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Abstract. A new collocation method with multiple-endpoints and a new
boundary condition technique is established for high order differential equa-
tions. Numerical examples on 1D sixth order and 2D fourth order linear prob-
lems show that the new method efficiently improves the condition numbers

and the convergence rates. An example on nonlinear elastic thin film buck-
ling shows the advantage of the new method for high order nonlinear partial
differential equations with complex boundary conditions.

1. Introduction

Pseudospectral methods as meshless methods are successfully used for widely
diverse applications [1]. The Chebyshev type collocation methods are among the
most popular spectral methods because of computational convenience [2]. A typi-
cal choice of collocation points for solving boundary value problems of second order
differential equations with a Chebyshev method is to use the Chebyshev-Gauss-
Lobatto collocation points, which include certain inner collocation points and two
end points. Chebyshev-Gauss collocation method, which has no endpoints, is also
a popular choice. However, difficulties arise when pseudospectral method is applied
to higher order differential equations, especially in high dimensions [2], for example
it usually leads to an over-determined system. There are two standard ways to deal
with the problem (Chapter 6 in [2]). One is to use either more base functions [2]
or less inner collocation points [3] with a shortcoming that the condition number is
typically very large. The other is to introduce proper variable substitutions so that
part of the boundary conditions are satisfied naturally by the new unknown func-
tions (e.g. [4]). However, for complicated boundary conditions, such as reciprocally
periodic connection boundary conditions [5] and nonlinear boundary conditions [6],
it can hardly work.

In this paper, we designed a new multiple-endpoints collocation points for high
order differential equations. Numerical examples on 1D 6th-order and 2D 4th-order
linear differential equations are presented to show the improved condition numbers
of the differential matrices and better accuracy of the new method. In particular,
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we present an example on an elastic thin film buckling problem governed by a
nonlinear von Kárman equation, for which the standard Chebyshev methods failed
to produce physically consistent solutions.

The rest of the paper is organized as follows. The new multiple-endpoints collo-
cation points and the new boundary condition technique are introduced in Section 2.
In Section 3, the numerical results are presented, discussed, and comparisons are
made. The paper ends with some concluding remarks in Section 4.

2. Multiple-endpoints Collocation Points

2.1. The base functions of multiple-endpoints collocation method
and the corresponding collocation points. Let Tn be the Chebychev poly-
nomial with degree n and ω(x) be the corresponding weight function [1]. Follow
the theory of Gauss-Lobatto collocation points [1], we consider polynomials

(2.1) QN+1,m(x) = TN+1(x) +
2m∑
k=1

aN+1,kTN+1−k(x), N + 1 ≥ 2m,

where {aN+1,k}2mk=1 are so taken that Q
(s)
N+1,m(±1) = 0, s = 0, 1, · · · ,m− 1.

Two of the most important properties of the polynomials {QN,m}∞N=2m are
revealed by the following two theorems, i.e. for certain properly chosen weight,
they are a sequence of orthogonal polynomials, and their zeros in (−1, 1) are simple
and are the corresponding Gauss quadrature points.

Theorem 2.1. The polynomials
{ QN,m

(1− x2)m
}∞
N=2m

are orthogonal in L2
ωm

(−1, 1)

with the weight ωm(x) = (1− x2)mω(x) = (1− x2)m− 1
2 .

As a consequence of Theorem 2.1, it can be shown that the polynomialQN+1,m(x)
has N + 1− 2m separated simple zeros in (−1, 1) (see Lemma 1.2.2 in [1] page 10)
and two m-zeros at each of the boundary points.

Let x0 = x1 = · · · = xm−1 = −1, xN+1−m = · · · = xN−1 = xN = 1 and
−1 < xm < · · · < xN−m < 1 be the N + 1 roots of the polynomial QN+1,m given
by (2.1), we call {xi}Ni=0 the multiple-endpoints Chebychev collocation points.

