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Abstract. A numerical method is established to compute the weakly
lower semicontinuous envelope of integral functionals with non-quasiconvex
integrands. The convergence of the method is proved and it is shown
that the method is capable of capturing curved and non-homogeneous mi-
crostructures. Numerical examples are given to show the effectiveness of
the method to capture curved and non-homogeneous laminated microstruc-
tures.

1. Introduction

Consider the problem of minimizing an integral functional

F (u; Ω) =

∫

Ω

f(x, u(x), ∇u(x)) dx (1.1)

with nonquasiconvex integrand f : Ω×Rm×Rmn → R1 in a set of admissible

functions

U(u0; Ω) = {u ∈ W 1,p(Ω; Rm) : u = u0, on ∂Ω}, (1.2)

where Ω ⊂ Rn is a bounded open set with Lipschitz continuous boundary ∂Ω

and 1 < p < ∞. To solve the problem, the Γ−−limit of the functional F ( · ; Ω)

in U(u0; Ω), which is identified by

Γ-- lim F (u; Ω) = min{lim inf
α→∞

F (uα; Ω) : uα ∈ U(u0; Ω),

uα ⇀ u in W 1,p(Ω; Rm)}, (1.3)
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(where ’⇀’ means ’converges weakly to’) plays an important role, since it is

the sequentially weakly lower semicontinuous envelope of F ( · ; Ω) in U(u0; Ω),

i.e., the greatest sequentially weakly semicontinuous functional defined on

U(u0; Ω) less than or equal to F ( · ; Ω) (see [7, 13]).

The main purpose of this paper is to establish a numerical method to eval-

uate Γ-- lim F (u; Ω) for a given u ∈ U(u0; Ω) under the hypotheses

(H1): f : Ω×Rm ×Rmn → R1 is continuous and

0 ≤ f(x, s, ξ) ≤ a + b(|s|p + |ξ|p), (1.4)

where a ∈ R1 and b > 0.

(H2): Qf : Ω×Rm ×Rmn → R1, the quasiconvex envelope of f respect

to the last variable [3, 13, 32], is continuous.

(H3): Γ-- lim F ( · ; Ω) defined by (1.3) has an integral representation

Γ-- lim F (u; Ω) = QF (u; Ω) ≡
∫

Ω

Qf(x, u(x), ∇u(x)) dx. (1.5)

Remark 1.1. It is well known that (H3) is satisfied under certain general hy-

potheses on the growth and coerciveness of f [1, 7, 13, 22, 31]. For example,

let f be continuous and such that

(h1): max{0, a1 + b1(|s|p + |ξ|p)} ≤ f(x, s, ξ) ≤ a2 + b2(|s|p + |ξ|p),
(h2): |f(x, s, ξ)−f(x, t, η)| ≤ K(1+|s|p−1+|t|p−1+|ξ|p−1+|η|p−1)(|s−

t|+ |ξ − η|),
(h3): |f(x, s, ξ)− f(y, s, ξ)| ≤ β(|x− y|)(1 + |s|p + |ξ|p),

where a1 ∈ R1, a2 > 0, b2 ≥ b1 > 0, K > 0, β : R1 → R1 is continuous and

increasing and β(0) = 0. Then, (H1)-(H3) are satisfied [13].

Since the minimizing sequences of F ( · ; Ω) in U(u0; Ω) often consist of

finer and finer oscillations and lead to microstructures [4, 13, 20, 23], and

since for non-homogeneous integrand f or for nonlinear boundary data the

microstructures are in general non-homogeneous and not necessarily being flat

laminated, the method to be established should be capable of capturing non-

homogeneous and curved microstructures.

Many numerical methods have been developed for the computation of (flat)

laminated microstructures, for example, gradient iterative methods [11, 12],

methods utilizing simulated annealing and Monte Carlo techniques [17, 29],
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rotational transformation method and mesh transformation type methods [24,

25, 27], numerical methods using quasi-convex envelope [8], the Young measure

relaxation [9] and rank-one convex envelope [14, 26], more references can be

found in [16, 30]. Numerical methods for the computation of non-homogeneous

microstructures in homogeneous materials have also been developed, see for

example [2, 28]. As is known that for homogeneous materials, the interfaces of

laminated microstructures are always flat, since the gradients on both sides of

an interface are constants. However, for non-homogeneous materials the inter-

faces of laminated microstructures can be non-flat or, in other word, curved,

since the gradients in a laminate may no longer be constant in such cases,

and as far as what is known to the author, there still lack a practical nu-

merical method designed for the computation of non-homogeneous and curved

laminated microstructures.

