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Abstract. Since the accuracy of finite element solutions of partial differential
equations is generally mesh dependent, especially when solutions have singu-
larities and discontinuities, a proper mesh generation is often important and
sometimes crucial for an accurate numerical approximation of such problems.
In this paper, the mesh transformation method is applied to the boundary
value problems of elliptic partial differential equations, and it is proved that
the method leads to the optimal finite element solutions.

1. Introduction

Consider the problem of minimizing an energy functional

(1.1) F (u; Ω) =

∫

Ω

W (x, u(x),∇u(x)) dx

in a set of admissible deformations

(1.2) U(u0; Ω) = {u ∈ W 1,p(Ω; Rm) : u = u0, on ∂Ω0},
where Ω ⊂ Rn, n = 2 or 3, is a bounded open set with a Lipschitz continuous

boundary ∂Ω, ∂Ω0 is a subset of ∂Ω with positive (n− 1)-dimensional measure.

It is well known that, when the energy density W (x, u, v) satisfies certain general

conditions on regularity, growth and coerciveness, and if W (x, u, ·) is convex, then

the problem is solvable [1] and the solutions can be approximated by the finite

element method [2].
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Since the accuracy of finite element solutions is generally mesh dependent,

especially when solutions have singularities and discontinuities, a proper mesh

generation is often important and sometimes crucial for an accurate numerical

approximation of such problems. To reduce the mesh dependent of the finite

element approximations, it is natural to involve the mesh distribution into the

minimization procedure. The mesh transformation method was first introduced

to compute microstructures in non-convex problems [3, 4, 5]. The idea of the

mesh transformation method, which is to minimize the energy functional on all

admissible finite element function spaces obtained by mesh distribution transfor-

mation, leads to the following discrete problem

(1.3) (MTM)

{
find (ūh, gh) ∈ Uh(u0 ◦ gh; D)× Th(D) such that

F (ūh, gh; D) = inf(ū,g)∈Uh(u0◦g; D)×Th(D) F (ū, g; D),

where D is the computation domain,

(1.4) Uh(ū0; D) = {ū ∈ (C(D))m : ū|∂D0 = ū0, and ū|K is affine ∀K ∈ Th(D)},

(1.5) Th(D) = {g ∈ T (D) : g|K is affine ∀K ∈ Th(D)},
with Th(D) being regular triangulations of D with mesh size h [2] and

(1.6) T (D) = {bijections g : D̄ → Ω̄ | g ∈ W 1,∞(D; Ω), g−1 ∈ W 1,∞(Ω; D),

g(∂D0) = ∂Ω0, and det∇g > 0, a.e. in D},
and where the functional F (·, ·; D) is defined by

(1.7) F (ū, g; D) =

∫

D

W (g(x̄), ū(x̄),∇ū(x̄)(∇g(x̄))−1)) det∇g(x̄) dx̄.

By setting

(1.8) x = g(x̄), u(x) = ū(g−1(x)),

it is easily seen that

(1.9) F (ū, g; D) = F (u; Ω).

Compared with the standard finite element method which works on a finite el-

ement function space defined on a fixed finite element mesh, the mesh transfor-

mation method is actually trying to minimize the energy among finite element

functions defined on all admissible finite element mesh distributions. In other
words, the solution given by the mesh transformation method attains the lowest
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energy level among all admissible finite element function spaces defined by (1.5)

and (1.6), and it is in such a sense that the solution is said to be the optimal

finite element approximation. In fact, it is shown in section 2 that, for conforming

finite element approximations of standard elliptic boundary value problems, the

lowest energy is equivalent to the least error in the energy norm.

In section 3, the implementation of the mesh transformation method by

the conjugate gradient method is discussed, where a mesh quality control term

Fq(ū, g; D), which takes into consideration of conformity (or isotropy) and uni-

formity (or equi-distribution) [6, 7] of the mesh distribution as well as a penalty

term on the relative element volume det(∇g) tending to either zero or infinity,

is added to the energy functional F (ū, g; D) to regularize the mesh transforma-

tion procedure [8]. More sophisticated applications of the mesh transformation

method, such as to work on an initial mesh created by the mesh adaption or

moving mesh method, will not be discussed in this paper. Numerical examples

are given in section 4 to show the efficiency of the method.

2. Optimal finite element solution

Let V be a Hilbert space. Let a(·, ·) be a symmetric bilinear functional

defined on V × V satisfying

(2.1) α‖u‖2
V ≤ a(u, u) ≤ M‖u‖2

V ,

where M ≥ α > 0 are constants, and ‖ · ‖V is the norm of V . By (2.1),
√

a(u, u)

defines on V an equivalent norm of u, which we call the energy norm as it is in

many applications. Let f(·) be a bounded linear functional defined on V . Define

(2.2) F (u) =
1

2
a(u, u)− f(u), ∀u ∈ V.