Theorem 2.2. Let −1 < xm < xm+1 < · · · < xN−m < 1 be the N + 1− 2m

zeros of the polynomial
QN+1,m

(1− x2)m
. Let {wN+1,m

m , wN+1,m
m+1 , · · · , wN+1,m

N−m } be the

corresponding quadrature weights for the integral
∫ 1

−1
p(x)ωm(x)dx with weight

ωm(x) = (1− x2)m− 1
2 . Then, we have wN+1,m

j > 0, j = m, · · · , N −m, and

N−m∑
j=m

p(xj)w
N+1,m
j =

∫ 1

−1

p(x)ωm(x)dx, ∀p ∈ P2N−4m+1.

By the expression (2.1), if the parameters {ak}2mk=1 are given, the values of

the polynomials QN+1,m and their derivatives Q
(s)
N+1,m can be easily calculated by

working with the corresponding results of the Chebyshev polynomials. Substitute
the boundary values of the Chebyshev polynomials [1] into the expression (2.1) of

the polynomials QN+1,m, then the 2m boundary conditions Q
(s)
N+1,m(±1) = 0, s =

0, 1, · · · ,m−1 give a linear system that the parameters {ak}2mk=1 must satisfy. After
some elementary manipulations with the equations, we are lead to the following
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linear systems A−→a odd = 0, A−→a even = −(1, (N + 1)2, · · · , (N + 1)2(m−1))T , where
−→a odd = (a1, a3, · · · , a2m−1)

T , −→a even = (a2, a4, · · · , a2m)T , and where the matrix
A := (Aij)

m
i,j=1 with Aij = (N + 1 − 2j)2i−2. Obviously, for N > 2m, A is a

nonsingular Vandermonde matrix. Thus the parameteres {ak}2mk=1 are uniquely
solvable, and in particular, −→a odd = 0.

2.2. Discretization with Chebyshev Collocation Methods. Consider
boundary value problems of differential equations of the form

Lu(x) = f(x) x ∈ Ω,(2.2)

Bu(x) = g(x) x ∈ ∂Ω.(2.3)

In 1D, for simplicity, let Ω = (−1, 1). Let k be the number of boundary

conditions, let {xi}N+1−k
i=1 ⊂ (−1, 1) be the inner collocation points, and x̄i ∈

{−1, 1}, 1 ≤ i ≤ k be the multiple boundary collocation points corresponding to

the boundary conditions. Substituting uN (x) = TN (x)ÛN into (2.2) and (2.3),
and evaluating at the collocation points, we obtain a system of N +1 equations for
N + 1 unknowns ÛN = (û0, û1, · · · , ûN )T :

(2.4)

(
TN

inLN

TN
br ⊙BN

)
ÛN =

(
fin
gbr

)
,

where TN
in is a (N + 1 − k) × (N + 1) matrix whose i-th row is TN (xi), T

N
br is a

k × (N + 1) matrix whose i-th row is TN (x̄i), LN is the differential matrix of the
differential operators L, TN

br ⊙BN is a k × (N + 1) matrix whose i-th row is given
by TN (x̄i)B

i
N with Bi

N being the differential operator of the differential operator B
at x̄i, fin = (f(x1), · · · , f(xN+1−k))

T and gbr = (g(x̄1), · · · , g(x̄k))
T . The method

works in a similar way for higher dimensions (see for example [1]).
Notice that, if B and L are linear, then instead of solving the system (2.4) for

ÛN , it could be more convenient to solve the following smaller system for Ūin:

(2.5) TN
inLNS1Ūin = fin −TN

inLNS2gbr,

where (S1, S2) is the inverse matrix of

(
TN

in

TN
br ⊙BN

)
, i.e. (S1, S2)

(
TN

in

TN
br ⊙BN

)
= I.

The approach can also be extended to the case where L is nonlinear.