In the present paper, aimed at computing non-homogeneous and curved lam-

inated microstructures, a numerical method for the evaluation of Γ-- lim F (u; Ω)

is given. The basic idea is to approximate the value by the solutions to a set of

subproblems defined on a finite element subdivision of Ω (see Sec. 2), the sub-

problems , each of which concerns with homogeneous integrand and boundary

data, are then solved parallely by any available numerical methods, for ex-

ample the rotational transformation method combined with the incremental

crystallization method [24] (see Sec. 3). In Sec. 4, the finite element solutions

to the subproblems are used to construct minimizing sequences of the original

problem (see (1.3)) and the convergence of the method is proved. In Sec. 5,

numerical examples are given to show the effectiveness of the method in the

computation of curved and non-homogeneous laminated microstructures.

2. Semi-discretization and homogeneous subproblems

For simplicity, let Ω be a polyhedron, let Th(Ω) be regular triangulations of

Ω [10] and let u0 and Th(Ω) be such that

u0|∂Ω∩∂K ∈ (P1(∂Ω ∩ ∂K))m, ∀K ∈ Th(Ω), (2.1)

where P1(E) is the set of all affine functions defined on E. Define

Uh(u0; Ω) = {u ∈ (C(Ω̄))m : u|K ∈ (P1(K))m, ∀K ∈ Th(Ω);

u = u0, on ∂Ω}. (2.2)
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Let u ∈ U(u0; Ω). By the finite element approximation theory [10], there

exist finite element functions uh ∈ Uh(u0; Ω) such that

uh → u in W 1,p(Ω; Rm). (2.3)

Lemma 2.1. Let f : Ω × Rm × Rmn → R1 satisfy the hypotheses (H1)-(H3).

Then

lim
h→0

Γ-- lim F (uh; Ω) = Γ-- lim F (u; Ω). (2.4)

Proof. By (H1) and (H2), Qf : Ω×Rm×Rmn → R1 is continuous and satisfies

[13]

0 ≤ Qf(x, s, ξ) ≤ a + b(|s|p + |ξ|p). (2.5)

Thus (2.4) follows from (H3), (2.3) and the dominated convergence theorem

[15]. ¤

Let hi > 0, i = 1, 2, . . . be a sequence of numbers such that

lim
i→∞

hi = 0, (2.6)

and

Thi+1
(Ω) Â Thi

(Ω), ∀i, (2.7)

i.e., for all i, Thi+1
(Ω) is a refinement of Thi

(Ω).

Lemma 2.2. Let the hypotheses (H1) and (H2) be satisfied. Then
∫

Ω

Qf(x, uhi
(x), ∇uhi

(x)) dx = lim
j→∞

∑

K∈Thi+j
(Ω)

∫

Ω

Qf(xK , uhi
(xK), AK) dx

(2.8)

for all i, where {
xK ∈ K, ∀K ∈ Thi+j

(Ω),

AK = ∇uhi
|K , ∀K ∈ Thi+j

(Ω).
(2.9)

Proof. (2.8) follows as a consequence of the continuity of Qf and uhi
, (2.5)

and the dominated convergence theorem [15]. ¤

For each K ∈ Thi+j
(Ω), define fi,K : Rmn → R1 by

fi,K(ξ) = f(xK , uhi
(xK), AK + ξ). (2.10)
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Then, by the definition of quasiconvex envelope [3, 13, 32], we have

Qfi,K(ξ) = Qf(xK , uhi
(xK), AK + ξ). (2.11)

Lemma 2.3. Let f satisfy (H1). Then, for all i ≥ 1 and K ∈ Thi+j
(Ω), we

have

Qfi,K(0) meas(K) = inf
v∈U(0; K)

∫

K

fi,K(∇v(x)) dx. (2.12)

Proof. By (H1), fi,K is continuous and satisfies

0 ≤ fi,K(ξ) ≤ ci + c2|ξ|p, (2.13)

where ci ∈ R1 and c2 > 0. Thus (2.12) follows [1, 7, 13]. ¤

Summing up the above analyses, we obtain the following semidiscretization

result.

Theorem 2.1. Let f satisfy (H1)-(H3). Then

Γ-- lim F (u; Ω) = lim
i→∞

lim
j→∞

∑

K∈Thi+j
(Ω)

inf
v∈U(0; K)

∫

K

fi,K(∇v(x)) dx, (2.14)

where fi,K is defined by (2.10).

