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Abstract
In this paper, the existence of a solution in the form of a min-

imizer or microstructure is established for the boundary value
problems of nonlinear elasticity with certain nonconvex stored
energy functions such as those of St. Venant-Kirchhoff type ma-
terials. Necessary and sufficient conditions for minimizing se-
quences of the potential energy to converge to a minimizer or to
microstructure are given.
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1 Introduction

In this paper, the existence of solutions in the form of minimizers or
microstructure [1] [2] is established for the boundary value problems
of nonlinear hyperelasticity with certain nonconvex stored energy func-
tions. The study was motivated by the consideration of nonlinear elastic
materials whose stored energy functions are of the form [3]

W (F ) ≡ W ∗(E) =
λ

2
(tr E)2 + µ tr E2 + o(|E|2), (1.1)

where F = I +∇u with ∇u being the displacement gradient and I being
the 3× 3 identity matrix,

E =
1

2
(F T F − I) =

1

2
(∇uT +∇u +∇uT∇u) (1.2)
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is the strain tensor and λ > 0, µ > 0 are Lamé’s constants.
As far as what is known to the author, for such materials, the exis-

tence theorem is only established, by using the implicit function theo-
rem, for the case when the pure displacement boundary value condition
is considered and the body force is sufficiently small (see [3] [4] [5]), and
there is no way to extend this approach to the mixed boundary value
problems.

Ball’s theory on polyconvexity provides an important approach to
the existence theorems for general boundary value problems of nonlinear
elasticity [6] [7] [8]. But, the theory does not apply to the stored energy
functions of the form (1.1), since they are in general neither polyconvex
nor quasiconvex (see [9]). Recently, developements have been made on
quasiconvex envelopes of stored energy functions which leads to the con-
sideration of relaxed minimization problem instead of the original one
(see [10] [11] [12] [13] [14] among others). But this approach rules out
a natural reqirement in nonlinear elasticity that stored energy functions
are such that

W (F ) = +∞, if det F ≤ 0, (1.3)

and
W (F ) → +∞, as det F → 0+. (1.4)

In addition, it may fail to show some important features of minimizing
sequences of the original problem, especially when the infinimum can
not be reached.

In this paper, a generalized polyconvexity conditions for stored en-
ergy functions are introduced (see (H1) – (H3) in §2), and the existence
of solutions in the form of minimizers or microstructures, which are char-
acterized by minimizing sequences, is established for the boundary value
problems of nonlinear elasticity with stored energy functions satisfying
these conditions (see §2). This generalizes Ball’s existence theory for
polyconvex materials [7] [8] since the generalized polyconvexity condi-
tions ((H1) – (H2) in §2) include the polyconvexity conditions as a special
case. Stored energy functions satisfying the generalized polyconvexity
conditions are in general neither polyconvex nor quasiconvex.

In §2, necessary and sufficient conditions for a minimizing sequence
to converge to a minimizer or to microstructure are also obtained. These
conditions are useful in computing the solutions.

Applying the theory established in §2 to nonlinear elastic materials,
we see that there always exists a solution in the form of either a minimizer
or microstructure for the boundary value problems if o(|E|2) in (1.1)

2



satisfies generalized polyconvexity and certain growth conditions (see
§3). The theory can also be adjusted to cover (see §2) St. Venant-
Kirchhoff materials whose stored energy functions are

W1(E) =
λ

2
(tr E)2 + µ tr E2, (1.5)

which obviously do not satisfy hypothesis (H3) and hence (1.3) and
(1.4). Hence we are able to claim that for boundary value problems of
St. Venant-Kirchhoff materials, every minimizing sequence contains a
subsequence which either converges strongly to a minimizer of the total
potential energy or leads to microstructure (see Remark 2.4).

2 Existence of solutions and convergence

of minimizing sequences

Let Ω ⊂ R3 be a connected open set with Lipschitz continuous boundary
∂Ω. Let ∂Ω0 ⊂ ∂Ω, ∂Ω1 ⊂ ∂Ω, ∂Ω0 ∩ ∂Ω1 = ∅ and area (∂Ω0) 6= 0.