2.3. Solving problems with homogeneous boundary conditions. For a
standard homogeneous boundary value problem of a 2kth-order partial differential
equation defined on (−1, 1), we can use the N + 1 − 2k separated simple zeros of
QN+1,k as the inner collocation points, and find numerical solutions of the problem
by solving the equations (2.4) or (2.5) with gbr = 0.

Noticing that the polynomials {QK,k}NK=2k are a set of base functions for the

space of polynomials QN = {p ∈ PN : p(j)(±1) = 0, j = 0, · · · , k}, we may as

well directly express the approximation solution as uN (x) = QN (x)ŨN , where

QN (x) = (Q2k,k, Q2k+1,k, · · · , QN,k), and solve for ŨN = (ũ2k, · · · , ũN )T . By
(2.1), we have QN (x) = TN (x)AN,k, where AN,k is a (N + 1) × (N + 1 − 2k)

matrix. This implies that ÛN = AN,kŨN . Thus, the discrete system (2.4) is
transformed to an equivalent reduced system

(2.6) TN
inLNAN,kŨN = fin.

The method can be naturally extended to solve homogeneous boundary value prob-
lems defined on the domain (−1, 1)d in d-dimensions.
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2.4. Solving problems with inhomogeneous boundary conditions. For
an inhomogeneous boundary value problem of a 2kth-order linear partial differential
equation defined on (−1, 1), we decompose the approximation solution uN (x) =

TN (x)ÛN into two parts, that is uN (x) = TN (x)(Û0
N + Û1

N ), where TN (x)Û1
N

satisfies the inhomogeneous boundary condition (see (2.4))

(2.7) (TN
br ⊙BN )Û1

N = gbr,

and TN (x)Û0
N satisfies the homogenous boundary condition and the equation

(2.8) TN
inLNÛ0

N = fin −TN
inLNÛ1

N .

Obviously, the above decomposition is not unique. For the sake of simplicity and
stability, we determine Û1

N by solving the equation (2.7) with the least square

method, in which we require that the L2 norm of LNÛ1
N is minimized. Instead of

solving (2.8), we solve, by the method given in §2.3 (see (2.6)), the equation

(2.9) TN
inLNAN,kŨ0

N = fin −TN
inLNÛ1

N

for the homogeneous part of the solution which is now given in the formTN (x)Û0
N =

QN (x)Ũ0
N . This approach can also be naturally extended to solve inhomogeneous

boundary value problems defined on the domain (−1, 1)d in d-dimensions.
Notice that, in the standard approaches for inhomogeneous boundary value

problems in higher dimensions, the discrete equation, which is in general a un-
derdetermined system because of the multi-counted boundary corner collocation
points, is solved either by the least square method or by eliminating certain num-
bers of the highest order base polynomials. In contrast, our approach here produces
in theory an exact solution which generally consists of all admissible base polyno-
mials. In addition, our numerical experiments show that our method is more robust
and can produce more accurate numerical solutions.

3. Numerical examples

3.1. 1D 6th-order linear problem. First, we consider a 6th-order linear
problem with homogeneous boundary conditions:

(3.1)

{
u(6)(x)− u(x) = f(x), −1 < x < 1,
u(±1) = 0, u′(±1) = 0, u′′(±1) = 0.

For simplicity of notations, we rewrite the linear equations (2.5) (for gbr = 0)

and (2.6) in the form L1
NŪin = fin and L0

NŨN = fin respectively, where L1
N =

TN
inLNS1 and L0

N = TN
inLNAN,k. The condition numbers cond(Li

N ) of the ma-
trixes Li

N corresponding to the Chebyshev-Gauss, Chebyshev-Gauss-Lobatto, and
Chebyshev-Multiple-Endpoints collocation points are compared in the left sub-
figure of Figure 1, where it is seen that the Chebyshev-Multiple-Endpoints method
has obviously much smaller condition numbers cond(LN ).