Proof. (2.14) is a direct consequence of lemma 2.1- 2.3, (2.6) and (2.11). ¤

This motivates us to evaluate Γ-- lim F (u; Ω) and to find a minimizing se-

quence to the right-hand side of (1.3) by solving numerically the subproblems

inf
v∈U(0; K)

∫

K

fi,K(∇v(x)) dx, (2.15)

for all K ∈ Thi+j
(Ω). Notice here that for each subproblem both the integrand

(see (2.10)) and the boundary data (v = 0 on ∂K) are homogeneous.

Theorem 2.2. Let f satisfy (h1)-(h3). Let {ũi,K
α }∞α=1 be minimizing sequences

of (2.15) satisfying

ũi,K
α ⇀ 0, in W 1,p(K; Rm) as α →∞. (2.16)

Let the functions ui,j
α ∈ U(u0; Ω) be defined by

ui,j
α (x) = uhi

(x) + ũi,K
α (x), if x ∈ K, ∀K ∈ Thi+j

(Ω). (2.17)
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Then, we have

Γ-- lim F (u; Ω) = lim
i→∞

lim
j→∞

lim
α→∞

F (ui,j
α ; Ω). (2.18)

Furthermore, there exist nondecreasing functions J(i) and A(i, j) such that the

sequence {ui} defined by

ui(x) = ui,j
α (x), ∀x ∈ Ω, ∀i and j ≥ J(i), α ≥ A(i, j)

is a minimizing sequence of Γ-- lim F (u; Ω), that is

ui ⇀ u in W 1,p(Ω; Rm), (2.19)

Γ-- lim F (u; Ω) = lim
i→∞

F (ui; Ω). (2.20)

Proof. By the minimizing property of {ũi,K
α }∞α=1 and the hypothesis (h1), it is

easily seen that ui,j
α are uniformly bounded in W 1,p(Ω; Rm), that is

‖ui,j
α ‖1,p ≤ C, ∀i, j, α, (2.21)

for a constant C. By (2.16), (2.17) and the Kondracov compactness theorem

[6], we have

lim
α→∞

‖ui,j
α ‖0,p = 0, ∀i, j. (2.22)

Since {ũi,K
α }∞α=1 are minimizing sequences of (2.15), it follows from (2.9),

(2.10) and theorem 2.1 (see also remark 1.1) that

Γ-- lim F (u; Ω) = lim
i→∞

lim
j→∞

lim
α→∞

∑

K∈Thi+j
(Ω)

∫

K

f(xK , uhi
(xK),∇ui,j

α (x)) dx.

Thus, by (h2) and (h3), there is a constant C > 0 such that

|Γ-- lim F (u; Ω)− lim
i→∞

lim
j→∞

lim
α→∞

F (ui,j
α ; Ω)|

≤ lim
i→∞

lim
j→∞

lim
α→∞

C{(meas(Ω)
p−1

p + ‖uhi
‖

p−1
p

1,p + ‖ui,j
α ‖

p−1
p

1,p )‖uhi
− ui,j

α ‖0,p

+ β(hi+j)(meas(Ω) + ‖uhi
‖p

1,p + |ui,j
α |p1,p)}. (2.23)

In view of (2.3), (2.6), (2.21), (2.22) and limt→0 β(t) = 0 (see (h3)), (2.23)

gives (2.18). (2.19) and (2.20) follows from (2.3), (2.16), (2.18) and a standard

diagonal process. ¤
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3. Numerical solutions to the homogeneous subproblems

Let f satisfy (H1). Let uhi
and Thi+j

(Ω) be given. Consider the problems

of minimizing the integral functional

Fi,K(u; Ω) =

∫

Ω

fi,K(∇u(x)) dx (3.1)

in the set of admissible functions

U(u0; K) = {u ∈ W 1,p(K; Rm) : u = u0, on ∂K}, (3.2)

for all K ∈ Thi+j
(Ω). It will be much more convenient if the problems can be

solved numerically on a common reference configuration.

Let K̂ ⊂ B(0; 1) be a given n-simplex with 0 ∈ K̂, where

B(x0; r) = {x ∈ Rn : ‖x− x0‖ < r}.

