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Abstract. In this paper, an integral representation theorem on sequen-
tially weakly lower semicontinuous envelope of multiple integral functionals
is proved for integrands which satisfy growth conditions of order p and have
lower compactness property. The result generalizes the standard results in
the area.

1. Introduction

In calculus of variations, the problem of minimizing an integral functional

F (u; Ω) =

∫

Ω

f(x, u(x), Du(x)) dx, (1.1)

on a set of admissible functions

A = {u ∈ W 1,p(Ω; Rm) : u = u0 on ∂Ω}, (1.2)

where Ω ⊂ Rn is a bounded open set with Lipschitz continuous boundary ∂Ω
and 1 ≤ p < ∞, can often be replaced by the relaxed problem of minimizing
the relaxed functional

F̂ (u; Ω) =

∫

Ω

f̂(x, u(x), Du(x)) dx, (1.3)

on A, where f̂(x, s, ·) is the quasiconvex envelope of f(x, s, ·), i.e. the

greatest quasiconvex function less than or equal to f(x, s, ·) (see [1, 2, 3]). In

fact, the solutions to the two problems coincide whenever F̂ (·, Ω) happens to

be the sequentially weakly lower semicontinuous envelope of F (·, Ω), i.e. the
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greatest sequentially weakly lower semicontinuous functional defined on A less
than or equal to F (·, Ω), which is identified by (see [3, 4, 5])

Γ-- lim F (u; Ω) = min{lim inf
α→∞

F (uα; Ω) : uα ∈ A, uα ⇀ u in W 1,p(Ω; Rm)},

where ”⇀” means ”converges weakly to”. This is useful in numerical analysis
and computations (see for example [6, 7, 8, 9]) as well as theoretically impor-
tant. Thus, it is naturally desirable to know under what conditions this is
true. The following well known result is given by Acerbi and Fusco [3].

Theorem 1.1. Let f : Ω×Rm×Rn×m → R be a Carathéodory function which
satisfies the hypotheses

(H1): 0 ≤ f(x, s, ξ) ≤ a(x) + C(|s|p + |ξ|p) for every x ∈ Ω, s ∈ Rm,

ξ ∈ Rn×m, where C is a nonnegative constant and a(x) ∈ L1(Ω) is a
nonnegative function;

(H2): |f(x, s1, ξ)−f(x, s2, ξ)| ≤ ω(x, |s1−s2|)β(|ξ|), where ω : Ω×R →
R+ is a Carathéodory function, ω(x, 0) = 0, and β(·) is increasing and
nonnegative.

Then, for every open subset Ω′ ⊂ Ω, F̂ (·; Ω′) is the sequentially weakly lower

semicontinuous envelope of F (·; Ω′) in W 1,p(Ω′; Rm).

The main result of this paper (Theorem 3.1) generalizes theorem 1.1 by

replacing the hypothesis (H1) by two weaker hypotheses :

(H1a): |f(x, s, ξ)| ≤ a(x) + C(|s|p + |ξ|p) for every x ∈ Ω, s ∈ Rm,

ξ ∈ Rn×m, where C is a nonnegative constant and a(x) ∈ L1(Ω) is a
nonnegative function;

(H1b): f has the lower compactness property, i.e. f−(x, uα(x), Duα(x))

is precompact in L1(Ω′) whenever Ω′ is an open subset of Ω, u, uα ∈
W 1,p(Ω′; Rm) are such that uα ⇀ u in W 1,p(Ω′; Rm) and F (uα; Ω′) ≤
Ĉ < +∞, where f− = min{f, 0}.

The proof of the main result makes fully use of theorem 1.1 and the results
developed in section 2, where it is shown under the hypothesis (H1a) that

f̂(x, s, ξ) = lim
β→∞

f̂β(x, s, ξ),

for all (x, s, ξ) ∈ Ω×Rm ×Rn×m and

F̂ (u; Ω′) = lim
β→∞

F̂β(u; Ω′),
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for every open subset Ω′ ⊂ Ω and for all u ∈ W 1,p(Ω′; Rm), where f̂β is the

quasiconvex envelope of

fβ(x, s, ξ) = max{f(x, s, ξ), −β} (1.4)

and

F̂β(u; Ω′) =

∫

Ω′
f̂β(x, u(x), Du(x)) dx. (1.5)

As a by-product, we obtain a theorem on lower semicontinuity of integral
functionals (Theorem 3.2) which is not covered by the more general results of

the kind given recently by Li [10, 11].

