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Abstract. The orientation-preservation conditions and approximation errors of a dual-parametric
bi-quadratic finite element method for the computation of both radially-symmetric and general non-
symmetric cavity solutions in nonlinear elasticity are analyzed. The analytical results allow us to
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1. Introduction. Void formation on nonlinear elastic bodies under hydrostatic
tension was observed and analyzed through a defect model by Gent and Lindley [8].
Ball [2] established a perfect model and studied a class of bifurcation problems in
nonlinear elasticity, in which voids form in an intact body so that the total stored
energy of the material is minimized in a class of radially-symmetric deformations.
The work stimulated an intensive study on various aspects of radially-symmetric cav-
itations (see e.g., Sivaloganathan [19], Stuart [25], and a review paper by Horgan and
Polignone [10] among many others).

Müller and Spector [16] later developed a general existence theory in nonlinear
elasticity that allows for cavitation, which is not necessarily radially symmetric, by
adding a surface energy term. Sivaloganathan and Spector [21] deduced the existence
of hole creating deformations without the need for the surface energy term under
the assumption that the points (a finite number) at which the cavities can form are
prescribed. Optimal locations where cavities can arise are also studied analytically
[22, 23] and numerically [14].

Numerically computing cavities based on the perfect model of Ball is very chal-
lenging, due to the so-called Lavrentiev phenomenon [11]. Though there are numer-
ical methods developed to overcome the Lavrentiev phenomenon in some nonlinear
elasticity problems [1, 3, 12, 17, 18], they do not seem to be powerful enough for the
cavitation problem. On the other hand, some numerical methods (see e.g., [13, 14, 26])
have been successfully developed for cavitation computation on general domains with
single or multiple prescribed defects, based on the defect model or the regularized
perfect model [9, 19, 20]. In these models, one considers to minimize the total elastic
energy of the form

(1.1) E(u) =

∫
Ωρ

W (∇u(x))dx,

in a set of admissible functions

(1.2) U = {u ∈ W 1,p(Ωρ;Rn) is one-to-one a.e. : u|Γ0 = u0,det∇u > 0 a.e.},
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where Ωρ = Ω \
∪K

i=1 Bρi(ai) ⊂ Rn (n = 2, 3) denotes the region occupied by an
elastic body in its reference configuration, Bρi(ai) = {x ∈ Rn : |x− ai| < ρi} are the
pre-existing defects of radii ρi centered at ai, and where in (1.1) W : Mn×n

+ → R+

is the stored energy density function of the material, Mn×n
+ being the set of n × n

matrices with positive determinant. In (1.2) Γ0 denotes the boundary of Ω.
The Euler-Lagrange equation of the minimization problem (1.1) is (see [13]):

div(DFW (∇u)) = 0, in Ωρ,(1.3)

DFW (x,∇u)ν = 0, on ∪K
i=1 ∂Bρi(ai),(1.4)

u(x) = u0(x), on Γ0.(1.5)

A typical class of the stored energy densities considered in the cavitation problem
is the polyconvex isotropic functions of the form

W (F ) = ω|F |p + g(detF )

= ω(v21 + · · ·+ v2n)
p/2 + g(v1 · · · vn), ∀F ∈ Mn×n

+ ,(1.6)

where ω > 0 is a material constant, p ∈ (n−1, n), v1, . . . , vn are the singular values of
the deformation gradient F , and g : (0,∞) → (0,∞) is a C2, strictly convex function
satisfying

(1.7) g(δ) → +∞ as δ → 0, and
g(δ)

δ
→ +∞ as δ → +∞.

For the energy density of the form (1.6), one has:

(1.8) DFW (∇u) = pω
∣∣∇u

∣∣p−2∇u+ g′(det∇u) adj∇uT.

One of the main difficulties in the computation of the growth of voids is the
constraint of orientation preservation, i.e., det∇u > 0, for extremely large anisotropic
finite element deformations. For the conforming piecewise affine finite element, this
requirement demands an unbearably large amount of degrees of freedom ([26]). In
[13, 14, 26], other finite element methods are proposed to overcome this difficulty, and
these methods have shown significant numerical success in the cavitation computation.
In particular, Su and Li [24] analyzed the iso-parametric quadratic finite element
method applied in [14]. Even though limited to the radially-symmetric cavitation
solutions, the result, the first of its kind to our knowledge, nevertheless quantifies the
theoretical as well as practical advantages of the method.

In this paper, we will introduce and analyze a dual-parametric bi-quadratic rect-
angular finite element method for the cavitation computation, including both radially-
symmetric and general nonsymmetric voids’ growth, and establish a meshing strategy,
which is optimal in the sense that the total number of degrees of freedom is minimized
under certain mild constraints. It turns out that, for the cavitation computation, the
dual-parametric bi-quadratic rectangular finite element method is definitely much
more efficient than the iso-parametric quadratic triangular finite element method, es-
pecially when the prescribed defects are very small. In fact, in the radially-symmetric
case, the optimal mesh of the new method is essentially solely determined by the
approximation accuracy, while the orientation-preservation condition plays a leading
role in the iso-parametric finite element method in the vicinity of the void.

We would like to point out that, even though our analysis in the present paper is
focused on the problem defined on the unit ball with only one-prescribed-defect in the
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center, the result should work also for general multiple-prescribed-defects problems,
since in general the cavitation solution is highly stressed only locally in a neighborhood
of each defect, where our method applies, while elsewhere the stress field is finite and
the standard method of finite element analysis applies. The important issue of the
error estimate for the finite element cavitation solutions is not touched here in this
work and it remains, to the knowledge of the authors, an open problem, even for
the radially-symmetric case where the cavitation solution can be characterized by
a boundary value problem of an ordinary differential equation. The main difficulties
are: (1) the elastic energy W (F ) is non-convex, and lacks certain kind of coerciveness;
(2) there is no monotonicity or other useful structures in the stress DFW (F ); (3) the
material subjects to very large anisotropic deformation. For more discussions in this
aspect, we refer to [4, 5, 6, 7]. However, based on our numerical results, it seems
reasonable to conjecture that, with some more delicate manipulations and calculations
than we have done here, such a result could be established.

