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Abstract. A convergence theory is established for a truncation method in
solving polyconvex elasticity problems involving the Lavrentiev phenomenon.
Numerical results on a recent example by Foss et al, which has a polyconvex
integrand and admits continuous singular minimizers, not only verify our con-
vergence theorems but also provid a sharper estimate on the upper bound of a
perturbation parameter for the existence of the Lavrentiev phenomenon in the
example.

1. Introduction

Let Ω ⊂ Rn be an open and bounded set. Let f : Ω × Rm × Rmn → R̄ =

R∪{+∞} be given. Then, the fundamental problem of the calculus of variations

can be informally described as minimizing the functional I : W 1,1(Ω; Rm) → R̄,

defined by

I(u) =

∫

Ω

f(x,u(x), Du(x))dx, (1.1)

over an admissible set of functions Ap = A ∩W 1,p(Ω; Rm) (p ∈ [1, +∞]) with A
being a prescribed subset of W 1,1(Ω; Rm). It is clear that the infimum infu∈Ap I(u)

is non-decreasing with respect to p. For many classical problems, the infimum

above is not affected by the value of p [13]. However, consider the example given

2000 Mathematics Subject Classification. 65K10,65N30,49A10.
Key words and phrases. truncation method, Lavrentiev phenomenon, polyconvex, conver-

gence, nonlinear elasticity.
The research was supported in part by the Special Funds for Major State Basic Research

Projects (2005CB321701), NSFC (10431050, 10571006 and 10528102) and RFDP of China.
† Corresponding author: Zhiping Li, email address: lizp@math.pku.edu.cn.

1



by Manià [21], of minimizing the integral functional

I(u) =

∫ 1

0

(u3 − x)2(u′)6 dx

in the admissible functions A = {u ∈ W 1,1(0, 1) : u(0) = 0, u(1) = 1}. We have

(i) The Lavrentiev phenomenon, that is

inf
u∈A∞

I(u) > inf
u∈A1

I(u). (1.2)

The occurrence of such a phenomenon was first discovered by Lavrentiev

for a different example in 1926 [15].

(ii) If {uj} ⊂ Ap, for some p > 3
2

and uj → û a.e. x ∈ (0, 1), where û = x
1
3 is

the absolute minimizer of I in A1, then [5]

lim
j→+∞

I(uj) = +∞. (1.3)

This is the so called repulsion property, which is commonly seen in the

problems exhibiting the Lavrentiev phenomenon.

Properties (i) and (ii) suggest that the standard finite element methods can nei-

ther detect the absolute minimizer nor determine the minimum value. Various
numerical methods for detecting singular minimizers have been developed in re-

cent years [2, 6, 16, 17, 18, 19] (see [7] for a survey and more references), and the

corresponding convergence theorems were proved for the case when the integrand

f is convex with respect to the deformation gradient Du.

It is of great practical interests that the phenomena also exist in nonlinear

elasticity problems. In fact, it has long been known that discontinuous equilib-

rium solutions exhibit the Lavrentiev phenomenon [3]. Recently, Foss et. al. [13]

gave examples of a family of nonlinear elasticity problems which have continuous

singular minimizers exhibiting the Lavrentiev phenomenon. In their examples,

the integrand f is polyconvex with respect to the deformation gradient Du, more

precisely, it is of the form f = fc + εfp with fc convex and fp polyconvex, and

it was shown that the Lavrentiev phenomenon exists when the parameter ε is no

greater than some upper bound ε0 [13].
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In the present paper, we generalize the theory developed in [2] and establish

a convergence theory for the truncation method for the case when f is polycon-

vex, which enables reliable applications of the truncation method to polyconvex

elasticity problems.

The rest of the paper is organized as follows. Some preliminary definitions and

results, which are useful in the convergence analysis of the method, are given in

Section 2. In Section 3, we establish the convergence theorems for the truncation

method for polyconvex integrands. In Section 4, we show numerical results on

the examples within the framework of two-dimensional nonlinear elasticity given

by Foss [13]. They not only verify our convergence theorems but also suggest

a sharper estimate on the upper bound of the perturbation parameter ε for the

existence of the Lavrentiev phenomenon.

2. Preliminary definitions and results

Let Ω ⊂ Rn be bounded and open. We first introduce some definitions

required for the formulation of a lower semicontinuity theorem.

Definition 2.1. A function g : Ω×Rm×Rk −→ R̄ is called L⊗B-measurable, if it

is measurable with respect to the σ-algebra generated by products of measurable

subsets of Ω and Borel subsets of Rm ×Rk.

Definition 2.2. A function g : Ω × Rm × Rk −→ R is called a Carathéodory

function, if

(i) g(·,u,v) is measurable for every u ∈ Rm, v ∈ Rk,

(ii) g(x, ·, ·) is continuous for almost every x ∈ Ω.

Definition 2.3. A sequence of functions gM : Ω × Rm × Rk −→ R̄ is said to

converge to g : Ω × Rm × Rk −→ R̄, locally uniformly in Ω × Rm × Rk, if there

exists a sequence of measurable subsets Ωl ⊂ Ω with measn(Ω\Ωl) → 0 as l →∞
such that, for each l ∈ N and any compact subset G ⊂ Rm ×Rk,

gM(x,u,v) → g(x,u,v) unifomly on Ωl ×G as M → +∞.

Throughout this paper ⇀ denotes sequential weak convergence. The follow-

ing theorem is a special case of a more general theorem given by Li in [20].

Theorem 2.1. Let 1 6 p 6 +∞ and let g : Ω×Rm ×Rk −→ R̄ satisfy
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(i) g(·, ·, ·) is a Carathéodory function,

(ii) g(x,u, ·) is convex,

(iii) g(x,u,v) > a(x), for some a(·) ∈ L1(Ω).

Let gM : Ω×Rm ×Rk −→ R satisfy

(a) gM(·, ·, ·) are L⊗B-measurable,

(b) gM → g locally uniformly in Ω×Rm ×Rk,

(c) gM(x,u,v) > b(x), for some b(·) ∈ L1(Ω).

