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Abstract. A numerical method called element removal method is applied to calculate singular minimiz-
ers in problems of hyperelasticity. The method overcomes the difficulty in finite element approximations
caused by restrictions, such as det(I + ∇u) > 0, on admissible functions and can avoid Lavrentiev
phenomenon if it does occur in the problem. The convergence of the method is proved.

1. Introduction

In this paper, I apply a numerical method called element removal method, which was designed to
tackle singular minimizers in variational problems involving Lavrentiev phenomenon,1 to solve the
boundary value problems of hyperelasticity which can be given by the problem of minimizing

I(u) =
∫

Ω

W (x, I +∇u) dx−
∫

Ω

f · u dx−
∫

∂Ω1

g · udx (1.1)

in the set of admissible functions

A = {u ∈ W1,p(Ω) :adj(I +∇u) ∈ Lq(Ω), det(I +∇u) ∈ Lr(Ω),

det(I +∇u) > 0, a.e. in Ω, u = u0 on ∂Ω0} (1.2)

where Ω ⊂ R3 is a bounded open set with Lipschitz continuous boundary ∂Ω = ∂Ω0 ∪ ∂Ω1 with
area(∂Ω0) > 0; W1,p(Ω) = (W 1,p(Ω))3,Lq(Ω) = (Lq(Ω))3×3; and where W : Ω̄ × R3×3 → R, the
stored energy function of the hyperelastic material in question, satisfies the following hypotheses

(H1) Polyconvexity: There exists a continuous function G : Ω̄ × R9 × R9 × R+ → R such that
G(x, ·, ·, ·) is convex and

W (x, F ) = G(x, F, adj F, det F ), ∀F ∈ M3
+
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where adj F is the cofactor matrix of F , det F is the determinant of F , and M3
+ = {3 ×

3 matrices with positive determinant };
(H2) Coerciveness: There exist constants p ≥ 2, q ≥ p

p−1 , r > 1 and c1 ∈ R, c2 > 0 such that

G(x, F, H, δ) ≥ c1 + c2(‖F‖p + ‖H‖q + δr), for F,H ∈ M3
+, δ > 0;

(H3) Behavior as det F → 0+: For any sequence Fn,Hn ∈ M3
+, δn > 0,

G(x, Fn,Hn, δn) → +∞, if ‖Fn‖+ ‖Hn‖+ δn → +∞,

or δn → 0+ as n →∞;

and where f, g are in such function spaces that the functionals

(f, u) =
∫

Ω

f · u dx,

and
(g, u) =

∫

∂Ω1

g · u dx

are continuous in W1,p(Ω).
The existence of an absolute minimizer of I(·) in A was established by Ball.2,3 The finite ele-

ment method for the problem was investigated by Li.4 But in,4 the convergence result was proved
under certain additional hypothesis on the stored energy function W , the growth condition, and
certain regularity conditions on minimizers. These additional conditions may not be removed when
a standard finite element method is applied to solve the problem, because the restrictions such
as det(I + ∇u) > 0 can not be guaranteed to be satisfied by finite element approximations to a
function in A, even if the minimizers does not have Lavrentiev phenomenon. However, with the
element removal method, which is described in §2, the convergence result can be obtained without
any additional hypothesis other than (H1)-(H3) (see §3).

2. Description of the Method

To avoid the difficulty in finite element approximations caused by the restriction det(I +∇u) > 0
and singularities of a function in A, a modified restriction on the admissible set of functions in finite
element function spaces is to be introduced.

Let
φ̂(δ) = min

(x,F,H)∈Ω̄×R9×R9
G(x, F, H, δ). (2.1)

By (H1)–(H3), φ̂ is a well defined continuous function on R1
+ satisfying

lim
δ→0+

φ̂(δ) = +∞,

lim
δ→+∞

φ̂(δ) = +∞.