Lemma 3.1. For each K ∈ Thi+j
(Ω), there exists a n × n matrix BK with

det BK > 0 and a point xK ∈ K such that the linear mapping

x = GK(x̂) ≡ hKBK x̂ + xK (3.3)

maps K̂ on to K, that is

K = GK(K̂), (3.4)

where hK = diam(K) is the diameter of K. Furthermore, there exists a con-

stant C which is independent of i, j and K such that

‖BK‖ ≤ C, ‖B−1
K ‖ ≤ C, ∀K ∈ Thi+j

(Ω), ∀i, j. (3.5)

Proof. Since every K ∈ Thi+j
(Ω) is a n-simplex, the first part of the lemma is

obvious. (3.5) follows from the fact that Thi+j
(Ω) are regular triangulations of

Ω [10]. ¤

Let BK , K ∈ Thi+j
(Ω), be given by lemma 3.1. Then a natural 1-1 corre-

spondence between U(0; K) and U(0; K̂) can be established by

û(x̂) = h−1
K u(hKBK x̂ + xK), ∀u ∈ U(0; K). (3.6)
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Theorem 3.1. For all K ∈ Thi+j
(Ω), we have

inf
v∈U(0; K)

∫

K

fi,K(∇v(x)) dx =
meas(K)

meas(K̂)
inf

v̂∈U(0; K̂)

∫

K̂

fi,K(∇v̂(x̂)B−1
K ) dx̂. (3.7)

Proof. Let u ∈ U(0; K) and û ∈ U(0; K̂) be related by (3.6). Then, it follows

from (3.3) and (3.4) that
∫

K

fi,K(∇u(x)) dx =

∫

K̂

fi,K(∇û(x̂)B−1
K )hn

K det BK dx̂.

Since

hn
K det BK =

meas K

meas(K̂)
,

we have
∫

K

fi,K(∇u(x)) dx =
meas(K)

meas(K̂)

∫

K̂

fi,K(∇û(x̂)B−1
K ) dx̂. (3.8)

This implies (3.7), since (3.6) is a 1-1 correspondence. ¤

Theorem 3.2. Let {ûα}∞α=1 be a minimizing sequence of

F̂i,K(û; K̂) =

∫

K̂

fi,K(∇û(x̂)B−1
K ) dx̂ (3.9)

in U(0; K̂). Then

uα(x) = hK ûα(h−1
K B−1

K (x− xK)), α = 1, 2, . . . (3.10)

is a minimizing sequence of Fi,K( · ; K) in U(0; K).

Proof. Since (3.10) implies that uα and ûα are related by (3.6), it follows from

(3.8) that

Fi,K(uα; K) =
meas(K)

meas(K̂)
F̂i,K(ûα; K̂), ∀α.

Thus, by theorem 3.1, we have

lim
α→∞

Fi,K(uα; K) =
meas(K)

meas(K̂)
inf

û∈U(0; K̂)
F̂i,K(û; K̂) = inf

u∈U(0; K)
Fi,K(u; K).

This completes the proof. ¤
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Instead of solving the subproblems (2.15) directly, theorem 3.1 and theo-

rem 3.2 allow us to obtain numerical solutions to (2.15) by solving the prob-

lems

inf
û∈U(0; K̂)

∫

K̂

fi,K(∇û(x̂)B−1
K ) dx̂ (3.11)

for all K ∈ Thi+j
(Ω).

Remark 3.1. Since for all K ∈ Thi+j
(Ω) the problems (3.11) are defined on a

same standard domain K̂, the programing is much simplified.

Remark 3.2. The problems (3.11) are independent of each other and thus

can be solved parallely by any available numerical methods, for example, the

rotational transformation method [24], the periodic relaxation method [25]

and the mesh transformation method [27] can be applied to compute simple

laminated microstructures, and methods to compute finite order laminated

microstructures can be found in [26, 28].

For simplicity, we consider to solve the problem of minimizing the functional

F̂i,K( · ; K̂) in U(0; K̂) (see (3.11)) by the rotational transformation method

[24]. Similar results can be obtained by applying other methods. Let D =

(−1, 1)n. Let T̂ĥ(D) be regular triangulations [10] of D, and let

Uĥ(0; D) = {u ∈ (C(D̄))m : u|De ∈ (P1(De))
m, ∀De ∈ T̂ĥ(D);

u = 0, on ∂D}, (3.12)

SO+(n) = {R ∈ Rn×n : R = RT , RT R = I, det R = 1}.
Define

F̂i,K(u, R; D) =

∫

D

fi,K(∇u(x̂)R−1B−1
K ) dx̂. (3.13)

The rotational transformation problem leads to the following finite problem
{

Find (uĥ, Rĥ) ∈ Uĥ(0; D)× SO+(n) such that

F̂i,K(uĥ, Rĥ; D) = inf(u′, R′)∈Uĥ(0; D)×SO+(n) F̂i,K(u′, R′; D),
(3.14)

which can be solved by the gradient method combined with the incremental

crystallization method [24]. Briefly speaking, (3.14) is first solved on a small

subset D0 of D to produce a crystal core, and then it is solved iteratively on

an incrementally increasing subset Dβ, β = 1, 2, . . . , M of D with DM = D.
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Lemma 3.2. Let (ui,K

ĥ
, Ri,K

ĥ
) ∈ Uĥ(0; D) × SO+(n) be a solution to (3.14).

