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Abstract

A dual-parametric finite element method is introduced in this paper for the
computation of singular minimizers in the two dimensional cavitation prob-
lem in nonlinear elasticity. The method overcomes the difficulties, such as
the mesh entanglement and material interpenetration, generally encountered
in the finite element approximation of problems with extremely large ex-
pansionary deformation. Numerical experiments show that the method is
highly efficient in the computation of cavitation problems. Numerical exper-
iments are also conducted on discrete problems without the radial symmetry
to show the validity of the method to more general settings and the potential
of its application to the study of mechanism of cavity nucleation in nonlinear
elastic materials.
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1. Introduction

Nonlinear elastic materials can behave drastically differently from linear
ones. One of the most significant phenomena, known as cavitation, is that
the voids may develop in the material when tension exceeds certain critical
level [2]. While the phenomenon can somehow be explained by pre-existing
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deficiencies in the material growing into large voids as shown by Gent and
Lindley [2] in 1958, a striking break through made by Ball [1] in 1982 showed
that the cavitation phenomenon can also happen without the hypothesis
of pre-existing deficiencies. In Ball’s approach, one typically considers the
problem of minimizing an elastic energy of the form

E(u) =

∫
Ω

W (∇u(x))dx−
∫
Ω

f · u dx−
∫
Γ1

g · u dx, (1.1)

where Ω ⊂ Rd, with d = 2 or 3, is the reference configuration of the elastic
body, W : M3×3

+ → R+ is the stored energy density function of the material
and M3×3

+ denotes the 3 × 3 matrices with positive determinant, f and g
are the body force and surface traction respectively, in a set of admissible
deformations

U =
{
u ∈ W 1,1(Ω;Rd) is a bijection : u|Γ0 = u0, det∇u > 0 a.e

}
. (1.2)

In the simplest setting, as is adopted in many literatures and will be adopted
in the present paper, one has f = 0 and g = 0, Γ1 is the boundary of the
deficiencies which are pre-existing or produced after cavitation, Γ0 is the rest
of the boundary ∂Ω, the boundary condition is given in the form

u|Γ0 = λx (1.3)

with λ being sufficiently large, and the stored energy density is a polyconvex
function [1] of the form

W (F ) = κ|F |p + h(detF ),F ∈ M3×3
+ , p ≥ 1, (1.4)

where κ > 0 is a material constant, |.| denotes the Euclidean norm (|A|2 =
trace(ATA)), and h : (0,∞) → [0,∞) is continuously differentiable, convex
and satisfies

h(δ) → +∞ as δ → 0, and
h(δ)

δ
→ +∞ as δ → +∞.

Ball’s theory is based on the fact that creation of cavities can be energet-
ically favorable under certain circumstances. The gap between the deficiency
model and the perfect (deficiency-free) model was closed by Sivaloganathan
in 1986 [5], he proved that: the deficiency model solution would converge to
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the perfect model solution, when the diameter of the initial deficiency ap-
proaches to zero. The result was later developed into a regularizing domain
method [7], which provided a theoretical approach to obtain an approximate
cavitation solution to the perfect model from the one to the deficiency model.
Basically, these theoretical results are concerned with energy minimization in
a restricted set of radially symmetric functions. However, there are examples
showing that more sophisticated cavitations might be generally expected [9].

The cavitation phenomenon, including the cavity nucleation, growth and
merge, has long being considered one of the key elements of the underline
mechanisms of the fracture initiation and growth in nonlinear elastic ma-
terials, and mathematical modeling and numerical simulation have being
expected to play a crucial rule in studying the cavitation phenomenon. How-
ever, due to its complexity, the analytical and numerical results on the so-
lutions are mostly concentrated on the 1D problem reduced from radially
symmetric models (for the numerical studies and the corresponding refer-
ences see [13] and [10] among many others). To our knowledge, the first and
the only 2D numerical simulation on cavitation appeared so far in the liter-
ature was given by Negrón-Marrero in 1986 [4], where a spectral-collocation
method is applied. The work however did not stimulate further studies,
probably because of the seemingly obvious limitations of applying to a more
general settings.