Remark 1.1. Here and throughout this paper, assumptions and statements are
referred to sets with measure-negligible projections on Ω, i.e. they hold on a
subset Ω′ ⊂ Ω with meas(Ω′) = meas(Ω) where meas(·) denotes the Lebesgue
measure in Rn.

2. Quasiconvex envelope of f(x, s, ·)

Let Ω ⊂ Rn be a bounded open set with Lipschitz continuous boundary ∂Ω

and let 1 ≤ p < ∞. Let f : Ω×Rm×Rn×m → R be a Carathéodory function.
Define

fβ = max{f, −β}, ∀β ∈ N = {1, 2, 3, . . . }. (2.1)

Denote the quasiconvex envelopes of fβ and f by f̂β and f̂ respectively.

Lemma 2.1. Let f : Ω×Rm ×Rn×m → R be a Carathéodory function which

satisfies (H1a). Then, {f̂β}∞β=1 is a nonincreasing sequence of Carathéodory

functions which satisfy

−β ≤ f̂β(x, s, ξ) ≤ a(x) + C(|s|p + |ξ|p) ∀(x, s, ξ) ∈ Ω×Rm ×Rn×m, (2.2)

where, as given in (H1a), C is a nonnegative constant and a(x) ∈ L1(Ω) is a
nonnegative function.

Proof. By the inequality,

f̂β(x, s, ξ) ≤ fβ(x, s, ξ) ≤ fα(x, s, ξ) ∀(x, s, ξ) ∈ Ω×Rm×Rn×m and ∀β ≥ α,

which follows directly form the definitions, we conclude that f̂β ≤ f̂α for all

β ≥ α. That is {f̂β}∞β=1 is a nonincreasing sequence of functions.

Next, let
gβ(x, s, ξ) = fβ(x, s, ξ) + β.
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Then, {gβ}∞β=1 are Carathéodory functions satisfying (H1). As a consequence

(see [3, 4, 5]), for each β ∈ N, ĝβ, the quasiconvex envelope of gβ, is a

Carathéodory function and satisfies

0 ≤ ĝβ(x, s, ξ) ≤ a(x) + C(|s|p + |ξ|p) + β.

Since f̂β = ĝβ − β, (2.2) follows. ¤

Lemma 2.2. Let f : Ω×Rm ×Rn×m → R be a Carathéodory function which

satisfies (H1a). Then, for every (x, s, ξ) ∈ Ω×Rm ×Rn×m,

f̄(x, s, ξ) > −∞, (2.3)

where

f̄(x, s, ξ) = inf{lim inf
α→∞

1

meas(Ω)

∫

Ω

f(x, s, ξ + Dϕα(x′)) dx′ :

ϕα ⇀ 0 in W 1,p(Ω; Rm)}.

Proof. By the definition of f̄(x, s, ξ), there exists a sequence of functions

{ϕα}∞α=1 ⊂ W 1,p(Ω; Rm) such that

ϕα ⇀ 0 in W 1,p(Ω; Rm), (2.4)

f̄(x, s, ξ) = lim
α→∞

1

meas(Ω)

∫

Ω

f(x, s, ξ + Dϕα(x′)) dx′. (2.5)

It follows from (H1a) that

f(x, s, ξ + Dϕα(x′)) ≥ −[a(x) + C(|s|p + |ξ + Dϕα(x′)|p)].
This gives

∫

Ω

f(x, s, ξ + Dϕα(x′)) dx′

≥− [a(x) + C(|s|p + 2p−1|ξ|p)] meas(Ω)− 2p−1

∫

Ω

|Dϕα(x′)|p dx′. (2.6)

Combining (2.4), (2.5) and (2.6), we obtain (2.3). ¤

Lemma 2.3. Let f : Ω×Rm ×Rn×m → R be a Carathéodory function which

satisfies (H1a). Then, for every (x, s, ξ) ∈ Ω × Rm × Rn×m the function f̃

defined by f̃(x, s, ξ) = limβ→∞ f̂β(x, s, ξ) satisfies

−∞ < f̃(x, s, ξ) ≤ a(x) + C(|s|p + |ξ|p). (2.7)
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Proof. Since, by lemma 2.2, {f̂β} is a nonincreasing sequence satisfying (2.2),

it only remains to show that, for every (x, s, ξ) ∈ Ω×Rm×Rn×m, {f̂β(x, s, ξ)}
is bounded from below.

