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Abstract. An a posteriori error estimator is obtained for a nonconforming

finite element approximation of a linear elliptic problem, which is derived from a

corresponding unbounded domain problem by applying a nonlocal approximate

artificial boundary condition. Our method can be easily extended to obtain a

class of a posteriori error estimators for various conforming and nonconforming

finite element approximations of problems with different artificial boundary

conditions. The reliability and efficiency of our a posteriori error estimator is

rigorously proved and is verified by numerical examples.

1. Introduction

Many physical and engineering problems such as, e.g. the electric field and the

magnetic field, can be modelled by PDEs on unbounded domains. To efficiently

solve such problems by numerical methods, one often introduces proper artificial

boundary conditions to translate these problems to bounded domain ones [9, 10].

These artificial boundary conditions often have implicit integral forms, which are

quite different from those of explicit boundary conditions: Dirichlet, Neaumann,

or mixed boundary conditions.

Furthermore, when the solutions of the reduced bounded domain problems

have some singularities such as, e.g. singularities arising from re-entrant corners,

singularity of Green’s function, adaptive mesh refinement strategy can be very

useful to improve the efficiency of the finite element approximations, and a pos-

teriori estimators are often required to identify the regions which need further
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refinement. There are many different methods of the a posteriori estimation, e.g.

the residual estimates [4, 12], the averaging methods [12, 14, 15], etc., however,

they are mostly developed for bounded domain problems imposed with explicit

boundary conditions.

In this paper, we will develop, for the first time to our knowledge, a reliable

and efficient a posteriori estimator for a non-conforming finite element approxi-

mation of bounded domain elliptic problems with (at least part of) the boundary

conditions given in an implicit integral form. Such problems come naturally from

unbounded domain elliptic problems by imposing proper implicit artificial bound-

ary conditions. For simplicity, we consider only a model exterior problem in two

dimensions. Our approach, however, also easily applies to more general problems

defined on unbounded domains, such as problems of the potential of the stray

field energy in micromagnetics [11, 13] and the semi-strip field of stationary flow

in a channel [10], etc..

The rest of the paper is organized as follows. In section 2, we illustrate how

to apply an artificial boundary method to a unbounded domain model problem to

produce an equivalent bounded domain problem with an implicit artificial bound-

ary condition [9, 10, 11]. In section 3, inspired by [4], we introduce an equivalent

mixed problem, which serves as a useful tool for the a posteriori error estimation.

In section 4, a non-conforming finite element method for the reduced bounded

domain problem is briefly discussed. In section 5, an a posteriori error estima-

tor for the non-conforming finite element approximation of the model problem is

given, and its reliability and efficiency are proved. In section 6, some numerical

examples are given to verify our analytical results.

2. The Model Problem and the Artificial Boundary Method

We consider a general second-order linear elliptic problem[10]

−div(A∇u) + cu = f, in Ω, (2.1)

(A∇u) · n = g, on ΓN , (2.2)

u = uD, on ΓD, (2.3)

u − u∞ → 0, as ‖x‖ → ∞, (2.4)

where Ω ⊂ R2 is a unbounded domain with a Lipschitz boundary Γ = ΓD

⋃
ΓN

satisfying that the Dirichlet boundary ΓD is closed, ΓD

⋂
ΓN = ∅ and the length
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of the Dirichlet boundary |ΓD| > 0 whenever ΓD 6= ∅, n is the unit exterior

normal to ΓN , u∞ is in general a unknown constant and u∞ = 0 when ΓD = ∅,
c ∈ L∞(Ω) is non-negative and satisfies c(x) ≥ c0 ≥ 0 for almost all x ∈ Ω,

and the coefficient matrix A ∈ L∞(Ω;R2×2) is symmetric and uniformly positive

definite, that is, for some constants 0 < µ < M < ∞, there holds

µ‖y‖2 ≤ y · A(x)y ≤ M‖y‖2, ∀y ∈ R2 and for a.e. x ∈ Ω.

Furthermore, we assume that supp(f), supp(A−I), and supp(c−c0) are compact,

where supp(·) denotes the support set of a given function, and I is the identity

matrix.

For such a problem, if R is sufficiently large so that supp(f)∪ supp(A− I)∪
supp(c− c0)∪Γ ⊂ B(0, R) := {x : ‖x‖ < R}, then the circle Γe := {x : ‖x‖ = R}
can be taken as an artificial boundary, which divides the unbounded domain Ω

into two parts Ωi := Ω
⋂

B(0, R) and Ωe = {x : ‖x‖ > R}. Artificial boundary

conditions can be introduced on Γe = ∂B(0, R). For simplicity and without loss

of generality, we restrict ourselves to the case when c0 = 0, similar artificial

boundary conditions for the general case can be found in [10].
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Figure 1. The artificial boundary
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Since the solution u to problem (2.1)-(2.4) is harmonic in Ωe, we have, for

r > R,

u(r, θ) =
a0

2
+

∞∑

n=1

(
R

r

)n

(an cos nθ + bn sin nθ) (2.5)

where

an =
1

π

∫ 2π

0

u(R, φ) cosnφ dφ, bn =
1

π

∫ 2π

0

u(R, φ) sin nφ dφ, (2.6)

are the Fourier coefficients of u(R, θ), and we have u∞ = a0/2.