Not as commonly would have been expected by many researchers, the
result on the generally believed versatile finite element methods can be hardly
found, if there is any, in the literature of cavitation computations. One of
the main reasons that the finite element methods failed so far to successfully
simulate the cavitation phenomenon is shown in Figure 1, where it is clearly
seen that a triangular element △ABC of a piecewise affine interpolation of
a small ring reverses its orientation after a sufficiently large expansion (see
△A′B′C ′). The alternation of the orientation can be easily detected by the
sign of the determinant of the deformation gradient. For example, for a
radially symmetric deformation u(x) = r(R) x|x| of a ring, where R = |x|
and r = |u|, the determinant of the deformation gradient

det∇u =
r(ε+ δ)[r(ε+ δ) cos π

m
− r(ε)]

(ε+ δ)[(ε+ δ) cos π
m
− ε]

can be negative, if r/R is sufficiently large.
In numerical simulations, the phenomenon would either prevent the small

deficiency growing into large voids or cause mesh tanglement and produce
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Figure 1: For a sufficiently large expansion of a small ring, the
orientation of an affine element can be reversed.

physically unfeasible interpenetration numerical solutions. Although theo-
retically the difficulty can be somehow overcome by finely tuning the rela-
tionship between m, ϵ and δ, which will generally require to tremendously
increase the degrees of freedom, the problem is that the numerical results
heavily depend on the relations and there is no way to give a feasible relation
without some a priori knowledge on the singularity of the cavitation. In ad-
dition, our numerical experiments show that the piecewise affine conforming
finite element method is in general heavily mesh dependent and can lead to
pseudo cavities of various radii. Furthermore, the piecewise affine conforming
finite element method is found unstable on a theoretically feasible radially
symmetric mesh and results in numerical solutions with either a clockwise or
an anticlockwise screwed cavity (see Figure 2).

Recently, X. Xu and D. Henao reported their study on the nonconforming
finite element method for the cavitation problem in a private communication
[12]. They demonstrated that, on feasible meshes, the nonconforming finite
element method combined with a penalty stabilizer allows a small deficiency
growing into a sufficiently large void, however the interlacement of triangular
elements near the void’s boundary and the tricky determination of penalty
strength seem to cause difficulties in convergence and approximation accu-
racy.

In the present paper, we develop a dual-parametric finite element method
for the cavitation problem. The idea is to use properly chosen curved trian-
gulations on the reference configuration and to use higher order base func-
tions to construct the conforming finite element function space, so that even
after extremely large expansionary deformation the curved triangular ele-
ments on a quite general mesh will still be able to preserve their orientation
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(b) A clockwise screwed numerical solution

Figure 2: Piecewise affine conforming finite element method is found unstable and may
leads to screwed cavities.

and will not create mesh entanglement. Our numerical experiments show
that the method is a great success. In fact, in an example with comparable
1D numerical results, of which the accuracy is theoretically guaranteed, our
numerical experiments produce very accurate results with quite a small num-
ber of degrees of freedom, and in more sophisticated examples without radial
symmetry the numerical results well match the theoretical expectations.

The rest of the paper is organized as follows. In Section 2, we introduce
the dual-parametric curved triangular finite element, and develop an algo-
rithm using the Picard iteration to solve the Euler-Lagrange equation of the
discrete problem. In Section 3, numerical examples and results are presented
and discussed. Finally, some conclusion remarks are made in Section 4.