To compare the accuracy of numerical solutions, let the exact solution be given
by u(x) = ex + p(x) with p(x) = f(x) ∈ P5, and let u1

N (x) = TN (x)ÛN =
TN (x)S1Ūin ∈ PN (−1, 1) be the numerical solutions obtained by solving L1

NŪin =

fin and u0
N (x) = QN (x)ŨN ∈ PN (−1, 1) be the numerical solutions obtained by

solving L0
NŨN = fin respectively. In the right sub-figure of Figure 1, the error

eu = ∥u− ui
N∥L2(−1,1) of the numerical solutions are compared, where we see that

the new method has smaller error and reaches the machine accuracy faster than
the other methods. It is also seen that u0

N reaches higher accuracy than u1
N .
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Figure 1. The numerical results of cond(Li
N ) and eiu, i = 0, 1,

where the results with respect to i = 0 are marked by ◦.

3.2. Biharmonic equation. Next, we consider the 2D biharmonic equation
with clamped boundary conditions:

(3.2)

{
∆2u(x, y) = f(x, y), (x, y) ∈ Ω,

u(x, y) = g0,
∂u

∂n
(x, y) = g1, (x, y) ∈ ∂Ω.

where ∆ denotes the Laplace operator, and Ω = (−1, 1)2.
We choose the same polynomial base functions for the two dimensions, and

write the discrete solution in the form uN (x, y) =
N∑
i=0

N∑
j=0

ûijTi(x)Tj(y).

We consider homogenous and inhomogeneous boundary conditions seperately.
We compare three types of collocation points, which are the Chebyshev-Gauss,
Chebyshev-Gauss-Lobatto, and Chebyshev-Multiple-Endpoints collocation points.
At the same time, the new boundary technique introduced in §2.3 and §2.4 (referred
to as the first method in Figures 2 and 3) is compared with a standard method
(referred to as the second method in Figures 2 and 3), in which the four highest
order terms are omitted and the discrete solution is written as

(3.3) uN (x, y) =

N∑
i=0

N∑
j=0

ûijTi(x)Tj(y)−
N∑

i=N−1

N∑
j=N−1

ûijTi(x)Tj(y).
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Figure 2. Numerical results for homogeneous problem.

The numerical results of homogenous case is shown in Figure 2, in which the
exact solution is given by u(x, y) = π−4(1 + cos(πx))(1 + cos(πy)). In the left
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sub-figure of Figure 2, the comparison of the error eu = ∥uN (x) − u(x)∥L2(−1,1)2

shows clearly that our boundary technique leads to higher accuracy. The numerical
results of Multiple-Endpoints-Chebyshev collocation points are also seen to perform
slightly better than the others. The numerical results on the condition number
Cond(LN ) is shown in the right sub-figure of Figure 2, in which LN corresponding to
TN

inLNAN,kin (2.6) for the first method and toTN
inLNS1 in (2.5) for second method.

It is clearly seen that the Multiple-Endpoints-Chebyshev collocation points and the
new boundary technique result in significantly lower condition numbers.

For the inhomogeneous case, we consider two exact solutions u1(x, y) = π−4(1+
cos(πx))(1 + cos(πy)) + 0.1(y + 1) and u2(x, y) = ln(2 + xy) + 1. The errors are
shown in Figure 3. Obviously, the error of latter decrease much slower, this is not a
surprise since the Fourier expansion of the latter converges much slower. The first
method is still seen to work better than the second method, and the difference can
be crucial sometimes. The advantage of Multiple-Endpoints-Chebyshev collocation
points on the accuracy also appears to be more significant.
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Figure 3. Numerical results for u1 (on the left) and u2 (on the right).

3.3. An example in thin film delamination. In this sunsection, we con-
sider an example of telephone-cord buckling of elastic thin film [7, 8], which can
be modeled by a nonlinear von Kárman plate equations [5, 7, 8, 9, 10, 11].