Let {uM},u ∈ Lp(Ω; Rm) and {vM},v ∈ L1(Ω; Rk) be such that

uM → u in Lp(Ω; Rm) and vM ⇀ v in L1(Ω; Rk).

Then, ∫

Ω

g(x,u,v) dx 6 lim inf
M→+∞

∫

Ω

gM(x,uM,vM) dx.

Definition 2.4. [9] A function f : Rmn → R̄ is said to be polyconvex if there

exists g : Rτ(m,n) → R̄ convex, such that

f(P) = g(T(P)), (2.1)

where T : Rmn → Rτ(m,n) is given by T(P) = (P, adj2P, · · · , adjn∧mP).

In the preceding definition, adjsP stands for the matrix of all s× s minors of

the matrix P ∈ Rmn, 2 6 s 6 n ∧m = min{n,m}, and

τ(m,n) =
n∧m∑
s=1

σ(s), where σ(s) =
m!n!

(s!)2(m− s)!(n− s)!
.

Remark 2.1. Note that in the case m = n = 2, the notion of (2.1) can be read as

f(P) = g(T(P)) = g(P, detP).

We close this section with some results concerning the weak continuity of the

”adjs” functions [9].

Theorem 2.2. Let 1 < p < +∞, and uk ⇀ u in W 1,p(Ω; Rm).

(i) Let m,n > 2, 2 6 s 6 n ∧m and p > s, then

adjsDuk ⇀ adjsDu in (D′(Ω))σ(s).
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(ii) Let m,n > 2, 2 6 s 6 n ∧m and assume that

adjs−1Duk ⇀ adjs−1Du in (Lr(Ω))σ(s−1),

where r > 1 with 1
p

+ 1
r

6 1, then

adjsDuk ⇀ adjsDu in (D′(Ω))σ(s).

Remark 2.2. Under the assumption of Theorem 2.2, it is easily seen that, if

m,n > 2, p > n ∧ m, then, uk ⇀ u in W 1,p(Ω; Rm) implies adjsDuk ⇀

adjsDu in (L1(Ω))σ(s) for each 2 6 s 6 n ∧m.

3. The convergence theorems for the truncation method
for polyconvex integrands

Assume that the integrand f : Ω × Rm × Rmn → R̄ satisfies the following

hypotheses.

(H1) f(x,u, ·) is polyconvex for all (x,u) ∈ Ω×Rm, i. e. there exists a function

g : Ω × Rm × Rτ(m,n) → R̄ such that f(x,u,P) = g(x,u,T(P)) and

g(x,u, ·) is convex for all (x,u) ∈ Ω×Rm;

(H2) g(x,u,v) is a Carathéodory function;

(H3) There exists an a(·) ∈ L1(Ω) such that f(x,u,P) = g(x,u,T(P)) > a(x)

for all (x,u,T(P)) ∈ Ω×Rm ×Rτ(m,n);

(H4) Let dK(x) = sup|u|6K,|P|6K |f(x,u,P)|, then dK(·) ∈ L1(Ω).

By (H3), without loss of generality, we may assume that f is non-negative.

Let T h be a regular triangulation [8] of Ω with h being the mesh size and let

Ωh =
⋃

K∈T h K. Let A be a closed convex subset of W 1,1(Ω; Rm), and let Ah

be closed convex subsets of the finite element function spaces {u ∈ C(Ω; Rm) :

u|K is affine, ∀K ∈ T h} satisfying the W 1,p(Ω; Rm), 1 6 p 6 +∞, approximating

property, that is, for all u ∈ A ∩W 1,p(Ω; Rm), there exist uh ∈ Ah such that

uh → u in W 1,p(Ω; Rm), as h → 0;

and on the other hand, if the above convergence holds in weak topology for some

u ∈ W 1,p(Ω; Rm) and a sequence uh ∈ Ah, then we have u ∈ A.
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The application of the truncation method to computing the minimizer of I(·)
in Ap leads to the finite problem of minimizing

IM(uh) =

∫

Ω

fM(x,uh, Duh) dx (3.1)

in Ah, where the integrand f is replaced by certain slower growth truncation

functions fM on regions where the function uh, and especially its gradient Duh

is so large that the growth of the integrand may be out of control. In [2, 18],

the convergence results of the truncation method for the case when f is convex

were obtained for some specially designed truncation functions. With similar

techniques as used in [2], we establish below the convergence theorems of the

truncation method for the case when f is polyconvex.

Let {T hM}+∞
M=1 be a given family of regular triangulations of Ω with hM → 0

as M → +∞.

Lemma 3.1. Let 1 6 p < +∞. Let T̃ hM be subsets of T hM such that the sets

Ω̃hM
=

⋃
K∈eT hM K satisfy

lim
l→∞

measn(
+∞⋃

M=l

Ω̃hM
) = 0. (3.2)

Let the truncation function gM(x,u,T(P); p) = fM(x,u,P; p) be defined by

gM(x,u,T(P); p) =

{
g(x,u,T(P)), x ∈ Ω\Ω̃hM

,

min{αhM
(x)(1 + |P|p), g(x,u,T(P))}, x ∈ Ω̃hM

,

(3.3)

where αhM
(·) ∈ L∞(Ω) and αhM

> αhM
(x) > α1 > 0 a.e. in Ω. Then

(a) gM(·, ·, ·; p) are L⊗B-measurable;

(b) gM(x,u,T(P); p) > b(x), for some b(·) ∈ L1(Ω);

(c) gM → g locally uniformly in Ω×Rm ×Rτ(m,n).

Proof. Since both g(x,u,T(P)) and αhM
(x)(1+ |P|p) are Carathéodory functions

and hence L⊗B-measurable, it is not difficult to verify that gM(·, ·, ·; p) are L⊗B-

measurable.

If we define b(x) = min{a(x), α1}, then b(·) ∈ L1(Ω) and gM(x,u,T(P); p) ≥
b(x).
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To prove (c), let

Ωl = Ω\(
+∞⋃

M=l

Ω̃hM
). (3.4)

It is obvious that Ωl are measurable and Ωl ⊂ Ω. By (3.2) and (3.4), we have

measn(Ω \ Ωl) = measn(
+∞⋃

M=l

Ω̃hM
) → 0, as l → +∞.