The structure of the paper is as follows. In § 2, we introduce the dual-parametric
bi-quadratic rectangular finite element. § 3 is devoted to deriving the orientation-
preservation conditions on the mesh distributions. In § 4, we present some results on
the interpolation errors of the cavitation solutions. An optimal meshing strategy is
established in § 5. Numerical results are presented in § 6. The paper is ended with
some concluding remarks in § 7.

2. Dual-parametric bi-quadratic finite element. For simplicity, we restrict
ourselves to a simplified problem with Ωϵ0 = B1(0) \Bϵ0(0) in R2. Let (T̂ , P̂ , Σ̂) be a
standard bi-quadratic rectangular element as shown in Figure 1(a) (here n = 2), where
P̂ = Q2(T̂ ) := {u(x̂1, x̂2) =

∑
0≤i,j≤2

cij x̂
i
1x̂

j
2}, Σ̂ = {p̂(âi), 0 ≤ i ≤ 8}. For a given set

of four points ai = (Ri cos θi, Ri sin θi), 0 ≤ i ≤ 3 satisfying R0 = R3 < R1 = R2,
θ0 = θ1 < θ2 = θ3, define FT : T̂ → R2 as

(2.1)


R = R0 +

x̂1 + 1

2
(R1 −R0),

θ = θ0 +
x̂2 + 1

2
(θ3 − θ0),

x1 = R cos θ, x2 = R sin θ.

It is easily seen that FT is an injection, thus T = FT (T̂ ) defines an element. Now
define the dual-parametric bi-quadratic finite element (T, PT ,ΣT ) as follows

(2.2)


T = FT (T̂ ),

PT = {p : T → R2 | p = p̂ ◦ F−1
T , p̂ ∈ P̂},

ΣT = {p(ai), ai = FT (âi), 0 ≤ i ≤ 8}.

3. On the orientation-preservation conditions. Let J be a subdivision on
Ωϵ0 as Figure 2(a). A typical curved element in a prescribed circular ring with inner
radius ϵ and thickness τ is shown in Figure 2(b). Let N be the number of the evenly
spaced elements on each layer. Then, the dual-parametric bi-quadratic finite element
function space is given by

Xh := {uh ∈ C(Ω̄ϵ0) : uh|T ∈ PT , uh(x) = u0(x), ∀x ∈ Γ0

∩
(
∪
T∈J

ΣT )}},
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Fig. 1. The dual-parametric element.

where Γ0 = ∂B1(0).

x11.0

ǫ0

x2

(a) A typical mesh generation in Ωϵ0 .
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(b) A typical element in the mesh.

Fig. 2. The subdivision of the mesh.

We are concerned with the orientation preservation of large expansion dominant
finite element deformations around a small prescribed void. Without loss of generality,
we restrict ourselves to the curved rectangular element as shown in Figure 2(b), for
which FT can be simplified as

(3.1)


R = ϵ+

x̂1 + 1

2
τ,

θ =
π

N
x̂2,

x1 = R cos θ, x2 = R sin θ.

It is easily verified that det∇x = det ∂FT

∂x̂ = Rπτ
2N > 0.
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Let u be the cavitation solution, and let J be a given mesh (see Figure 2(a))
consisting of well defined curved rectangular elements. To have u well resolved by
functions in the finite element function space defined on J , a necessary condition is
that the finite element interpolation function Πu(x) is an admissible function, i.e.,
det∇Πu(x) > 0 on each of the curved rectangular elements. We will investigate
in this section the conditions that ensure det∇Πu(x) > 0 for smooth deformations
u(x) = (u1(x), u2(x)) defined on Ωϵ0 . Since det∇Πu(x) · det∇x = det ∂Πu

∂x̂ , it suffices

to ensure det ∂Πu
∂x̂ > 0. For simplicity, we denote Ω(ϵ,τ) = {x : ϵ ≤ |x| ≤ ϵ+ τ}.

Theorem 3.1. Suppose x = (R cos θ,R sin θ), u(x) = (u1, u2) = (r cosϕ, r sinϕ),
where r = r(R, θ), ϕ = ϕ(R, θ) are smooth functions in the domain B1(0) \ {0}
satisfying det ∂u

∂x ≥ c > 0 and that the derivatives ∂i+jr
∂Ri∂θj ,

∂i+jϕ
∂Riθj , i+j ≤ 4, are bounded.

Then, there exists a positive constant τ0 = C1ϵ
1/2 and an integer N0 = C2ϵ

−1/2, such
that det ∂Πu

∂x > 0 on the circular annulus Ω(ϵ,τ) if τ ≤ τ0 and N ≥ N0, where C1, C2

depend on c and ∥∂3ui

∂R3 ∥∞, ∥∂3ui

∂θ3 ∥∞, ∥ ∂4ui

∂R3∂θ∥∞, ∥ ∂4ui

∂R2∂θ2 ∥∞, ∥ ∂4ui

∂R∂θ3 ∥∞. Moreover,
the error between the Jacobian determinants of ∇u(x) and ∇Πu(x) is given by

(3.2) det
∂Πu

∂x
(x) = det

∂u

∂x
(x) +

1

|x|
O(τ2 +N−2).

Proof. Let x̂ = F−1
T (x), with x = (x1, x2) = (R cos θ,R sin θ). Then the dual-

parametric bi-quadratic finite element interpolation function can be written as

(3.3) Πu(x) =
8∑

i=0

u(ai)p̂i(x̂) = (X1, X2),

with Xk being bi-quadratic functions of the form

Xk = uk(a8)+fkx̂1+hkx̂2+
dk
2
x̂2
1+ekx̂1x̂2+

gk
2
x̂2
2+

bk
2
x̂1x̂

2
2+

ck
2
x̂2
1x̂2+

jk
2
x̂2
1x̂

2
2, k = 1, 2.