2. Numerical Method

The aim of this section is to develop a finite element method to solve
the Euler-Lagrange equation of the problem of minimizing the energy func-
tional E(u) in a properly defined admissible function space U as described
in Section 1.
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2.1. The Euler-Lagrange equation

For f = 0 and g = 0, the Fréchet derivative of E(u) can be derived as
follows

<
∂E(u)

∂u
,v >=

dE(u+ sv)

ds

∣∣∣∣
s=0

=

∫
Ωε

DFW (∇u) : ∇vdx

=
N∑
i=1

∫
∂Bε(ci)

v · (DFW (∇u)ν)ds−
∫
Ω

div(DFW (∇u) · vdx, ∀v ∈ U0,

where Ωε is the domain of the reference configuration with ε a parameter for
the size of the deficiencies Bε(ci) geometrically centered at ci, i = 1, · · · , N ,
for example Bε(a) can be a ball centered at a with radius ε, ν denotes
the unit interior normal to ∂Bε(ci), that is the unit exterior normal to the
corresponding part of ∂Ωε, and where Γ0 = ∂Ωε \ ∪N

i=1∂Bε(ci) denotes the
outside boundary of the domain, and

U0 :=
{
u ∈ W 1,1(Ω;Rd) : u|Γ0 = 0

}
.

Thus, the weak form of the Euler-Lagrange equation of the problem is given
by

N∑
i=1

∫
∂Bε(ci)

v · (DFW (∇u)ν)ds−
∫
Ω

div(DFW (∇u) · vdx = 0, ∀v ∈ U0,

(2.5)
which leads to the following Euler-Lagrange equation:

div(DFW (∇u)) = 0, in Ωε, (2.6)

DFW (∇u)ν = 0, on ∪N
i=1 ∂Bε(ci), (2.7)

u(x) = u0(x), on Γ0. (2.8)

In particular, for the stored energy density function given by (1.4), we
have

DFW (∇u) =
∣∣∇u

∣∣p−2∇u+ h′(det∇u) adj∇uT. (2.9)

2.2. The dual-parametric finite element

Let T̂ be the reference triangular element as shown in Figure 3(a). For
a given set of three points ai = (xi, yi), 1 ≤ i ≤ 3, let (ri, θi) be the corre-
sponding polar coordinates, i.e. xi = ri cos θi and yi = ri sin θi, we define a
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polar coordinate parametric map FT : T̂ → R2 as
r = (1− x̂− ŷ)r1 + x̂r2 + ŷr3,

θ = (1− x̂− ŷ)θ1 + x̂θ2 + ŷθ3,

x = r cos θ; y = r sin θ.

(2.10)

Then T = FT (T̂ ) defines a curved triangular element as shown in Figure 3(b).
The k-th order polynomials Pk(T̂ ) defined on the reference finite element

T̂ may be taken as the shape functions P̂ , for example, we may set P̂ = P2(T̂ ).
In our numerical experiments, the reference finite element triple (T̂ , P̂ , Σ̂)
[14], which is a quadratic Lagrange finite element, is taken as

T̂ is the reference triangular element shown in Figure 3(a),

P̂ = P2(T̂ ),

Σ̂ = {p̂(âi), 1 ≤ i ≤ 3; p̂(âij), 1 ≤ i < j ≤ 3},
(2.11)

where âi denotes the vertexes of the reference triangular element (see Fig-
ure 3(a)), and âij denotes the midpoint between âi and âj.

x̂

ŷ

â12

â13
â23

(1,0)

â2

T̂

(0,1)
â3

ô

â1

(a) The reference element T̂

x

y

o

Ta1

a2

a3

a12

a23

a13

(b) The curved triangular element

Figure 3: Parametric element with polar coordinates.

The dual-parametric finite element is now defined as a finite element triple
[14] (T, PT ,Σ) by

T = FT (T̂ ) is the curved triangle element,

PT = {p : T → R | p = p̂ ◦ F−1
T , ∀p̂ ∈ P̂},

ΣT = {p(ai), 1 ≤ i ≤ 3; p(aij), 1 ≤ i < j ≤ 3}.
(2.12)
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Figure 4: Dual-parametric element admit orientation pre-
serving large expansionary deformations.

As is illustrated in Figure 4, the dual-parametric element permit ex-
tremely large orientation preserving expansionary deformations.