It follows from (3.3) and (3.4) that, for each l,

gM(x,u,T(P); p) = g(x,u,T(P)), ∀x ∈ Ωl as long as M > l.

This completes the proof. ¤

Corollary 3.1. Let 1 6 p < +∞. Let gM be given by (3.3) with Ω̃hM
satisfying

(3.2). Define

IM(u; p) =

∫

Ω

fM(x,u, Du; p) dx =

∫

Ω

gM(x,u,T(Du); p) dx.

Let {uM},u ∈ W 1,p(Ω; Rm) be such that

uM → u in Lp(Ω; Rm), T(DuM) ⇀ T(Du) in L1(Ω; Rm), as M → +∞.

Then,

I(u) ≤ lim inf
M→+∞

IM(uM ; p).

Proof. The conclusion follows directly from Theorem 2.1 and Lemma 3.1. ¤

Definition 3.1. A function u ∈ W 1,p(Ω; Rm) (1 6 p < +∞) is said to be a

partial regular function with singular set E(u), if Du ∈ L∞(Ω \ F ; Rmn) for

any open set F ⊃ E(u), and Du /∈ L∞(G; Rmn) for any open set G such that

G ∩ E(u) 6= ∅.

In the remainder of this paper, we denote by E a set with zero n-dimensional

Lebesgue measure and finite (n − 1)-dimensional Hausdorff measure, especially

we always assume that the singular set E(u) in question satisfies measn E(u) = 0

and its (n− 1)-dimensional Hausdorff measure is finite.
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Definition 3.2. A sequence of sets Ω̃E
hM

=
⋃

K∈eT hM (E) K, where T̃ hM (E) ⊂ T hM ,

is called an admissible finite element covering of a given set E if there exist

0 < C2(hM) 6 C1(hM) satisfying
∑+∞

M=1 C1(hM) < +∞ such that

(D1) E ⊂ Ω̃E
hM

,

(D2) ∀K ∈ T̃ hM (E), dist(E, K) 6 C1(hM),

(D3) ∀K /∈ T̃ hM (E), dist(E, K) > C2(hM),

where dist(E, K) is the Euclidean distance between the two sets.

Definition 3.3. Let 1 6 p < +∞. A sequence of truncation functionals

IE
M(u; p) =

∫

Ω

fE
M(x,u, Du; p) dx =

∫

Ω

gE
M(x,u,T(Du); p) dx, (3.5)

where the truncation functions gE
M(x,u,T(Du); p) = fE

M(x,u, Du; p) are defined

by

gE
M(x,u,T(P); p) =

{
g(x,u,T(P)), x ∈ Ω\Ω̃E

hM
,

min{αhM
(x)(1 + |P|p), g(x,u,T(P))}, x ∈ Ω̃E

hM
,

(3.6)

with αhM
(·) ∈ L∞(Ω) and αhM

> αhM
(x) > α1 > 0 a.e. in Ω, is said to be

consistent with the set E if {Ω̃E
hM
} is an admissible finite element covering of E.

Lemma 3.2. Let 1 6 p < +∞. Let ũ ∈ W 1,p(Ω; Rm) be a partially regular

function with singular set E(ũ) ⊂ E and satisfy f(x, ũ, Dũ) ∈ L1(Ω). Let IE
M(·; p)

be consistent with the set E with {Ω̃E
hM
} being the corresponding admissible finite

element covering of E. Let uh ∈ Ah satisfy

uh → ũ in W 1,p(Ω; Rm), as h → 0, (3.7)

and be uniformly bounded in W 1,∞(Ω \ Ω̃E
hM

; Rm) for each M . Then, there exists

a non-increasing function M(ε) > 0, and a function h(ε,M) > 0 with h(·,M)

non-decreasing and h(ε, ·) non-increasing, such that, for all ε > 0,

|IE
M(uh; p)− I(ũ)| < ε, if M > M(ε) and 0 < h < h(ε,M). (3.8)
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Proof.

IE
M(uh; p)− I(ũ) =

∫

Ω

[fE
M(x, ũ, Dũ; p)− f(x, ũ, Dũ)]dx

+

∫

Ω

[fE
M(x,uh, Duh; p)− fE

M(x, ũ, Dũ; p)] dx

, I1(M) + I2(h,M).

By (3.6) and g(x,u,T(Du)) = f(x,u, Du), we have

|I1(M)| =

∣∣∣∣∣
∫
eΩE

hM

[fE
M(x, ũ, Dũ; p)− f(x, ũ, Dũ)] dx

∣∣∣∣∣

6 2

∫
eΩE

hM

|f(x, ũ, Dũ)| dx. (3.9)

It follows from f(x, ũ, Dũ) ∈ L1(Ω) that for any ε > 0, there exists a δ1(ε) > 0,

such that
∫

Ω′
|f(x, ũ, Dũ)|dx < ε, ∀Ω′ ⊂ Ω with measn(Ω′) < δ1(ε). (3.10)

Since the (n − 1)-dimensional Hausdorff measure of E is finite and {Ω̃E
hM
} is

an admissible finite element covering of E, we have limM→+∞ measn(Ω̃E
hM

) = 0.

Thus, by (3.9) and (3.10), there exists a non-increasing positive function M(·)
such that

measn(Ω̃E
hM

) < δ1(
ε

4
) and |I1(M)| < ε

2
, ∀M > M(ε). (3.11)

By (3.6), we have

I2(h,M) =

∫
eΩE

hM

[gE
M(x,uh,T(Duh); p)− gE

M(x, ũ,T(Dũ); p)] dx

+

∫

Ω\eΩE
hM

[g(x,uh,T(Duh))− g(x, ũ,T(Dũ))] dx

, I21(h,M) + I22(h,M).

