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Abstract. An annular sector model for the telephone cord buckles of elastic

thin films on rigid substrates is established, in which the von Kárman plate

equations in polar coordinates are used for the elastic thin film and a discrete

version of the Griffith criterion is applied to determine the shape and scale

parameters. A numerical algorithm combining the Newmark-β scheme and

the Chebyshev collocation method is designed to numerically solve the prob-

lem in a quasi-dynamic process. Numerical results are presented to show that

the numerical method works well and the model agrees well with physical ob-

servations, especially successfully simulated for the first time the telephone

cord buckles with two humps along the ridge of each section of a buckle.

Keywords: elastic film, telephone cord buckles, von Kárman plate equations,

Griffith criterion, Chebyshev collocation method.

1. Introduction

Thin film materials are wildly used in many fields, such as thermal barrier

coatings [1], microelectromechanical systems [2], magnetic recording media [3],

etc. However, compressed residual stresses are generally inevitably introduced

on the elastic thin films in manufacturing processes, which can lead to unde-

sirable delamination in the interface of the thin film and the substrate. The
delaminated thin film will buckle to release the stored elastic energy and will
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eventually form certain wrinkling patterns. It is of great interest to reveal the

underline mechanisms of the buckling process, and studying the morphology of

the buckles is a part of the effort.

In the study of the delamination and buckling phenomenon, the thin film

is considered to be a thin elastic plate, thus the von Kárman plate equations

are used as the governing equations, and the delamination is considered to be

the result of growing fractures when the film is peeled off from the substrate.

According to the fracture mechanics, the energy release rate G∗ and the phase

angle ψ at the fracture front are considered to be the characteristic quantities

in the thin film delamination. The Griffith criterion of the form G∗ ≥ Γ∗, where

Γ∗ is the interface toughness, is often used to determine whether a crack front

will propagate, and the phase angle ψ describes the fracture mode-mixity [4–6].

Various kinds of buckling patterns are reported to be observed in physical

experiments and real world applications, and the circular buckles [7], straight-

sided buckles [8, 9] and telephone-cord buckles [7, 10–15] are believed to be the

most commonly observed patterns. The circular buckles are well investigated,

and the detailed analysis can be found in [16]. The straight-sided buckles have

also well studied by many researchers in the last decades [16–21].
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Figure 1: The geometries of a straight-sided (a) and telephone cord buckles (b).

Figure 2: Gioia and Ortiz model
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Similar to a straight-sided buckle, which has two straight parallel crack lines

on each side of the buckle and curved propagation fronts as illustrated schemat-

ically in Figure 1, a telephone cord buckle also propagates with curved fronts,

but leaves behind long telephone cord like zigzagged ”parallel” crack lines. Al-

though, compared with other types of buckles’ morphology, the telephone cord

buckles are the most easily reproduced buckle pattern in physical experiments,

their mathematical modeling is not as well established. In 1997, applying the

Griffith criterion and assuming that the energy release rate is identical every-

where on the fracture front, Gioia and Ortiz established a model in which the

zigzagged edges of the telephone cord are approximated by many connected

congruent circular arcs, and the propagation fronts are also approximated by

circular arcs but in a different size (Figure 2). The model describes the shape of

the edges successfully and fits experimental results well [22], however, it cannot

determine the widths of the telephone cord buckles. In 2002, Moon et al. es-

tablished a pinned circle model, in which the delamination area is characterized

by a sequence of connected sectors (Figure 3) and on each sector the deforma-

tion of the buckle is assumed to be rotationally symmetric with respect to the

pinned center [15]. The model well describes both the shape of the edges and

the width of the telephone cord. However, because of the rotationally symmet-

ric assumption, the connecting point (O in Figure 3 (a)) is a singular point for

the energy release rate and the global deformation is discontinuous across the

connection lines between the sectors (OB in Figure 3 (a)).

A

(a) O

B

(b)
O

B
A

Figure 3: The pinned circle model (a): O is the center of the sector AOB . The annular
sector model (b): delamination area is divided into congruent annular sectors. The dashed
lines are the connection lines between adjacent sectors. O is the center of the sector AOB

In the present paper, stimulated by the physical observations, an annular

sector model is developed. In this model, the zigzagged part of the buckle is

assumed to be composed of a sequence of congruent annular sectors (Figure 3

(b)), and both the deformation and its derivatives are assumed to be globally
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continuous. The shape and size of the buckle are characterized by three param-

eters, i.e. the inner and outer radii, and the central angle of the annular sector,

which will be determined by a discrete version of the Griffith criterion. To nu-

merically solve the derived system of equations, which is highly nonlinear with

multiple solutions and bifurcations, a quasi-dynamic process is adopted and

a numerical algorithm combining the Newmark-β scheme and the Chebyshev

collocation method is developed. It turns out that the model allows us to cap-

ture the characteristics of the telephone cord buckles more efficiently. In fact,

our numerical experiments show that the model agrees well with the physical

observations. Especially, we successfully simulated the telephone cord buckles

with two humps along the ridge of each section of a buckle (see Figure 6 and

compare it with figure 2 in [13]), to our knowledge this is the first numerical

result of the kind.