Fix (x, s, ξ) ∈ Ω×Rm×Rn×m, denote gβ(Dϕ) = fβ(x, s, ξ +Dϕ)+β. Then

gβ, β ∈ N, satisfy (H1) and (H2) and ĝβ = f̂β +β. Recall that the sequentially

weakly lower semicontinuous envelope of Gβ(ϕ) =
∫
Ω

gβ(x, s, ξ + Dϕ(x′)) dx′

in W 1,p(Ω; Rm) is (see [4, 5])

Îβ(ϕ) = Γ-- lim Gβ(ϕ)

= min{lim inf
α→∞

Gβ(ϕα) : ϕα ⇀ ϕ, in W 1,p(Ω; Rm)}. (2.8)

By lemma 2.1, (2.8) and theorem 1.1, there exists a sequence ϕα ∈ W 1,p(Ω; Rm)
such that

ϕα ⇀ 0 in W 1,p(Ω; Rm), (2.9)

ĝβ(0) meas(Ω) = Îβ(0) = lim
α→∞

∫

Ω

gβ(Dϕα(x′)) dx′. (2.10)

Since
∫

Ω

gβ(Dϕα(x′)) dx′ =
∫

Ω

(fβ(x, s, ξ + Dϕα(x′)) + β) dx′

≥
∫

Ω

f(x, s, ξ + Dϕα(x′)) dx′ + β meas(Ω),

by (2.9), (2.10) and lemma 2.2, we have

f̂β(x, s, ξ) = (ĝβ(0)− β) ≥ f̄(x, s, ξ) > −∞ ∀β ∈ N, (2.11)

where f̄(x, s, ξ) is defined by (2.3). This completes the proof. ¤

Theorem 2.1. Let f : Ω×Rm×Rn×m → R be a Carathéodory function which
satisfies (H1a). Then

f̂(x, s, ξ) = lim
β→∞

f̂β(x, s, ξ) ∀(x, s, ξ) ∈ Ω×Rm ×Rn×m, (2.12)

and ∫

Ω′
f̂(x, u(x), v(x)) dx = lim

β→∞

∫

Ω′
f̂β(x, u(x), v(x)) dx (2.13)

for every measurable subset Ω′ ⊂ Ω, u ∈ Lp(Ω′; Rm) and v ∈ Lp(Ω′; Rn×m).
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Proof. By lemma 2.3, f̃(x, s, ξ) = limβ→∞ f̂β(x, s, ξ) satisfies (2.7). We are

going to show that f̃(x, s, ·) is the quasiconvex envelope of f(x, s, ·).
For fixed (x, s, ξ) ∈ Ω × Rm × Rn×m, by lemma 2.1 and the quasiconvexity

of f̂β(x, s, ξ) respect to ξ (see [1, 2, 3]),

f̃(x, s, ξ) ≤ f̂β(x, s, ξ)

≤ 1

meas(Ω)

∫

Ω

f̂β(x, s, ξ + Dϕ(x′)) dx′ ∀ϕ ∈ C∞
0 (Ω). (2.14)

Let

gβ(x′) = a(x) + C(|s|p + |ξ + Dϕ(x′)|p)− f̂β(x, s, ξ + Dϕ(x′)).

By lemma 2.1, {gβ} is a nondecreasing sequence of nonnegative functions. By

lemma 2.3,

lim
β→∞

gβ(x′) = g(x′)

with

g(x′) = a(x) + C(|s|p + |ξ + Dϕ(x′)|p)− f̃(x, s, ξ + Dϕ(x′)).