Differentiate (2.5) with respect to r and set r = R, we obtain

∂u(R, θ)

∂r
= − 1

πR

∞∑

n=1

n

∫ 2π

0

u(R, φ) cos n(θ − φ)dφ ≡ Bu(R, θ). (2.7)

where B : H1/2(Γe) → H−1/2(Γe) is a bounded operator [7]. Let n be the unit

exterior normal to Γe with respect to Ωi, then by (2.7) and the fact that u is

harmonic in a neighborhood of Γe, we obtain an artificial boundary condition

∂u(R, φ)

∂n
= Bu(R, φ). (2.8)

Thus, the unbounded domain problem (2.1)-(2.4) is reduced to the following

equivalent problem defined on the bounded domain Ωi

−div(A∇u) + cu = f, in Ωi, (2.9)

(A∇u) · n = g, on ΓN , (2.10)

u = uD, on ΓD, (2.11)

∂u(R, θ)

∂n
= Bu(R, θ), on Γe, (2.12)

which has, other than the usual Dirichlet and Neumann boundary conditions,

an implicit artificial boundary condition in differential-integral form (2.12). In

addition, in the particular case when ΓD = ∅, the Dirichlet boundary condition

(2.11) must be replaced by the following integral boundary condition

∫ 2π

0

u(R, θ)dθ = 0. (2.13)
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Let

V =

{
{v ∈ H1(Ωi)|

∫ 2π

0
u(R, θ)dθ = 0}, if ΓD = ∅,

{v ∈ H1(Ωi)|v = uD on ΓD}, otherwise;

V0 =

{
{v ∈ H1(Ωi)|

∫ 2π

0
u(R, θ)dθ = 0}, if ΓD = ∅,

{v ∈ H1(Ωi)|v = 0, on ΓD}, otherwise.

The only difference of above two definitions is the boundary condition on ΓD.

Suppose that g ∈ L2(ΓN ), uD ∈ H1/2(ΓD), and suppose that f ∈ H−1(Ω) instead

of L2(Ω) so that we can cover more practical problems, for example, the problem

of the stray field energy potential in micromagnetics (see Section 6). Without

loss of generality, we may assume that, for some f0, f1, f2 ∈ L2(Ωi), (see [1])

< v, f > =

∫

Ωi

f0(x)v(x) + f1(x)∂1v + f2(x)∂2v(x)dx, ∀v ∈ V0, (2.14)

where f is regarded as an element in the dual space V ∗
0 .

Then, problem (2.9)-(2.12) has the following weak formulation

{
Find u ∈ V such that

a(u, v) + b(u, v) = f(v), ∀v ∈ V0,
(2.15)

where

a(u, v) =

∫

Ωi

A∇u · ∇vdx +

∫

Ωi

cuvdx, (2.16)

b(u, v) =
∞∑

n=1

n

π

∫ 2π

0

∫ 2π

0

cosn(θ − φ)u(R, θ)v(R, φ)dθdφ, (2.17)

f(v) =

∫

Ωi

f0(x)v(x) + f1(x)∂1v + f2(x)∂2v(x)dx +

∫

ΓN

gv ds. (2.18)

In numerical computations, the infinite summation in the exact artificial

boundary condition (2.12) needs to be truncated. This leads to a series of ap-

proximate artificial boundary conditions

∂u

∂n
= BNu ≡ − 1

πR

N∑

n=1

n

∫ 2π

0

u(R, φ) cos n(θ − φ)dφ, N = 1, 2, . . . , (2.19)
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and the corresponding variational problems

{
Find u ∈ V such that

a(u, v) + bN (u, v) = f(v), ∀v ∈ V0,
(2.20)

where bN (u, v) is given by

bN(u, v) =
N∑

n=1

n

π

∫ 2π

0

∫ 2π

0

cosn(θ − φ)u(R, θ)v(R, φ)dθdφ. (2.21)

It is well known that the symmetric bilinear forms bN (·, ·) are uniformly

bounded in H1(Ωi) × H1(Ωi), i.e. there exists a positive constant C, such that

|bN (u, v)| ≤ C ‖u‖1,Ωi
‖v‖1,Ωi

, ∀u, v ∈ H1(Ωi) and ∀N, (2.22)

furthermore, the bilinear forms a(u, v) + b(u, v) and a(u, v) + bN (u, v) are sym-

metric, uniformly bounded and V0-elliptic, and we have the following existence

theorem(see [9] and [10]):

Theorem 2.1. Problem (2.15) has a unique solution. For each N , problem (2.20)

has a unique solution.

Furthermore, we have the following convergence theorem whose proof could

be given from Lemma 4.1 in [10].

Theorem 2.2. Let u, uN ∈ H1(Ωi) be the solutions of (2.15) and (2.20) respec-

tively. Suppose there exist R0 < R and an integer k ≥ 1 such that Γ ⊂ B(0, R0)

and u|∂B(0,R0) ∈ Hk− 1

2 (∂B(0, R0)). Then, we have

|u − uN |1,Ωi
≤ C

(N + 1)k+1

(
R0

R

)N+1

|u|k− 1

2
,∂B(0,R0), (2.23)

where C is a constant independent of k, R0 and N .

Remark 2.1. In applications, we can always choose R and R0 so that u is suf-

ficiently smooth near ∂B(0, R0). Hence, the inequality (2.23) indicates that a

small N would usually be sufficient to achieve a good approximation.
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3. The Equivalent Mixed Problem

With the method developed in [6] (Section7.1. page 383-386), we establish a

mixed problem equivalent to problem (2.20) as follows (see also [4])




Find (p, u) ∈ L × V, such that

α(p, q) − β(q, u) = 0, ∀q ∈ L,

β(p, v) + γ(u, v) = f(v), ∀v ∈ V0,

(3.1)

where L ≡ (L2(Ωi))
2 and

α(p, q) =

∫

Ωi

Ap · q dx, (3.2)

β(q, u) =

∫

Ωi

Aq · ∇u dx, (3.3)

γ(u, v) =

∫

Ωi

c uv dx + bN(u, v). (3.4)

Using a similar technique as is used in [4] for bounded domain problems

with explicit boundary conditions, we establish the following theorem, which is

useful in the a posteriori error estimation for the finite element approximations

of problem (2.20).