The rest of the paper is organized as follows. The annular sector model

of the telephone cord buckles is established in Section 2. In Section 3, a nu-

merical method combining the Newmark-β scheme and the Chebyshev colloca-

tion method is developed for the highly nonlinear coupled von Kárman plate

equations. Numerical experiments and results are presented and discussed in

Section 4. In Section 5, the numerical results are further analyzed and com-

pared with cetain well known physical experiments. The paper ends with a

brief summary in Section 6.

2. The annular sector model

2.1. The morphology assumptions and parameters. Numerous physical

experiments reveal that, the total length of a telephone cord buckle is usually

much bigger than its width ([15], Fig. 6), and away from the propagation

fronts, the zigzagged part of a telephone cord buckle essentially consists of a

number of smoothly connected nearly identical sections, each of these sections

looks like an annular sector with a relatively much smaller inner radius (see

images in [7, 12, 22, 23]), in addition, the best part of the two zigzagged edges

of a telephone cord buckle are roughly ”parallel” to each other. Motivated by

these observations, we establish the annular sector model of the telephone cord

buckles by making the following morphology assumptions:

1: the sections are congruent annular sectors, and the relative deformation

on each section is also identical;
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2: the deformation on each annular sector is symmetric with respect to its

geometric symmetry axis, i.e. the line l in Figure 4;

3: the buckling deformation is smooth, and thus the deformation and its

derivatives are continuous across the connected annular sectors.

It follows from the morphology assumption 1 that, the shape and the width

scale of a telephone cord buckle can be completely determined by three param-

eters. For simplicity, we choose the outer radius R of the annular sector as the

scale parameter, the half central angle θ0 (see Figure 4) and the normalized

inner radius r0, i.e. the ratio of the inner radius against the outer radius, of the

annular sector as the shape parameters.
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Figure 4: A typical section: O is the center of the sector, OA1 and OA2 are the outer and

inner radii with |OA1| = R and |OA2|/|OA1| = r0, ∠A1OB1 = 2θ0 is the central angle. Q1

and Q2 with |Q1A1| = |Q2B2| are the reciprocally corresponding connection points across
which the deformation is smooth.

2.2. Governing equations and boundary conditions. According to the

morphology assumption 1, the governing equations of the equilibrium state of

the buckle can be reduced to the von Kárman plate equations defined on an an-

nular sector Ω∗. Naturally, it is convenient to express the equations in the polar

coordinate system (r∗, θ∗) with the annular sector’s center O as the polar origin

and the sector’s geometric symmetry line l as the polar axis (Figure 4). For

simplicity, we assume that the initial residual stress is equi-biaxial compressive,

in Cartesian coordinates this is expressed as −σxx = −σyy = σ∗
0 > 0, σxy = 0.
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For the convenience of numerical experiments, we will write the von Kárman

plate equations in terms of dimensionless variables. Let R be the outer radius

of the annular sector, and let h∗ ≪ R be the thickness of the film. Let w∗, u∗,

and v∗ be the out-of-plane, radial in-plane and tangent in-plane displacements

of the buckle respectively. Denote (r, θ), σ0, h, w, u and v the corresponding

normalized dimensionless variables defined by

r =
r∗

R
, θ = θ∗, σ0 = 4π2σ

∗
0

σ∗
c

, h =
h∗

R
, w =

w∗

h∗
, u =

Ru∗

(h∗)2
, v =

Rv∗

(h∗)2
, (2.1)

where σ∗
c = Ē(πh∗)2/(3R2) is the critical bifurcation stress for straight-sided

buckles of width R. In terms of the normalized displacements w, u and v,

which are functions of (r, θ) defined on the normalized annular sector region

Ω = {(r, θ)|r0 < r < 1, −θ0 < θ < θ0}, the load free von Kárman plate

equations are expressed as
△2w − σ0△w = NLTW (w, u, v),

LTU(u, v) +NLTU(w) = 0,

LTV (u, v) +NLTV (w) = 0,

(r, θ) ∈ Ω, (2.2)

where △ =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
, △2 =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)2

