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Abstract

The morphology of telephone-cord buckles of elastic thin films can be used
to evaluate the initial residual stress and interface toughness of the film-
substrate system. The maximum out-of-plane displacement δ, the wave-
length λ and amplitude A of the wave buckles can be measured in physical
experiments. Through δ, λ, and A, the buckle morphology is obtained by an
annular sector model established using the von Karman plate equations in
polar coordinates for the elastic thin film. The mode-mix fracture criterion is
applied to determine the shape and scale parameters. A numerical algorithm
combining the Newmark-β scheme and the Chebyshev collocation method is
adopted to numerically solve the problem in a quasi-dynamic process. Nu-
merical experiments show that the numerical results agree well with physical
experiments.
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1. Introduction

Thin film materials are wildly used in many fields, such as thermal barrier
coatings [1], micro-electro -mechanical systems [2], magnetic recording media
[3], etc. However, compressed residual stresses are generally inevitably intro-
duced on the elastic thin films in manufacturing processes, which can lead to
undesirable delamination in the interface of the thin film and the substrate.
For this reason, various patterns of buckles, such as the most commonly
observed circular buckles [4], straight-sided buckles [5] and telephone cord
buckles [6], are formed.

In experiments, the telephone cord buckles are the most frequently ob-
served. Unfortunately, due to its complexity compared with the other two
kinds, the results on the telephone cord buckles are much less reported. In
1997, applying the Griffith criterion and assuming that the energy release
rate is identical everywhere on the fracture front, Gioia and Ortiz estab-
lished a model in which the zigzagged edges of a telephone cord buckle are
approximated by a sequence of congruent connected circular arcs, and the
propagation fronts are also approximated by circular arcs but in a different
size. The model describes the shape of the edges successfully and fits ex-
perimental results well [7], however, it cannot determine the widths of the
telephone cord buckles. In 2002, Moon et al. established a pinned circle
model, in which the delamination area is characterized by a sequence of con-
nected sectors and on each sector the deformation of the buckle is assumed to
be rotationally symmetric with respect to the pinned center [8]. The model
well describes both the shape of the edges and the width of the telephone
cord buckle, and the corresponding numerical problem is reduced to one di-
mension. However, because of the rotationally symmetric assumption, the
center of sector is a singular point of the energy release rate, and in addition
the global deformation is discontinuous across the connection lines between
the sectors. Another model uses the analytical solution of straight-sided
buckles [9], which avoids numerical computation. The model is based on the
similarity of the out-of-plane displacements on the connection lines and the
straight-sided buckles, and approximates the buckle near a connection line
as a straight-sided buckle. A similar model is adapted in [10], which approx-
imates the telephone cord buckle by a straight-sided buckle measured on the
middle line (l in Fig. 1) instead. Since they are all 1D models in nature,
none of the models mentioned above makes sufficient use of the shape of
the delamination area, for example, the wavelength and amplitude, and the
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width of the telephone cord buckles are neglected.
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Figure 1: A typical section: O is the center of the sector, OA1 and OA2 are the outer and
inner radii with |OA1| = R and |OA2|/|OA1| = r0, ∠A1OB1 = 2θ0 is the central angle.
Q1 and Q2 with |Q1A1| = |Q2B2| are the reciprocally corresponding connection points
across which the deformation is smooth.

Because the morphology of the buckles can be measured conveniently,
there is much effort and great interests of using the knowledge to evaluate
the mechanic parameters, such as the residual stresses and adhesion energy.
In 2004, Cordill et al. gave some results on the adhesion measurement by
morphology of thin film buckles [9]. In 2007, through measuring the mor-
phology of the telephone cord buckles (AFM), Cordill et al. evaluated the
residual stresses and the interface toughness by using the pinned circle model
and the straight-sided buckle approximation [10], they also reported a special
telephone-cord to straight-sided buckle phenomenon, and they found that the
mechanical parameters evaluated by the telephone cord buckles are compa-
rable to those evaluated by the straight-sided ones, the latter are considered
to be accurate for a given system (see the line labeled with Straight in Table
1 for the case of h∗ = 300nm). In 2009, Yu et al. prepared a wedge shaped
iron film system with the thickness changing from zero to several hundred
nanometers, and reported the telephone cord buckles phenomenon on it in
detail [11].