Theorem 3.1. Let A : L×V0 → (L×V0)
∗ be an operator defined by A(p, u)(q, v)

:= A1(p, u)(q) + A2(p, u)(v) with

A1(p, u)(q) = α(p, q) − β(q, u),

A2(p, u)(v) = β(p, v) + γ(u, v).

Then, A is both surjective and injective, and we have

C ′(‖p‖0 + ‖u‖1) ≤ ‖A(p, u)‖(L×V0)∗ ≤ C(‖p‖0 + ‖u‖1), ∀(p, u) ∈ L × V0, (3.5)

where 0 < C ′ ≤ C are constants independent of p and u.

Proof. We only need to show (3.5). The second inequality follows as a direct

consequence from the boundedness of the coefficients A and c, and the uniform

boundedness of bN (see (2.22)). The first inequality is equivalent to the following

inf-sup condition:

inf
y∈L×V0

sup
z∈L×V0

(Ay, z)

‖y‖ ‖z‖ ≥ C ′. (3.6)
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In fact, for any y = (p, u) ∈ L×V0, let z = (q, v) = (p−∇u, 2u) ∈ L×V0, then, it

follows from the uniform V0-ellipticity of a(u, v)+bN (u, v) and the uniform positive

definiteness of the coefficient matrix A that there exists a constant C ′ > 0 such
that

A(p, u)(q, v) = α(p, q) − β(q, u) + β(p, v) + γ(u, v)

= α(p, p) + β(∇u, u) + 2γ(u, u)

≥ 6C ′(‖p‖2
0,Ωi

+ ‖u‖2
1,Ωi

)

≥ C ′(‖p‖0,Ωi
+ ‖u‖1,Ωi

)(‖p‖0,Ωi
+ 3‖u‖1,Ωi

)

≥ C ′(‖p‖0,Ωi
+ ‖u‖1,Ωi

)(‖q‖0,Ωi
+ ‖v‖1,Ωi

).

This yields (3.6) and completes the proof. �

4. The finite element discretization

Let Th = {K} be a family of regular triangulations of Ωi satisfying

|aij − bij| ≤ C h2
K , ∀K on Γe, (4.1)

for some constant C, where aij is the midpoint of the arc âiaj , and bij is the mid-

point of the section aiaj (Figure 2), and hK is the diameter of element K, which

guarantees that the geometric non-conforming error is of higher order (Section

4.3 in [6]).

a
j

a
i

b
ij

a
ij

Figure 2. The element near Γe
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We use Crouzeix-Raviart element to construct the finite element spaces,

Uh = {v|K ∈ P1(K),∀K ∈ Th : v is continuous on Mh} ,

where Mh = {the midpoints of the edges in Th}, and

Vh =

{
{v ∈ Uh :

∫
Γe

v dx = 0}, if ΓD = ∅,
{v ∈ Uh : v(aij) = 1

|E|

∫
E

uDds, if aij ∈ Mh

⋂
E,E ⊂ ΓD}, otherwise;

Vh,0 =

{
{v ∈ Uh :

∫
Γe

v dx = 0}, if ΓD = ∅,
{v ∈ Uh : v(aij) = 0, if aij ∈ Mh

⋂
ΓD}, otherwise.

We consider the following finite element problem for (2.20)

{
Find uh ∈ Vh such that

ah(uh, vh) + bN (uh, vh) = fh(vh), ∀vh ∈ Vh,0,
(4.2)

where

ah(uh, vh) =
∑

K∈Th

{∫

K

A∇uh · ∇vhdx +

∫

K

cuhvhdx

}
, (4.3)

bN(uh, vh) =
N∑

n=1

n

π

∫ 2π

0

∫ 2π

0

cosn(θ − φ)uh(R, θ)vh(R, φ)dφdθ

=
N∑

n=1

n

π

(∫ 2π

0

uh(R, θ) cosnθdθ

∫ 2π

0

vh(R, φ) cosnφdφ

+

∫ 2π

0

uh(R, θ) sin nθdθ

∫ 2π

0

vh(R, φ) sin nφdφ

)
, (4.4)

fh(vh) =
∑

K∈Th

{∫

K

f0vh + f1∂1vh + f2∂2vhdx

}
+

∫

ΓN

gvh ds. (4.5)

In the computation of (4.4), the integrals are calculated by numerical quadrature

formulas. For example, by trapezoidal rule we get

∫ 2π

0

uh(R, θ) cosnθdθ
.
=

∑

daiaj⊂Γe

|θi − θj|
uh|aiaj

(ai) cos(nθi) + uh|aiaj
(aj) cos(nθj)

2
,
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where θi and θj are the polar angles corresponding to ai and aj, respectively.

Notice that the error introduced by numerical quadrature is of higher order, for

simplicity, we would ignore its effect in the following analysis.

Similar to that for problem (2.20), we have

Theorem 4.1. The finite element problem (4.2) has a unique solution.

The following theorem is important for our a posteriori estimation.

Theorem 4.2. Let (p, u) be the solution of the mixed problem (3.1). Then, for

any ph ∈ Lh := {ph : ph|K = ∇vh|K ,∀K ∈ Th, for some vh ∈ Vh} and ũh ∈ V ,

we have

‖p − ph‖0,Ωi
+ ‖u − ũh‖1,Ωi

≤ C(‖ResL(ph, ũh)‖L∗ + ‖ResV (ph, ũh)‖V ∗

0
), (4.6)

where ResL(ph, ũh) ∈ L∗ and ResV (ph, ũh) ∈ V ∗
0 are defined by

ResL(ph, ũh)(q) := α(ph, q) − β(q, ũh), (4.7)

ResV (ph, ũh)(v) := −f(v) + β(ph, v) + γ(ũh, v). (4.8)

Proof. It is easy to verify that

ResL(ph, ũh)(q) = −(α(p − ph, q) − β(q, u − ũh)),

ResV (ph, ũh)(v) = −(β(p − ph, v) + γ(u − ũh, v)).