To estimate I21(h,M), we first notice that, as a consequence of (3.7), |Duh|p are

equi-integrable on Ω, and thus, for any ε > 0 and given αhM
> α1 > 0, there
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exists a δ2(ε,M) > 0, such that, for any Ω′ ⊂ Ω, we have

∫

Ω′
αhM

|Duh|p dx < ε, ∀h > 0 if measn(Ω′) < δ2(ε,M). (3.12)

We claim that for any ε > 0, M > 0, there exists a h1(ε,M) > 0 with h1(·,M)

non-decreasing and h1(ε, ·) non-increasing, such that

|I21(h,M)| < ε

4
, ∀h ∈ (0, h1(ε,M)). (3.13)

Suppose otherwise. Then, there would be ε0 > 0, M0 > 0 and a decreasing

sequence {h0
j} with limj→+∞ h0

j = 0 such that |I21(h
0
j ,M0)| > ε0

4
for all j. By

(3.7), without loss of generality, we may assume

uh0
j
→ ũ and Duh0

j
→ Dũ a.e. in Ω,

and furthermore,

T(Duh0
j
) → T(Dũ) a.e. in Ω.

Thus, by (3.6) and (H2), we have

[gE
M0

(x,uh0
j
,T(Duh0

j
); p)− gE

M0
(x, ũ,T(Dũ); p)] → 0 a.e. x ∈ Ω. (3.14)

Let

G(ε0,M0, h
0
j) = {x ∈ Ω :

|gE
M0

(x,uh0
j
,T(Duh0

j
); p)− gE

M0
(x, ũ,T(Dũ); p)| > ε0

16 measn(Ω)
}.

By (3.14), there exists J0 = J(ε0,M0) > 0, such that

measn(G(ε0,M0, h
0
j)) < min{ ε0

16ᾱhM0

, δ1(
ε0

16
), δ2(

ε0

16
,M0)}, ∀j > J0. (3.15)
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As a consequence of (3.6), (3.10), (3.12) and (3.15), we have

|I21(h
0
j ,M0)| 6

∫
eΩE

hM0
∩G(ε0,M0,h0

j )

[
ᾱhM0

(1 + |Duh0
j
|p) + |f(x, ũ, Dũ)|

]
dx

+

∫
eΩE

hM0
∩(Ω\G(ε0,M0,h0

j ))

|gE
M0

(x,uh0
j
,T(Duh0

j
); p)− gE

M0
(x, ũ,T(Dũ); p)| dx

6 ε0

16ᾱhM0

ᾱhM0
+

ε0

8
+

ε0

16 measn(Ω)
measn(Ω \G(ε0,M0, h

0
j))

<
ε0

4
, ∀j > J0. (3.16)

This is a contradiction.

We also claim that for any ε > 0, M > 0, there exists h2(ε,M) > 0 with

h2(·,M) non-decreasing and h2(ε, ·) non-increasing, such that

|I22(h,M)| < ε

4
, ∀h ∈ (0, h2(ε,M)). (3.17)

Suppose otherwise. Then, there would be ε1 > 0, M1 > 0, and a decreasing

sequence {h1
j} with limj→+∞ h1

j = 0 such that |I22(h
1
j ,M1)| > ε1

4
for all j. By

(3.7), without loss of generality, we may assume that

uh1
j
→ ũ and Duh1

j
→ Dũ a.e. in Ω,

and

T(Duh1
j
) → T(Dũ) a.e. in Ω,

and thus, by (H2), we have

[g(x,uh1
j
,T(Duh1

j
))− g(x, ũ,T(Dũ))] → 0 a.e. x ∈ Ω. (3.18)

By (H4), and noticing that by assumption there exists a C(M1) > 0 such that

|uh(x)| 6 C(M1) and |Duh(x)| 6 C(M1) a.e. x ∈ Ω \ Ω̃E
hM1

, ∀h,

we have

|g(x,uh1
j
,T(Duh1

j
))− g(x, ũ,T(Dũ))| = |f(x,uh1

j
, Duh1

j
)− f(x, ũ, Dũ)|

6 dC(M1)(x) + |f(x, ũ, Dũ)| ∈ L1(Ω \ Ω̃E
hM1

). (3.19)
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It follows from (3.18), (3.19) and the dominated convergence theorem [14] that

lim
j→+∞

|I22(h
1
j ,M1)| = 0.

This is a contradiction.

Now, (3.8) follows as a consequence of (3.11), (3.13) and (3.17) by setting

h(ε,M) = min{h1(ε,M), h2(ε,M), hM}. This completes the proof. ¤

Theorem 3.1. Let 1 6 p < +∞. Let

Ap
E = {u ∈ Ap : u is a partially regular function with singular set E(u) ⊂ E}.

(3.20)

Let IE
M(·; p) be consistent with the singular set E with {Ω̃E

hM
} being the correspond-

ing admissible finite element covering of E. Then, there exists a non-increasing

function M(ε) > 0, and a function h(ε,M) > 0 with h(·,M) non-decreasing and

h(ε, ·) non-increasing, such that, for all ε > 0,

inf
uh∈Ah

IE
M(uh; p) < inf

u∈Ap
E

I(u) + 2ε, if M > M(ε) and 0 < h < h(ε,M). (3.21)

Proof. Without loss of generality, we assume that, for any ε > 0, there exists a

ũε ∈ Ap
E such that

I(ũε) < inf
u∈Ap

E

I(u) + ε < +∞. (3.22)

Extending ũε to W 1,p
0 (Rn; Rm) by the extension theorem for Sobolev spaces [1],

recalling that ũε ∈ W 1,∞(Ω \ F ; Rm) for any open set E ⊂ F ⊂ Ω, we may

assume that ũε ∈ W 1,∞(Rn \F ; Rm) for any open set E ⊂ F ⊂ Rn. Thus, by the

denseness of smooth functions in W 1,p
0 (Rn; Rm) [1] and the standard finite ap-

proximation theories [8], there exist uε
h ∈ Ah such that uε

h are uniformly bounded

in W 1,∞(Ω \ Ω̃E
hM

; Rm) for each M and

uε
h → ũε in W 1,p(Ω; Rm), as h → 0.