We estimate jk, bk, ck, dk, ek, fk, gk, hk below in (3.5) - (3.15), where some of them are
given in two ways for the convenience of later manipulations in (3.18)- (3.21). On the
representative element given by (3.1), regarding uk(x) as a function of R and θ, and
making Taylor expansions at appropriate points, we obtain

jk =
uk(a1) + uk(a2)− 2uk(a5)

2
+

uk(a0) + uk(a3)− 2uk(a7)

2
+ 2uk(a8)(3.4)

−uk(a4)− uk(a6) =
π2

2N2
(
∂2uk

∂θ2
(a5) +

∂2uk

∂θ2
(a7)− 2

∂2uk

∂θ2
(a8)) +O(N−3)

= O(N−3 + τ2N−2),

or alternatively, by regrouping uk(ai) in jk,

jk =
uk(a0) + uk(a1)− 2uk(a4)

2
+

uk(a2) + uk(a3)− 2uk(a6)

2
+ 2uk(a8)(3.5)

−uk(a5)− uk(a7) =
1

2

τ2

4
(
∂2uk

∂R2
(a4) +

∂2uk

∂R2
(a6)− 2

∂2uk

∂R2
(a8)) +O(τ3)

= O(τ3 + τ2N−2);
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similarly,

bk =
uk(a1) + uk(a2)− 2uk(a5)

2
− uk(a0) + uk(a3)− 2uk(a7)

2
(3.6)

=
π2

2N2
(
∂2uk

∂θ2
(a5)−

∂2uk

∂θ2
(a7)) +O(N−3)

=
π2

N2

∂3uk

∂R∂θ2
(a8)

τ

2
+O(N−3 + τ2N−2),

or alternatively, by regrouping uk(ai) in bk,

bk =
uk(a1)− uk(a0)

2
+

uk(a2)− uk(a3)

2
+ uk(a7)− uk(a5)(3.7)

=
τ

2
(
∂uk

∂R
(a4) +

∂uk

∂R
(a6)− 2

∂uk

∂R
(a8)) +O(τ3)

=
π2

N2

∂3uk

∂R∂θ2
(a8)

τ

2
+O(τ3 + τN−3);

ck =
uk(a2)− uk(a1)

2
+

uk(a3)− uk(a0)

2
+ uk(a4)− uk(a6)(3.8)

=
π

N
(
∂uk

∂θ
(a5) +

∂uk

∂θ
(a7)− 2

∂uk

∂θ
(a8)) +O(N−3)

=
π

N

∂3uk

∂θ∂R2
(a8)(

τ

2
)2 +O(N−3 + τ3N−1),

or alternatively, by regrouping uk(ai) in ck,

ck =
uk(a2) + uk(a3)− 2uk(a6)

2
− uk(a0) + uk(a1)− 2uk(a4)

2
(3.9)

=
1

2

τ2

4
(
∂2uk

∂R2
(a6)−

∂2uk

∂R2
(a4)) +O(τ3)

=
π

N

∂3uk

∂θ∂R2
(a8)(

τ

2
)2 +O(τ3 + τ2N−2);

dk = uk(a5) + uk(a7)− 2uk(a8) =
∂2uk

∂R2
(a8)(

τ

2
)2 +O(τ3);(3.10)

ek =
uk(a2)− uk(a1)

4
− uk(a3)− uk(a0)

4
(3.11)

=
π

2N
(
∂uk

∂θ
(a5)−

∂uk

∂θ
(a7)) +O(N−3)

=
π

N

∂2uk

∂R∂θ
(a8)

τ

2
+O(N−3 + τ3N−1),

or alternatively, by regrouping uk(ai) in ek,

ek =
uk(a2)− uk(a3)

4
− uk(a1)− uk(a0)

4
(3.12)

=
τ

4
(
∂uk

∂R
(a6)−

∂uk

∂R
(a4)) +O(τ3)

=
π

N

∂2uk

∂R∂θ
(a8)

τ

2
+O(τ3 + τN−3);
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fk =
uk(a5)− uk(a7)

2
=

∂uk

∂R
(a8)

τ

2
+O(τ3);(3.13)

gk = uk(a4) + uk(a6)− 2uk(a8) =
∂2uk

∂θ2
(a8)(

π

N
)2 +O(N−3);(3.14)

hk =
uk(a6)− uk(a4)

2
=

∂uk

∂θ
(a8)

π

N
+O(N−3).(3.15)

Hence, by definition

(3.16)
∂Πu

∂x̂
=

(
A11 A12

A21 A22

)
,

where, by (3.6), (3.8), (3.10), (3.10), (3.13), (3.13), we have

A11 = j1x̂1x̂
2
2 +

1

2
b1x̂

2
2 + c1x̂1x̂2 + d1x̂1 + e1x̂2 + f1(3.17)

=
∂u1

∂R
(a8)

τ

2
+

∂2u1

∂R2
(a8)(

τ

2
)2x̂1 +

∂2u1

∂R∂θ
(a8)

τ

2

π

N
x̂2 +

∂3u1

∂R2∂θ
(a8)(

τ

2
)2

π

N
x̂1x̂2

+
1

2

∂3u1

∂R∂θ2
(a8)

τ

2
(
π

N
)2x̂2

2 +O(τ3 + τ2N−2 + τN−3)

=
τ

2

∂u1

∂R
(x) +O(τ3 + τ2N−2 + τN−3),

and by (3.5), (3.7), (3.9), (3.12), (3.14), (3.15), we have

A12 = j1x̂
2
1x̂2 +

1

2
c1x̂

2
1 + b1x̂1x̂2 + e1x̂1 + g1x̂2 + h1(3.18)

=
∂u1

∂θ
(a8)

π

N
+

∂2u1

∂R∂θ
(a8)