Let the stored energy function W (x, F ) satisfy the following hypothe-
ses:

(H1) There is a Carathéodory function G : Ω̄ × M3 × M3 × M3 ×
R+ → R, i.e. G(x, ·, ·, ·, ·) is continuous for almost all x ∈ Ω̄ and
G(·, E, F,H, δ) is measurable for all (E, F, H, δ) ∈ M3×M3×M3×
R+, such that G(x, ·, ·, ·, ·) is strictly convex and

W (x, F ) = G(x,E, F, adj F, det F ), for all x ∈ Ω̄ and F ∈ M3
+,

where M3 = {all 3 × 3 matrices}, M3
+ = {F ∈ M3 : det F > 0},

E = 1
2
(F T F − I) with I being the 3 × 3 identity matrix, adj F

is the transpose of the matrix of cofactors of F and det F is the
determinant of F .

(H2) There are constants C0 ∈ R, C1 > 0, s > 1, p ≥ 2 s, q ≥ p
p−1

,
r > 1 such that

G(x,E, F, H, δ) ≥ C0 + C1(|E|s + |F |p + |H|q + |δ|r),

for all (x,E, F, H, δ) ∈ Ω̄×M3 ×M3 ×M3 ×R+.
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(H3)
G(x,En, Fn, Hn, δn) −→ +∞,

if δn → 0+.

To simplify the notation, we denote, for x ∈ Ω, E ∈ M3 and F ∈ M3,

Z(x,E, F ) =

{
G(x,E, F, adj F, det F ), if detF > 0;

+∞, if detF ≤ 0.
(2.1)

Then, it is obvious that for F ∈ M3
+

W (x, F ) = Z(x,E, F ), where E =
1

2
(F T F − I).

We consider the problem of minimizing the functional

I(u) =
∫

Ω
W (x, I +∇u) dx−

∫

Ω
f · u dx−

∫

∂Ω1

g · u ds, (2.2)

which is the total energy of the elastic body subject to a body force f ,
a traction g and at displacement u, in the set of admissible functions

A = { u ∈ W 1,p(Ω; R3) : adj (I +∇u) ∈ Lq(Ω; M3),

det (I +∇u) ∈ Lr(Ω), det (I +∇u) > 0, a.e. in Ω,

and u = u0 on ∂Ω0},
(2.3)

where f and g are in such function spaces that

Φ(u) =
∫

Ω
f · u dx−

∫

∂Ω1

g · u ds (2.4)

defines a continuous functional in W 1,p(Ω; R3) and area (∂Ω0) > 0.

Lemma 2.1 : Let W (x, F ) satisfy (H1) – (H3). Let Φ(u), defined by

(2.4), be continuous in W 1,p(Ω; R3).

Then, there exist constants α0 ∈ R and α1 > 0 such that

I(u) ≥ α0 + α1(‖E‖s
s + ‖F‖p

p + ‖adj F‖q
q + ‖det F‖r

r), ∀u ∈ A, (2.5)

where

F = I +∇u (2.6)

and

E =
1

2
(F T F − I). (2.7)
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Proof: By (H2), we have

∫

Ω
W (x, F ) dx ≥ α + β(‖E‖s

s + ‖F‖p
p + ‖adj F‖q

q + ‖det F‖r
r)

for some constants α ∈ R and β > 0.
It follows from the continuity of Φ(·) in W 1,p(Ω; R3),

Poincaré inequality [15] and Hölder inequality that

|Φ(u)| ≤ γ‖u‖1,p

≤ γ̂(‖u0‖1,p + |u|1,p)

≤ γ1 + β
2
|u|p1,p

= γ1 + β
2
‖F‖p

p

for some constant γ1 > 0 which depends only on Ω, p, u0 and β. Thus
(2.5) follows. 2

Lemma 2.2 : Let W (x, F ) satisfy (H1) – (H3). Let Φ(·) be continuous

in W 1,p(Ω; R3). Assume that

inf
v∈A

I(v) < +∞. (2.8)

Let {uj} be a minimizing sequence of I(·) in A.