Thus, the conclusion follows as a consequence of theorem 3.1. �

In the last part of this section, we will introduce a lemma which is to estimate

the error of the approximation for functions in Vh by some functions in V . This

lemma is useful for our a posteriori error estimation in next section. For simplicity

of analysis and illustration, we suppose hereinafter that the boundary ΓD ∪ ΓN

is piecewise linear. For general curve boundaries, we could use piecewise linear

approximations to get sufficient accuracy ([6]).

We firstly introduce some definitions. Given any function uh ∈ Vh, we could

define a function ũh ∈ V element-wisely in the following way:

ũh|K =

{
ũh(a0)ϕ0(x) + uD(xD)(ϕ1(x) + ϕ2(x)) if some edge a1a2 ⊂ ΓD,∑2

i=0 ũh(ai)ϕi(x), otherwise;

(4.9)
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where K ∈ Th, ai with i = 0, 1, 2, are nodes of K, ϕi ∈ P 1(K) such that

ϕi(aj) = δij are the one-order finite element base functions on the triangle

K, xD(x) ∈ ΓD is the intersection of the line a0x and the interval a1a2 (see

Figure 3), and ũh(ai) is given as following

ũh(ai) =

{
uD(ai) if ai ∈ ΓD,∑

K′∈ωai

|K′|
|ωai

|
uh|K′(ai), otherwise.

Here, we note ωai
= ∪{K′∈Th:ai∈K′}K

′.

a
0

x

Γ
D

x
D

a
1

a
2

Figure 3. The element near ΓD

The following lemma gives a local estimate for the approximation error ‖uh − ũh‖.

Lemma 4.1. Let uh ∈ Vh, ũh ∈ V is defined as above, denote E = {the edges in Th}.
Then we have

‖uh−ũh‖i,K ≤





C

(∑
E∩K 6=∅
E∋E 6⊂∂Ωi

h3−2i
E ‖[∇uh · s]‖2

0,E

)1/2

, if K ∩ ΓD = ∅,

C
(∑

E∩K 6=∅
E∋E⊂ΓD

(h3−2i
E ‖∇uh · s − ∂uD

∂s
‖2

0,E + h5−2i
E ‖∂2uD

∂s
2 ‖2

0,E)

+
∑

E∩K 6=∅
E∋E 6⊂∂Ωi

h3−2i
E ‖[∇uh · s]‖2

0,E

)1/2

, otherwise,
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for any K ∈ Th and i=0,1, and

‖uh−ũh‖0,E ≤





C

(∑
E′∩E 6=∅
E∋E 6⊂∂Ωi

h2
E′‖[∇uh · s]‖2

0,E′

)1/2

, if E ∩ ΓD = ∅,

C
(∑

E′∩E 6=∅
E∋E′⊂ΓD

(h2
E′‖∇uh · s− ∂uD

∂s
‖2

0,E′ + h4
E′‖∂2uD

∂s
2 ‖2

0,E′)

+
∑

E′∩E 6=∅
E∋E′ 6⊂∂Ωi

h2
E′‖[∇uh · s]‖2

0,E′

)1/2

, otherwise,

for any E ∈ E, where s denotes the unit tangent vectors to corresponding edges,

and [·] is the jump of a function on corresponding edges.

Proof. We only prove the first inequality with i = 1 and when the element K has

one edge a1a2 such that a1a2 ⊂ ΓD. In this case, we would like to prove

‖∇uh −∇ũh‖0,K ≤ C
(
ha1a2

‖∇uh · s −
∂uD

∂s
‖2

0,a1a2
+ h3

a1a2
‖∂2uD

∂s2
‖2

0,a1a2

+
∑

E∋E∋a0

hE‖[∇uh · s]‖2
0,E

)1/2

, (4.10)

where a0 is another node of K. The proof of any other cases could be done in a

similar way.

For such an element K, from the definition (4.9) of ũh and also noticed that

uh(x) could be rewritten as

uh(x) = uh(a0)ϕ(x) + uh(xD)(ϕ1(x) + ϕ2(x)),

we have
∫

K

|∇uh −∇ũh|2dx ≤ 2
{(

uh|K(a0) − ũh(a0)
)2

∫

K

|∇ϕ0|2dx

+

∫

K

(
uD(xD) − uh(xD)

)2|∇
(
ϕ1(x) − ϕ2(x)

)
|2dx

+

∫

K

(
ϕ1(x) − ϕ2(x)

)2|∇
(
uD(xD) − uh(xD)

)
|2dx

}

= 2(I1 + I2 + I3). (4.11)

For I1, we have

I1 ≤ C
(
uh|K(a0) − ũh(a0)

)2

12



≤ C
(
uh|K(a0) −

∑

K′∈ωa0

|K ′|
|ωa0

|uh|K′(a0)
)2

= C
( ∑

K′∈ωa0

|K ′|
|ωa0

|
(
uh|K(a0) − uh|K′(a0)

))2

≤ C
( ∑

K′

i,K
′

j∈ωa0

K′

i∩K′

j=E∈E

∣∣uh|K′

i
(a0) − uh|K′

j
(a0)

∣∣
)2

≤ C
( ∑

E∋E∋a0

1

2

∣∣
∫

E

[∇uh · s]ds
∣∣
)2

≤ C
( ∑

E∋E∋a0

hE

∫

E

∣∣[∇uh · s]
∣∣2ds

)
. (4.12)