τ

2

π

N
x̂1 +

∂2u1

∂θ2
(a8)(

π

N
)2x̂2 +

∂3u1

∂R∂θ2
τ

2
(
π

N
)2(a8)x̂1x̂2

+
1

2

∂3u1

∂R2∂θ
(a8)(

τ

2
)2

π

N
x̂2
1 +O(N−3 + τ2N−2 + τ3N−1)

=
π

N

∂u1

∂θ
(x) +O(N−3 + τ2N−2 + τ3N−1),

and similarly, we have

A21 = j2x̂1x̂
2
2 +

1

2
b2x̂

2
2 + c2x̂1x̂2 + d2x̂1 + e2x̂2 + f2(3.19)

=
τ

2

∂u2

∂R
(x) +O(τ3 + τ2N−2 + τN−3),

A22 = j2x̂
2
1x̂2 +

1

2
c2x̂

2
1 + b2x̂1x̂2 + e2x̂1 + g2x̂2 + h2(3.20)

=
π

N

∂u2

∂θ
(x) +O(N−3 + τ2N−2 + τ3N−1).

Thus

(3.21) det
∂Πu

∂x̂
(x̂1, x̂2) =

τ

2

π

N

(∂u1

∂R

∂u2

∂θ
− ∂u2

∂R

∂u1

∂θ

)∣∣∣
x
+O(τ3N−1 + τN−3).

It is easily verified that, in (3.5)-(3.15) as well as (3.18)-(3.21), the constants in O(·)
depend on ∥∂3ui

∂R3 ∥∞, ∥∂3ui

∂θ3 ∥∞, ∥ ∂4ui

∂R3∂θ∥∞, ∥ ∂4ui

∂R2∂θ2 ∥∞, ∥ ∂4ui

∂R∂θ3 ∥∞. Note that R ≥ ϵ
and

∂u1

∂R

∂u2

∂θ
− ∂u1

∂θ

∂u2

∂R
= R

(∂u1

∂x1

∂u2

∂x2
− ∂u1

∂x2

∂u2

∂x1

)
= R det

∂u

∂x
,
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which yields the first part of the conclusion. Estimate (3.2) is a direct consequence of
(3.21) and the fact that det ∂x

∂x̂ = Rτ
2

π
N .

Remark 3.2. As a consequence of Theorem 3.1, we see that, for a general cavity
deformation, the interpolation function is orientation-preserving on a mesh Ωϵ0 =
m∪
i=0

Ω(ϵi,τi), where ϵi+1 = ϵi + τi, which satisfies τi ≤ C1
√
ϵi and Ni ≥ C2ϵ

−1/2
i for

some constants C1 and C2. If restricted to a radially-symmetric cavity deformation,
we may expect to have a more relaxed orientation-preservation condition.

Theorem 3.3. For a radially-symmetric deformation u(x) = r(R)
R x, where r > 0

is an increasing convex function satisfying

(3.22) 4r(ϵ+ τ/2) > 3r(ϵ) + r(ϵ+ τ),

then the interpolation function Πu(x) preserves orientation on the circular ring Ω(ϵ,τ).
Moreover, if

(3.23) det
∂u

∂x
(x) =

r(R)r′(R)

R
≤ M,

where R = |x|, then

(3.24) det
∂Πu

∂x
(x) = det

∂u

∂x
(x) +O(N−2) +

1

|x|
O(τ2).

Proof. For u(x) = r(R)
R x, a direct but tedious calculation yields

(3.25) Πu(x) = (X1, X2) = C(x̂1)
(
1− 2x̂2

2 sin
2 π

2N
, x̂2 sin

π

N

)
,

where

(3.26) C(x̂1) =
1

2
x̂1(x̂1 − 1)r(ϵ) +

1

2
x̂1(x̂1 + 1)r(ϵ+ τ) + (1− x̂2

1)r(ϵ+ τ/2).

Hence

det
∂Πu

∂x̂
= C(x̂1)C

′(x̂1) sin
π

N

(
1 + 2x̂2

2 sin
2 π

2N

)
.

Since r(R) is increasing and convex, it is easily seen that C(x̂1) > 0 on [−1, 1].
On the other hand, C ′(x̂1) = (x̂1 − 1

2 )r(ϵ) + (x̂1 + 1
2 )r(ϵ + τ) − 2x̂1r(ϵ + τ/2) is

a linear function of x̂1 with C ′(1) = 1
2 (r(ϵ) + 3r(ϵ + τ) − 4r(ϵ + τ/2)) > 0, and

C ′(−1) = 1
2 (4r(ϵ + τ/2) − 3r(ϵ) − r(ϵ + τ)) > 0, thus C ′(x̂1) > 0 on [−1, 1]. Hence,

the first part of the theorem follows.
Making a Taylor expansion of r(ϵ), r(ϵ+ τ/2), r(ϵ+ τ) at R = ϵ+ x̂1+1

2 τ , one gets

C(x̂1) = r(R) +O(τ3), C ′(x̂1) =
r′(R)τ

2
+O(τ3).

Thus, it follows from det(∂Πu
∂x

∂x
∂x̂ ) = det ∂Πu

∂x̂ and det ∂x
∂x̂ = Rτ

2
π
N that

det
∂Πu

∂x
=

2C(x̂1)C
′(x̂1)

Rτ
(1 +O(N−2))

=
(r(R) +O(τ3))(r′(R) +O(τ2))

R
(1 +O(N−2))

=
r(R)r′(R)

R
+

O(τ2)

R
+O(N−2),
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which gives (3.24) and completes the proof of the theorem.
Remark 3.4. For the energy minimizers among radially-symmetric cavity defor-

mations, an extended version of condition (3.23) 0 < m ≤ r(R)r′(R)
R ≤ M is gener-

ally satisfied, and there exists a positive constant C such that (3.22) holds whenever
ϵ ≥ Cτ2 (see [24]). As a consequence, we see that, for the dual-parametric bi-quadratic
finite element method, the orientation preservation adds no further restrictions on the
number of elements N on an annular ring, which means that a much smaller number
of total degrees of freedom is required as compared with the methods in [24, 26].