In the annular sector model [5], an equilibrium state of a buckle can be obtained
by solving the following nonlinear dynamic system

(3.4)


w,tt +cw,t +△2w − 4π2

(1− r0)2
σ0△w −NLTW (w, u, v) = 0,

LTU (u, v) +NLTU (w) = 0,
LTV (u, v) +NLTV (w) = 0,

defined on an annular sector region Ω = {(r, θ)| r0 < r < 1, −θ0 < θ < θ0},
where LT , NLT stand for the corresponding linear and nonlinear terms (see [5] for
details). The system is coupled with the clamped boundary conditions on r = r0
and r = 1:

(3.5)

{
w(r0, θ) = 0, w,r (r0, θ) = 0, u(r0, θ) = 0, v(r0, θ) = 0,

w(1, θ) = 0, w,r (1, θ) = 0, u(1, θ) = 0, v(1, θ) = 0,
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and the reciprocally periodic connection boundary conditions on θ = −θ0, θ0:

(3.6)



1

rk
∂kw

∂θk
∣∣
(r,−θ0)

=
1

(1 + r0 − r)k
∂kw

∂θk
∣∣
(1+r0−r, θ0)

, k = 0, 1, 2, 3,

u(r,−θ0) = −u(1 + r0 − r, θ0),
u,θ (r,−θ0)

r
= −u,θ (1 + r0 − r, θ0)

1 + r0 − r
,

v(r,−θ0) = v(1 + r0 − r, θ0),
v,θ (r,−θ0)

r
=

v,θ (1 + r0 − r, θ0)

1 + r0 − r
.

Map the normalized annular sector domain Ω = {(r, θ)
∣∣r0 ≤ r ≤ 1, −θ0 ≤ θ ≤

θ0} onto the standard computational domain Ω̂ = {(x, y)
∣∣−1 ≤ x ≤ 1, −1 ≤ y ≤ 1}

with x = (2r − 1− r0)/(1− r0), y = θ/θ0. Rewrite the out-of-plane dimensionless
displacement w(x, y) in the form w(x, y) = (1 − x2)q(x, y), so that the clamped
boundary conditions (3.5) are naturally satisfied [5].

We use Chebyshev-Gauss-Lobatto collocation points in the last two equations
of (3.4) for x and y and in the first equation of (3.4) for x, and test the three types
of collocation points in the first equation of (3.4) for y. For time discretization, the
Newmark-β method is used for the first equation in (3.4).

Figure 4. Numerical solutions and corresponding buckle morphologies.

For a set of physically relevant data σ0 = 10, r0 = 0.15, θ0 = 0.7, take small
smooth functions w0 = 0.01(1− r)2(r0− r)2, u0 = 0, v0 = 0 as the initial state. Our
numerical experiments showed that, while the scheme using the Chebyshev-Gauss
collocation points always leads to blow up, the schemes using the other two types
of collocation points can converge and produce static numerical solutions. The
numerical solutions, with respect to M = 20, N = 10 and c = 1000, obtained by
using the Multiple-Endpoints and Chebyshev-Gauss-Lobatto collocation points are
shown in Figure 4.

Compare the numerical solutions with the physical experiments (see figures in
[9, 10, 11], e.g. figure 1(c) in [10]), we see that the numerical results produced
by using the Multiple-Endpoints fit the physical experiment well, while the numer-
ical result produced by using the Chebyshev-Gauss-Lobatto collocation points is
nonphysical with obvious negative values in the out-of-plane displacement.
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4. Conclusions

The Chebyshev-Multiple-Endpoints collocation method and a new boundary
condition technique are established in this paper for boundary value problems of
high order differential equations. The new collocation points can be easily obtained
by working with the Chebyshev polynomials. For linear problems, our numerical
results showed that the new collocation points and the new boundary condition
technique really helped to improve the condition numbers of differentiation matri-
ces and the approximation accuracy of the numerical solutions. In particular, an
example on nonlinear elastic thin film buckling showed that the improvement in
the condition number can be crucial to the success of solving nonlinear problems.
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