For I2 and I3, we let K̂ = {x̂ ∈ R2 : 0 ≤ x̂1, x̂2, x̂1 + x̂2 ≤ 1} be the reference ele-

ment, â0 = (1, 0), â1 = (0, 1) and â2 = (0, 0) be the nodes of K̂, and ϕ̂i ∈ P 1(K̂)

such that ϕ̂i(âj) = δij be the finite element base functions in K̂. Then by classi-

cal scaling techniques in finite element analysis ([6]) and also by the definition of

boundary conditions for the finite element space Vh, we get

I2 ≤ C

∫

K̂

|uD(x̂D) − uh(x̂D)|2 |∇x̂

(
ϕ̂1(x̂) − ϕ̂2(x̂)

)
|2dx̂

≤ C

∫

K̂

|uD(x̂D) − uh(x̂D)|2dx̂

≤ C

∫

â1â2

|uD(ŝ) − uh(ŝ)|2dŝ

≤ C

ha1a2

∫

a1a2

|uD(s) − uh(s)|2ds

≤ C

(
ha1a2

∫

a1a2

(∂uD

∂s
−∇uh · s

)2
ds + h3

a1a2

∫

a1a2

(∂2uD

∂s2

)2
ds

)
,(4.13)

and

I3 ≤ C

∫

K̂

|ϕ̂1(x̂) − ϕ̂2(x̂)|2 |∇x̂

(
uD(x̂D) − uh(x̂D)

)
|2dx̂
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= C

∫

K̂

|ϕ̂1(x̂) − ϕ̂2(x̂)|2
∣∣∂

(
uD(x̂D) − uh(x̂D)

)

∂x̂2

∣∣2
(
1 +

x̂2
2

(1 − x̂1)2

)
dx̂

≤ C

∫

K̂

|ϕ̂1(x̂) − ϕ̂2(x̂)|2
∣∣∂

(
uD(x̂D) − uh(x̂D)

)

∂x̂2

∣∣2dx̂

≤ C

∫

â1â2

∣∣∂
(
uD(x̂D) − uh(x̂D)

)

∂x̂2

∣∣2dx̂2

= C

∫

â1â2

∣∣∂uD

∂ŝ
−∇uh · ŝ

∣∣2dŝ

≤ Cha1a2

∫

a1a2

∣∣∂uD

∂s
−∇uh · s

∣∣2ds. (4.14)

From inequality (4.11)-(4.14), we get (4.10). �

5. The a Posteriori Estimator and Its Reliability and Efficiency

For K ∈ Th, let EK = {E ⊂ R2 : E is an edge of K}, and define

η2
K =

∑

EK∋E 6⊂∂Ωi

hE(‖[(A∇huh + f̄) · n]‖2
0,E + ‖[∇huh · s]‖2

0,E)

+
∑

EK∋E⊂ΓD

hE‖∇huh · s −
∂uD

∂s
‖2

0,E +
∑

EK∋E⊂ΓN

hE‖A∇huh · n − g‖2
0,E

+
∑

EK∋E⊂Γe

hE‖
∂uh

∂n
− BNuh‖2

0,E, (5.1)

where ∇huh ∈ (L2(Ωi))
2 is defined by (∇huh)|K := ∇(uh|K), n and s denote

the unit normal and tangent vectors to the corresponding edges respectively, and

where f̄ = (−f1,−f2)
T with f1, f2 being given in (2.18). Suppose that f ∈ H−1(Ω)

satisfies a further assumption that ∂1(f1|K), ∂2(f2|K) ∈ L2(K), for all K ∈ Th,

and A ∈ (H1(Ω))2×2. Then, we have the following a posteriori error estimate.

Theorem 5.1. Let u be the solution of problem (2.20), and uh be the solution of

the finite element problem (4.2). Then, we have

‖∇u−∇huh‖0,Ωi
≤ C

( ∑

K∈Th

(
h2

K‖RK(uh)‖2
0,K+η2

K

)
+

∑

E∋E⊂ΓD

h3
E

∫

E

|∂
2uD

∂s2
|2ds

) 1

2

,
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where RK(uh) := (f̂ +div(A∇huh)− cuh)|K with f̂ |K = f0 − ∂1(f1|K)− ∂2(f2|K).

Proof. Let p = ∇u, then (p, u) is the solution of the mixed problem (3.1). Thus,

it follows from theorem 4.2 that, for ph = ∇huh and ũh ∈ V defined as (4.9) ,

‖∇u −∇huh‖0,Ωi
≤ ‖p − ph‖0,Ωi

+ ‖u − ũh‖1,Ωi

≤ C(‖ResL(ph, ũh)‖L∗ + ‖ResV (ph, ũh)‖V ∗

0
). (5.2)

Notice that

‖ResL(ph, ũh)‖L∗ = sup
q∈L

|α(ph, q) − β(q, ũh)|
‖q‖L

≤ ‖A∇huh − A∇ũh‖0,Ωi
≤ C‖∇huh −∇ũh‖0,Ωi

,

then by lemma 4.1, we have

‖ResL(ph, ũh)‖L∗ ≤ C
( ∑

E∋E⊂ΓD

(
hE‖∇huh · s −

∂uD

∂s
‖2

0,E + h3
E‖

∂2uD

∂s2
‖2

0,E

)

+
∑

E∋E 6⊂∂Ωi

hE‖[∇huh · s]‖2
0,E

) 1

2

. (5.3)

Next, we consider

‖ResV (ph, ũh)(v)‖V ∗

0
= sup

v∈V0

| − f(v) + β(ph, v) + γ(ũh, v)|
‖v‖1,Ωi

. (5.4)

Let vh be the Clément interpolation of v in the conforming finite element space

Ṽh,0 ⊂ Vh,0. Noticing that uh is the finite element solution of (3.1), we have

−f(v) + β(ph, v) + γ(ũh, v)