, and the linear

terms and non-linear terms are given by

NLTW = 12[(A+ νB)w,rr +
1

r
(
1

r
w,θθ +w,r )(B + νA)

+
1

r
(1− ν)(w,rθ −

1

r
w,θ )(v,r +

1

r
(u,θ −v + w,r w,θ ))],

with A =
1

2
w,2r +u,r and B =

1

r
((u+ v,θ ) +

1

2r
w,2θ ), and

LTU = 2(− 1

r2
u+

1

r
u,r +u,rr ) + (1− ν)

1

r2
u,θθ +(1 + ν)

1

r
v,rθ +(3− ν)

1

r2
v,θ ,

LTV = (1− ν)(− 1

r2
v +

1

r
v,r +v,rr ) + 2

1

r2
v,θθ +(1 + ν)

1

r
u,rθ +(3− ν)

1

r2
u,θ ,

NLTU = 2w,r w,rr +
1

r
(1− ν)w,r (w,r +

1

r
w,θθ ) +

1

r2
(1 + ν)w,θ (w,rθ −

1

r
w,θ ),

NLTV = 2w,θ w,θθ +
1

r
(1− ν)w,θ (w,rr +

1

r
w,r ) +

1

r
(1 + ν)w,r w,rθ .
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Since the solution (w(r, θ), u(r, θ), v(r, θ)) of the equations (2.2) depends on the

domain parameters (r0, θ0), it is also denoted as (w(r, θ; r0, θ0), u(r, θ; r0, θ0),

v(r, θ; r0, θ0)), when we want to emphasis the relation.

Next, we consider the boundary conditions. According to the morphology

assumption 3, i.e. the smoothness of the deformation, the clamped boundary

conditions are imposed on the arced edges of the annular sector (solid lines in

Figure 3 (b) and Figure 4), and the continuity conditions for the deformation

and its certain derivatives are imposed on the reciprocally corresponding con-

nection points on the two radial edges, i.e. if Q1 ∈ A1A2 and Q2 ∈ B1B2 satisfy

|A1Q1| = |B2Q2|, then their deformation should be smoothly connected. More

precisely, we have the clamped boundary conditions{
w(r0, θ) = 0, w,r (r0, θ) = 0, u(r0, θ) = 0, v(r0, θ) = 0,

w(1, θ) = 0, w,r (1, θ) = 0, u(1, θ) = 0, v(1, θ) = 0,
(2.3)

and the reciprocally periodic connection boundary conditions

1

rk
∂kw

∂θk
∣∣
(r,−θ0)

=
1

(1 + r0 − r)k
∂kw

∂θk
∣∣
(1+r0−r, θ0)

, k = 0, 1, 2, 3,

u(r,−θ0) = −u(1 + r0 − r, θ0),
u,θ (r,−θ0)

r
= −u,θ (1 + r0 − r, θ0)

1 + r0 − r
,

v(r,−θ0) = v(1 + r0 − r, θ0),
v,θ (r,−θ0)

r
=
v,θ (1 + r0 − r, θ0)

1 + r0 − r
.

(2.4)

2.3. Determination of the shape and scale parameters. Let E and ν be

the Young’s modulus and Poisson’s ratio of the elastic thin film respectively,

and denote Ē = E/(1 − ν2). Let G∗
0 = h∗σ∗2

0 /(2Ē), which is known to be the

strain energy per unit area when the film is released in plane strain [16]. Then,

the energy release rate G∗, the normalized energy release rate G and the phase

angle ψ [16, 20, 24, 25], which are defined on the fracture fronts where r = r0

or 1, are given in the polar coordinate system as

G(r, θ; r0, θ0) =
(
w,rr +

ν

r2
w,rθ

)2

+ 12u,2r , (2.5)

G∗(r, θ;R, r0, θ0) =
3G∗

0

4π4σ2
0

G(r, θ; r0, θ0) =
Ēh∗5

384π4R4
G(r, θ; r0, θ0), (2.6)
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ψ(r, θ; r0, θ0) = arctan

 (w,rr +
ν

r2
w,rθ ) cosω +

√
12u,r sinω

−(w,rr +
ν

r2
w,rθ ) sinω +

√
12u,r cosω

 , (2.7)

where w,rr = w,rr (r, θ; r0, θ0), w,rθ = w,rθ (r, θ; r0, θ0), and u,r = u,r (r, θ; r0, θ0);

and where ω is a function of Dundurs’ parameter α [6] approximately given in

the degree measure by ω(α) = 52.10 + 8.691α + 6.450α2 + 4.893α3 [26]. For

simplicity of notations, we often omit the shape parameters (r0, θ0) and denote

G(r, θ; r0, θ0) and ψ(r, θ; r0, θ0) as G(r, θ) and ψ(r, θ) respectively.