Theorem 2.1. Suppose u is a minimizer of F (·) in V , that is

(2.3) F (u) = inf
v∈V

F (v).

Then, we have

(2.4) a(v − u, v − u) = 2(F (v)− F (u)), ∀v ∈ V.
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Proof. Since u is a minimizer of F (·) in V , it satisfies

(2.5) a(u, v) = f(v), ∀v ∈ V.

Thus, we have

F (v)− F (u) =
1

2
a(v, v)− f(v)− 1

2
a(u, u) + f(u)

=
1

2
a(v, v)− a(u, v)− 1

2
a(u, u) + a(u, u)

=
1

2
a(v − u, v − u).

This proves the theorem. ¤

Theorem 2.2. Suppose that F (·; Ω) is of the form (2.2). Suppose u is a mini-

mizer of F (·; Ω) in U(u0; Ω) (with p = 2 in (1.2)), and (ūh, gh) is a solution of

the mesh transformation method (1.3). Let uh(x) = ū(g−1
h (x)). Then, uh is the

optimal finite element approximation with the least error in energy norm, more

precisely

(2.6) a(uh − u, uh − u) = inf
vh∈Uh(u0; Ω)

a(vh − u, vh − u),

where

(2.7) Uh(u0; Ω) =
⋃

g∈Th(D)

g(Uh(u0 ◦ g; D)),

is the set of finite element functions defined on all admissible finite element func-

tion spaces defined by (1.5) and (1.6).

Proof. The conclusion of the theorem follows directly from Theorem 2.1 and re-

lation (1.9). ¤

Remark 2.1. We point out here that the inequalities in (2.1) are not used in the

proofs of theorems 2.1 and 2.2.

3. Implementation of the method

The discrete problem (1.3) can be solved by applying the conjugate gradient

method. In general, local minimizers can be found in this way. However, noticing

that the set Th(D) is not closed because of the constraint det∇g > 0, a.e. in D

(see (1.6)) and there is no guarantee that a minimizing sequence will not go to
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the boundary of Th(D), so we can not prove the existence of solutions for the

discrete problem (MTM) (see (1.3)) [4, 5]. In fact, numerical experiments show

that without mesh quality control the mesh can sometimes become increasingly

irregular in the process of minimization and thus severely deteriorate the conver-

gence behavior of the algorithm. The mesh quality can be brought under control

by adding the following term into the energy functional F (ū, g; D) (see [8] for

details)

(3.1) Fq(ū, g; α0, α1, α2) ≡ α0[α1Fq,c(ū, g) + (1− α1)Fq,u(ū, g) + α2Fq,r(g)],

where, denoting the monitor matrix by B ≡ ∇g(x̄)T [I +∇u∇uT ]∇g(x̄) which is

the metric matrix of the deformed body defined on the computational domain,

(3.2) Fq,c(ū, g) ≡
∫

D

(
1

n
tr(B)− (det(B))1/n) det(∇g) dx̄

is the conformity (or isotropy) control term [6, 7],

(3.3) Fq,u ≡ |Ω|1/2(

∫

D

(det(B))2/n det(∇g) dx̄)1/2 −
∫

D

(det(B))1/n det(∇g) dx̄

is the uniformity (or equi-distribution) control term [6, 7], and

(3.4) Fq,r(g) =

∫

D

| log(det∇g)|p dx̄ +

∫

D

| det∇g − 1|s dx̄

is the regularity control term, where p, s ∈ (1, ∞) are given constants, and

α1 ∈ [0, 1], α0 > 0, α2 > 0 are parameters to control the contributions of the

mesh quality control terms.

Define

(3.5) Fα(ū, g; D) = F (ū, g; D) + Fq(ū, g; α0, α1, α2).

Replacing F (ū, g; D) by Fα(ū, g; D) in (1.3), we obtain the regularized mesh trans-

formation method

(3.6) (RMT )

{
find (ūh, gh) ∈ Uh(u0 ◦ gh; D)× Th(D) such that

Fα(ūh, gh; D) = inf(ū,g)∈Uh(u0◦g; D)×Th(D) Fα(ū, g; D).

Obviously, larger α0 implies stronger requirement on the mesh quality, and the

mesh transformation method corresponds to α0 = 0.

It is worth noticing that the mesh quality control is used here to guarantee the

existence of a solution and to improve the convergence behavior of the minimizing
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procedure. The purpose of mesh transformation is to lower the energy as much

as possible by mesh re-distribution, and this is the key issue that differs the mesh

transformation method from the moving mesh method (see [6, 7] among many

others) where the mesh is redistributed according to the so called equi-distribution

principle for the numerical solution obtained. In application, the parameter α0 is

set initially to a value so that the value of Fq(ū
0, g0; α0, α1, α2) is comparable to

that of |F (ū0, g0; D)|, and is reduced gradually to zero in the minimizing process.