4. Interpolation errors of cavity deformations. In this section, the inter-
polation errors are estimated, including those on the interpolation function and the
elastic energy in the dual-parametric bi-quadratic finite element function spaces de-
fined on the meshes described in § 3. Throughout this section, u(x) is supposed to
be a smooth cavitation deformation in the regularized domain Ωϵ0 , and p is a real
number satisfying 1 < p < 2. We also assume that the meshes are so given that
Theorem 3.1 holds.

4.1. The error of the interpolation function. Let x̂ = F−1
T (x) ∈ T̂ , where

x ∈ T is a point on the mesh. We will estimate, in this subsection, the errors between
u(x) and its interpolation function Πu(x).

Theorem 4.1. Under the assumptions of Theorem 3.1, the error between a cavity
deformation u(x) and its interpolation function Πu(x) satisfies

(4.1) ∥u(x)−Πu(x)∥∞ = O(τ3 +N−3).

Proof. For a typical element as used in § 3, denote X = Πu(x) = (X1, X2), where
x = FT (x̂). With the same notation as used in Theorem 3.1, and making Taylor
expansions at appropriate points, one gets

X1 =
8∑

i=0

u1(ai)p̂i(x̂)

= u1(a8) + f1x̂1 + h1x̂2 +
d1
2
x̂2
1 + e1x̂1x̂2 +

g1
2
x̂2
2 +

b1
2
x̂1x̂

2
2 +

c1
2
x̂2
1x̂2 +

j1
2
x̂2
1x̂

2
2

= u1(a8) +
∂u1

∂R
(a8)

τ

2
x̂1 +

∂u1

∂θ
(a8)

π

N
x̂2 +

1

2

∂2u1

∂R2
(a8)(

τ

2
)2x̂2

1

+
∂2u1

∂R∂θ
(a8)

τ

2

π

N
x̂1x̂2 +

1

2

∂2u1

∂θ2
(a8)(

π

N
)2x̂2

2 +
1

2

∂3u1

∂R∂θ2
(a8)

τ

2
(
π

N
)2x̂1x̂

2
2

+
1

2

∂3u1

∂R2∂θ
(a8)(

τ

2
)2

π

N
x̂2
1x̂2 +O(τ3 +N−3 + τ2N−2)

= u1(x) +O(τ3 +N−3).

Similarly, X2 = u2(x) +O(τ3 +N−3). Hence, the conclusion follows.

Theorem 4.2. Denote Ωϵ0 =
m∪
i=0

Ω(ϵi,τi), where Ω(ϵ,τ) = {x : ϵ ≤ |x| ≤ ϵ + τ},

ϵi+1 = ϵi + τi, ϵm+1 = 1.0. Let Ni be the number of elements in the layer Ω(ϵi,τi).

If ϵi, τi, Ni satisfy the assumptions of Theorem 3.1, and τi = O(h), N−1
i = O(h),

as h → 0, where h is a global reference mesh size, then the error between a cavity
deformation u(x) and its interpolation function Πu satisfies

(4.2) ∥u(x)−Πu(x)∥1,p = O(h2).
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Proof. On a representative element as shown in Figure 2(b), by (3.1), (3.16) and
∂Πu
∂x

∂x
∂x̂ = ∂Πu

∂x̂ , we have

(4.3)
∂Πu(x)

∂x
=

2N

πRτ

(
A11R

π
N cos θ −A12

τ
2 sin θ A11R

π
N sin θ +A12

τ
2 cos θ

A21R
π
N cos θ −A22

τ
2 sin θ A21R

π
N sin θ +A22

τ
2 cos θ

)
,

where Aij are given by (3.18)-(3.21). Denote

∂Πu(x)

∂x
− ∂u

∂x
=

(
B11 B12

B21 B22

)
.

Then, it follows from (4.3), (3.18) and (3.19) that

B11 =
2N

πRτ
(A11R

π

N
cos θ −A12

τ

2
sin θ)− ∂u1

∂R
cos θ +

∂u1

∂θ

sin θ

R

= O(τ2 + τN−2 +N−3) +
1

R
O(τ3 + τ2N−1 +N−2).

Since τ = O(h), N−1 = O(h), this yields B11 = 1
RO(h2). Similarly, Bij = 1

RO(h2).

As a consequence |∂Πu
∂x − ∂u

∂x |
p = 1

RpO(h2p). Thus ∥∂Πu
∂x − ∂u

∂x∥p = (
∫ 1

ϵ0
R1−pdR)

1
pO(h2),

which completes the proof, since 1 < p < 2.

4.2. The error on the elastic energy. Let J (Ω(ϵ,τ)) be a dual-parametric
bi-quadratic finite element division of Ω(ϵ,τ) consisting of only one layer of evenly
distributed elements, denoted by Tj , j = 1, · · · , N . For the energy density function
of the form (1.6), denote E(u; Ω(ε,τ)) = E1(u; Ω(ε,τ)) + E2(u; Ω(ε,τ)) with

E1(u; Ω(ϵ,τ)) =

∫
Ω(ϵ,τ)

ω

∣∣∣∣∂u∂x
∣∣∣∣p dx,(4.4)

E2(u; Ω(ϵ,τ)) =

∫
Ω(ϵ,τ)

g

(
det

∂u

∂x

)
dx,(4.5)

A(ϵ, τ) = (2− p)

∫ ϵ+τ

ϵ

R1−pdR = (ϵ+ τ)2−p − ϵ2−p,(4.6)

and let err(Ei(Πu; Ω(ϵ,τ))) = |Ei(Πu; Ω(ϵ,τ))− Ei(u; Ω(ϵ,τ))| be the absolute interpo-
lation error of Ei(u; Ω(ϵ,τ))), i = 1, 2, respectively. We have the following result.