For a given normalized initial residual stress σ0, in applying the Griffith

criterion principle to determine the shape parameters (r0, θ0) and the scale

parameter R, instead of assuming the energy release rate G to be a constant

along the fracture front, which can not possibly be satisfied in general since there

are only two shape parameters to be determined, we require G to have the least

variance along the zigzagged arcs and its mean value equals the normalized

interface toughness Γ(R), which relates to the original interface toughness Γ∗

in the same way as G relates to G∗, i.e. Γ(R) =
384π4R4

Ēh∗5
Γ∗.

In discrete form, the principle is realized in the following way. For fixed

(r0, θ0), let αj = jθ0/L, −L ≤ j ≤ L− 1, let G(r, θ) be the energy release rate

obtained by substituting the numerical solution into the formula (2.5). Denote

G0 = (G(r0, α−L), · · · , G(r0, α0), · · · , G(r0, αL−1))
T ,

G1 = (G(1, α−L), · · · , G(1, α0), · · · , G(1, αL−1))
T .

Define

m(r0, θ0) =
mean(G0) + mean(G1)

2
, (2.8)

S(r0, θ0) =
1

4L

L−1∑
j=−L

(
(G(r0, αj)−m(r0, θ0))

2 + (G(1, αj)−m(r0, θ0))
2
)
, (2.9)

where mean(Gi) stands for the arithmetic means of Gi. Obviously, m(r0, θ0)

and S(r0, θ0) are the mean value and variance of the set {G0,G1}. With these

notations, the principle is summarized as the shape and the scale criteria below:
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Shape criterion: the shape parameters (r̂0, θ̂0) are so determined that

they minimizes the variance S(r0, θ0), i.e.

(r̂0, θ̂0) = arg min
(r0, θ0)

S(r0, θ0). (2.10)

Scale criterion: the scale parameter R is so determined that it solves

Γ(R) , 384π4R4

Ēh∗5
Γ∗ = m(r̂0, θ̂0). (2.11)

3. Numerical scheme

3.1. von Kárman dynamic system. We adopt a dynamic approach to solve

the static von Kárman equations (2.2). Noticing that the velocity and accel-

eration of the in-plane displacements are always very small around the static

solutions, we restrict ourselves to the simplified von Kárman dynamic equations
w,tt+cw,t+△2w − σ0△w −NLTW (w, u, v) = 0,

LTU(u, v) +NLTU(w) = 0,

LTV (u, v) +NLTV (w) = 0,

(3.1)

where t and c are the dimensionless time and viscosity coefficient, which relate

to the physical time t∗ and viscosity coefficient c∗ by

t = t∗
h∗

R2

√
Ē

ρ
, c = c∗

R2

h∗
√
ρĒ

, (3.2)

where ρ is the mass density of the thin film.

The system is completed by coupling the clamped boundary conditions (2.3)

and the reciprocally periodic connection boundary conditions (2.4).

We start from small σ0, when a buckle barely appears, and choose small

smooth functions, such as w0 = ϵ(1 − r)2(r0 − r)2, u0 = 0, v0 = 0 with small

coefficient ϵ, as the initial value, then apply the continuation method in such a

way that the numerical solution for the current σ0 is taken as the initial value

for the adjacent parameters (r0, θ0, σ0) with a slightly increased σ0. Noticing

that, as a consequence of the morphology assumption 2, the solution to the von
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Kárman equations (2.2) satisfies the symmetric relations

w(r, θ) = w(r,−θ), u(r, θ) = u(r,−θ) and v(r, θ) = −v(r,−θ), (3.3)

the initial values provided for the dynamic system should also satisfy (3.3).

3.2. Temporal discretization. To simplify the notations, we first rewrite the

equations (3.1) in the following form w,tt+cw,t= F (w,U),

L(U) = f(w),
(3.4)

where U = (u, v)T , F (w,U) = −△2w + σ0△w + NLTW (w, u, v), L(U) =

(LTU(u, v), LTV (u, v))
T , f(w) = −(NLTU(w), NLTV (w))

T .