Hence, from Lemma 3.2 and (3.22), the conclusion of the theorem follows. ¤

Our main results are the following two theorems, which, briefly speaking,

conclude that the truncation method converges in the case when the absolute

minimizer exists (Theorem 3.2), and it leads to a minimizing sequence if the

infimum is unattainable (Theorem 3.3).
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Theorem 3.2. Suppose that û ∈ W 1,q(Ω; Rm) (1 6 q < +∞) is a minimizer of

I(·) in Ap (q > p > n ∧m) and û ∈ Ap
E (see (3.20)). Let {εj} be a decreasing

sequence with limj→∞ εj = 0. Let IE
M(·; p) be consistent with the set E, with

{Ω̃E
hM
} being the corresponding admissible finite element covering of E. Then

(1) There exist a non-increasing function M(ε) > 0 and a function h(ε,M) >

0 with h(·,M) non-decreasing and h(ε, ·) non-increasing such that

inf
u∈Ah

IE
M(u; p) < I(û) + εj, ∀M > M(εj) and ∀h ∈ (0, h(εj,M)), (3.23)

and, for all M > M(εj) and 0 < h 6 h(εj,M), there exist u
εj

h ∈ Ah such that

u
εj

h are uniformly bounded in W 1,∞(Ω \ Ω̃E
hM

; Rm) for each M and

IE
M(u

εj

h ; p) < I(û) + 2 εj, ∀M > M(εj) and ∀h ∈ (0, h(εj,M)). (3.24)

(2) Let Mj > M(εj), 0 < hj 6 h(εj,Mj). Let ūj ∈ Ahj be minimizers

of IE
Mj

(·; p) in Ahj . Suppose that the sequence {ūj}+∞
j=1 is sequentially weakly

precompact in W 1,r(Ω; Rm) for some p 6 r 6 q. Then, there exists a function

ū ∈ Ar, and a subsequence of {ūj}+∞
j=1, again denoted by {ūj}+∞

j=1, such that

ūj ⇀ ū in W 1,r(Ω; Rm), (3.25)

and

I(ū) = inf
u∈Ap

I(u) = lim
j→+∞

IE
Mj

(ūj; p). (3.26)

Proof. The conclusion (1) of the theorem follows from a similar argument as in

the proof of Theorem 3.1.

(3.25) is a consequence of the sequentially weak precompactness of the se-

quence {ūj}+∞
j=1, and it follows from the approximating property of Ah that

ū ∈ Ar. Because of r > p > n ∧m, we can use Theorem 2.2 to obtain

T(Dūj) ⇀ T(Dū), in L1(Ω; Rτ(m,n)).

Then, by Corollary 3.1, we have

I(ū) 6 lim inf
j→+∞

IE
Mj

(ūj; p). (3.27)
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On the other hand, by (3.23), we have

IE
Mj

(ūj; p) = inf
u∈A

hj

IE
Mj

(u; p) < I(û) + εj,

and thus,

lim sup
j→+∞

IE
Mj

(ūj; p) 6 I(û) = inf
u∈Ap

I(u). (3.28)

This, and (3.27) lead to (3.26). ¤

Remark 3.1. When r > 1, the boundedness of {ūj}+∞
j=1 in W 1,r(Ω; Rm) implies

that the sequence is sequentially weak precompact in W 1,r(Ω; Rm).

Theorem 3.3. Let (n ∧m) < p < +∞. Let {Li}+∞
i=1 be an increasing sequence

satisfying limi→+∞ Li = +∞. Define

Ap(Li) = {u ∈ Ap : |u|p1,p 6 Li}, (3.29)

Ap
h(Li) = {u ∈ Ah : |u|p1,p 6 Li}. (3.30)

For each i ∈ N , suppose that ûi ∈ Ap
E (see (3.20)) is a minimizer of I(·) in

Ap(Li). Let {εj} be a decreasing sequence with limj→∞ εj = 0. Then, for each

i ∈ N ,

(1) There exist a non-increasing function M(ε) > 0 and a function h(ε,M) >

0 with h(·,M) non-decreasing and h(ε, ·) non-increasing such that

inf
u∈Ap

h(Li)
IE
M(u; p) < I(ûi) + εj, if M > M(εj) and 0 < h 6 h(εj,M). (3.31)

(2) Let Mj > M(εj), 0 < hj 6 h(εj,Mj). Let ūi
j ∈ Ap

hj(Li) be minimizers of

IE
Mj

(·; p) in Ap
hj(Li). Then there exist a function ūi ∈ Ap(Li) and a subsequence

of {ūi
j}+∞

j=1, again denoted by {ūi
j}+∞

j=1, such that

ūi
j ⇀ ūi in W 1,p(Ω; Rm), as j → +∞,

and

I(ūi) = inf
u∈Ap(Li)

I(u) = lim
j→+∞

IE
Mj

(ūi
j; p). (3.32)

(3) There exists a non-decreasing function j(i) satisfying limi→+∞ j(i) = +∞
such that

inf
u∈Ap

I(u) = lim
i→+∞

I(ūi) = lim
i→+∞

IE
Mj(i)

(ūi
j(i); p). (3.33)
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Proof. For each i ∈ N , the conclusion (1) and (2) of the theorem follow from

a similar argument as in the proof of Theorem 3.2. The conclusion (3) of the

theorem follows from (3.29) and (3.32). ¤

Remark 3.2. The singular set E(u) for an absolute minimizer is usually not known

in advance when the Lavrentiev phenomenon is involved, and thus it needs to

be decided in the process of computation by taking some initial guesses and

comparing the numerical results thus produced. An element is finally taken into

the set Ω̃E
hM

, if the inclusion leads to a substantial increase of the gradient of

the numerical solution on the element in the minimizing process, otherwise it is

removed from the initial guess. How to find efficiently a good initial guess is an

open problem. Fortunately, in applications, E(u) is usually contained in a set E

where the standard finite element solutions have large derivatives.

Remark 3.3. The approximating property of the finite element function spaces

Ah to A is easily satisfied in applications. Especially, it covers problems with

Dirichlet boundary conditions and the examples in nonlinear elasticity given by

Foss et. al. [13], which are used in our numerical experiments shown in the next

section.