For fixed M > 1, let δ̄M ∈ (0, 1
M ], δ̃M ∈ [M, +∞) be such that

φ̂(δ̄M ) = min
0<δ≤ 1

M

φ̂(δ),

φ̂(δ̃M ) = min
δ≥M

φ̂(δ).
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Let

φ̄M (δ) =





minδ′≥δ φ̂(δ′), if δ > δ̃M ,

φ̂(δ), if δ̄M ≤ δ ≤ δ̃M ,

min0<δ′≤δ φ̂(δ′), if 0 < δ ≤ δ̄M .

It is easy to varify that φ̄M is a continuous function on R1
+, and it is nonincreasing on (0, δ̄M ) and

nondecreasing on (δ̃M , +∞), and satisfies

φ̄M (δ) ≤ φ̂(δ), ∀δ > 0, (2.2)

φ̄M (δ) → +∞, as δ → 0+,

φ̄M (δ) → +∞, as δ → +∞.

Let

φM (δ) =





φ̄M (δ̃M ), if δ ≥ δ̃M ,

φ̄M (δ), if δ̄M ≤ δ ≤ δ̃M ,

φ̄M ( δ̄M

k (1 + (k − 1) exp(δδ̄−1
M − 1)), if δ ≤ δ̄M .

where k > 1 is a constant. It is easy to show that φM : R1 → R1 is a bounded continuous function,
and it is nonincreasing on (−∞, δ̄M ) and satisfies

φM (δ) ≤ φ̄M (δ), ∀δ > 0, (2.3)

φM (δ̄M ) = φ̄M (δ̄M ), (2.4)

φM (0) = φ̄M (
1
k

(1 + (k − 1) e−1)δ̄M ), (2.5)

φM (δ) → φ̄M (
1
k

δ̄M ), as δ → −∞. (2.6)

For each fixed M > 0 define ΦM : W 1,p(Ω) → R1 by

ΦM (u) =
∫

Ω

(|∇u|p + φM (det(I +∇u))) dx. (2.7)

Then, for u ∈ A, by (2.1)–(2.3), (H1), (H2) and (H3)

ΦM (u) ≤ |u|p1,p +
∫

Ω

W (x, I +∇u) dx

≤ C1 + C2|u|p1,p + I(u), (2.8)

where C1 > 0, C2 > 0 are constants independent of u and M .

Lemma 2.1. ΦM : W 1,p(Ω) → R1 is continuous.

Proof. Suppose otherwise, i.e. there is a function u ∈ W 1,p(Ω) and a sequence of functions un ∈
W 1,p(Ω) such that

un −→ u, in W 1,p(Ω),

but
|ΦM (un)− ΦM (u)| > ε0
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for a constant ε0 > 0 and all n ≥ 1. Without loss of generality, it may be assumed that

∇un −→ ∇u, a.e. in Ω.

Hence
det(I +∇un) −→ det(I +∇u), a.e. in Ω. (2.9)

By the boundedness of φM , there is a CM > 0 such that

|φM (un(x))| ≤ CM , ∀x ∈ Ω,∀n ≥ 1. (2.10)

It follows from (2.9), (2.10) and Lebesgue’s dominated convergence theorem that

ΦM (un) −→ ΦM (u).

This contradicts the assumption. ¤
Throughout the rest of this paper, for simplicity, it is assumed that Ω is a polyhedron, ∂Ω0

consists of the faces of the polyhedron and u0 = 0 on ∂Ω0. Let Th be regular triangulations of Ω
with h being the mesh size.5

To introduce the method, define

Ah = {u ∈ C(Ω̄) : u|K is affine, ∀K ∈ Th; u|∂Ω0 = 0} (2.11)

E1
M (u) = {x ∈ Ω : |∇u| ≥ M} (2.12)

E2
M (u) = {x ∈ Ω : det(I +∇u) ≤ 1

M
} (2.13)

EM (u) = E1
M (u) ∪ E2

M (u) (2.14)

AM,h(C) = {u ∈ Ah : ΦM (u) ≤ C} (2.15)

where in (2.5) C is a constant to be decided later.
The element removal method to solve the problem of minimizing I in A consists in finding an

approximate solution by solving a finite problem of minimizing the functional

IM,h(u) =
∫

Ω\EM (u)

W (x, I +∇u(x)) dx

−
∫

Ω

f · u dx−
∫

∂Ω1

g · u dx (2.16)

in the set of admissible functions AM,h(C). The idea is to remove from the integral the contributions
of those elements on which the difference between the value of the integral at a function in W1,p(Ω)
and that at its interpolation in Ah can be out of control and to restrict the admissible functions so
that the total volume of the removed elements is sufficiently small.