Theorem 4.3. Under the assumptions of Theorem 3.1, the elastic energy of a
cavity deformation u(x) and its interpolation function Πu satisfy

E1(u; Ω(ϵ,τ)) = O(A(ϵ, τ)), E(u; Ω(ϵ,τ)) = O(A(ϵ, τ)),(4.7)

err(E1(Πu; Ω(ϵ,τ))) = A(ϵ, τ)O(τ2 +N−2),(4.8)

err(E2(Πu; Ω(ϵ,τ))) = O(τ3 + τN−2),(4.9)

err(E(Πu; Ω(ϵ,τ))) = A(ϵ, τ)O(τ2 +N−2),(4.10)

where A(ϵ, τ) is defined as (4.6). Moreover, if there exist positive constants 0 < l1 ≤ l2
such that l1 ≤ |∂u∂θ | ≤ l2, then

E1(u; Ω(ϵ,τ)) ∼ A(ϵ, τ), E(u; Ω(ϵ,τ)) ∼ A(ϵ, τ),(4.11)

err(E1(Πu; Ω(ϵ,τ))) = E1(u; Ω(ϵ,τ))O(τ2 +N−2),(4.12)

err(E(Πu; Ω(ϵ,τ))) = E(u; Ω(ϵ,τ))O(τ2 +N−2).(4.13)
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Proof. Since ∂ui

∂R , ∂ui

∂θ are bounded, it follows that |∂u∂x (x)|
p = O(R−p). Thus

E1(u; Ω(ϵ,τ)) = O(
∫ ϵ+τ

ϵ
R1−pdR) = O(A(ϵ, τ)). Note that g is bounded and A(ϵ, τ) >

(2− p)τ , then E2(u; Ω(ϵ,τ)) = O(τ) = O(A(ϵ, τ)), so that we deduce (4.7). In view of
(4.3), we find that

∣∣∣∣∂Πu∂x

∣∣∣∣2 =
4

τ2
(A2

11 +A2
21) +

N2

π2R2
(A2

12 +A2
22)

=
(∂u1

∂R
(x)

)2

+
(∂u2

∂R
(x)

)2

+
1

R2

((∂u1

∂θ
(x)

)2

+
(∂u2

∂θ
(x)

)2
)

+
2∑

i=1

∣∣∣∂ui

∂R

∣∣∣O(τ2 + τN−2 +N−3) +
1

R2

2∑
i=1

∣∣∣∂ui

∂θ

∣∣∣O(τ3 + τ2N−1 +N−2)

=
∣∣∣∂u
∂x

∣∣∣2 + 2∑
i=1

∣∣∣∂ui

∂R

∣∣∣O(τ2 + τN−2 +N−3) +
1

R2

2∑
i=1

∣∣∣∂ui

∂θ

∣∣∣O(τ3 + τ2N−1 +N−2).

Since ∂ui

∂R is bounded and |∂u∂x | ≥
1
R |∂ui

∂θ |, this implies

∣∣∣∣∂Πu

∂x

∣∣∣∣p =

∣∣∣∣∂u∂x
∣∣∣∣p (1 +O(τ2 + τN−2 +N−3)) +∣∣∣∣∂u∂x

∣∣∣∣p−2
1

R2

2∑
i=1

∣∣∣∣∂ui

∂θ

∣∣∣∣O(τ3 + τ2N−1 +N−2)

=

∣∣∣∣∂u∂x
∣∣∣∣p (1 +O(τ2 + τN−2 +N−3)) +

∣∣∣∣∂u∂x
∣∣∣∣p−1

1

R
O(τ3 + τ2N−1 +N−2).

Obviously, the first term will lead to a relative error of the order O(τ2+τN−2+N−3)
to the first part of the energy E1. What remains to consider is the second term.
Applying the Hölder inequality, we deduce that

∫
T

∣∣∣∂u
∂x

∣∣∣p−11

R
dx ≤

(∫
T

∣∣∣∂u
∂x

∣∣∣pdx)1− 1
p
(∫

T

R−pdx
) 1

p

=
(2πA(ϵ, τ)

N(2− p)

) 1
p
(∫

T

∣∣∣∂u
∂x

∣∣∣pdx)1− 1
p

.

Applying the Hölder inequality again yields

N∑
j=1

∫
Tj

∣∣∣∂u
∂x

∣∣∣p−1 1

R
dx ≤ (

2π

2− p
A(ϵ, τ))1/pE1(u; Ω(ϵ,τ))

1−1/pω1/p−1.

Hence, we obtain

E1(Πu; Ω(ϵ,τ)) = E1(u; Ω(ϵ,τ))(1 +O(τ2 + τN−2 +N−3))+

E1(u; Ω(ϵ,τ))
1− 1

pA(ϵ, τ)
1
pO(τ3 + τ2N−1 +N−2),

which together with (4.7) yields (4.8).
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On the other hand, by (3.2) and the fact that g is strictly convex,

E2(Πu; Ω(ϵ,τ)) =

N∑
j=1

∫
Tj

g(det∇u)dx+

N∑
j=1

∫
Tj

g′(ηx)|x|−1dxO(τ2 +N−2)(4.14)

= E2(u; Ω(ϵ,τ)) +
N∑
j=1

∫
Tj

|x|−1dxO(τ2 +N−2)

= E2(u; Ω(ϵ,τ)) +O(τ3 + τN−2).

(4.10) is a direct consequence of (4.8), (4.9) and A(ϵ, τ) > (2− p)τ , for ϵ ∈ [0, 1− τ ].
Finally, if there exists a positive constant l1 > 0 such that |∂u∂θ | ≥ l1 and thus

|∂u∂x (x)|
p ∼ R−p, meaning that there exist positive constants L1 and L2 such that

L1R
−p ≤ |∂u∂x (x)|

p ≤ L2R
−p, this gives (4.11). This together with (4.8) and (4.10)

yield (4.12) and (4.13).
Theorem 4.4. For the radially-symmetric cavity solution, the error of the energy

satisfies E(Πu; Ω(ϵ,τ)) = E(u; Ω(ϵ,τ))(1 +O(max{ϵ, τ}p−1τ2 +N−2)).
Proof. For the radially-symmetric solution, it follows from (3.25) that

∂Πu

∂x̂
=

(
C ′(x̂1)(1− 2x̂2

2 sin
2 π

2N ) −4C(x̂1)x̂2 sin
2 π

2N
C ′(x̂1)x̂2 sin

π
N C(x̂1) sin

π
N .