Then, there exist a subsequence {uν} of {uj}, functions u ∈ A, Ê ∈
Ls(Ω; M3) such that

uν ⇀ u in W 1,p(Ω; R3), (2.9)

Fν ⇀ F in Lp(Ω; M3), (2.10)

adj Fν ⇀ adj F in Lq(Ω; M3), (2.11)

det Fν ⇀ det F in Lr(Ω), (2.12)

Eν ⇀ Ê in Ls(Ω; M3), (2.13)

where Fν = I +∇uν, F = I +∇u and Eν = 1
2
(F T

ν Fν − I).

Furthermore,

I(Ê, u) =
∫
Ω Z(x, Ê, I +∇u) dx− ∫

Ω f · u dx− ∫
∂Ω1

g · u ds,

≤ limν→∞I(uν) = infv∈A I(v).
(2.14)
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Proof: It follows from lemma 2.1 and (2.8) that ‖Ej‖s, ‖Fj‖p,
‖adj Fj‖q and ‖det Fj‖r, j = 1, 2, · · · are bounded. Thus, there exist a
subsequence {uν} of {uj}, a function u ∈ W 1,p(Ω; R3) with u = u0 on

∂Ω0, functions H ∈ Lq(Ω; M3), δ ∈ Lr(Ω) and Ê ∈ Ls(Ω; M3) such that

uν ⇀ u in W 1,p(Ω; R3),

Fν ⇀ F in Lp(Ω; M3),

adj Fν ⇀ H in Lq(Ω; M3),

det Fν ⇀ δ in Lr(Ω),

Eν ⇀ Ê in Ls(Ω; M3).

By the sequential weak continuity of Jacobians (see [6] [7]), we know
that

H = adj F, δ = det F.

On the other hand, it follows from a standard lower semicontinuity
theorem [16] that

I(E, u) =
∫

Ω
Z(x, E, I +∇u) dx−

∫

Ω
f · u dx−

∫

∂Ω1

g · u ds

is sequentially weakly lower semicontinuous. Hence (2.14) follows. This
and (H3) imply that

det F > 0, a.e. in Ω.

Thus, u ∈ A. This completes the proof. 2

Remark 2.1 : Since Ê may not be equal to 1
2
(F T F − I), u obtained in

lemma 2.2 may not be a minimizer of I(·) in A.

The following two lemmas [8] play an important role in the proof of
theorem 2.1.

Lemma 2.3 : Let K ⊂ RM be open and convex, and let Ψ : K → R be

strictly convex. Let 0 < θ < 1, and suppose that aj, a ∈ K with

θΨ(aj) + (1− θ)Ψ(a)−Ψ(θaj + (1− θ)a) → 0, as j →∞.

Then aj → a.
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Proof: We first note that

h(b) = θΨ(b) + (1− θ)Ψ(a)−Ψ(θb + (1− θ)a)

is strictly increasing along any ray starting from a. In fact, let e ∈
RM , 0 < t1 < t2 such that a + ξt2e ∈ K, ∀ξ ∈ [0, 1], let α = t1−θt1

t2−θt1
,

β = θ(t2−t1)
t2−θt1

= (1− α)θ, by

a + t1e = α(a + t2e) + (1− α)(a + θt1e)

a + θt2e = β(a + t2e) + (1− β)(a + θt1e)

and the strict convexity of Ψ, we have

θΨ(a + t1e) + Ψ(a + θt2e) < θΨ(a + t2e) + Ψ(a + θt1e).

This is equivalent to saying that

h(a + t2e) > h(a + t1e), 0 < t1 < t2.

Since K is open and Ψ is convex, Ψ is continuous. Therefore, given
ε > 0 sufficiently small such that {|b− a| ≤ ε} ⊂ K, we have

inf
|b−a|=ε

h(b) > 0.