2.3. The finite element discretization and the algorithm

Let Jh be a curved triangulation of the domain Ωε with the polar para-
metric elements, the dual parametric finite element function space is defined
as

Xh := {uh ∈ C(Ω̄ε) : uh|T ∈ PT ,uh(x) = u0(x),∀x ∈ Γ0}.

The corresponding homogeneous finite element function space is defined as

Xh,0 := {uh ∈ C(Ω̄ε) : uh|T ∈ PT ,uh(x) = 0,∀x ∈ Γ0}.

For a finite element function uh ∈ Xh, the discrete energy Eh(uh) is given
by

Eh(uh) =
∑
T∈Jh

M∑
j=1

W (∇uh(bj))ωT,j,

where bj ∈ T , j = 1, · · · ,M are the quadrature points, and ωT,j are the
corresponding quadrature weights. In our numerical experiments, ωT,j =

ωT̂ ,j det(∇FT (b̂j)) with ωT̂ ,j being the weights of the 5-th order Gaussian

quadrature on the reference element T̂ . This leads to the weak form of the
discrete Euler-Lagrange equation

∑
T∈Jh

M∑
j=1

DFW (∇uh(bj)) : ∇vh(bj)ωT,j = 0, ∀vh ∈ Xh,0. (2.13)
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For the stored energy density function given by (1.4), this gives

∑
T∈Jh

M∑
j=1

[
|∇uh|p−2∇uh : ∇vh + h′(det∇uh) adj∇uh : ∇vh

]
(bj)ωT,j = 0,

∀vh ∈ Xh,0. (2.14)

We apply a modified Picard iteration scheme to numerically solve the discrete
Euler-Lagrange equation, that is to solve the following equation iteratively

∑
T∈Jh

M∑
j=1

[
|∇un

h|P−2∇(un+1
h − un) : ∇vh

]
(bj)ωT,j =

−△tn
∑
T∈Jh

M∑
j=1

[
|∇un

h|P−2∇un
h : ∇vh + h′(det∇un

h) adj∇un
h : ∇vh

]
(bj)ωT,j,

∀vh ∈ Xh,0, (2.15)

where △tn is the step size which should be properly chosen so that the se-
quence produced by the iteration is physically admissible and has decreasing
elastic energy. In computation, the physical admissibility is usually guaran-
teed by requiring det(∇u(bT,j)) > 0 for all T ∈ Jh and 1 ≤ j ≤ M . The
algorithm is summarized as follows:

(1) Set the initial deformation u0
h, set △t0.

(2) Solve the linear finite element equation (2.15) for (un+1
h − un

h) to get
un+1

h ;

(3) If det(∇un+1
h ) is negative on any quadrature point or E(un+1

h ) > E(un
h),

then halve the step size △tn and go to step 2; else, go to step 4.

(4) If ∥un+1
h −un

h∥L2(Ωε) < △tn ·TOL, then output un+1
h as the solution and

stop; otherwise go to step 2.

3. Numerical examples

In our numerical experiments, we use the stored energy density function

given in (1.4) with p = 1.5 and h(δ) = (δ−1)2

2
+ 1

δ
, take the expansionary

parameter λ = 2 and the tolerance TOL = 10−6. For the convenience of
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comparison with analytical and 1D numerical results on radially symmetric
problems, we first concentrate on the regularized spherical reference domain

Ωε = {x ∈ Rn : ε < |x| < 1}. (3.16)

We introduce curved triangulations on Ωε by the polar coordinates paramet-
ric elements defined in Section 2.2 (see (2.10)). Figure 5(a) shows a typical
radially symmetric curved triangulation so produced on Ωε with ε = 0.01,
while Figure 5(b) shows the final numerical solution obtained by our algo-
rithm, which is perfectly symmetric as in contrast to the screwed numeri-
cal solution (see Figure 2) produced by the piecewise affine finite element
method. The converge behavior of the total elastic energy and the radius
of the cavity of our algorithm, with respect to the iteration numbers n, is
shown in Figure 6(a) and Figure 6(b) respectively.