Then, the function ūi,K

ĥ
: Ri,K

ĥ
(D) → Rm defined by

ūi,K

ĥ
(x̂) = ui,K

ĥ
((Ri,K

ĥ
)−1x̂) (3.15)

is a minimizer of F̂i,K( · ; Ri,K

ĥ
(D)) in Uĥ(0; Ri,K

ĥ
(D)). As a consequence, we

have

inf
u∈Uĥ(0; Ri,K

ĥ
(D))

F̂i,K(u; Ri,K

ĥ
(D)) = inf

(u′, R′)∈Uĥ(0; D)×SO+(n)
F̂i,K(u′, R′; D).

Proof. A straightforward calculation by using the 1-1 correspondence between

Uĥ(0; D) and Uĥ(0; Ri,K

ĥ
(D)) shows the result. ¤

Lemma 3.3. ([24]) For all i, K, we have

1

meas(K̂)
inf

u∈U(0; K̂)
F̂i,K(u; K̂) = Qfi,K(0)

=
1

meas(D)
lim
ĥ→0

inf
(u′, R′)∈Uĥ(0; D)×SO+(n)

F̂i,K(u′, R′; D). (3.16)

Proof. Let (ui,K

ĥ
, Ri,K

ĥ
) ∈ Uĥ(0; D) × SO+(n) be a solution to (3.14) and let

ūi,K

ĥ
be defined by (3.15), then

inf
u∈U(0; Ri,K

ĥ
(D))

F̂i,K(u; Ri,K

ĥ
(D)) ≤ F̂i,K(ūi,K

ĥ
; Ri,K

ĥ
(D))

= F̂i,K(ui,K

ĥ
, Ri,K

ĥ
; D) ≤ inf

u∈Uĥ(0; D)
F̂i,K(u; D).

Since (see [13, 24])

inf
u∈U(0; Ri,K

ĥ
(D))

F̂i,K(u; Ri,K

ĥ
(D)) = meas(D)Qfi,K(0),

lim
ĥ→0

inf
u∈Uĥ(0; D)

F̂i,K(u; D) = inf
u∈U(0; D)

F̂i,K(u; D) = meas(D)Qfi,K(0),

and

inf
u∈U(0; K̂)

F̂i,K(u; K̂) = meas(K̂)Qfi,K(0),
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(3.16) is proved. ¤

Let (ui,K

ĥ
, Ri,K

ĥ
) ∈ Uĥ(0; D) × SO+(n) be a sequence of solutions to (3.14)

with ĥ → 0, then ūi,K

ĥ
defined by (3.15) can be used to construct a minimizing

sequence of F̂i,K( · ; K̂) in U(0; K̂).

A standard way of doing so (see [13]) is to first extend ūi,K

ĥ
periodically from

Ri,K

ĥ
(D) to the whole of Rn and then define

ûi,K

ĥ
(x̂) =

{
ĥūi,K

ĥ
(ĥ−1x̂), if x̂ ∈ K̂ĥ,

0, otherwise,
(3.17)

where

K̂ĥ = {x : x ∈ ĥ(2Ri,K

ĥ
(z) + Ri,K

ĥ
(D)) ⊂ K̂ for some z ∈ Zn}

and where Z is the set of all integers.

Theorem 3.3. Let (ui,K

ĥ
, Ri,K

ĥ
) ∈ Uĥ(0; D) × SO+(n) be a sequence of solu-

tions to (3.14) with ĥ → 0 such that

|ui,K

ĥ
|1,p,D ≤ C, ∀ĥ, (3.18)

where C is a constant independent of ĥ. Then, the sequence {ûi,K

ĥ
} ⊂ U(0; K̂)

defined by (3.17) is such that

ûi,K

ĥ
⇀ 0, in W 1,p(K̂; Rm), as ĥ → 0, (3.19)

lim
ĥ→0

F̂i,K(ûi,K

ĥ
; K̂) = inf

u∈U(0; K̂)
F̂i,K(u; K̂). (3.20)

Proof. (3.19) is obvious. By lemma 3.2 and lemma 3.3, to show (3.20), we only

need to verify that

lim
ĥ→0

[F̂i,K(ûi,K

ĥ
; K̂)− meas(K̂)

meas(D)
F̂i,K(ūi,K

ĥ
; Ri,K

ĥ
(D))] = 0.