4. Numerical results on examples in nonlinear elasticity

For the convenience of the reader, we first review some theoretical results of

Foss et. al. [13] on some problems of nonlinear elasticity exhibiting the Lavrentiev

phenomenon.

4.1. Examples in nonlinear elasticity [13]. Consider the stored energy den-

sity W0 : Lin(R2; R2) → R defined by

W0(P) = [‖P‖2 − 2 det P]4, (4.1)

where ‖P‖2 = tr(PPT ) and Lin(R2; R2) denotes the set of linear operators from

R2 to R2, and consider another stored energy density Wε,κ : Lin+(R2; R2) → R,

which is a perturbation of W0, defined by

Wε,κ(P) = W0(P) + ε
[ κ

det P
+ 3

2−κ
2 (1 + ‖P‖)κ

2

]
, (4.2)

where Lin+(R2; R2) is a subset of Lin(R2; R2) with elements of positive determi-

nant. Foss et. al. [13] showed the following results:
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Theorem 4.1. Let W0 given by (4.1), then

(a0) W0 ∈ C∞(Lin(R2; R2); R) is materially homogeneous, frame-indifferent

and isotropic;

(b0) W0 is convex over Lin(R2; R2) and W0(P) > 0 at each P ∈ Lin(R2; R2).

Let Wε,κ be given by (4.2), then, for all ε > 0 and κ > 2,

(aε,κ) Wε,κ ∈ C∞(Lin+(R2; R2); R) is materially homogeneous, frame-indifferent

and isotropic;

(bε,κ) Wε,κ is polyconvex and Wε,κ(P) > ε‖P‖κ, ∀P ∈ Lin+(R2; R2);

(cε,κ) Wε,κ(P) → +∞ as detP → 0+.

Consider the reference and deformed configuration of the form

Ωα = {x ∈ R2 : r(x) < 1 and ϑ(x) ∈ (0, α)}
for α ∈ (0, 2π), where r(x) and ϑ(x) are the magnitude and the polar angle of

the vector x ∈ R2 respectively. Partition the boundary of Ωα as follows:

Γ1, α = {x ∈ ∂Ωα : r(x) 6 1 and ϑ(x) = α};
Γ2, α = {x ∈ ∂Ωα : r(x) 6 1 and ϑ(x) = 0};
Γ3, α = {x ∈ ∂Ωα : r(x) = 1}.

θ 

0.5θ

Ωπ 
u(Ωπ) 

Γ
1,π

Γ
2,π 

Γ
3,π 

u(Γ
1,π )

u(Γ
2,π ) 

u(Γ
3,π ) 

u 

Figure 1. The boundary conditions (BCπ, π
2
).

A mapping u ∈ C(Ω̄π; R2) is said to satisfy the boundary conditions (BCπ, π
2
) if

(see Figure 1)

(1π, π
2
) u(Γ1, π) = Γ1, π

2
;

(2π, π
2
) u(Γ2, π) = Γ2, π

2
;

(3π, π
2
) r(u(x)) = 1 and ϑ(u(x)) = 1

2
ϑ(x), ∀x ∈ Γ3, π.
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Consider the admissible deformations of the form

A1
π, π

2
= {u ∈ W 1,1(Ωπ; R2) ∩ C(Ω̄π; R2),

u satisfies (BCπ, π
2
) and det Du(x) > 0 x ∈ Ωπ}. (4.3)

It is easily seen that for 1 6 p 6 +∞
Ap

π, π
2

= A1
π, π

2
∩W 1,p(Ωπ; R2).

Define the functional I0(u) : W 1,1(Ωπ; R2) → R̄ by

I0(u) =

∫

Ωπ

W0(Du(x)) dx. (4.4)

For ε > 0 and κ > 2, define Iε,κ(u) : W 1,1(Ωπ; R2) → R̄ by

Iε,κ(u) =

∫

Ωπ

Wε,κ(Du(x)) dx. (4.5)

The following theorem shows that I0 and Iε,κ exhibit the Lavrentiev phenomenon

(see [13] for more general results).

Theorem 4.2. If p1, p2 ∈ [1, +∞] satisfy p1 < 4 < p2, then

(1)

inf
u∈Ap2

π, π
2

I0(u) ≥ I0(upm(x)) =

(
2

7

)7

π > 0 = I0(uam(x)) = inf
u∈Ap1

π, π
2

I0(u),

where uam ∈ Aq1

π, π
2

with q1 ∈ [1, 4) and upm ∈ Aq2

π, π
2

with q2 ∈ [4, 28
3
) are

given respectively by

uam(x) = r(x)
1
2

(
cos(1

2
ϑ(x))

sin(1
2
ϑ(x))

)
,

upm(x) = r(x)
11
14

(
cos(1

2
ϑ(x))

sin(1
2
ϑ(x))

)
.

(2) If 2 6 κ < 4 and 0 < ε < επ, π
2
,κ =

(
2

7

)7

(Fk(uam))−1, we have

inf
u∈Ap2

π, π
2

Iε,κ(u) > inf
u∈Ap1

π, π
2

Iε,κ(u),
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where Fk(uam) =
∫

Ωπ

[
κ

det Duam
+ 3

2−κ
2 (1 + ‖Duam‖)κ

2

]
dx.

4.2. Some tips for the numerical experiments. According to the conver-

gence theory developed in section 3, in a numerical experiment, we need to de-

termine hM , αhM
and Ω̃E

hM
, where M is only a index which we do not really need

to take too much care. We summarize our experience as follows, which may be

helpful to the readers:

(1): The size of hM should be taken to balance the precision and cost of

the numerical computation. Since that, in general, the structure of the

singular set E is not known, we need to compare the numerical results

obtained with different hM to see if the numerical singular sets converge.

(2): In our numerical experiments, the initial guess of Ω̃E
hM

is determined

by including into the set the elements on which the numerical solution ob-

tained by the standard finite element method has large derivatives. Then,

after applying the truncation method, the set Ω̃E
hM

is modified by removing

the elements where the truncation solution derivatives drop and adding

in the elements where the truncation solution derivatives increase signif-

icantly. Further modification of the set Ω̃E
hM

can be made by comparing

the truncation solution derivatives on each element with the derivatives of
the truncation solutions obtained on a refined mesh, removing or adding

in an element according to the tendency of the growth of the derivatives.