Hence, by Beppo Levi’s theorem [12, 13], we have
∫

Ω

g(x′) dx′ = lim
β→∞

∫

Ω

gβ(x′) dx′. (2.15)

It follows from (2.14) and (2.15) that

f̃(x, s, ξ) ≤ 1

meas(Ω)

∫

Ω

f̃(x, s, ξ + Dϕ(x′)) dx′ ∀ϕ ∈ C∞
0 (Ω). (2.16)

This implies that f̃(x, s, ξ) is quasiconvex respect to ξ (see [1, 2, 3]). Thus, it
follows from

f̃(x, s, ξ) ≤ f̂β(x, s, ξ) ≤ fβ(x, s, ξ), ∀β ∈ N

and hence f̃(x, s, ξ) ≤ f(x, s, ξ) that

f̃(x, s, ξ) ≤ f̂(x, s, ξ), (2.17)

since f̂(x, s, ·) is the greatest quasiconvex function less than or equal to f(x, s,

·). On the other hand, since

f̂(x, s, ξ) ≤ f(x, s, ξ) ≤ fβ(x, s, ξ), ∀β ∈ N,
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we have f̂(x, s, ξ) ≤ f̂β(x, s, ξ) for all β and hence, by (2.7)

f̂(x, s, ξ) ≤ f̃(x, s, ξ). (2.18)

It follows from (2.17) and (2.18) that

f̂(x, s, ξ) = f̃(x, s, ξ) ∀(x, s, ξ) ∈ Ω×Rm ×Rn×m. (2.19)

This proves (2.12).

Applying Beppo Levi’s theorem [12, 13] to the sequence

gβ(x) = a(x) + C(|u(x)|p + |v(x)|p)− f̂β(x, u(x), v(x)), β ∈ N,

which, by lemma 2.1, is nonnegative and nondecreasing and which, by (2.12),
converges to

g(x) = a(x) + C(|u(x)|p + |v(x)|p)− f̂(x, u(x), v(x))

as β →∞ for all x ∈ Ω′, we obtain (2.13). ¤

Corollary 2.1. Let f : Ω×Rm×Rn×m → R be a Carathéodory function which
satisfies (H1a). Then

F̂ (u; Ω′) = lim
β→∞

F̂β(u; Ω′) (2.20)

for every open subset Ω′ ⊂ Ω and for all u ∈ W 1,p(Ω′; Rm).

Proof. The conclusion follows directly from (2.13). ¤

3. Integral representation of Γ-- lim F (u; Ω)

In section 2, the relationship between the quasiconvex envelopes of f and
fβ is discussed. In this section, we will see how the sequentially weakly lower

semicontinuous envelope of F (·; Ω′) relates to those of Fβ(·; Ω′). First, recall

that they are defined by (see [4, 5])

Γ-- lim F (u; Ω′) = min{lim inf
α→∞

F (uα; Ω′) : uα ⇀ u in W 1,p(Ω′; Rm)}, (3.1)

Γ-- lim Fβ(u; Ω′) = min{lim inf
α→∞

Fβ(uα; Ω′) : uα ⇀ u in W 1,p(Ω′; Rm)}. (3.2)

Lemma 3.1. Let f : Ω×Rm ×Rn×m → R be a Carathéodory function which
satisfies (H1a) and (H2). Then

Γ-- lim Fβ(u; Ω′) =

∫

Ω′
f̂β(x, u(x), Du(x)) dx (3.3)
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for each β ∈ N and every open subset Ω′ ⊂ Ω.

Proof. For each β ∈ N, let gβ = fβ + β. It is easily seen that gβ is a

Carathéodory function satisfying (H1) and (H2). Thus, by theorem 1.1,

Γ-- lim Gβ(u; Ω′) =

∫

Ω′
ĝβ(x, u(x), Du(x)) dx (3.4)

for every open subset Ω′ ⊂ Ω, where

Gβ(u; Ω′) =

∫

Ω′
gβ(x, u(x), Du(x)) dx

and ĝβ(x, s, ·) is the quasiconvex envelope of gβ(x, s, ·). Since (see [4, 5])

Γ-- lim Fβ(u; Ω′) = Γ-- lim Gβ(u; Ω′)− β meas(Ω′),

f̂β(x, s, ξ) = ĝβ(x, s, ξ)− β,

(3.3) follows from (3.4). ¤

Lemma 3.2. Let f : Ω×Rm ×Rn×m → R be a Carathéodory function which
satisfies (H1a), (H1b) and (H2). Then

Γ-- lim F (u; Ω′) = lim
β→∞

Γ-- lim Fβ(u; Ω′) (3.5)

for every open subset Ω′ ⊂ Ω and u ∈ W 1,p(Ω′; Rm).