Theorem 2.1. If A(C) = {u ∈ A : C1 + C2 |u|p1,p + I(u) < C} is not empty, then for any fixed
M > 0, there exists h(M) > 0 such that for h ∈ (0, h(M))

AM,h(C) 6= ∅.

Proof. Suppose otherwise. Then, for certain M , say M0, there would be a sequence of hj , j =
1, 2, · · · , with limj→∞ hj = 0 and AM,hj (C) = ∅.
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Let u ∈ A(C). By the approximation properties of the finite element spaces Ahj
, there exists a

sequence of functions uhj
∈ Ahj

such that (see 5)

uhj
−→ u, in W 1,p(Ω), as j →∞.

By lemma 2.1 and (2.8),
ΦM0(uhj

) −→ ΦM0(u) < C, as j →∞.

This contradicts to AM0,hj
(C) = ∅ for all j. ¤

Let
C0 = 1 + C1 +

∫

Ω

W (x, I) dx,

where C1 is the constant defined in (2.8). Then we have

Corollary 2.1. For any M > 0, there exists h(M) > 0 such that

AM,h(C0) 6= ∅, ∀h ∈ (0, h(M)).

Proof. Since 0 ∈ A(C0), the conclusion follows from theorem 2.1. ¤
Since meas (EM (v) \ EM (vn)) does not necessarily converge to zero for vn → v in W 1,∞(Ω), we

see that IM,h(·) is not continuous, in fact not even lower semi-continuous in general, in AM,h(C0).
Thus it is not clear whether the finite dimensional problem of minimizing IM,h(·) in AM,h(C0) always
has a solution. However, we have the following result.

Theorem 2.2. There exists a constant M0 > 1 such that for M > M0 and h ∈ (0, h(M)), where
h(M) is defined by corollary 2.1, there exists a solution to the problem of minimizing IM,h on
AM,h(C0).

Proof. Let uj ∈ AM,h(C0) be a minimizing sequence of IM,h in AM,h(C0). Since |uj |1,p is uniformly
bounded, uj = 0 on ∂Ω0, there exists a subsequence of uj , again denoted by uj , and a function
u ∈ Ah such that

uj ⇀ u, in W 1,p(Ω).

As Ah is of finite dimension, this implies

uj → u, in W 1,∞(Ω). (2.17)

By the continuity of ΦM , u is in AM,h(C0).

IM,h(u) = IM,h(un) + IM,h(u)− IM,h(un)

=IM,h(un)

+
∫

Ω\(EM (u)∪EM (un))

(W (x, I +∇u)−W (x, I +∇un)) dx

+
∫

EM (un)\EM (u)

W (x, I +∇u) dx

−
∫

EM (u)\EM (un)

W (x, I +∇un) dx

−
∫

Ω

f · (u− un) dx−
∫

∂Ω1

g · (u− un) dx

=IM,h(un) + I1 + I2 + I3 + I4 + I5. (2.18)
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By (H1), there is a constant C(M) > 0 such that

W (x, I +∇u(x)) < C(M), ∀x ∈ Ω \ EM (u), (2.19)

W (x, I +∇un(x)) < C(M), ∀x ∈ Ω \ EM (un). (2.20)

It follows from (H1), (2.17), (2.19), (2.20) and Lebesgue’s dominated convergence theorem that

I1 −→ 0, as n →∞. (2.21)

By (2.17), we also have

I4 −→ 0, as n →∞. (2.22)