Since h is increasing along rays, this implies that

inf
b∈K,|b−a|≥ε

h(b) > 0,

which gives the result. 2

Lemma 2.4 : Let Wj,W, hj, h,Hj, H ∈ L1(Ω) with hj ≤ Wj ≤ Hj

for all j. Suppose that Wj → W , hj → h, Hj → H, a.e. in Ω, and∫
Ω hj(x) dx → ∫

Ω h(x) dx,
∫
Ω Hj(x) dx → ∫

Ω H(x) dx as j →∞.

Then ∫

Ω
Wj(x) dx →

∫

Ω
W (x) dx.

Proof: The result follows by applying Fatou’s lemma to the se-
quences Hj −Wj and Wj − hj. 2

Theorem 2.1 : Let W (x, F ) satisfy hypothese (H1) - (H3). Let Φ(u)

be continuous in W 1,p(Ω; R3). Let {uν} be a minimizing sequence of I(·)
in A, and let u ∈ A, Ê ∈ Ls(Ω; M3) be such that (2.9)–(2.14) hold.

Then, the statements (i) - (v) below are equivalent.
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(i) Ê = 1
2
(F T F − I);

(ii) I(Ê, u) = limν→∞ I(uν) = infv∈A I(v);

(iii) Eν → Ê in Ls(Ω; M3), Fν → F in Lp(Ω; M3), adj Fν → adj F in

Lq(Ω; M3), and det Fν → det F in Lr(Ω);

(iv) Fν → F in Lp(Ω; M3);

(v) Fν → F in measure in Ω.

Furthermore, u ∈ A is a minimizer of I(·) in A if any of (i) - (v) holds.

Proof: (a). Suppose (i) is true. Since u ∈ A, we have

I(u) = I(Ê, u) ≥ inf
v∈A

I(v).

This and (2.14) give (ii).
(b). Suppose (ii) holds. Let

a(x) = (Ê(x), F (x), adj F (x), det F (x)),

aν(x) = (Eν(x), Fν(x), adj Fν(x), det Fν(x)).

For fixed θ ∈ (0, 1), define

hν(x) = θG(x, aν(x)) + (1− θ)G(x, a(x))−G(x, θaν(x) + (1− θ)a(x))

It follows from (H1) that

hν(x) ≥ 0, ∀x ∈ Ω.

By lemma 2.2, we have

∫

Ω
G(x, a(x)) dx ≤ limν→∞

∫

Ω
G(x, θaν(x) + (1− θ)a(x)) dx.

Thus, by (ii)

0 ≤ limν→∞
∫
Ω hν(x) dx

=
∫
Ω G(x, a(x)) dx− limν→∞

∫
Ω G(x, θaν(x) + (1− θ)a(x)) dx

≤ 0.
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Thus, for a subsequence, again denoted by aν(x), we have

hν → 0, a.e. in Ω.

Since G(x, ·) is strictly convex (hypothesis (H1)), by lemma 2.3, we have

aν(x) −→ a(x), a.e. in Ω.

Since G(·, ·) is continuous for almost all x ∈ Ω̄ (hypothesis (H1)), we
also have

G(x, aν(x)) → G(x, a(x)), a.e. in Ω.

By (H2),

0 ≤ |Ê(x)− Eν(x)|s + |F (x)− Fν(x)|p+
|adj F (x)− adj Fν(x)|q + | det F (x)− det Fν(x)|r

≤ Ĉ1(G(x, aν(x)) + G(x, a(x))) + Ĉ2

for some constants Ĉ1 > 0 and Ĉ2 ∈ R. Thus, by lemma 2.4, we have

‖Ê − Eν‖s
s + ‖F − Fν‖p

p + ‖adj F − adj Fν‖q
q + ‖ det F − det Fν‖r

r → 0.

Hence (iii), (iv) and (v) must be true.
(c). Suppose (iv) holds. Then,

Eν =
1

2
(F T

ν Fν − I) → 1

2
(F T F − I), in Ls(Ω; M3).

Since Eν ⇀ Ê in Ls(Ω; M3) by (2.13), we conclude that Ê = 1
2
(F T F−I),

i.e. (i) holds.
(d). Suppose now (v) is true. Then, by Riesz’s theorem for a subse-

quence, again denoted by {Fν}, we have

Fν → F, a.e. in Ω,

Eν → 1
2
(F T F − I), a.e. in Ω.