)
Thus, by (3.26) and the facts that r(R) ≥ r(0) > 0 and r′(R) ≤ MR, one gets∣∣∣∂Πu

∂x

∣∣∣2 =
4

τ2
C ′(x̂1)

2(1 +O(N−4)) +
N2

π2R2
C(x̂1)

2 sin2
π

N
(1 +O(N−2))

= (r′(R) +O(τ2))2(1 +O(N−4)) +
(r(R) +O(τ3))2

R2
(1 +O(N−2))

=
r(R)2

R2
(1 +O(τ3 +N−2)) + r′(R)2 + r′(R)O(τ2)

= (r′(R)2 +
r(R)2

R2
)(1 +O(τ3 +N−2 + r′(R)R2τ2))

= (r′(R)2 +
r(R)2

R2
)(1 +O(τ3 +N−2 + (ϵ+ τ)3τ2)).

It follows that

E1(Πu; Ω(ϵ,τ)) = E1(u; Ω(ϵ,τ))(1 +O(ϵ3τ2 + τ3 +N−2)).

On the other hand, by (3.24) and with similar arguments as in the proof of Theo-
rem 4.3 (see (4.15)), one has that

E2(Πu; Ω(ϵ,τ)) = E2(u; Ω(ϵ,τ)) +O(τ3 + (ϵ+ τ)τN−2).

Recalling that

E1(u; Ω(ϵ,τ)) = 2π

∫ ϵ+τ

ϵ

(r′(R)2 +
r(R)2

R2
)p/2RdR ∼ A(ϵ, τ) > (2− p)τ,

E2(u; Ω(ϵ,τ)) = O(τ),

we obtain

err(E2(Πu; Ω(ϵ,τ)) = E1(u; Ω(ϵ,τ))
O(τ3 + (ϵ+ τ)τN−2)

A(ϵ, τ)

= E(u; Ω(ϵ,τ))O(max{ϵ, τ}p−1τ2 + (ϵ+ τ)N−2),
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which completes the proof.

5. A meshing strategy. The aim of this section is to establish, for a given
reference mesh size h > 0, a meshing strategy on the domain Ωϵ0 = B1(0) \ Bϵ0(0),
i.e. to design a method of calculating ϵi, τi, Ni, where ϵi+1 = ϵi + τi, and Ni is the
number of the elements in the layer Ω(ϵiτi), so that, on Ωϵ0 =

∪m
i=0 Ω(ϵi,τi), a cavity

solution u and its finite element interpolation function Πu satisfy
(C1) the orientation-preservation condition: det∇Πu > 0;
(C2) the approximation condition: ∥u−Πu∥1,p = O(h2);
(C3) error sub-equi-distribution condition (see (4.11)-(4.13)): A(ϵi, τi) = O(h);

(C4) least total degrees of freedom condition: Nd =
m∑
i=0

Ni is minimized under the

restriction that Ni+1 = Ni or Ni+1 = 2Ni.
By Theorems 3.1 and 3.3, for a radially-symmetric cavity solution, condition C1

can be ensured by setting τi ≤ C1ϵ
1/2
i , while in the nonsymmetric case, setting in

addition Ni ≥ C2ϵ
−1/2
i meets the requirement. By Theorem 4.2, for condition C2 to

hold it suffices that N−1
i = O(h), τi = O(h).

The idea of error equi-distribution is often used in mesh adaptivity and mesh
redistribution. By Theorem 4.3, A(ϵi, τi) can serve as a monitor for the energy
error equi-distribution, especially in the neighborhood of the void. Without loss
of generality, assume ϵm > 1

2 . Since ϵm + τm = 1 for the layer m, this implies
A(ϵm, τm) = 1 − (1 − τm)2−p ≤ (2 − p)2p−1τm. Thus, it is easily verified that, for
a given constant C ≥ (2 − p)2p−1, a reference mesh size 0 < h ≤ h0 ≤ 2−p

22−pC ,

A(ϵm, τm) ≤ Ch, provided that τm ≤ C
(2−p)2p−1h. Hence, it is natural to require

C3: A(ϵi, τi) ≤ Ch, for all 0 ≤ i ≤ m, which imposes an implicit condition on
the layer’s thickness τi. In fact, given C ≥ (2 − p)2p−1 and h0 ≥ h > 0, denoting

d(x, h) = (x2−p +Ch)
1

2−p − x, we have A(x, d(x, h)) = Ch. On the other hand, since

p ∈ (1, 2), we have Ch = A(ϵi, d(ϵi, h)) , (2 − p)
∫ ϵi+d(ϵi,h)

ϵi
R1−pdR ≥ (2−p)d(ϵi,h)

(1+d(ϵi,h))p−1 ,

which implies that d(ϵi, h) ≤ 1, as long as 0 < h ≤ h1 ≤ 2−p
2p−1C , and consequently

(2−p)d(ϵi,h)
(1+d(ϵi,h))p−1 ≤ Ch yields d(ϵi, h) ≤ 2p−1C

(2−p) h. Thus, for condition C3 and τi = O(h)

to hold, it suffices to require τi ≤ d(ϵi, h).
Finally, assuming an optimized distribution of layers is given, then, condition C4

can be achieved easily by taking the least admissible Ni, 0 ≤ i ≤ m. It is in this sense
that the total degrees of freedom are minimized.

For given positive constants C1, C2, C ≥ (2− p)2p−1, h ≤ min{h0, h1}, A1 < A2

satisfying [(A2h)
−1, (A1h)

−1] ∩ Z+ ̸= ∅, the analysis above leads to the following
meshing strategy satisfying C1-C4 for non-radially-symmetric cavitation solutions.