This can been obtained easily by a straightforward calculation using (3.17)

and the fact that fi,K(0) is bounded and limĥ→0 meas(K̂ \ K̂ĥ) = 0. ¤
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Another method to construct a minimizing sequence of F̂i,K(· ; K̂) in U(0; K̂)

out of {(ui,K

ĥ
, Ri,K

ĥ
)} is given by Li [24]. Assume that

ui,K

ĥ
⇀ 0, in W 1,p(D; Rm), as ĥ → 0. (3.21)

By the Kondracov compactness theorem [6], this implies

ui,K

ĥ
→ 0, in Lp(D; Rm), as ĥ → 0. (3.22)

Define

δi,K

ĥ
= min{1, max(ĥ,

∫

D

|ui,K

ĥ
(x̂)|pdx̂)}, (3.23)

K̂(λ) = {x ∈ K̂ : dist(x, ∂K̂) < λ}. (3.24)

Let ϕi,K

ĥ
: Rn → [0, 1] be such that ϕi,K

ĥ
∈ C∞(Rn),

ϕi,K

ĥ
(x) =

{
1, if x ∈ K̂ \ K̂(2(δi,K

ĥ
)1/p̂);

0, if x ∈ Rn \ (K̂ \ K̂(ĥ)),
(3.25)

and

|∇ϕi,K

ĥ
(x)| ≤ (δi,K

ĥ
)−1/p̂, ∀x ∈ Rn, (3.26)

where p̂ > p is an arbitrarily given constant. Define

ǔi,K

ĥ
(x̂) = ϕi,K

ĥ
(x̂)ūi,K

ĥ
(x̂), (3.27)

with ūi,K

ĥ
defined by (3.15). We have the following result [24].

Theorem 3.4. Let (ui,K

ĥ
, Ri,K

ĥ
) ∈ Uĥ(0; D) × SO+(n) be a sequence of solu-

tions to (3.14) satisfying (3.21) and the condition (see [15, 18, 19])

(C): {|∇ui,K

ĥ
|p} are precompact in L1(D; Rm).

Then, the sequence {ǔi,K

ĥ
} ⊂ U(0; K̂) defined by (3.27) satisfies

ǔi,K

ĥ
⇀ 0, in W 1,p(K̂; Rm), as ĥ → 0, (3.28)

lim
ĥ→0

F̂i,K(ǔi,K

ĥ
; K̂) = inf

u∈U(0; K̂)
F̂i,K(u; K̂). (3.29)
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Remark 3.3. In practice, ūi,K

ĥ
|K̂ can be directly used as a numerical solution

to (3.11) as long as (3.21) and the condition (C) are satisfied, and this can

usually provide sharper numerical results (see [24]).

Remark 3.4. Under the hypotheses (h1)-(h3), a minimizing sequence satisfying

(3.21) is known to exist [13], furthermore Kinderlehrer and Pedregal [18, 19]

proved that such a sequence satisfies the condition (C). To guarantee the finite

element solutions {ui,K

ĥ
} satisfy (3.21), a penalty term µĥ−q

∫
D
|ui,K

ĥ
|p dx with

µ > 0 and q ∈ (0, p) can be added to F̂i,K(·, ·; D) (see [24] for details).

4. Numerical solutions to Γ-- lim F (u; Ω)

Using the numerical solutions to the subproblems (3.14) obtained in Sec. 3,

we can now evaluate Γ-- lim F (u; Ω).

Theorem 4.1. Let f satisfy (H1)-(H3). Let (ui,K

ĥ
, Ri,K

ĥ
) ∈ Uĥ(0; D)×SO+(n)

be a sequence of solutions to (3.14) with ĥ → 0. Then

Γ-- lim F (u; Ω) = 2−n lim
i→∞

lim
j→∞

lim
ĥ→0

∑

K∈Thi+j
(Ω)

meas KF̂i,K(ui,j

ĥ
, Ri,j

ĥ
; D). (4.1)

Proof. By theorem 3.1 and lemma 3.2,

inf
v∈U(0; K)

∫

K

fi,K(∇v(x)) dx =
meas(K)

meas(K̂)

meas(K̂)

meas(D)
lim
ĥ→0

F̂i,K(ui,K

ĥ
, Ri,K

ĥ
; D).

This and theorem 2.1 give (4.1), since meas(D) = 2n. ¤

Furthermore, we can construct a minimizing sequence of Γ-- lim F (u; Ω) by

the numerical solutions of the subproblems.