In the present paper, the annular sector model established in [12], where
a telephone cord buckle is characterized by a sequence of connected annular
sectors as shown in Fig. 2, is adopted, the difference is that here the shape
and size of the annular sector is determined by the mode-mix criterion, of
which the Griffith criterion used in [12] is a special case. To obtain numerical
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Figure 2: The annular sector model : delamination area is divided into congruent annular
sectors. O is the center of the sector AOB. The dashed lines are the connection lines
between adjacent sectors.

solutions for the governing static von Karman plate equations, a system
of quasi-dynamic equations is introduced, and the Chebyshev collocation
method and the Newmark-β scheme are adopted for the discretization of the
dynamic system as in [12]. To efficiently solve the discrete system for various
parameters, the continuation method is applied in the computing process. To
verify the model, the evaluated interface toughness and initial residual stress
are compared with those reported in [10], and the results from the telephone
cord buckle match remarkably well with those given by the analytical solution
of the straight sided buckle observed in the physical experiments on a same
film system (see the line labeled with Straight in Table 1 for the case of
h∗ = 300nm).

The rest of the paper is organized as follows. The annular sector model
and corresponding numerical method is briefly introduced in section 2 (for
details see [12]). The numerical experiments and results are presented and
discussed in section 3, where comparisons of our results with physical exper-
iments and the results produced by the other models mentioned above are
also made. The paper ends with a brief summary in section 4.

2. The annular sector model and the numerical method

Different from the straight-sided approach and the pinned circle approach
of the telephone cord buckles, the annular sector model is a 2D model. The
advantage of this is that the buckle’s morphology can be better characterized
by the shape and size of the buckling area. On the other hand, the computing
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complexity is increased when the computing area becomes to 2D. Numerical
methods designed to deal with this difficulty is shown in section 2.2.

2.1. The annular sector model

To describe a typical telephone cord buckle as a sequence of reciprocally
connected annular sectors, the shape and the width scale of the telephone
cord buckle, which can be completely determined by three parameters, need
to be determined. For simplicity, we choose the outer radius R of the annular
sector as the scale parameter, the half central angle θ0 and the normalized
inner radius r0, i.e. the ratio of the inner radius against the outer radius, of
the annular sector as the shape parameters (see Fig. 1).

The governing equations of the equilibrium state of the buckle can be
reduced to the von Karman plate equations defined on an annular sector Ω∗.
Naturally, it is convenient to express the equations in the polar coordinate
system (r∗, θ∗) with the annular sector’s center O as the polar origin and
the sector’s geometric symmetry line as the polar axis. For simplicity, we
assume that the initial residual stress is equi-biaxial compressive, in Cartesian
coordinates this is expressed as −σxx = −σyy = σ∗

0 > 0, σxy = 0.
The von Karman equation is non-dimensioned by introducing the follow-

ing normalized variables

u =
Ru∗

(h∗)2
, v =

Rv∗

(h∗)2
, w =

w∗

h∗
, r =

r∗

R
, θ = θ∗, h =

h∗

R
,

σ∗
c =

E

1− ν2
(πh)2

3(1− r0)2
, σ0 =

σ∗
0

σ∗
c

.
(1)

and is rewritten as (see [12] for details)
△2w − 4π2

(1− r0)2
σ0△w = NW (w, u, v),

LU(u, v) +NU(w) = 0,
LV (u, v) +NV (w) = 0,

(r, θ) ∈ Ω, (2)

where LU , LV are the linear parts of the last two equations in (2), and NW ,
NU , NV are the non-linear parts of the von Karman equations under polar
coordinate system, △ denotes the Laplacian operator, and the normalized
annular sector region is defined as Ω =

{
(r, θ)

∣∣r0 < r < 1,−θ0 < θ < θ0
}
.