Follow the work of Yosibash et. al. [27], the application of the average

acceleration variant of the Newmark-β scheme ([28] with Newmark parameters

γ = 1
2
and β = 1

4
) to the first equation of (3.4) leads to the following scheme

( 4

(∆t)2
+

2c

∆t

)
wn+1 = F (wn+1,Un) +

( 4

(∆t)2
wn +

4

∆t
w,nt +w,

n
tt

)
+c

( 2

∆t
wn + w,nt

)
,

L(Un+1) = f(wn+1).

(3.5)

We modify the scheme (3.5) by using the centered time differences to substitute

the corresponding time derivatives appeared in the right hand side of (3.5),

obtaining our semi-discrete implicit scheme( 4

(∆t)2
+

2c

∆t

)
wn+1 = F (wn+1,Un) +

( 3

(∆t)2
+

c

2∆t

)
wn+1

+ 2
( 1

(∆t)2
+

c

∆t

)
wn −

( 1

(∆t)2
+

c

2∆t

)
wn−1, (3.6)

L(Un+1) = f(wn+1). (3.7)

We remark here that using F (wn+1,Un) instead of F (wn+1,Un+1) as in [29]

will definitely reduce tremendous amount of computing cost, though it may also

lose some accuracy. However, remember that our aim is to obtain the solution

of the static von Kárman equations, the stability and efficiency rather than the

temporal accuracy is of more interest.
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3.3. Spatial discretization. To fully discretize the system, we use the Cheby-

shev pseudo-spectral collocation method for the spatial discretization. Map the

normalized annular sector domain Ω = {(r, θ)
∣∣r0 ≤ r ≤ 1, −θ0 ≤ θ ≤ θ0} into

the standard computational domain Ω̂ = {(x, y)
∣∣ − 1 ≤ x ≤ 1, −1 ≤ y ≤ 1}

with

x =
2r − 1− r0

1− r0
, y =

θ

θ0
.

We rewrite the out-of-plane dimensionless displacement w(x, y) in the form [27]:

w(x, y) = (x2 − 1)q(x, y), (3.8)

so that q(x, y) satisfies the same set of boundary conditions as u(x, y) and v(x, y)

on x = ±1 (see (2.3)), this makes it easier to choose a unified approach for the

discretization and the choice of collocation points.

Let Ti(x) = cos
(
i cos−1(x)

)
, i = 0, 1, 2, · · · , be the Chebyshev polynomials

of degree i. We discretize wn, un and vn into the following form:

wn
M,N(x, y) =

M∑
i=0

N+2∑
j=0

(x2 − 1)q̂nijTi(x)Tj(y), (3.9)

unM,N(x, y) =
M∑
i=0

N∑
j=0

ûnijTi(x)Tj(y), (3.10)

vnM,N(x, y) =
M∑
i=0

N∑
j=0

v̂nijTi(x)Tj(y). (3.11)

Next, we consider the collocation points. Since F (wn+1, Un) in equation (3.6)

involves fourth derivatives of wn+1 in both x and y, and there are two boundary

conditions for qn+1(x, y) at x = ±1 (see (2.3)) and four reciprocally periodic

connection boundary conditions at y±1 (see (2.4)), to have a consistent spatial

discretization of the equation, we need

(i): M + 1 collocation points {xi}Mi=0 including M − 1 distinct interior

points satisfying xi = −xN−i and 2 end points x0 = −1, xN = 1;

(ii): N + 3 collocation points {ỹj}N+2
j=0 including N − 1 distinct interior

points and 4 end points ỹ0 = ỹ1 = −1 and ỹN+1 = ỹN+2 = 1.
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Similarly, for the equation (3.7), we need (i) and

(iii): N + 1 collocation points {yj}Nj=0 including N − 1 distinct interior

points and 2 end points y0 = −1 and yN = 1.

It is easy to verify that the Chebyshev-Gauss-Lobatto collocation points

for x and y, which are given as xi = cos(iπ/M), i = 0, 1, 2, · · · ,M , and yj =

cos(jπ/N), j = 0, 1, 2, · · · , N , meet the requirements (i) and (iii) respectively.