Theorem 4.2. Let f satisfy (h1)-(h3). Let (ui,K

ĥ
, Ri,K

ĥ
) ∈ Uĥ(0; D)×SO+(n)

be solutions to (3.14). Let ûi,K

ĥ
be defined by (3.17). Let the functions ui,K

ĥ
∈

U(u0; Ω) be defined by

ui,j

ĥ
(x) = uhi

(x) + hK ûi,K

ĥ
(h−1

K B−1
K (x− xK)),

if x ∈ K, ∀K ∈ Thi+j
(Ω). (4.2)
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Then, we have

Γ-- lim F (u; Ω) = lim
i→∞

lim
j→∞

lim
ĥ→0

F (ui,j

ĥ
; Ω). (4.3)

Furthermore, there exist a nondecreasing function J(i) and a nonincreasing

function H(i, j) such that the sequence {ui} defined by

ui(x) = ui,j

ĥ
(x), ∀x ∈ Ω, ∀i and j ≥ J(i), 0 < ĥ ≤ A(i, j),

is a minimizing sequence of Γ-- lim F (u; Ω), that is

ui ⇀ u in W 1,p(Ω; Rm), (4.4)

Γ-- lim F (u; Ω) = lim
i→∞

F (ui; Ω). (4.5)

Proof. The minimizing property of (ui,K

ĥ
, Ri,K

ĥ
) ensure that (3.18) holds. Thus,

theorem 3.3 and theorem 3.2 give that, for all i and K,

ũi,K

ĥ
(x) = hK ûi,K

ĥ
(h−1

K B−1
K (x− xK))

are minimizing sequences of (2.15) satisfying (2.16). Hence the conclusions of

the theorem follows from theorem 2.2. ¤

Theorem 4.3. Let f satisfy (h1)-(h3). Let (ui,K

ĥ
, Ri,K

ĥ
) ∈ Uĥ(0; D)×SO+(n)

be solutions to (3.14) satisfying (3.21) and the condition (C). Let ǔi,K

ĥ
be de-

fined by (3.27). Let the functions ui,K

ĥ
∈ U(u0; Ω) be defined by

ui,j

ĥ
(x) = uhi

(x)+hK ǔi,K

ĥ
(h−1

K B−1
K (x−xK)), if x ∈ K, ∀K ∈ Thi+j

(Ω). (4.6)

Then, the conclusions of theorem 4.2 hold.

Proof. The theorem follows from theorem 3.4, theorem 3.2 and theorem 2.2.

¤

5. Numerical examples

Example 1. Let Ω = (0, 1)× (0, 1). Let B, C(x) ∈ R2×2 be given by

B =

(
−1

2
1
2

1
2

−1
2

)
, C(x) =

(
1 0

0
√

1+8x2

2

)
, (5.1)
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where x = (x1, x2)
T ∈ Ω. Let f : R2×2 → R1 be defined by

f(A) = 〈A−B, A−B〉〈A + B, A + B〉, (5.2)

and where 〈D, E〉 = tr(DET ). Let

F (u; Ω) =

∫

Ω

f(∇u(x)C(x))(det(C(x)))−1 dx, (5.3)

U(0; Ω) = {u ∈ W 1,4(Ω; R2) : u = 0, on ∂Ω}. (5.4)

The Aim is to calculate the value of Γ-- lim F (0; Ω) and to find a minimizing

sequence for it.

The problem can be solved analytically. Let Ω̂ = Ω and let Φ : Ω → Ω̂ be

given by
{

x̂1 = x1,

x̂2 =
√

1+8x2−1
2

.
(5.5)

Let û be defined by û(x̂) = u(Φ−1(x̂)). Let

F̂ (û; Ω̂) =

∫

Ω̂

f(∇û(x̂)) dx̂. (5.6)

Then, it is easily verified that F̂ (û; Ω̂) = F (u; Ω) and that

Γ-- lim F (0; Ω) = Γ-- lim F̂ (0; Ω̂) =

∫

Ω̂

Qf(0) dx̂ = Qf(0). (5.7)

Noticing that

B − (−B) =

(
−1 1

1 −1

)
=

( √
2

−√2

)
(−
√

2

2
,

√
2

2
) = ~a⊗ ~n, (5.8)

that is the two potential wells B and −B are in rank one connection, and that

1

2
B +

1

2
(−B) = 0, (5.9)

we see that [13]

Qf(0) =
1

2
f(B) +

1

2
f(−B) = 0, (5.10)
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and a minimizing sequence for Γ-- lim F̂ (0; Ω̂) can be given by a laminated

microstructure which is essentially defined by [30]