Table 3 shows the convergence rates of the error of the cavity radius
err(rcavh (Ωε)), the error of the deformation in L2 norm ∥uh − u∥L2(Ωε) and
the error of the total elastic energy err(E(uh)) with respect to the mesh
size, where the numerical solution obtained by a reduced 1D model with
160 nodes is taken as the real solution of the problem, and the meshes are
uniformly refined with the mesh size reduced by a factor of 1/2, and thus
the corresponding number of elements Nelem is increased by a factor of 4, in
each refinement step.
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(a) Polar-parametric triangula-
tion
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(b) Numerical cavitation solu-
tion

Figure 5: Dual-parametric mesh and cavitation solution with ε = 0.01.

Next, we explore the convergence behavior of the numerical cavitation as
ε → 0. According to Sivaloganathan’s result [5, 7], we expect the numerical
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Figure 6: The convergence behavior of the iteration process for ε = 0.01.

Nelem err(rcavh (Ωε)) rates ∥uh − u∥L2(Ωε) rates err(E(uh)) rates
40 2.9127e-02 2.2925e-02 4.3180e-01
160 8.2114e-03 1.8273 7.8806e-03 1.5405 2.0770e-01 1.0559
640 2.6563e-03 1.6027 2.4383e-03 1.6924 6.9600e-02 1.5773
2560 5.1773e-04 2.3827 4.7775e-04 2.3516 1.4100e-02 2.3034

Table 1: The errors and the corresponding convergence rates with ε = 0.01.

cavitation solution uε
h converges as ε → 0, in particular, the cavity radius

rcavh (Ωε) should converge to a positive number rcavh as ε → 0. Figure 7(a) and
Figure 7(b) show the numerical cavitation solutions uh(Ωε) for ε = 0.1 and
ε = 10−9 respectively. Table 2 demonstrates the convergence of the radius
of the cavity rcavh (Ωε), and the convergence rate is closed to 1 as is shown
in Figure 8. It is worth pointing out here that, in our computation, the
pre-existing hole can be almost arbitrarily small, on the other hand, to our
knowledge, there was no report on successful attempt, regardless of accuracy,
on the cavitation computation for ε ≤ 10−3 before.

ε 1.0e-01 1.0e-02 1.0e-03 1.0e-04 1.0e-05
rcavh (Ωε) 1.467498 1.367605 1.342616 1.339314 1.338971

ε 1.0e-06 1.0e-07 1.0e-08 1.0e-09 1.0e-10
rcavh (Ωε) 1.338937 1.338934 1.338933 1.338933 1.338933

Table 2: Convergence of rcavh (Ωε) as ε → 0.
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(a) ε = 1.0e− 01
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(b) ε = 1.0e− 09

Figure 7: The numerical cavitation solutions uh(Ωε) for ε = 0.1 and ε = 10−9.

10
−6

10
−4

10
−2

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

ε

er
ro

r o
f c

av
ity

 ra
di

us

 

 

error

slope=1

Figure 8: Convergence rate of |rcavh (Ωε)− rcavh | as ε → 0.

To verify the applicability of our method to more general settings, we
apply our method on a nonuniform asymmetric mesh with 2008 elements
defined on Ωε with ε = 0.01 as shown in Figure 9(a), which is obtained by
first applying the EasyMesh software to create a partition on the domain
Ω

′
= {y ∈ Rd : 1 < |y| < 2} with specified evenly spaced 128 nodes on the

interior boundary and 64 nodes on the exterior boundary, and then map the
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mesh to Ωϵ by the symmetric transformation x = (0.99(|y| − 1) + 0.01)
y
|y| .

Figure 9(b) shows the corresponding numerical cavitation solution, which
agrees well with the one obtained on a symmetric mesh. In fact, the relative
error of the cavitation radius is no more than 10−5, which is of the same
order with the corresponding symmetric counterpart.
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(a) Asymmetric mesh

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Solution on asymmetric mesh

Figure 9: Solution on asymmetric mesh
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h = 2x.
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(b) Final numerical cavitation solution.