We follow the idea of constructing the Gauss-Lobatto type collocation points

[30] to develop a set of collocation points with four-end-points. Let {Pk}+∞
k=0,

with Pn(y) =
(n+ 3)Tn+4(y)− 2Tn+2(y)− (n+ 1)Tn(y)

(1− y2)2
, (n = 0, 1, 2, · · · ), be

the sequence of orthogonal polynomials on [−1, 1] with the weight function

Ŵ (y) = (1 − y2)
3
2 . It can be shown that Pk(y) has k distinct zero points

−1 < ŷk1 < ŷk2 < · · · < ŷkk < 1, which satisfy

(k + 3) sin
(
(k + 3) cos−1(ŷkj )

)
= (k + 1) sin

(
(k + 1) cos−1(ŷkj )

)
. (3.12)

Set ỹ0 = ỹ1 = −1, ỹN+1 = ỹN+2 = 1 and ỹj+1 = ŷN−1
j , j = 1, . . . , N − 1, where

{ŷN−1
j }N−1

j=1 are the zero points of PN−1(y). Then, the set of points {ỹj}N+2
j=0 ,

which we call the four-end-point collocation points, meets the requirement (ii).

In summary, we choose the collocation points in the following way:

Collocation points for (3.6): The Chebyshev-Gauss-Lobatto and the four-

end-point collocation points are used for x and y respectively.

Collocation points for (3.7): The Chebyshev-Gauss-Lobatto collocation

points are used for both x and y.

3.4. Solution procedure of the fully discrete system. The fully discrete

system is obtained by evaluating the equations( 4

(∆t)2
+

2c

∆t

)
wn+1

M,N = F (wn+1
M,N ,U

n
M,N) +

( 3

(∆t)2
+

c

2∆t

)
wn+1

M,N

+ 2
( 1

(∆t)2
+

c

∆t

)
wn

M,N −
( 1

(∆t)2
+

c

2∆t

)
wn−1

M,N , (3.13)

L(Un+1
M,N) = f(wn+1

M,N) (3.14)
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on the collocation points given in the last subsection. To solve the nonlinear

equations (3.13), we regard the solution wn+1
M,N as a fixed point of the following

iterative scheme( 4

(∆t)2
+

2c

∆t

)
wn+1,k+1

M,N = F (wn+1,k
M,N ,Un

M,N) +
( 3

(∆t)2
+

c

2∆t

)
wn+1,k

M,N

+ 2
( 1

(∆t)2
+

c

∆t

)
wn

M,N −
( 1

(∆t)2
+

c

2∆t

)
wn−1

M,N . (3.15)

To find the fixed point, we set wn+1,0
M,N = wn

M,N as the initial guess, and compute

wn+1,k
M,N iteratively for k = 1, 2, · · · , until certain iterative error tolerance, say

∥wn+1,K
M,N − wn+1,K−1

M,N ∥∞ < ε, is satisfied, then, wn+1
M,N , wn+1,K

M,N is taken as the

solution of the equation (3.13). Finally, substitute wn+1
M,N into the right hand

side of the equation (3.14) to solve for Un+1
M,N .

4. Numerical experiments and results

In our numerical experiments, we set the Poisson ratio ν = 0.3, and choose

M = 20, N = 10 for the spacial discretization, L = 100 for the calculation of

the mean and variance of the energy release rate (see (2.8) (2.9)), and ε = 10−10

for the fixed point iterative error tolerance, which turned out to be sufficient

for convergence and reasonable accuracy. Special care should be taken to the

values of the viscosity c and the time step ∆t, since they have significant impact

on the stability and efficiency of the algorithm. More precisely, if c is too big,

the system will take a long time to converge to an equilibrium state, while if c

is too small, it will have a very tight limit to the time step ∆t to guarantee the

stability of the dynamic process and the convergence of the fixed point iteration.

Furthermore, the optimal values of c and ∆t vary with the shape parameters

and the normalized initial residual stress. In our numerical experiments, c varies

in [300, 3000], and ∆t varies in [6× 10−6, 10−5].

4.1. Buckles’ morphology and shape parameters. Figure 5 shows typical

numerical solutions of the discrete system (3.13)–(3.14) for various shape pa-

rameters (r0, θ0), where σ
∗
0/σ

∗
c is fixed at 20. As a comparison, the solution of

the pinned circle model [13] is also shown in the figure in dashed lines. It is

clearly seen that both of the parameters make non-negligible contributions to

13



the morphology of the buckle, especially, for some improper shape parameters,

w may admit non-physical negative value.
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Figure 5: The normalized out-of-plane displacement w on the middle line (θ = 0, (a), (c))
and the connection lines (θ = θ0, (b), (d)).
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Figure 6: The morphology ((a), (b)) and normalized out-of-plane displacement ((c), (d)).