Thus, by (2.13), we have Ê = 1
2
(F T F − I), i.e. (i) holds.

The arguments in (a) - (d) show that (i) - (v) are equivalent. Thus,
if any of (i) - (v) is known to be true, then (i) - (v) all hold. Now it
follows from u ∈ A and (i) that

I(u) = I(Ê, u) ≥ inf
v∈A

I(v).

This and (2.14) show that u ∈ A is a minimizer of I(·) in A. 2
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Theorem 2.2 : Let W (x, F ) satisfy hypotheses (H1) - (H3). Let Φ(u)

be continuous in W 1,p(Ω; R3). Let {uj} be a minimizing sequence of

I(·) in A such that (2.9)–(2.14) hold for some (u, Ê) ∈ A× Ls(Ω; M3).

Suppose

Ê 6= 1

2
((I +∇u)T (I +∇u)− I). (2.15)

Then, {uj} gives microstructure, i.e. there exists a measurable subset

Ω̂ ⊂ Ω with meas (Ω̂) > 0 such that

limj→∞
∫

Ω′
|∇uj −∇u| dx > 0, (2.16)

and

lim
j→∞

∫

Ω′
(∇uj −∇u) dx = 0, (2.17)

for any measurable subset Ω′ ⊂ Ω̂ with meas (Ω′) > 0.

Proof: Let

Ω̂ = {x ∈ Ω : Ê(x) 6= 1

2
((I +∇u(x))T (I +∇u(x))− I)}.

By (2.15), meas (Ω̂) > 0.
(2.17) is obvious, since uj ⇀ u in W 1,p(Ω; R3).
Suppose that the theorem is not true. Then, there would exist a

measurable subset Ω′ ⊂ Ω̂ with meas (Ω′) > 0 and a subsequence of
{uj}, again denoted by {uj}, such that

lim
j→∞

∫

Ω′
|∇uj −∇u| dx = 0.

By extracting a further subsequence, we would then be able to find a
subsequence {uν} of {uj} satisfying

∇uν → ∇u, a.e. in Ω′,

and thus

Eν = 1
2
((I +∇uν)

T (I +∇uν)− I) → 1
2
((I +∇u)T (I +∇u)− I)

a.e. in Ω′.

This would imply

Ê =
1

2
((I +∇u)T (I +∇u)− I), a.e. in Ω′,
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since Eν ⇀ Ê in Ls(Ω; M3) and hence also in Ls(Ω′; M3). But this
contradicts the assumption that Ω′ ⊂ Ω̂. 2

As a corollary of theorem 2.1 and theorem 2.2, we have the following
existence theorem for the problem of minimizing I(·) in A.

Theorem 2.3 : Let W (x, F ) satisfy hypotheses (H1) - (H3). Let Φ(u)

be continuous in W 1,p(Ω; R3). Let I(·) and A be defined by (2.2) and

(2.3) respectively, and infv∈A I(v) < +∞.

Then, either there exists a minimizer of I(·) in A or there exists a

minimizing sequence of I(·) in A which leads to microstructure.

Proof: By lemma 2.2, there always exists a minimizing sequence
{uν} of I(·) in A such that (2.9) - (2.14) hold for some functions (u, Ê) ∈
A× Ls(Ω; M3). We have either

Ê =
1

2
((I +∇u)T (I +∇u)− I),

or

Ê 6= 1

2
((I +∇u)T (I +∇u)− I).

In the former case, by theorem 2.1, u ∈ A is a minimizer of I(·) in A.
While in the later case, by theorem 2.2, {uν} leads to microstructure. 2

Theorem 2.4 : Let W (x, F ) satisfy hypotheses (H1) - (H3). Let Φ(u)

be continuous in W 1,p(Ω; R3). Let {uν} be a minimizing sequence of

I(·) in A such that (2.9) - (2.14) hold for some functions (u, Ê) ∈ A×
Ls(Ω; M3).