I5 −→ 0, as n →∞. (2.23)

Noticing that

Ω \ EM (u) = (Ω \ EM−1(u)) ∪∞i=1 (EM− 1
i
(u) \ EM− 1

i+1
(u)),

we have

meas(∪∞i=k(EM− 1
i
(u) \ EM− 1

i+1
(u)))

=meas(EM− 1
k
(u) \ EM (u)) → 0, as k →∞, (2.24)

and

I2 =
∫

EM (un)\E
M− 1

k
(u)

W (x, I +∇u) dx

+
∫

EM (un)∩(E
M− 1

k
(u)\EM (u))

W (x, I +∇u) dx

=I21 + I22

By (2.19) and (2.24), for any ε > 0, there is a k(ε) > 0 such that

|I22| < ε/2, ∀k > k(ε). (2.25)

For fixed k > k(ε), by (2.17)

meas(EM (un) \ EM− 1
k
(u)) → 0, as n →∞. (2.26)

Hence, by (2.19), for any ε > 0 there is a n(ε, k) > 0 such that

|I21| < ε/2, ∀n > n(ε, k). (2.27)

It follows from (2.25) and (2.27) that

I2 −→ 0, as n →∞. (2.28)
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Now, we estimate I3.

−I3 =
∫

EM (u)\EM (un)

W (x, I +∇un) dx

=
∫

(EM (u)\EM+1(u))\EM (un)

W (x, I +∇un) dx

+
∫

EM+1(u)\EM (un)

W (x, I +∇un) dx

=I31 + I32. (2.29)

By (2.17),
meas(EM+1(u) \ EM (un)) → 0, as n →∞,

hence, it follows from (2.20) that

|I32| −→ 0, as n →∞. (2.30)

For x ∈ (EM (u) \ EM+1(u)) \ EM (un), by (2.17), there exists a constant N(M) > 0, which is
independent of x, such that

x ∈ EM−1(un) \ EM (un), ∀n > N(M). (2.31)

On the other hand, by (H2) and (H3), there exists M0 > 1 such that for F ∈ M3
+

W (x, F ) ≥ 0, if |F − I| ≥ M0 − 1, or detF ≤ 1
M0 − 1

. (2.32)

Thus, for M ≥ M0, we have

W (x, I +∇un) ≥ 0, ∀x ∈ EM−1(un) \ EM (un).

This implies
I31 ≥ 0, for M > M0 and n > N(M). (2.33)

It follows from (2.30) and (2.33) that for M > M0

I3 ≤ −I32 → 0, as n →∞. (2.34)

By (2.18) and (2.34), for M > M0 and n > N(M)

IM,h(u) ≤ IM,h(un) + I1 + I2 − I32 + I4 + I5. (2.35)

By (2.21), (2.22), (2.23), (2.28) and (2.34), and by passing to the limit in (2.35), we have

IM,h(u) ≤ lim
n→∞

IM,h(un) = inf
v∈AM,h(C0)

IM,h(v).

This completes the proof. ¤
The following lemma is essential to the method.
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Lemma 2.2. For any γ > 0, there exists M(γ) > 0 such that

meas(EM (u)) < γ, ∀u ∈ AM,h(C0), (2.36)

for all M > M(γ).

Proof. Let u ∈ AM,h(C0), then

C0 ≥ ΦM (u)

≥
∫

E1
M (u)

|∇u|p dx +
∫

E2
M (u)

φM (det(I +∇u)) dx

≥ Mp meas(E1
M (u)) + min

δ≤ 1
M

φM (δ)meas(E2
M (u))

≥ min{Mp, φ̂(δ̄M )}meas(EM (u))

Since δ̄M ∈ (0, 1
M ),

lim
M→∞

φ̂(δ̄M ) = +∞.

The conclusion of the lemma now follows. ¤

3. Convergence Theorem

For the element removal method described in §2, we have the following result.