Figure 6 shows the typical morphologies of the numerical solutions for

σ∗
0/σ

∗
c = 20 and 40, which demonstrates that the initial residual stress has

14



a significant impact on the morphology of the telephone cord buckles. Our nu-

merical experiments show that there is no telephone cord buckle solution when

σ∗
0/σ

∗
c < 3.1. Numerical experiments also show that, the morphology of defor-

mation switches at about σ∗
0/σ

∗
c = 23 from a one-hump-buckle ( Figure 6(a))

to a two-hump-buckle (Figure 6(b)), and the maximum point of the displace-

ment switches from the connection line to the middle line at the same time.
Numerical difficulties also appear around σ∗

0/σ
∗
c = 23, the numerical evidences

show that there is a bifurcation point nearby, and there exists an interval on

which the two types of morphologies coexist, although one of them may have a

slightly greater local minimum of the variance of the energy release rate.

Figure 7 shows the relative distribution of the energy release rate in terms

of a re-scaling function f(ξ), which is given by (see (2.8))

f(ξ) =


G
(
r0, (ξ + 1)θ0

)
m(r0, θ0)

− 1, −2 ≤ ξ ≤ 0,

G(1, (ξ − 1)θ0)

m(r0, θ0)
− 1, 0 < ξ ≤ 2.

We see that the distribution of the energy release rate apparently depends on

the shape parameter r0 (Figure 7 (a)), and even more heavily on the shape

parameter θ0 (Figure 7 (b)), however, for a fixed σ∗
0/σ

∗
c and for (r0, θ0) in a

neighborhood of the minimizer (r̂0, θ̂0) (see (2.10)), the energy release rates on

both the inner and outer arcs of the annular sector are reasonably close to the

mean value m(r0, θ0), especially away from the connection lines (Figure 7 (c)).

Our numerical experiments show that the variance S(r0, θ0) of the energy

release rate behaves well in a neighborhood of the minimizer (r̂0, θ̂0) (see (2.10)).

Figure 8 shows typical numerical results for σ∗
0/σ

∗
c = 15, where the sub-figures

(a) and (b) correspond to θ0 = 41π/192 and r0 = 0.23 respectively. It is worth

pointing out here that, for fixed σ0, the minimizer ˆ̂r0(θ0) is not sensitive to θ0.

Figure 9 shows, as functions of the normalized initial stress σ0, the min-

imizer (r̂0, θ̂0) of the variance S(r0, θ0), and the width of the corresponding

telephone cord buckles T ∗
w = (2 − (1 + r̂0) cos(θ̂0))R , Tw(Ēh

∗5/(384π4Γ∗))1/4

(see (2.11)), where the jumps again suggest that there exist multiple solutions

and bifurcation points.
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Figure 10: Typical numerical solutions of telephone cord buckles.

Typical numerical morphologies of the telephone-cord buckles produced by

the annular sector model for σ∗
0/σ

∗
c = 20 and 40 are shown in Figure 10.

4.2. Comparison with the straight-sided buckles. For simplicity and clar-

ity, assuming that the Dundurs’ parameter α = 0 and thus in (2.7) ω = 52.1◦,

we are going to compare the energy release rates and the phase angles of the

straight-sided buckles with width 2b = R and the telephone cord buckles corre-

sponding to the optimal shape parameter r0 and the scale parameter R.

The numerical results of the energy release rates and the phase angles of the

straight-sided [19] and telephone cord buckles are compared in Figure 11(a), (b),

where the corresponding mean values are used for comparison. It is clearly seen

that, for σ0 small (1 < σ∗
0/σ

∗
c < 10) the straight-sided buckles are energetically

favorable, while for σ∗
0/σ

∗
c large (σ∗

0/σ
∗
c > 10) the telephone cord buckles are

energetically favorable. The distributions of the phase angles of the numerical

solutions with respect to certain typical initial stresses on the inner and outer

arcs of the annular sectors are shown in Figure 11(c), where the phase angle is

shown as a function of ξ as follows

ψ(ξ) =


ψ
(
r0, (ξ + 1)θ0

)
, −2 ≤ ξ ≤ 0,

ψ
(
1, (ξ − 1)θ0

)
, 0 < ξ ≤ 2.