Proof. Let an open subset Ω′ ⊂ Ω and a function u ∈ W 1,p(Ω′; Rm) be given.

It follows from lemma 2.1 and lemma 3.1 that Γ-- lim Fβ(u; Ω′), β ∈ N, are

nonincreasing. Since obviously Γ-- lim F (u; Ω′) ≤ Γ-- lim Fβ(u; Ω′) for every

β ∈ N, we have

Γ-- lim F (u; Ω′) ≤ lim
β→∞

Γ-- lim Fβ(u; Ω′). (3.6)

To show the inverse inequality, let {uα}∞α=1 ⊂ W 1,p(Ω′; Rm) be such that (see

(3.1)

uα ⇀ u in W 1,p(Ω′; Rm), (3.7)

Γ-- lim F (u; Ω′) = lim
α→∞

F (uα; Ω′). (3.8)

For any ε > 0, by (H1b), (3.7) and (3.8), there exists δ(ε) > 0 such that

|
∫

E

f−(x, uα(x), Duα(x)) dx| < ε ∀α ∈ N, (3.9)
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whenever E ⊂ Ω′ is measurable and meas(E) < δ(ε). Denote

Ω′
β,α = {x ∈ Ω′ : f(x, uα(x), Duα(x)) ≤ −β}.

Then, (3.9) implies that

meas(Ω′
β,α) → 0 uniformly for all α as β →∞.

This in turn implies that for any ε > 0 there exists β(ε) > 0 such that

|
∫

Ω′β,α

f−(x, uα(x), Duα(x)) dx| < ε ∀α ∈ N and β > β(ε). (3.10)

Since

F (uα; Ω′) = Fβ(uα; Ω′) + (F (uα; Ω′)− Fβ(uα; Ω′))

≥ Fβ(uα; Ω′) +

∫

Ω′β,α

f−(x, uα(x), Duα(x)) dx ∀α, β ∈ N,

by (3.8) and (3.10),

Γ-- lim F (u; Ω′) ≥ Γ-- lim Fβ(u; Ω′)− ε ∀β > β(ε),

and hence, by the arbitrariness of ε > 0, we conclude

Γ-- lim F (u; Ω′) ≥ lim
β→∞

Γ-- lim Fβ(u; Ω′).

This completes the proof. ¤

Theorem 3.1. Let f : Ω×Rm×Rn×m → R be a Carathéodory function which
satisfies (H1a), (H1b) and (H2). Then, for every open subset Ω′ ⊂ Ω,

F̂ (u; Ω′) = Γ-- lim F (u; Ω′) ∀u ∈ W 1,p(Ω′; Rm). (3.11)

In other words, F̂ (·; Ω′) is the sequentially weakly lower semicontinuous enve-

lope of F (·; Ω′) in W 1,p(Ω′; Rm).

Proof. The theorem follows from theorem 2.1, lemma 3.1 and lemma 3.2 by
combing (2.13), (3.3) and (3.5). ¤

As a corollary of theorem 3.1, we have

Theorem 3.2. Let f : Ω×Rm×Rn×m → R be a Carathéodory function which

satisfies (H1a), (H1b) and (H2). Let uα, u ∈ W 1,p(Ω′; Rm) be such that

uα ⇀ u in W 1,p(Ω′; Rm).
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Then ∫

Ω

f̂(x, u(x), Du(x)) dx ≤ lim inf
α→∞

∫

Ω

f̂(x, uα(x), Duα(x)) dx. (3.12)

That is the functional F̂ (·; Ω) is sequentially weakly lower semicontinuous on

W 1,p(Ω; Rm).
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