Then, a necessary and sufficient condition for u to be a minimizer of

I(·) in A and Ê = 1
2
((I +∇u)T (I +∇u)− I) is that

∇uν → ∇u, in measure in Ω; (2.18)

and a necessary and sufficient condition for {uν} to lead to microstruc-

ture is that

limν→∞‖uν − u‖1,p,Ω > 0. (2.19)

Proof: The first conclusion follows directly from theorem 2.1. The
second conclusion follows from theorem 2.2 and the definition of the
microstructure. 2
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Remark 2.2 : In the case when G(x, ·, ·, ·) is convex but not strictly

convex, the existence of a solution in the form of a minimizer or mi-

crostructure can still be established. Similarly, we can prove that a min-

imizing sequence {uj} leads to microstructure if Ê 6= 1
2
((I + ∇u)T (I +

∇u)−I) and converges to a minimizer if Ê = 1
2
((I +∇u)T (I +∇u)−I).

Remark 2.3 : The theory can also be easily extended to the stored

energy function of the form W (x,E, F ) = G(x,E, adj E, det E,F, adj F,

det F ) with G(x, ·, ·, ·, ·, ·, ·) being continuous, convex and satisfying cer-

tain growth and coerceiveness conditions similar to (H2) and (H3).

Remark 2.4 It follows from the same arguments that all the theorems

in this section remain valid if W (x, F ) is everywhere finite in Ω ×M3,

and the hypothesis (H3) and the restriction on the admissible functions

A that det F > 0, a.e. in Ω are removed and hypotheses (H1) and (H2)

are replaced by the following hypotheses

(H1′) There is a Carathéodory function G : Ω̄ × M3 × M3 × M3 ×
R → R, i.e. G(x, ·, ·, ·, ·) is continuous for almost all x ∈ Ω̄ and

G(·, E, F,H, δ) is measurable for all (E, F, H, δ) ∈ M3 × M3 ×
M3 × R, such that G(x, ·, ·, ·, ·) is strictly convex with respect to

explicitly dependent variables and

W (x, F ) = G(x,E, F, adj F, det F ), for all x ∈ Ω̄ and F ∈ M3.

(H2′) There are constants C0 ∈ R, C1 > 0, s > 1, p ≥ 2 s, q ≥ p
p−1

,

r > 1 such that

G(x,E, F, H, δ) ≥ C0 + C1(|E|s + |F |p + |H|q + |δ|r),

for all (x,E, F, H, δ) ∈ Ω̄×M3 ×M3 ×M3 ×R.

This allows us to cover St. Venant Kirchhoff materials which are

important in applications. In fact, we only need to take s = 2, p = 4, q =

2, and r = 4/3 in hypothesis (H2′) and apply the theorems in the adjusted

form (see also §3).
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3 Application to nonlinear elasticity

Let Ω ⊂ R3 be a natural state of an elastic material which is isotropic
and material frame indifferent. Let W (F ) be the stored energy function
of the material. Then, by a standard result in elasticity [3], if W (·) ∈
C1(M3

+; R),

W (F ) ≡ W ∗(E) =
λ

2
(tr E)2 + µtr E2 + o(|E|2), (3.1)

where λ > 0, µ > 0 are constants.
When the displacement is small, i.e. |∇u| ¿ 1, which is the case

in pure displacement boundary value problems when ∂Ω is sufficiently
smooth and the body force f is sufficiently small [3], the stored energy
function of St. Venant-Kirchhoff materials

W1(E) =
λ

2
(tr E)2 + µtr E2, (3.2)

is a good approximation of the stored energy function in the form of
(3.1). However, for general boundary value problems, ∇u is in general
not small, and the effect of o(|E|2) must then be taken into account.

A natural condition that a stored energy function must satisfy is that
[6] [7]

W (F ) → +∞, as det F → 0+.