We see that the phase angle on the outer arc lies basically in (−90◦,−60◦), and

approaching −90◦ as σ∗
0/σ

∗
c increases, which indicates that the fracture front

there is of mode II dominant, while on the inner arc it lies in (−135◦,−90◦), and
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thus will be treated as identical to −90◦ to match the fracture theory (see [16]),

which implies that the fracture front there is of pure mode II. This asymmetry

in the phase angle and thus in the fracture mode might be further explored to

explain why the fracture fronts should grow on the two ends of the telephone

cord buckles and in a zigzagged way. We notice also that, across σ∗
0/σ

∗
c = 23,

there is a jump in the average of the energy release rate and the average phase

angle (Figure 11 (a), (b)), which suggests that there is a bifurcation point.
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Figure 11: Comparison of the average energy release rates (a) and phase angles (b). The
phase angle distributions of typical numerical solutions (c).

5. Comparison with experimental results

First, we compare our numerical results with a telephone cord buckle in a

DLC film reported in [15] (see figures 2 and 3 there), where the film’s thickness

h∗ = 0.13µm and the normalized maximum out-of-plane displacement on the

middle line wm
max

.
= 4.1. Noticing that wm

max is a monotonously increasing

function of σ∗
0/σ

∗
c , we find that the corresponding σ∗

0/σ
∗
c
.
= 25. With these

data, the optimal shape parameters produced by our scheme are r0 = 0.26 and

θ0 = 27◦, thus the central angle of the corresponding annular sector is 2θ0 = 54◦.

We notice that the measure of the central angle is sensitive to the choice of the

origin, in fact, if the origin of the angle is moved to the center of the inner

arc of the annular sector, the central angle given by our numerical result will

increase to 88◦. Thus our numerical results are in very good agreement with the

physical experiment which produces the central angle of something around 75◦

(see figure 2 in [15]), considering that, when the angle is measured in physical

experiments, the origin is set relatively closer to the center of the inner arc of

the annular sector.
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Next, we compare our numerical results with the physical experiments on

telephone cord buckles in a DLC film reported in [13].

One of the important physical observations is that the width of the buckle

seems to be an increasing function of the normalized initial residual stress σ0.

Such a relation is well reflected in Figure 9 (c), except that there is a twist near

σ∗
0/σ

∗
c = 23, where multiple solutions exist.

Our numerical results are also consistent with the physical observations

that, for sufficiently large σ0, there are two humps instead of one formed along

the ridge of the buckle in each annular sector (see Figure 6 and compare it with

figure 2 in [13]), and the central angle appears to be a decreasing function of σ0

(see Figure 9 (b) for σ∗
0/σ

∗
c ≥ 12).

A key physical quantity measured in [13] is σ∗
0/σ̂

∗
c = 6.5, which separates the

straight-sided and telephone-cord buckles observed in experiments. Notice that

here σ̂∗
c = Ē(πh∗)2/(3(2b∗)2) is the critical bifurcation stress of the straight-

sided buckle with the width measured as 2b∗ = R∗(1−r∗0) (see figure 10 in [13]),

where R∗, r∗0 stand for the scale and shape parameters of the critical telephone-

cord buckle. While in our numerical result, the separation point is σ∗
0/σ

∗
c = 10

(see Figure 11(a)), where σ∗
c is the critical bifurcation stress of the straight-

sided buckle with the width measured as 2b = R∗, and the corresponding shape

parameter r∗0 = 0.12 (see Figure 9(a)), thus, we have σ∗
0/σ̂

∗
c = (1− r0)

2σ∗
0/σ

∗
c =

7.7. This again well matches the physical experiments.

6. Summary

The annular sector model, established in this paper for the telephone cord

buckles of elastic thin films on rigid substrates, is based on the morphology

assumptions that the delaminated region of the zigzagged part of the thin film

can be divided into identical annular sectors and the elastic deformation is
globally smooth and locally axis-symmetric with respect to the geometric central

line of each annular sector (see Section 2.1), and on the discrete version of the

Griffith criterion principle which states that the energy release rate on the arced

fracture fronts has the minimum variance and at the same time its mean value
equals to the toughness of the film-substrate interface (see Section 2.3).

A quasi-dynamic numerical method, combining the Newmark-β scheme

and the Chebyshev collocation method, is designed to solve the governing von
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Kárman plate equations expressed in polar coordinates. Comparisons of the

numerical results with certain physical experiments well justified the model,

and at the same time also raise interesting issues, such as to locate the bifurca-

tion points and the coexistence intervals of multiple solutions corresponding to

different types of telephone cord buckles’ morphologies, etc., which we believe

deserve further investigations.

On the other hand, the numerical results suggest that a more sophisticated

model with more parameters might necessarily be introduced, should one intend

to bring down the relative fluctuation of the energy release rate on the inner

and outer arcs from the current level of around 20% (away from the connection

lines, see Figure 5), so that the Griffith criterion could be better satisfied.
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