Theorem 3.1. Let W satisfy (H1)-(H3). Then, for any ε > 0 there exist M(ε) > 1 and h(ε,M) > 0
such that for M > M(ε) and 0 < h < h(ε,M) there exists uh ∈ AM,h(C0) satisfying

IM,h(uh) ≤ inf
v∈A

I(v) + ε. (3.1)

Moreover, we can find sequences Mj > 0, hj > 0, uj ∈ AMj ,hj (C0), j = 1, 2, · · · , with uj being the
minimizers of IMj ,hj in AMj ,hj (C0), a nonincreasing sequence of measurable subsets Ek ⊂ Ω with

lim
k→∞

meas (Ek) = 0, (3.2)

and ū ∈ A such that

IMj ,hj (uj) → inf
v∈A

I(v) = I(ū); (3.3)

uj ⇀ ū in W1,p(Ω); (3.4)

adj(I +∇uj) ⇀ adj(I +∇ū), in Lq(Ω \ Ek), for each fixed k; (3.5)

det(I +∇uj) ⇀ det(I +∇ū), in Lr(Ω \ Ek), for each fixed k, (3.6)

where ⇀ denotes weak convergence.

To prove the first part of the theorem, we need the following lemmas.
Let u be a minimizer of I in A. Let ūj ∈ Ahj be a sequence, which is not necessary a minimizing

sequence, satisfying hj > 0, limj→∞ hj = 0 and

‖ūj − u‖1,p → 0. (3,7)

Then, we have
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Lemma 3.1. For any ε > 0, we can find γ(ε) > 0 such that

∫

Ω′
|W (x, I +∇u)| dx < ε

∀Ω′ ⊂ Ω, meas(Ω′) < γ(ε). (3.8)

Lemma 3.2. For any γ > 0 there exist M̄1(γ) > 1 and N̄1(γ,M) > 1 such that

ūj ∈ AM,hj (C0), (3.9)

meas EM (ūj) < γ, (3.10)

for all M ≥ M̄1(γ) and j ≥ N̄1(γ, M).

Proof. The lemma follows directly from lemma 2.2 and theorem 2.1. ¤

Corollary 3.1. For any ε > 0 there exist M1(ε) > 1 and N1(ε, M) > 1 such that

∫

EM (ūj)

|W (x,I +∇u)| dx < ε

∀M ≥ M1(ε), and j ≥ N1(ε,M). (3.11)

Proof. (3.11) follows from lemma 3.1 and lemma 3.2 by taking
M1(ε) = M̄1(γ(ε)) and N1(ε,M) = N̄1(γ(ε),M). ¤

Lemma 3.3. For given ε > 0 and M > 1 there exists γ(ε) > η(ε,M) > 0 such that

∫

Ω′
|W (x, I +∇ūj)| dx < ε

∀Ω′ ⊂ Ω \ EM (ūj), meas(Ω′) < η(ε,M). (3.12)

Proof. By (H1) and (2.12) the integrands in (3.12) are bounded by a function of M . Hence the
lemma follows. ¤

Lemma 3.4. For any ε > 0 let M ≥ M1(ε), then there exists N(ε,M) > 1 such that

|
∫

Ω\EM (ūj)

W (x,I +∇ūj) dx−
∫

Ω

f · ūj dx

−
∫

∂Ω1

g · ūj dx− inf
v∈A

I(v)| < 5 ε

∀j ≥ N(ε,M). (3.13)
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Proof.
∫

Ω\EM (ūj)

W (x, I +∇ūj) dx−
∫

Ω

f · ūj dx−
∫

∂Ω1

g · ūj dx

=I(u) +
∫

Ω\(EM+1(u)∪EM (ūj))

[W (x, I +∇ūj)

−W (x, I +∇u)] dx

+
∫

EM+1(u)\EM (ūj)

[W (x, I +∇ūj)

−W (x, I +∇u)] dx

−
∫

EM (ūj)

W (x, I +∇u) dx

−
∫

Ω

f · (ūj − u) dx−
∫

∂Ω1

g · (ūj − u) dx

= inf
v∈A

I(v) + I1 + I2 + I3 + I4 + I5. (3.14)

It follows from (3.7) and (H1) that there exists N2(ε,M) > 0 such that

|I1| < ε, if j ≥ N2(ε, M).

