10−4 3.10× 10−2 7.15× 10−2

0.25 5.93× 10−2 2.65× 10−2 1.09× 10−4 3.72× 10−2 7.00× 10−2

0.35 6.01× 10−2 2.67× 10−2 1.66× 10−4 4.48× 10−2 7.36× 10−2

0.45 2.51× 10−2 2.62× 10−2 1.44× 10−4 4.57× 10−2 1.16× 10−1

0.55 1.11× 10−2 3.32× 10−2 1.40× 10−4 4.31× 10−2 1.22× 10−1

Table 4. Numerical results for N = 16 and k = 30.

N Er(F̄h) Eλ
∞,h(C(k)) Eλ

2,h(C(k)) Ih(D) Ih(∂D)

8 2.92× 10−2 1.89× 10−2 2.77× 10−5 6.33× 10−2 9.75× 10−2

16 4.13× 10−2 2.17× 10−2 7.93× 10−5 3.85× 10−2 6.42× 10−2

32 4.58× 10−2 2.53× 10−2 6.17× 10−5 2.42× 10−2 4.51× 10−2

64 6.37× 10−2 2.72× 10−2 1.44× 10−4 1.39× 10−2 3.23× 10−2

Table 5. Numerical results for λ = 0.3 and k = 30.

k Er(F̄h) Eλ
∞,h(C(k)) Eλ

2,h(C(k)) Ih(D) Ih(∂D)

15 8.37× 10−2 5.67× 10−2 1.09× 10−3 3.31× 10−2 4.87× 10−2

30 6.78× 10−2 2.73× 10−2 1.78× 10−4 4.33× 10−2 7.23× 10−2

60 2.76× 10−2 8.75× 10−3 8.49× 10−6 4.69× 10−2 8.33× 10−2

Table 6. Numerical results for λ = 0.3 and N = 16.

figure 3 – figure 8. It can be clearly seen, as is expected since the Young measure

is wildly nonunique in this case [34, 35], that these numerical microstructures are

not simple laminates and are quite different from each other.
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Figure 3. A numerical microstructure for λ = 0.3, k = 30.
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Figure 4. A numerical microstructure for λ = 0.3, k = 30.
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Figure 5. A numerical microstructure for λ = 0.3, k = 30.
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Figure 6. A numerical microstructure for λ = 0.3, k = 30.

While the numerical microstructures shown in figure 3 – figure 7 are obtained

by N = 32 and k = 30, the numerical microstructure in figure 8 is obtained by

N = 64 and k = 60. We see that the mesh size oscillations are obtained.
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Figure 7. A numerical microstructure for λ = 0.3, k = 30.
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Figure 8. A numerical microstructure for λ = 0.3, k = 60.
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