= −
∑

K∈Th

∫

K

(f0(v − vh) + f1∂1(v − vh) + f2∂2(v − vh)) dx

−
∫

ΓN

g(v − vh)ds +
∑

K∈Th

∫

K

A∇huh · ∇h(v − vh) dx

+

∫

Ωi

cũhvdx + bN(ũh, v) −
∫

Ωi

cuhvhdx − bN (uh, vh)

= −
∑

K∈Th

∫

K

(
f̂ + div(A∇huh) + cuh

)
(v − vh)dx

15



+

∫

Ωi

c(ũh − uh)vdx +
∑

E∋E 6⊂∂Ωi

∫

E

[(A∇huh + f̄) · n](v − vh)ds

+
∑

E∋E⊂ΓN

∫

E

(A∇huh · n − g)(v − vh)ds −
∫

Γe

(BN ũh − BNuh)vds

+
∑

E∋E⊂Γe

∫

E

(∇uh · n − BNuh)(v − vh)ds. (5.5)

By the standard interpolation theory for Sobolev functions [6], we have

|
∑

K∈Th

hK

∫

K

(
f̂ + div(A∇huh) + cuh

)
(v − vh)dx|

≤ C(
∑

K∈Th

hK‖f̂ + div(A∇huh) + cuh‖0,K‖v‖1,ωK
)

≤ C(
∑

K∈Th

h2
K‖f̂ + div(A∇huh) + cuh‖2

0,K)1/2‖v‖1,Ωi
, (5.6)

where ωK =
⋃

{K′∈Th:K′∩K 6=∅} K ′,

|
∑

E∋E 6⊂∂Ωi

∫

E

[(A∇huh + f̄) · n](v − vh)dx|

≤ C(
∑

E∋E 6⊂∂Ωi

h
1/2
E ‖[(A∇huh + f̄) · n]‖0,E‖v‖1,ωE

)

≤ C(
∑

E∋E 6⊂∂Ωi

hE‖[(A∇huh + f̄) · n]‖2
0,E)1/2‖v‖1,Ωi

, (5.7)

where ωE =
⋃

{K∈Th:E⊂K} K. Similarly, we have

|
∑

E∋E⊂ΓN

∫

E

(A∇huh · n − g)(v − vh)ds|

≤ C(
∑

E∋E⊂ΓN

hE‖A∇huh · n− g‖2
0,E)1/2‖v‖1,Ωi

, (5.8)

|
∑

E∋E⊂Γe

∫

E

(∇uh · n − BNuh)(v − vh)ds|
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≤ C(
∑

E∋E⊂Γe

hE‖∇uh · n − BNuh‖2
0,E)1/2‖v‖1,Ωi

. (5.9)

It follows from lemma 4.1 that

|
∫

Ωi

c(ũh − uh)vdx| ≤ C‖ũh − uh‖0,Ωi
‖v‖0,Ωi

≤ C
( ∑

E∋E⊂ΓD

(
h3

E‖∇huh · s −
∂uD

∂s
‖2

0,E + h5
E‖

∂2uD

∂s2
‖2

0,E

)

+
∑

E∋E 6⊂∂Ωi

h3
E‖[∇huh · s]‖2

0,E

) 1

2‖v‖0,Ωi
. (5.10)

By Parseval’s relation for Fourier transformation, by lemma 4.1 and also by the

trace theorem for Sobolev space, we have

|
∫

Γe

(BN ũh − BNuh)v ds|

= |
N∑

n=1

n

π

∫ 2π

0

∫ 2πR

0

(ũh − uh)(R, θ)v(R,ϕ) cosn(θ − ϕ)dθdϕ|

≤ C

(∫

Γe

(ũh − uh)
2ds

)1/2 (∫

Γe

v2ds

)1/2

≤ C
( ∑

E∩Γe 6=∅
E∋E 6⊂Γe

h2
E‖[∇huh · s]‖2

0,E

)1/2

‖v‖1,Ωi
. (5.11)

The proof of the theorem is completed by combining (5.2) with the inequalities

(5.3)-(5.11). �

Remark 5.1. Since the term h2
K‖RK(uh)‖2

0,K is in general a higher order term

with respect to η2
K , theorem 5.1 implies that ηK is a reliable a posteriori error

estimator.

For the efficiency of the a posteriori error estimator, we have the following

result.

Theorem 5.2. Let u be the solution of problem (2.20), uh be the solution of the

finite element problem (4.2), and let the a posteriori error estimator ηK be given

17



by (5.1). Then, for all K ∈ Th, we have

ηK ≤ C(‖u − uh‖1,ωK
+

∑

EK∋E⊂ΓN

h
1/2
E ‖g − gE‖0,E + hK‖f̂ − f̂K‖0,ωK

+
∑

EK∋E⊂Γe

h
1/2
E ‖BNu − BNuh‖0,E +

∑

EK∋E⊂Γe

h
1/2
E ‖∂u

∂n
−

(
∂u

∂n

)

E

‖0,E),

(5.12)

where gE = 1
|E|

∫
E

gds, f̂K = 1
|K|

∫
K

f̂(x)dx and
(

∂u
∂n

)
E

= 1
|E|

∫
E

∂u
∂n

ds.

Proof. Except for the term
∑

EK∋E⊂Γe
h

1/2
E ‖∂uh

∂n
− BNuh‖0,E in ηK , which, as is

shown below, leads to the additional terms
∑

EK∋E⊂Γe
h

1/2
E ‖BNu − BNuh‖0,E +

∑
EK∋E⊂Γe

h
1/2
E ‖ ∂u

∂n
−

(
∂u
∂n

)
E
‖0,E on the right hand side of (5.12), the estimates for

all of the other terms in ηK are standard [4, 12]. As in [12], let K̂ = {x̂ ∈ R2 :

0 ≤ x̂1, x̂2, x̂1 + x̂2 ≤ 1} be the reference finite element with Ê = K̂ ∩ {x̂2 = 0},
let FK : K̂ → K ⊂ ωE be the one-one quadratic mapping with FK(Ê) = E ⊂ Γe

(see section 4), and let P̂ : C(Ê) → C(K̂) be given by P̂(v̂)(x̂) = v̂(x̂1), we

define an extension operator P : C(E) → C(ωE) by (Pv)|K := (P̂(v ◦FK))◦F−1
K .