We have the following existence theorem for the regularized mesh transfor-

mation method (RMT) (see (3.6)):

Theorem 3.1. Let Th(D) be a regular triangulation of D. Suppose the elastic

energy density W (·, ·, ·) is continuous and satisfies the inequality

(3.7) C1 + C2‖∇u‖p
p ≤

∫

Ω

W (x, u(x),∇u(x)) dx

for all u ∈ U(u0; Ω) and for some constants C1 ∈ R1, C2 > 0 and p > 1. Then,

the discrete problem of the regularized mesh transformation method (3.6) has at

least one solution for any given parameter α1 ∈ [0, 1], α0 > 0, α2 > 0.

Proof. Noticing that for a given regular triangulation Th(D) the element volumes

are bounded both from below and above by a positive number, thus by the prop-

erty of the relative element volume control term Fq,r, we conclude that det∇gh

and (det∇gh)
−1 are bounded for a minimizing sequence. On the other hand, by

the inequality (3.7), a minimizing sequence of Fα in Uh(u0 ◦ gh; D) × Th(D) is

bounded. Thus, the conclusion of the theorem follows from the standard com-

pactness argument and the continuity of Fα which is a consequence of W (·, ·, ·)
being continuous. ¤

Theorem 3.2. For fixed α1 ∈ [0, 1] and α2 > 0, we have

(3.8) lim
α0→0+

inf
(ū,g)∈Uh(u0◦g; D)×Th(D)

Fα(ū, g; D) = inf
(ū,g)∈Uh(u0◦g; D)×Th(D)

F (ū, g; D).

Proof. For given ε > 0, let (ūh, gh) ∈ Uh(u0 ◦ gh; D)× Th(D) be such that

(3.9) F (ūh, gh; D) < inf
(ū,g)∈Uh(u0◦g; D)×Th(D)

F (ū, g; D) + ε.
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Since for fixed (ūh, gh), Fq(ūh, gh; α0, α1, α2) → 0 as α0 → 0, we have

(3.10) lim
α0→0+

Fα(ūh, gh; D) ≤ inf
(ū,g)∈Uh(u0◦g; D)×Th(D)

F (ū, g; D) + ε.

Since ε > 0 is arbitrary and Fq is non-negative, the inequality (3.10) implies the

equation (3.8). ¤

By the definition of Fα and the fact that Fq is non-negative, Theorem 3.2

implies that the solutions (uα
h , gα

h ) of (RMT) is a minimizing set and hence is also

a bounded set in Uh(u0 ◦ g; D)× Th(D) as α reduces to zero, that is

lim
α→0+

F (uα
h , gα

h ; D) = inf
(ū,g)∈Uh(u0◦g; D)×Th(D)

F (ū, g; D).

Since Uh(u0 ◦ g; D) × Th(D) is of finite dimension, we have, by extracting sub-

sequences, that (uα
h , gα

h ) converge to finite element solutions of (MTM). This

together with the approximation property of the mesh transformation method

[4, 5] show the convergence of the regularized mesh transformation method.

4. Numerical examples

Let Ω = D = (−1, 1)2, and let Th(D) be a family of regular triangulations

of D, where h = hN = 2
√

2/N with N ≥ 2, introduced by the lines




x = −1 + 2
N

i, 0 ≤ i ≤ N ;

y = −1 + 2
N

j, 0 ≤ j ≤ N ;

y = ±(x + 2− 4
N

k), 0 < k < N.

Let the energy functional F (u; Ω) be given by

(4.1) F (u; Ω) =
1

2

∫

Ω

|∇u|2 dx−
∫

Ω

f u dx,

and the admissible function space U(u0; Ω) be given by

(4.2) U(u0; Ω) = {u ∈ H1(Ω) : u = u0, on ∂Ω}.
Our numerical experiments showed that the numerical results are not very sen-

sitive to the choice of α1 and α2, however, a better choice can more efficiently

bring the mesh quality under control and at the same time leave enough room

for the mesh to be transformed. In the following numerical experiments, we set

the initial value of α0 to 10−2 and set α1 = 0.5, α2 = 103 in the mesh quality
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control term Fq(ūh, gh; α0, α1, α2), and we take p = 2 and s = 4 in (3.4), and since

the function f varies rapidly in Ω, we use a ten point quadrature rule on each

element to compute the integral
∫

Ω
fu dx to limit the inference of the quadrature

error. Even though the conjugate gradient method usually leads only to a local

optimal mesh distribution, numerical experiments show that the error can often

be significantly reduced.