ûk(x̂) = Bx̂ + [

∫ x̂·~n

0

χk(s) ds]~a, (5.11)

where ~a⊗ ~n = 2B is given by (5.8) and

χk(s) =

{
0, if

√
2ks ∈ (2l, 2l + 1), ∀l ∈ Z,

1, if
√

2ks ∈ (2l − 1, 2l), ∀l ∈ Z (5.12)

Thus, we have, by (5.7) and (5.10)

Γ-- lim F (0; Ω) = 0, (5.13)

and a minimizing sequence for Γ-- lim F (0; Ω) essentially defined by

uk(x) = ûk(Φ(x)), k = 1, 2, 3, . . . . (5.14)

The sequence defined by (5.14) give a curved laminated microstructure which

has a inhomogeneous Young measure representation [5, 13]

µ(x) =
1

2
δBC−1(x) +

1

2
δ−BC−1(x), (5.15)

Where δA is the Dirac measure in R2×2 centered at A. Since the interfaces

across which the gradients of ûk(x̂) are discontinuous are given by parallel

lines

x̂2 = x̂1 − l

k
, x̂1 ∈ (0, 1), l = 0,±1,±2, . . . ,±(k − 1),

the interfaces across which the gradients of uk(x) are discontinuous are given

by a family of parabolas

x2 =
1

2
(x1 − l

k
)(x1 − l

k
+ 1), x1 ∈ (0, 1), l = 0,±1, . . . ,±(k − 1). (5.16)

The numerical results obtained by the method developed in the previous

sections with various values of hi and ĥ are shown in table 1, and a numer-

ical curved microstructure which is recovered from the numerical result with
hi = 0.05 is shown in Figure 1, where black and white curved stripes repre-

sent laminates with deformation gradients close to BC−1(x) and −BC−1(x)

respectively.
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Figure 1. A numerical curved microstructure.

hi = 0.2 hi = 0.1 hi = 0.05

ĥ = 0.16667 ĥ = 0.1111 ĥ = 0.0333

Γ-- lim F (0; Ω) 0.2115× 10−6 0.5401× 10−7 0.2213× 10−7

d∞(hi, ĥ) 0.5120× 10−3 0.2950× 10−3 0.1946× 10−3

e(hi, ĥ) ≤ 0.5268× 10−8 ≤ 0.5268× 10−8 ≤ 0.5268× 10−8

Table 1. Numerical results for the example.

d∞(hi, ĥ) and e(hi, ĥ) in table 1, which measure the difference between the

numerical solutions uhi,ĥ
(x) and the Young measure µ(x), are defined as follows

dp(hi, ĥ) = sup
x∈Xhi

{‖∇uhi,ĥ
(x)−BC−1(x)‖p, ‖∇uhi,ĥ

(x) + BC−1(x)‖p},

ek(hi, ĥ) = meas{x ∈ Ω : ‖∇uhi,ĥ
(x) + (−1)kBC−1(x)‖∞ ≤ d∞(hi, ĥ) + 4hi},

e(hi, ĥ) = max
k=1,2

{|ek(hi, ĥ)− 1

2
meas(Ω)|},

where

Xhi
= {x = (x1, x2) ∈ Ω : x2 = (l +

1

2
hi), l = 0, 1, . . . , [h−1

i ]− 1.}.

Example 2. Consider a two dimensional model for elastic crystals with the

Ericksen-James energy density [12, 17]

f(A) = Φ(AT A), (5.17)
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with

Φ(C) = κ1(tr C − 2)2 + κ2C
2
12 + κ3((

C11 − C22

2
)2 − ε2)2, (5.18)

where C = ∇uT ∇u is the right Cauchy-Green strain tensor, κi > 0, i = 1, 2, 3

are constant elastic moduli, and ε > 0 is the transformation strain. It is well

known that the energy density has two rank-one connected potential wells

SO(2)U0 and SO(2)U1, where

U0 =

(√
1− ε 0

0
√

1 + ε

)
, U1 =

(√
1 + ε 0

0
√

1− ε

)
, (5.19)

and, by forming properly arranged laminated microstructures with the two

energy wells, the material can have a plenty of stress-free large deformations.

Numerical examples of such kind can be found in [28].

Figure 2 shows such a stress-free large deformation, obtained by our numeri-

cal method, of an originally straight bar being bent into a part of a ring, where

the arrows illustrate the normal directions of the interfaces of the first-order
laminates on the elements and the gray scale indicates the volume fractions of

SO(2)U0 and SO(2)U1 in the laminates, more precisely, the greater the volume

fraction of SO(2)U0 is in the laminate on an element the darker the element

is painted.
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Figure 2. Numerical non-homogeneous laminated microstruc-
ture of a stress-free large deformation of a straight bar.
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