Denote Ph = P(∂uh

∂n
− (BNuh)E), where (BNuh)E = 1

|E|

∫
E
BNuhds, and let bE be

the edge-bubble function defined on ωE with respect to the edge E [12]. Then,

recall that BNu = ∂u
∂n

, we have

‖∂uh

∂n
− (BNuh)E‖2

0,E ≤ C

∫

E

bEPh(
∂(uh − u)

∂n
+ BNu − (BNuh)E)ds

= C(

∫

K⊃E

∇(bEPh)∇(uh − u)dx +

∫

E

(bEPh)(BNu − (BNuh)E)ds)

≤ C(‖∇u −∇huh‖0,K‖∇(bEPh)‖0,K + ‖BNu − (BNuh)E‖0,E‖bEPh‖0,E)

≤ C(h−1
E ‖∇u −∇huh‖0,K‖bEPh‖0,K + ‖BNu − (BNuh)E‖0,E‖bEPh‖0,E)

≤ C(h
−1/2
E ‖∇u −∇huh‖0,K + ‖BNu − (BNuh)E‖0,E)‖∂uh

∂n
− (BNuh)E‖0,E.

This gives

h
1/2
E ‖∂uh

∂n
− BNuh‖0,E

18



≤ h
1/2
E (‖∂uh

∂n
− (BNuh)E‖0,E + ‖BNuh − (BNuh)E‖0,E)

≤ ‖∇u −∇huh‖0,K + h
1/2
E (‖BNu − (BNuh)E‖0,E + ‖BNuh − (BNuh)E‖0,E)

≤ ‖∇u −∇huh‖0,K + h
1/2
E (‖BNu − BNuh‖0,E + 2‖BNuh − (BNuh)E‖0,E).

(5.13)

Since ∂u
∂n

= BNu and ‖(BNu)E − (BNuh)E‖0,E ≤ ‖BNu − BNuh‖0,E, we have

‖BNuh − (BNuh)E‖0,E ≤ ‖BNu − BNuh‖0,E + ‖(BNu)E − (BNuh)E‖0,E

+‖BNu − (BNu)E‖0,E

≤ 2‖BNu − BNuh‖0,E + ‖∂u

∂n
−

(
∂u

∂n

)

E

‖0,E. (5.14)

The proof is completed by combining (5.13) and (5.14). �

Remark 5.2. If ∂K ∩ Γe = ∅, the right hand side of (5.12) reduces to

C(‖u − uh‖1,ωK
+ hK‖f̂ − f̂K‖0,ωK

+
∑

EK∋E⊂ΓN

h
1/2
E ‖g − gE‖0,E).

This implies that, for the elements not lying on the artificial boundary Γe, our

estimator is efficient.

Remark 5.3. On the artificial boundary Γe, we have

∑

EK∋E⊂Γe

h
1/2
E ‖∂u

∂n
−

(
∂u

∂n

)

E

‖0,E ≤ C
∑

EK∋E⊂Γe

h
3

2

E‖
∂2u

∂s∂n
‖0,E

≤ C
∑

EK∋E⊂Γe

h2
E|u|2,∞,K , (5.15)

that is of the same order as the term ‖u− uh‖1,ωK
≤ Ch2

K |u|2,∞,K . Furthermore,
∑

EK∋E⊂Γe
h

1/2
E ‖ ∂u

∂n
−

(
∂u
∂n

)
E
‖0,E could be replaced by a higher term under the

assumption of better regularity of u near Γe, which is true in most cases. On the

term
∑

EK∋E⊂Γe
h

1/2
E ‖BNu − BNuh‖0,E, noticing that

|
N∑

n=1

n

∫ 2π

0

(u − uh) cosn(θ − φ)dθ| ≤
√

2πN2R−1(

∫

Γe

(u − uh)
2ds)1/2,
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we have

∑

EK∋E⊂Γe

h
1/2
E ‖BNu − BNuh‖0,E ≤ CN2hE(

∫

Γe

(u − uh)
2ds)1/2

≤ CN2h
3/2
E

∑

K′∩Γe 6=∅

‖u − uh‖1,K′ ≤ CN2h
3/2
E

∑

K′∩Γe 6=∅

h2
K′ |u|2,∞,K′ . (5.16)

When ∂K ∩ Γe 6= ∅, the right hand side of (5.16) is of order O(h2
E), that is

of the same order as the term ‖u − uh‖1,ωK
≤ Ch2

K |u|2,∞,K , if maxE⊂Γe
{hE} ≤

(minE⊂Γe
{hE})1/2. So, as long as the condition maxE⊂Γe

{hE} ≤ (minE⊂Γe
{hE})1/2

is satisfied, our a posteriori error estimator is also efficient on the artificial bound-

ary. In fact, the condition is easily satisfied if the solution u is sufficiently smooth

near the artificial boundary, which is always the case for our problem if R is

sufficiently large, and the violation of the condition implies that the solution has

certain singularity on the artificial boundary. In the later case, we should choose

a larger circle as a new artificial boundary.

6. An Adaptive Algorithm and Numerical Examples

In this section, we apply a standard mesh adaptive algorithm with ηK defined

by (5.1) as the a posteriori error estimator, to some typical numerical examples.