Example 1. Let k > 0 and a > 0 be given constants. Let u0 = 0 and

(4.3) f(x, y) = −∆[(1− x2)(1− y2)(w2(ξ)− 1)],

where ∆ = ∂2/∂x2 + ∂2/∂y2, ξ = a(kx + y) and

(4.4) w(ξ) =
exp(ξ)− exp(−ξ)

exp(ξ) + exp(−ξ)
.

Then, u(x, y) = (1− x2)(1− y2)(w2(a(kx + y))− 1) is the minimizer of F (·; Ω)

in U(u0; Ω).

Figure 1 shows the convergence behavior of finite element solutions, where

er(F ) = er(F (v; Ω)) = |F (v; Ω) − F (u; Ω)|/|F (u; Ω)| is the relative error on the

value of the energy, and where F (u; Ω) is obtained by extrapolation on the nu-

merical results assuming that F (uh; Ω) − F (u; Ω) ≈ C1h
2 + C2h

3 + C3h
4. By

Figure 1 and (2.4), we see that |um
h − u|1,2 ≈ O(N−1), that is the energy norm of

the error is proportional to the inverse of the square root of the total number of

nodes in the mesh.

Fig. 2 shows the final mesh distribution for the case a = 4.0, k = 2.0 and

N = 30, and fig. 3 shows the corresponding finite element solution um
h , where

we see that the mesh is transformed to allow the finite element functions to have
larger variation in certain direction in a particular region which is in agreement

with the requirement of the energy minimizer.

Example 2. Let a > 0 and k > 0 be given constants. Let

(4.5) f(x, y) = −∆w(ξ),

where ∆ = ∂2/∂x2 + ∂2/∂y2, ξ = a(x2 + y2 − k2) and w(ξ) is defined by (4.4).

Let u0(x, y) = w(a(x2 + y2 − k2))− 1 for (x, y) ∈ ∂Ω. Then, u(x, y) = w(a(x2 +

y2 − k2))− 1 is the minimizer of F (·; Ω) in U(u0; Ω).
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Figure 4 shows the convergence behavior of finite element solutions for Ex-

ample 2, where we see again that the energy norm of the error is proportional to

the inverse of the square root of the total number of nodes in the mesh. We can

also see in Figure 4 that, as the parameter a increases, that is as the solutions

having sharper variants, the accuracy of the numerical results obtained on the

uniform meshes becomes poorer and poorer, while the accuracy of the numerical

results obtained by the regularized mesh transformation method is essentially

independent of the parameter a.

Fig. 5 shows the final mesh distribution for the case a = 12.0 and k = 0.5,

and fig. 6 shows the corresponding finite element solution um
h , where we see again

that the mesh is transformed to admit finite element functions which are more
flexible in certain directions in some particular region and that leads to a better

approximation of the energy minimizer.

2.5 3 3.5 4 4.5 5
−3.5

−3

−2.5

−2

−1.5

−1

log
10

(N2)

lo
g 10

(e
r(F

))

uniform mesh, a=5, k=1.2
uniform mesh, a=4, k=2.0
uniform mesh, a=2, k=4.0
uniform mesh, a=1, k=8.0
mesh transforamtion, a=5, k=1.2
mesh transforamtion, a=4, k=2.0
mesh transforamtion, a=2, k=4.0
mesh transforamtion, a=1, k=8.0

Figure 1. The convergence behavior of FEM solutions for Example 1
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Figure 2. A local optimal mesh for a = 4.0 and k = 2.0 for Example 1
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Figure 3. um
h for a = 4.0 and k = 2.0 for Example 1
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a=10, k=0.5 with uniform mesh
a=12, k=0.5 with uniform mesh
a=15, k=0.5 with uniform mesh
a=10, k=0.5 with mesh transforamtion
a=12, k=0.5 with mesh transforamtion
a=15, k=0.5 with mesh transforamtion

Figure 4. The convergence behavior of FEM solutions for Example 2

Remark 4.1. To reduce the error caused by the numerical quadrature, the size of

the elements where f and u vary rapidly should not be allowed to become too

large, the regularity control term Fq,r(g) plays an important role here.

Remark 4.2. How to find the global optimal mesh is an open problem. However,

in applications, it is not really necessary to find the global optimal mesh, a local

optimal mesh can usually reduce the error efficiently, as is shown in Figure 1 and

Figure 4.

Remark 4.3. As we see in the numerical results that the mesh transformation can
generate triangles with large angles, however, this will not lead to inconsistent

approximation as might happen in general if such triangles are not properly ori-

ented, since the mesh is optimized, at least locally, to reduce the approximation

error, which guarantees the approximation error in gradients are small.
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Figure 5. A local optimal mesh for a = 12.0 and k = 0.5 for Example 2
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Figure 6. um
h for a = 12.0 and k = 0.5 for Example 2
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