The modification process usually needs to be repeated a few times before

a stable set Ω̃E
hM

is finally obtained. Even though there is no theory to

guarantee that this works in general, numerical experiments showed that

it worked well on known examples exhibiting the Lavrentiev phenomenon.

(3): The choice of αhM
is crucial to the accuracy and efficiency of the com-

putation. It is obvious that the truncation method does not work, if αhM

is too large. On the other hand, if αhM
is too small, then the derivatives

of the truncation solution may have a very big jump across the boundary

of the set Ω̃E
hM

. The general principle is to lower the minimum energy of

IE
M while keeping certain smoothness of the numerical solution uh. The

determination of αhM
can usually be combined with a process of numeri-

cally estimating the leading order of the singularity of the minimizer uh,
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which involves constructing in a superset of Ω̃E
hM

a function with certain

form of singularity and applying the least square method to the discrete

data of uh to fit the parameters in the function, the value of αhM
is fi-

nally taken to be the one which produces the least difference between the

discrete data of uh and the fitted singular function.

4.3. Numerical results. First, we describe the triangulations used in our nu-

merical experiments. Given positive integers NM and LM , let rM
i = i

NM
(i =

0, 1, · · · , NM) and θM
i,j = jπ

iLM
(i = 0, 1, · · · , NM , j = 0, 1, · · · , iLM). The triangu-

lation points are defined by xM
i,j = (xM

1,i,j , xM
2,i,j), where xM

1,i,j = rM
i cos(θM

i,j) and

xM
2,i,j = rM

i sin(θM
i,j) (i = 0, 1, · · · , NM and j = 0, 1, · · · , iLM). Then the trian-

gulation T hM , with hM being the maximum diameter of triangulation units, are

obtained by connecting these points as shown in Figure 2, where NM = 5 and

LM = 3. On such triangulations, in consistent with the admissible deformation

defined by (4.3), we define the admissible set of finite element functions

AhM
= {u ∈ C(Ω̄π; R2) : u|K is affine,∀K ∈ T hM , and

u satisfies (BCπ, π
2
) and det Du(x) > 0 a.e. x ∈ Ωπ}.

Figure 2. The 5× 3 mesh of Ωπ, i.e. NM = 5, LM = 3.

Our numerical experiments on I0 show that typical numerical solutions ob-

tained by the standard finite element methods have large derivatives near the

point xM
0,0 = (0, 0) and on the line segments xM

1,jx
M
1,j+1 for j = 0, 1, · · · , LM − 1

(see Figure 3). Hence the truncation region is initially set to be Ω̃E
hM

= {K ∈
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T hM : xM
1,jx

M
1,j+1 ⊂ K̄ or xM

0,0 ∈ K̄}. Let IE
M(u; p) be given by (3.5) and (3.6)

with αhM
(x) > α1 = 10−10 for all x ∈ Ω̃E

hM
. For simplicity, αhM

(x) is taken to be

constant ᾱhM
for all x ∈ Ω̃E

hM
. After some iterations with the truncation method,

the norm of the gradient near the origin E = {(0, 0)} increases dramatically,

while it keeps steady and even drops elsewhere. Our numerical experiments show

that, at least in our examples, h = hM is sufficient to guarantee convergence

of the algorithm, i.e., there is no need for further mesh refinement as might be

expected by the general convergence theory given in Section 3. A post process

with further iterations in which the truncation region is adaptively readjusted to

Ω̃E
hM

= {K ∈ T hM : xM
0,0 ∈ K} and uhM

(x1,j) (j = 0, 1, · · · , LM) are kept fixed,

in other words, the function uhM
is kept fixed on the new truncation region Ω̃E

hM
,

effectively accelerated the convergence.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

u
1
(x

1
, x

2
)

u 2(x
1,x

2)

p=5.0, truncation 

p=1.2, truncation 

standard finite element 

Figure 3. The numerical solutions produced by the standard
finite element method and the truncation method for p = 1.2, 5.0
with N1 = L1 = 5.

The numerical results clearly indicate that the minimizer has a point singu-

larity at the origin. Notice that the nodal values of the numerical solutions uhM

along the LM + 1 lines in radius directions ϑ(x) = θM
1,j (j = 0, 1, · · · , LM) are

uhM
(rM

i cos(θM
i,i×j), r

M
i sin(θM

i,i×j)) and θM
i,i×j = θM

1,j for i = 1, 2, · · · , NM . To get a
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better description of the singularity, we assume that, for each j = 0, 1, · · · , LM ,

the leading term of the singularity has the form γθM
1,j

r(x)
s
θM
1,j , and evaluate

γθM
1,j

> 0 and sθM
1,j

∈ (0, 1) by the least square method using the values of

{uhM
(rM

i cos(θM
i,i×j), r

M
i sin(θM

i,i×j))}k
i=1 near the singular set E = {(0, 0)}, and

the truncation parameter ᾱhM
are taken so that the sum of the l2-error between

uhM
and γθM

1,j
r(x)

s
θM
1,j on {(rM

i cos(θM
i,i×j), r

M
i sin(θM

i,i×j))}k
i=1 is minimized, where

k ≤ NM is a given integer. In our numerical experiments we set k = 3. We notice

that the numerical results are not very sensitive to the parameter ᾱhM
.

0 0.2 0.4 0.6 0.8 1
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0.4
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r(
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0.03
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p=1.2, solution r1/2

20× 5 truncation, p=1.2 

5× 5 truncation, p=1.2 

20× 5 truncation, p=5.0

5× 5 truncation, p=5.0 

p=5.0, solution r11/14 

20× 5 standard 

5× 5 standard 

p=5.0, solution r11/14 

p=1.2, solution r1/2

20× 5 truncation, p=1.2 

5× 5 truncation, p=1.2 

20× 5 truncation, p=5.0

5× 5 truncation, p=5.0 

5× 5 standard 

20× 5 standard 

Figure 4. The numerical solutions r(uhM
(x)) (M = 1, 3) on

ϑ(x) = 0.4π for I0 and p = 1.2, 5.0.