Figure 10: Example of an elliptic ring cavitation.

Last but not least, we replace the circular ring shaped reference config-
uration with ε = 0.01 to an elliptic ring shaped one with the major axis
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in coincidence with the x-axis and stretched by a factor of 2. The initial
deformation is given by u0

h = 2x as shown in Figure 10(a), and a numerical
cavitation solution nicely produced by our algorithm is shown in Figure 10(b).

4. Conclusion

A dual-parametric curved triangular finite element method is introduced
in this paper to numerically solve the cavitation problem. The method turns
out to be a great success in the cavitation computation, thanks to the fact
that the dual-parametric curved triangular finite element can very well fit
the large expansionary deformation and is computationally stable. In fact,
our numerical experiments show that, for a given initial circular hole with
the radius ε as small as 10−10, a highly accurate numerical cavitation can
be produced with our method, which to our knowledge is the first successful
numerical attempt of any kind reported in the existing literature for ε ≤ 10−3.
Our numerical experiments also show that the method is highly efficient in
the sense that a cavity developed from a very tiny (practically arbitrary
small) deficiency can be captured quite accurately with only a small number
of degrees of freedom. In addition, the method can be easily adapted to
more general settings, and thus potentially provides a convenient tool to
numerically study the mechanism of the cavitation phenomenon.

Acknowledgments

The AFEPack is used in our computation, we are grateful to Professor
Ruo Li of Peking University to help us on the use of the software.

The research was supported by the Major State Basic Research Projects
(2005CB321701), NSFC projects 10871011 and RFDP of China.

References

[1] J. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear
elasticity, Phil. Trans. Roy. Soc. London. A 306 (1982), 557-611.

[2] A. N. Gent, P. B. Lindley, International rupture of bonded rubber cylin-
ders in tensions, Proc. R. Soc. London. A 249 (1958), 195-205.

[3] S. Müller and S. J. Spector, An existence theory for nonlinear elasticity
that allows for cavitation, Arch. Rational Mech. Anal. 131 (1995), 1-66.

14



[4] P. V. Negrón-Marrero, O. Betancourt, The numerical computation of
sigular minimizers in two-dimensional elasticity, J. Comp. Phys. 113
(1994), 291-303.

[5] J. Sivaloganathan, Uniqueness of regular and singular equilibria for
spherically symmetric problems of nonlinear elasticity, Arch. Rational
Mech. Anal., 96 (1986), 97-136.

[6] J. Sivaloganathan, S. J. Spector, On cavitation, configurational forces
and implications for fracture in a nonlinearly elastic material, J. Elas-
ticity 67 (2002), 25-49.

[7] J. Sivaloganathan, S. J. Spector, V. Tilakraj, The convergence of regu-
larized minimizers for cavitation problems in nonlinear elasticity, SIAM
J. Appl. Math. 66 (2006), 736-757.

[8] D. Henao, Cavitation, invertibility, and convergence of regularized min-
imizers in nonlinear elasticity, J. Elasticity 94 (2009), 55-68.

[9] R. D. James, S. J. Spector, The formation of filamentary voids in solids,
J. Mech. Phys. Solids. 39 (1991), 783-814.

[10] J. Sivaloganathan, P. V. Negrón-Marrero, The numerical computation
of the critical boundary displacement for radial cavitation, Mathematics
and Mechanics of Solids 14 (2009), 696-726.

[11] Xianmin Xu, Numerical simulation for microstructures of Large-body
ferromagnetic materials, Doctorial dissertation, Peking University, Bei-
jing, China, (2008), 84-106.

[12] Xianmin Xu, D. Henao, A numerical Method for Cavitation in Nonlinear
Elasticity, in preparation.

[13] S. Biwa, Cavitation in finite elasticity with surface energy effects, Inter-
national Journal of non-linear mechanics, 41 (2006), 1084-1094.

[14] S. C. Brenner, L. R. Scott, The mathematicl theory of finite element
methods, Springer-Verlag, New York, (1994), 67-87.

15