To reflect the experimental symmetry (l in Fig. 1 is the symmetric axis),
the connection of the annular sectors through reciprocal points (Q1, Q2 in Fig.
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1), and the film being clamped to the substrate on the arched edges of the
annular sectors, the equations (2) are coupled with the following boundary
conditions{

w(r0, θ) = 0, w,r (r0, θ) = 0, u(r0, θ) = 0, v(r0, θ) = 0,

w(1, θ) = 0, w,r (1, θ) = 0, u(1, θ) = 0, v(1, θ) = 0,
(3)

and the reciprocally periodic connection boundary conditions

1

rk
∂kw

∂θk
∣∣
(r,−θ0)

=
1

(1 + r0 − r)k
∂kw

∂θk
∣∣
(1+r0−r, θ0)

, k = 0, 1, 2, 3,

u(r,−θ0) = −u(1 + r0 − r, θ0),
u,θ (r,−θ0)

r
= −u,θ (1 + r0 − r, θ0)

1 + r0 − r
,

v(r,−θ0) = v(1 + r0 − r, θ0),
v,θ (r,−θ0)

r
=
v,θ (1 + r0 − r, θ0)

1 + r0 − r
.

(4)

Let E and ν be the Young’s modulus and Poisson’s ratio of the elastic thin
film. In the polar coordinate system, the energy release rate G and the phase
angle ψ are given as [13]

G(r0, θ0) =
3(1− ν2)h∗(σ∗

c )
2

8π4E

(
(w,rr +

ν

r2
w,rθ )

2 + 12u,2r

)
,

ψ(r0, θ0) = arctan

 (w,rr +
ν

r2
w,rθ ) cosω +

√
12u,r sinω

−(w,rr +
ν

r2
w,rθ ) sinω +

√
12u,r cosω

 ,
(5)

where ω is a function of Dundurs’ parameter [13]. Let ΓI be the mode I
interface toughness. Then, the mode-mix fracture criterion [14] states that
on the fracture front G = Γ(ψ) ≡ ΓI (1 + tan2((1− ρ)ψ)). It reduces to
the Griffith criterion when ρ = 1. We choose the mode-mix criterion as our
fracture criterion, and choose the shape parameters in such a way that the
variance of ΓI on the fracture front is minimized. The effect of the mode
parameter ρ on the output of the model is studied numerically.

2.2. Numerical treatment

We adopt a partial dynamic approach to solve the static von Karman
equations (2). Our aim is to find the equilibrium solution of the following
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equations
w,tt+cw,t+△2w − 4π2

(1− r0)2
σ0△w = NW (w, u, v),

LU(u, v) +NU(w) = 0,
LV (u, v) +NV (w) = 0,

(r, θ) ∈ Ω, (6)

The Newmark-β (γ = 0.5, β = 0.25) scheme [14] is adopted in temporal
discretization of the first equation for w, which is in fact the only equation
that is time dependent in equations (6). For simplicity, in NW , u and v
take the value of the previous time step, while w takes the unknown value in
the current time step. This simplification will definitely reduce tremendous
amount of computing cost, though it may also lose some temporal accuracy
which is not of much concern for a static solution. The discrete scheme of
the first equation of equations (6) is implicit and is solved by fixed point
iterations.

The Chebyshev collocation method is adopted in spatial discretization.
First, we map the normalized annular sector region to a standard computing
region Ω̂ =

{
(x, y)

∣∣−1 < x < 1,−1 < y < 1
}
with x = (2r−1−r0)/(1−r0),

y = θ/θ0. The first equation in equations (6) is 4-order for the normalized
out-of-plane displacement w, thus the boundary conditions of w need to
be treated with special care. With a new variable q, set w(x, y) = (1 −
x2)q(x, y) [14], then, the clamped boundary conditions (3) for w reduce to
the homogenous boundary conditions for q, just the same as for u and v,
which can be easily imposed with Gauss-Lobatto collocation points. Let
Ti(x) be the Chebyshev polynomials of degree i. The discrete form of the
displacements u, v and w are given as

wn(x, y) =
M∑
i=0

N+2∑
j=0

(1− x2)q̂nijTi(x)Tj(y),

un(x, y) =
M∑
i=0

N∑
j=0

ûnijTi(x)Tj(y),

vn(x, y) =
M∑
i=0

N∑
j=0

v̂nijTi(x)Tj(y).

(7)

For the reciprocally periodic connections (4), we have twice as much of
boundary conditions for w as for u and v. Following the idea of constructing
the Gauss-Lobatto type collocation points [15], we denote Pi(x) polynomials
of degree i which form the sequence of orthogonal polynomials on [−1, 1] with
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the weight function Ŵ (y) = (1 − y2)
3
2 . Then, we construct the collocation

points for the discrete form (7): the Gauss-Lobatto collocation points in the
x direction are used for wn, un, vn (there are (M − 1) interior points and 2
boundary points), the Gauss-Lobatto collocation points in the y direction
are used for un, vn (there are (N −1) interior points and 2 boundary points),
and zeros of PN−1(y) are chosen to be the interior collocation points for wn

in the y direction, each of the boundary points are used twice in this case to
match the number of the boundary conditions [12].