In addition, it is well-known that the recovery technique could give much efficient

a posteriori error estimators in many numerical examples. Thus, we would also

like to make some numerical comparisons between our error estimator and some

recovery type error estimators in our numerical experiments.

Algorithm:

(1) Given an initial mesh T0, a tolerance TOL > 0, and a number 0 < µ < 1.

(2) Solve the problem on the mesh Ti, to obtain the solution uh.

(3) Calculate the error estimator ηK on each element K, and set ηmax =

maxK∈T ηK . If (
∑

K∈T η2
K)1/2 < TOL, stop, else go to the next step.

(4) If ηK > µηmax, mark it. Generate a new mesh by regularly refining

the marked elements, that is to divide triangles into four by joining the

midpoints of edges.

(5) Refine further the other elements (red-green-blue refinement, page 108 in

[12]) to eliminate the hanging nodes. Go back to (2).
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Example 1. An exterior problem for the Poisson equation.

We consider the following problem defined on Ω = {(r, θ) : r > 0.5, 0 ≤ θ ≤
2π}, a planar domain outside a circular obstacle of radius r0 = 0.5.

−∆u = 0, in Ω, (6.1)

u(0.5, θ) = 0.5 ln
0.4525 + 0.45 sin θ

0.4525 − 0.45 sin θ
, 0 ≤ θ ≤ 2π, (6.2)

u → 0, r → ∞. (6.3)

The problem has an exact solution:

u(r, θ) = 0.5 ln
r2 + 0.9r sin θ + 0.452

r2 − 0.9r sin θ + 0.452
. (6.4)

The numerical results of corresponding finite element problem (4.2) with N = 9

are shown in Table 1 and Figure 2, where NK is the number of elements in

a mesh, err =
‖∇u−∇huh‖0,Ωi

‖∇u‖0,Ωi

is the relative error of the numerical solution in

H1(Ωi) semi-norm for R = 2, and est is the corresponding error estimate given

by our a posteriori error estimator which is also divided by ‖∇u‖0,Ωi
. It is

Table 1. Numerical results for example 1 using estimator η.

NK Error err Estimator est err/est
547 0.224978 1.044764 0.21534
951 0.155840 0.761614 0.20462

1419 0.122980 0.620880 0.19807
2659 0.089849 0.469365 0.19143
5301 0.064120 0.340269 0.18844
7368 0.055490 0.294950 0.18813

10567 0.046520 0.249202 0.18668
15484 0.038554 0.207170 0.18610

clearly shown in Table 1 that the ratios of the estimates and the errors converge

to a constant during the process of adaptivity, which verifies that our posteriori

estimator is both reliable and efficient, and suggests further that, the estimator,

multiplied by a constant factor is asymptotically exact in this situation. Compare

the convergence behavior of the errors and estimates of the numerical solutions

on both the uniformly refined and adaptively refined meshes shown in Figure 4,

we see that the adaptive method produces much sharper numerical results and

reaches the optimal convergence order O(N
−1/2
K ).
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Figure 4. Convergence behavior for Example 1.

To compare our a posteriori error estimator with some recovery type error

estimators, we also compute the problem by using the average type error estimator

η̃K = ‖∇uh − Gh∇uh‖0,K ([15]), where Gh∇uh|K ∈ (P 1(K))2 with

Gh∇uh(ai) =
∑

K′∈ωai

|K ′|
|ωai

|∇uh|K′(ai),

for any node ai of K. Table 2 is the corresponding numerical results where err

has the same meaning as before and estA is the corresponding estimate given

by the estimator η̃, which is also divided by ‖∇u‖0,Ωi
. It shows that the two

estimators could generate almost the same accuracy on the meshes with similar

numbers of freedoms while the ratio err/estA is close to 1.

Table 2. Numerical results for example 1 using estimator η̃.

NK Error err Estimator estA err/estA
517 0.240136 0.224495 1.06967
869 0.163397 0.157478 1.03759

1510 0.118884 0.115879 1.02593
2602 0.090941 0.088565 1.02683
5127 0.065583 0.063895 1.02643
7946 0.052668 0.051321 1.02623

10960 0.045165 0.043993 1.02664
13638 0.040550 0.039534 1.02569
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Example 2. The potential of the stray field energy in micromagnetics.

In micromagnetic simulations, one difficulty is the non-locality of the stray

field. For a ferromagnetic material occupying a bounded domain Ωm ⊂ Rd, the

potential of the stray field energy u is determined by the magnetization field m

through the following Maxwell’s equation:

div(−∇u + mχΩm
) = 0, in Rd, (6.5)

u → 0, as |x| → ∞. (6.6)

We notice here that equation (6.5) is considered to hold in H−1(Rd), and thus,

in 2-dimensions, the problem is equivalent to problem (2.1)-(2.4) with Ω = R2,

Γ = ΓN

⋃
ΓD = ∅, and f being such that f0 = 0, −f̄ = (f1, f2)

T = mχΩm
(see

(2.14)), where χΩm
is the characteristic function of Ωm.
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Figure 5. The convergence behavior for Example 2.

In our numerical experiments, we take Ωm = [−0.1, 0.1] × [−0.5, 0.5] and

Ωi = B(0, 1), and set m = (cos(20πxy), sin(20πxy))T , which are unit vectors in

R2, moreover, we set N = 9. We see in Figure 5, which shows the a posteriori

error estimates for the numerical solutions on both the uniformly and adaptively

refined meshes, that the expected optimal convergence rate O(N
−1/2
K ) is obtained

by the adaptive method. In Figure 6, we show the initial mesh and some se-

lected adaptively refined meshes, and it is clearly seen that the area where u has
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Figure 6. the mesh for Example 2.

significantly larger variance of derivatives are refined once and again during the

adaptivity process.
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