Now, we consider the stored energy function of the form

W (F ) = W1(E) + W2(F ), (3.3)

where W1(E) is defined by (3.2), W2(F ) satisfies (H1) in §2 and

W2(F ) ≥ C, for some constant C ∈ R, (3.4)

W2(F ) = o(|E|2), (3.5)

W2(F ) → +∞ as det F → 0+. (3.6)

Lemma 3.1 : Let W (F ) be of the form (3.3) with W1(E) being defined

by (3.2) and W2(F ) satisfying (H1) in §2 and (3.4) - (3.6). Then W (F )

satisfies (H1)–(H3) for s = 2, p = 4, q = 2 and r = 4
3
.

Proof: Since W2(F ) satisfies (H1), there is a continuous function
G2 : M3 ×M3 ×M3 ×R+ → R such that G2(·, ·, ·, ·) is strictly convex,

W2(F ) = G2(E, F, adj F, det F ), ∀F ∈ M3
+, (3.7)
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where E = 1
2
(F T F − I), and (3.6) holds.

Define G : M3 ×M3 ×M3 ×R+ → R by

G(E, F, H, δ) = W1(E) + G2(E, F, H, δ). (3.8)

Then, it is obvious that W (F ) satisfies (H1) and (H3) with G(·, ·, ·, ·)
defined by (3.8). It follows from

|E|2 = tr E2,

|F |4 = (3 + 2tr E)2 ≤ 45 + 5(tr E)2,

|adj F |2 ≤ Ĉ |F |4, for some constant Ĉ > 0,

| det F | 43 ≤ Ĉ |F |4, for some constant Ĉ > 0,

that (H2) holds. 2

Theorem 3.1 : Let W (F ) satisfy the hypotheses in lemma 3.1. Let

Φ(·) defined by (2.4) be continuous in W 1,4(Ω; R3). Let I(·) be defined

by (2.2) and

A = {u ∈ W 1,4(Ω; R3) : F = I +∇u, det F > 0, a.e. in Ω,

and u = u0, on ∂Ω0}. (3.9)

Suppose

inf
v∈A

I(v) < +∞. (3.10)

Then, for any minimizing sequence {uj} of I(·) in A, there exist

a subsequence {uν} of {uj}, a function u ∈ A and a function Ê ∈
L2(Ω; M3) satisfying

uν ⇀ u in W 1,4(Ω; R3), (3.11)

Eν ⇀ Ê in L2(Ω; M3), (3.12)

such that either

uν → u in W 1,4(Ω; R3), (3.13)

Eν → E = 1
2
((I +∇u)T (I +∇u)− I) in L2(Ω; M3), (3.14)

or {uν} oscillates more and more finely and leads to microstructure.

14



Proof: The existence of {uν}, u and Ê satisfying (3.11) and (3.12)
follows from lemma 2.2. The rest of the theorem is a corollary of theorem
2.1 and theorem 2.2. 2

As an example, we may take

W2(F ) = α|(det F )2 − 1|r1| log(det F )|, (3.15)

where α > 0, r1 > 1 are constants. Notice that

(det F )2 − 1 = 2 (tr E + 2tr (adj E) + 4 det E),

we have

|W2(F )| ≤ C |E|r1−1 | log(1 + C |E|)|
|E| |E|2 = o(|E|2).

It is obvious that W2(F ) ≥ 0. Let G2(δ) = α |δ2 − 1|r1| log δ|, then it is
easy to show that W2(F ) satisfies (H1) and (3.6). Thus for

W (F ) =
λ

2
(tr E)2 + µtr E2 + α|(det F )2 − 1|r1| log(det F )|, (3.16)

theorem 3.1 holds.
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d’énergie de Saint Venant-Kirchhoff, C.R. Acad. Sci. Paris,
t.318, Série I (1994), 93-98.

[14] H. Le Dret and A. Raoult, Remarks on the quasiconvex enve-
lope of stored energy functions in nonlinear elasticity, to appear
in Commu. Appl. Nonlinear Anal..

[15] R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.

[16] A.D. Ioffe, On lower semicontinuity of integral functionals, I and
II, SIAM J. Control and Optimization, 15(1977), 521-538,
991-1000.

16