To conclude, we write the fully discrete system as( 4

(∆t)2
+

2c

∆t

)
W n+1

M,N = F (W n+1
M,N ,U

n
M,N) +

( 3

(∆t)2
+

c

2∆t

)
W n+1

M,N

+ 2
( 1

(∆t)2
+

c

∆t

)
W n

M,N −
( 1

(∆t)2
+

c

2∆t

)
W n−1

M,N , (8)

L(Un+1
M,N) = f(W n+1

M,N), (9)

where △t is the time step length, W n
M,N , U

n
M,Nstand for the vector value of

w, (u, v)T at time n△t on the interior collocation points, F,L and f stand
for NW − △2w + 4π2(1 − r0)

−2σ0△w, (LU , LV )
T ,−(NU , NV )

T respectively.
As mentioned before, the first equation of (8) is solved by the fixed point
iterations( 4

(∆t)2
+

2c

∆t

)
W n+1,k+1

M,N = F (W n+1,k
M,N ,Un

M,N) +
( 3

(∆t)2
+

c

2∆t

)
W n+1,k

M,N

+ 2
( 1

(∆t)2
+

c

∆t

)
W n

M,N −
( 1

(∆t)2
+

c

2∆t

)
W n−1

M,N , (10)

where W n+1,0
M,N is set to be W n

M,N .
In our numerical experiments, we set M = 20 and N = 10, which turned

out to be sufficient to obtain reasonably accurate numerical results with
acceptable efficiency [12].

3. Numerical results and discussions

In this section, our numerical results on the relationship between the
geometrical and mechanical parameters are presented and compared with
the experimental and numerical results reported in [10].
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Figure 3: The relationship between wm = δ/h∗ and σ0 established by the annular sector
model with κ = 2.
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Figure 4: The relationship between δ and Γ established by the annular sector model with
κ = 2 and h∗ = 200nm.

3.1. The relationship between the geometrical and mechanical parameters

Since the shape parameter r0 is not easily obtained in physical experi-
ments, to apply our model, we would rather introduce another shape param-
eter that is more easily accessible and more stable in the computation. One
of such a parameter is κ = 4Aλ−1, where A and λ are the wave amplitude
and the wavelength of the telephone cord buckles [11], which can be conve-
niently measured in experiments and can be expressed, in the annular sector
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model, as functions of the shape parameters r0 and θ0 as follows

λ = (1 + r0) sin θ0, A = 2− (1 + r0) cos θ0. (11)

By choosing κ and θ0 as independent shape parameters of an annular sector,
r0 is then given as

r0 =
κ sin θ0 + cos θ0 − 2

κ sin θ0 − cos θ0
. (12)

In this subsection, we present numerical results with κ = 2, which is the value
measured in Fig.2 (a) in [10]. For a given set of mechanical parameters, the
mode-mix criterion is used to obtain the shape parameters (r0(κ, θ0), θ0),
and the shape and size of the corresponding buckle is then completely deter-
mined. The numerical results on such a relationship (see Fig. 3) can now be
used conversely to obtain mechanical parameters, such as the initial stress
σ0 and the interface toughness ΓI and Γ(ψ) (see Fig. 4), of the elastic thin
film system from the shape and size parameters measured in the telephone
cord buckles observed in physical experiments. Other than κ and θ0, another
parameter we use to evaluate σ0 is the maximum out-of-plane displacement
δ, which we will take the measurements either on the whole buckling area
or restricted on the connection lines while the corresponding results will be
labeled as (A-S/A) and (A-S/C) respectively (see Table 1). For the conve-
nience of comparison, we also list in Table 1 the values obtained in [10] for
the initial stress σ0 and normalized one σ∗

0, which are denoted as σr/σb and
σr in [10], as well as the interface toughness ΓI and Γ(ψ) (with ρ = 0.3) by
the three 1D models mentioned in section 1 with the corresponding max-
imum out-of-plane displacement δ measured in physical experiments. We
notice that, in computation, it is the relationship between the normalized
parameters wm = δ/h∗ and σ0 that is actually established by our model.