Let η(ε,M) be as in lemme 3.3. It follows from (3.7) that there exists N3(ε,M)
> 1 such that

meas (EM+1(u) \ EM (ūj)) < η(ε,M), if j ≥ N3(ε,M).

Thus, by lemma 3.1 and lemma 3.3, we have

|I2| < 2 ε, if j ≥ N3(ε,M).

By corollary 3.1, we have

|I3| < ε, if M ≥ M1(ε), and j ≥ N1(ε,M).

It follows from (3.7) that there exists N4(ε) > 0 such that

|I4 + I5| < ε, if j ≥ N4(ε).

Now, by taking

N(ε,M) = max{N1(ε,M), N2(ε, M), N3(ε,M), N4(ε)},

we have (3.13). ¤
Proof of Theorem 3.1. Since (3.1) i.e. the first part of the theorem is a direct conclusion of
Lemma 3.1 – Lemma 3.4, we only need to establish (3.2) – (3.6).

Take a sequence γj > 0 such that

∞∑

j=1

γj < meas(Ω). (3.15)
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By lemma 2.2 and theorem 2.1, there exist M̄(γ) > 1 and h(M) > 0 such that AM,h(C0) 6= ∅ and

meas(EM (v)) < γj (3.16)

for all v ∈ AM,h(C0) provided that M ≥ M̄(γj), h ∈ (0, h(M)).
Take a sequence εj > 0 satisfying limj→∞ εj = 0. Take Mj > max{M̄(γj),

M(εj)} and 0 < hj < min{h(Mj), h(εj ,Mj)}. Let uj ∈ AMj ,hj (C0), j = 1, 2, · · · , be the minimizers
of IMj ,hj

in AMj ,hj
(C0). By (3.1), we have

IMj ,hj
(uj) ≤ inf

v∈A
I(v) + εj , ∀j. (3.17)

Let
Ek = ∪∞j=kEMj

(uj), k = 1, 2, · · · . (3.18)

By (3.15) and (3.16)
lim

k→∞
meas(Ek) = 0. (3.19)

By (H2), (H3) and (2.15), we have

‖uj‖1,p ≤ C, ∀j (3.20)

‖adj (I +∇uj)‖q ≤ C, on Ω \ Ek, for each k, and ∀j ≥ k (3.21)

‖det (I +∇uj)‖q ≤ C, on Ω \ Ek, for each k, and ∀j ≥ k (3.22)

det (I +∇uj) > 0, a.e. in Ω \ Ek, for each k, and ∀j ≥ k (3.23)

for some constant C > 0. Thus, by the results in,2,3 there is a subsequence of {uj}, again denoted
by {uj}, and a function ū ∈ W1,p(Ω) such that (3.2) - (3.6) hold.

By (H1), (H2) and (3.1) - (3.6), we have
∫

Ω\Ek

W (x, I +∇ū) dx−
∫

Ω

f · ū dx−
∫

∂Ω1

g · ū dx

≤limj→∞IMj ,hj (uj)

≤ inf
v∈A

I(v), for each k. (3.24)

This and (H3) imply that

det(I +∇ū) > 0, a.e. in Ω \ Ek, for each k,

and hence
det(I +∇ū) > 0, a.e. in Ω. (3.25)

It follows from (3.5), (3.6), (3.21) and (3.22) that

adj (I +∇ū) ∈ Lq(Ω), det (I +∇ū) ∈ Lr(Ω). (3.26)

This and (3.25) imply that ū ∈ A. Let k → ∞ in (3.24), by (3.19), (H2) and passing to the limit,
we conclude that

I(ū) = inf
v∈A

I(v). (3.27)

This completes the proof. ¤
Remark. If a strict polyconvexity assumption 6 is made on the stored energy function W (x, F ), the
weak convergence in (3.4) can be converted into a strong one.
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