Some numerical results for I0 are shown in Figure 3 - 5. The numerical

solutions uh1 produced by the truncation method with N1 = L1 = 5 and the

optimal truncation parameter ᾱh1 = 2 × 10−6 for p = 1.2, ᾱh1 = 5 × 10−4 for

p = 5.0 respectively are shown in Figure 3. For N3 = 20 and L3 = 5, the

optimal truncation parameter ᾱh3 obtained by our numerical experiments are

ᾱh3 = 3 × 10−6 for p = 1.2 and ᾱh3 = 1.5 × 10−3 for p = 5.0 respectively. The

numerical solutions r(uhM
(x)) (M = 1, 3), produced by the truncation method

and the standard finite element method, on a radius line ϑ(x) = 0.4π are shown

in Figure 4, where the Lavrentiev gap in singularity can be easily spotted. The
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convergence behavior of the truncation method for I0 with respect to NM for

p = 1.2 and p = 5.0 is shown in Figure 5. We point out here that the numerical

experiments show that the convergence behavior of the algorithm is essentially

the same for various LM . This is not surprising, since the solution of the problem

is linear in θ in the polar coordinates (see Theorem 4.2).
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Figure 5. Convergence rates of the truncation method for I0,
p = 1.2 and p = 5.0 with the minimizer uam and upm respectively.

For the case of Iε,κ, we take p = 2.2 and 5.0 respectively, when the stored

energy density Wε,κ is polyconvex, and we take κ = 3. Thus, according to the

theory of Foss et. al. [13] (see Theorem 4.2), Iε,3 should exhibit the Lavrentiev

phenomenon for ε satisfying 0 < ε < επ, π
2
,3 ≈ 3.19137× 10−5. This is verified by

our numerical experiments with the truncation method using the same techniques

as is described above for the case of I0, which suggests that the perturbation upper

bound can be improved from επ, π
2
,3 to εnum

π, π
2
,3 ≈ 0.02. In Figure 6 the numerical

solutions uh1,ε (N1 = L1 = 5) for Iε,3 with ε = 10−5 produced by the truncation

method using ᾱh1 = 2× 10−6 for p = 2.2, ᾱh1 = 5× 10−4 for p = 5.0 respectively

are shown. For N2 = 10 and L2 = 5, the numerical solutions uh2 = uh2,0 and

uh2,ε with ε = 10−7, 10−5, 10−3 for Iε,3 are produced by the truncation method

using ᾱh2 = 9 × 10−7 for p = 2.2, and the numerical results of r(uh2,ε(x)) on

the radius line ϑ(x) = 0.4π are shown in Figure 7, where it is clearly seen that
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the Lavrentiev gap increases as the parameter ε decreases. For p = 5.0, similar

numerical results can be obtained.
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Figure 6. The numerical solution uh1,10−5 of I10−5,3 produced by
the standard finite element method and the truncation method for
p = 2.2, 5.0 with N1 = L1 = 5.
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Figure 7. The numerical solutions r(uh2,ε(x)) on ϑ(x) = 0.4π
for Iε,3 with ε = 0, 10−7, 10−5, 10−3 and p = 2.2.
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The order of singularity of the numerical solutions r(uhM , ε(x)) can be esti-

mated in the same way as is described for the case of I0. The numerical results for

p = 2.2 and 5.0 on the radius line ϑ(x) = 0.4π are shown in Figure 8. Assuming

that the numerical order of singularity s{NM} converges to the order of singularity

s in such a way that

s{NM} ≈ s + a1N
−b1
M + a2N

−b2
M

and setting b1 = 1.25, b2 = 2.25 for p = 2.2 and b1 = 2.5, b2 = 3.5 for p = 5.0,

as we found the data is thus fitted reasonably well. We use our numerical results

on s{NM} and the least square method to approximately describe the convergence

behavior and especially to approximately obtain the singular order s for various

ε and p = 2.2, 5.0. The numerical results thus obtained are shown in Table 1,

where we see that as ε → 0 the estimated order of singularity s decreases nicely to

about 1
2

(for p = 2.2) and 11
14
≈ 0.7857 (for p = 5.0) respectively, which are exactly

the orders of singularity of uam and upm (see Theorem 4.2). The numerical values

of (Iε,3)
E
2 for various ε with E = {(0, 0)}, p = 2.2, 5.0 and N2 = 10, L2 = 5 are

shown in Figure 9, where we see that the Lavrentiev gap exists for ε satisfying

0 < ε < εnum
π, π

2
,3 ≈ 0.02 and is gradually squeezed to a point as ε approaches εnum

π, π
2
,3.
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Figure 8. The numerical order of singularity of r(uhM ,ε(x)) on
ϑ(x) = 0.4π for various ε. Left is for p = 2.2, right for p = 5.0.
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Figure 9. The numerical values of (Iε,3)
E
2 for various ε with

E = {(0, 0)}, p = 2.2, 5.0 and N2 = 10, L2 = 5.

Table 1. The coefficients of the fitting function of the order of
singularity of the numerical solutions for p = 2.2, 5.0.

ε p = 2.2 p = 5.0

s a1 b1 a2 b2 s a1 b1 a2 b2

10−3 0.6284 2.2056 1.25 -6.8068 2.25 0.7946 5.2266 2.5 -16.3448 3.5

10−4 0.5319 2.2176 1.25 -6.5984 2.25 0.7887 2.9044 2.5 -5.4808 3.5

10−5 0.5143 1.0801 1.25 -2.6018 2.25 0.7873 3.3044 2.5 -7.3331 3.5

10−6 0.5093 0.2499 1.25 0.0861 2.25 0.7866 3.4785 2.5 -8.0505 3.5

10−7 0.5017 0.2027 1.25 -0.5331 2.25 0.7860 3.5408 2.5 -8.8179 3.5

10−8 0.4968 0.2542 1.25 -0.8198 2.25 0.7859 3.5501 2.5 -8.8235 3.5
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