It is interesting to point out here that the data on the initial stress and the
interface toughness given by our model in Table 1 for the case of h∗ = 300nm
are in fact predicted by the linear functions reconstructed by applying the
least square method on the data shown in Fig. 3 and Fig. 4. The results
corresponding to A-S/C match the physical experiments remarkably well,
and thus justify in a way the validity of our model with the A-S/C approach.

A typical phase angle distribution along the arcs of an annular sector is
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Table 1: Recovered values of the initial residual stress and interface toughness with κ = 2
by the annular sector model, compared with the data obtained with three 1D models in
[10], where wm = δ/h∗.

h∗ Meas/model δ wm σ∗0 σ0 ΓI Γ(ψ)
(nm) (µm) (ratio) (GPa) (ratio) (J/m2) (J/m2)

A-S/C 0.633 3.17 4.8 9.5 4.8 16.3
200 A-S/A 0.67 3.33 5.3 10.5 4.8 16.5

(case 1) Str-str 0.633 3.17 4.7 5.96 9.56
Curv-str 0.67 3.33 4.75 9.43 6.01

Pincrc-pincrc 0.67 3.33 3.74 6.87 2.93

A-S/C 1.47 4.9 2.14 18.8 0.4 1.58
A-S/A 1.73 5.77 1.87 22.8 0.14 0.61

300 Straight 1.31 4.7 2.07 15.4 1.6
(case 2) Str-str 1.47 4.9 2.18 19.1 1.8

Curv-str 1.73 5.77 2.14 26.1 1.67
Pincrc-pincrc 1.73 5.77 1.64 18.5 0.86
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−100
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Figure 5: The phase angle of a typical telephone-cord buckles’ fracture front with κ = 2,
θ0 = 0.81, and σ0 = 10.

shown in Fig. 5, where

η =


−θ + θ0

2θ0
, r = r0,

θ − θ0
2θ0

, r = 1.
(13)
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From this figure, we see that the fracture front is clearly not mode-I dominant.
This justified the use of the mode-mix instead of the Griffith criterion in our
model. Furthermore, we see that numerically ψ < −90◦ almost everywhere
on the inner radius boundary, that means the inner radius boundary is not the
exact fracture front, where the crack should be pure mode-II with ψ = −90◦.
In addition, we notice that the error of ψ reaches the maximum in the middle
of the arc and the minimum on the connection points, which could partially
explain why the results produced by A-S/C are much more accurate than
those by A-S/A (see Table 1).

3.2. The effect of the fracture mode parameter

It is interesting to see the actual effect of the mix mode parameter ρ on
the numerical results of the proper shape parameters. Fig. 6 shows a typical
numerical result for such an effect with κ = 2 and σ0 = 10. We notice that,
in general, there is essentially no effect for ρ < 0.5, while the effect is clearly
not negligible for ρ > 0.5. In fact, the effect of ρ on r0 should be considered
quite significant for ρ > 0.5. We would also like to point out here that the
result shown in Fig. 6 is typical in the sense that for various normalized
initial residual stress σ0, the graphs are qualitatively the same, in particular,
the value of the proper shape parameter θ0 changes only slightly (within 5%
when σ0 varies from 8 to 14 ).
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Figure 6: The relationship between ρ and the shape parameters r0, θ0 with κ = 2, σ0 = 10.

4. Conclusion

For a given set of mechanical parameters, the morphology of the tele-
phone cord buckles developed on an elastic thin film system can be fully
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determined numerically by the 2D annular sector model coupled with the
mode-mix fracture criterion. This in fact establishes a relationship between
the mechanical parameters of the elastic thin film system and the geometrical
parameters of the telephone cord buckles. It turns out that the relationship
can be used to evaluate the system’s mechanical parameters by the measure-
ments of some easily accessible shape and size parameters of the telephone
cord buckles observed in physical experiments. The numerical results well
match the physical experiments and justified the use of the mode-mix frac-
ture criterion. Furthermore, for the telephone cord buckles, the mechanical
parameters recovered by our 2D model are in general much more accurate
than those evaluated by the three well known 1D models.
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