A meshing strategy of {Ω(ϵi,τi)}mi=0:

(1) Take Ñm ∈ [(A2h)
−1, (A1h)

−1]∩Z+. Let N̄0 = min{N ∈ Z+ : N ≥ C2ϵ
−1/2
0 }. Set

k = min{j : 2jÑm ≥ N̄0}, and N0 = 2kÑm. Set τ0 = min{C1ϵ
1/2
0 , d(ϵ0, h)}.

(2) Set k0 = 0. For i ≥ 1, set ϵi = ϵi−1 + τi−1, and

(5.1) τi = min{1− ϵi, C1ϵ
1/2
i , d(ϵi, h)}.

If τi = 1− ϵi, set m = i. The least admissible Ni ≥ C2ϵ
−1/2
i is determined as

follows:
1. If ki−1 < k, set N̄i =

Ni−1

2 . If N̄i ≥ C2ϵ
−1/2
i , then set ki = ki−1 + 1,

Ni = N̄i; otherwise, set ki = ki−1, Ni = Ni−1.
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2. If ki−1 = k, set ki = ki−1, Ni = Ni−1.
Remark 5.1. By setting k = 0, Ni = Ñm, 0 ≤ i ≤ m, the meshing strate-

gy above can be adapted to create a mesh for the radially-symmetric solutions, for
which the preservation of orientation adds no restrictions on Ni (see Theorem 3.3
and Remark 3.4). As a consequence, the total degrees of freedom of a dual-parametric
bi-quadratic FE approximation, in which a triangulation is introduced on the domain
by local polar coordinates maps and the shape functions are bi-quadratic with respect
to (r, θ), are significantly less than that of an iso-parametric quadratic FE approx-
imation, where both the elements in the triangulation and the shape functions are
given by quadratic functions defined on a reference triangle and where the orientation-
preservation condition plays a leading role in determining Ni, especially when ϵi ≪ h
[24].

Theorem 5.2. Let u be a cavity solution satisfying the assumptions of The-
orem 3.1. Then, for a given constant C ≥ (2 − p)2p−1, there exists 0 < ĥ ≤
min{ 2−p

22−pC , 2−p
2p−1C } such that, for a reference mesh size 0 < h ≤ ĥ, on a mesh

{Ω(ϵi,τi)}mi=0 with ϵi, τi, Ni produced by the above meshing strategy, we have det∇Πu(x)
> 0, and

∥u−Πu∥∞ = O(h3),(5.2)

∥u−Πu∥1,p = O(h2),(5.3)

err(E(u; Ωϵ0)) = O(h2).(5.4)

Proof. The claims det∇Πu(x) > 0, (5.2) and (5.3) follow from Theorem 3.1,
Theorem 4.1 and Theorem 4.2 respectively; (5.4) is a direct consequence of (4.10)

and
m∑
i=0

A(ϵi, τi) = (2 − p)
∫ 1

ϵ
R1−pdR ≤ 1. What remains to show is N−1

i = O(h),

which is a consequence of Ñm ∼ 1/h and Ni ≥ Ñm.
To estimate the total degrees of freedom, we need the following lemma.

Lemma 5.3. Let f(x) = C1x
1/2 + x− (x2−p + Ch)

1
2−p , x ∈ [0, 1], where C1 > 0,

C > 0 and 1 < p < 2 are given constants. Then, there exist positive constants a1 < a2

independent of h < h̄0 = min{ (1+C1)
2−p−1

C , (2−p)C1

C (1 + C
s )

1−p
2−p }, where s is the bigger

root of the equation (2− p)C1x
2−Cx−C2 = 0, such that f(x) < 0 if x ∈ [0, a1h

2
2−p ],

and f(x) ≥ 0 if x ∈ [a2h
2

2−p , 1].
Proof. Since x ≥ 0 and 1 < p < 2, it follows that

f(x) ≤ f̄(x) = C1x
1/2 + x− C

1
2−ph

1
2−p ,

thus, f(x) < 0, if x < x1 , 4
(√

C2
1 + 4(Ch)

1
2−p + C1

)−2

C
2

2−ph
2

2−p , which is the

bigger root of f̄(x) = 0.
For x2−p > sh, it is easily verified that

f(x) = C1x
1/2 + x− x(1 + xp−2Ch)

1
2−p

= C1x
1/2 + x− x(1 + ξxp−2Ch),

where ξ = 1
2−p (1 + η)

p−1
2−p and 0 < η < xp−2Ch < Cs−1, thus, we have

(5.5) f(x) > C1x
1/2 − 1

2− p
(1 + Cs−1)

p−1
2−pChxp−1.
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If p ≥ 3/2, then xp−1 ≤ x1/2, hence f(x) > (C1 − 1
2−p (1 + Cs−1)

p−1
2−pCh)x1/2 > 0,

since h < h̄0. If p < 3/2, then p−1
2−p < 1 and xp−1h < x2−pxp−1/s = x/s < x1/2/s,

thus, it follows from (5.5) that

f(x) >
(
C1 −

Cs−1

2− p
(1 + Cs−1)

p−1
2−p

)
x1/2 >

(
C1 −

Cs−1

2− p
(1 + Cs−1)

)
x1/2.

By the definition of s, this leads to f(x) > 0.

On the other hand, for x2−p ≤ sh, denoting M = (C + s)
1

2−p , we have

f(x) = C1x
1/2 + x− (Ch)

1
2−p (1 + x2−pC−1h−1)

1
2−p

≥ C1x
1/2 + x− (Ch)

1
2−p (1 + sC−1)

1
2−p

= f̃(x) = C1x
1/2 + x−Mh

1
2−p ,

Hence f(x) ≥ 0, if x ≥ x2 , 4M2
(
C1 +

√
C2

1 + 4Mh
1

2−p

)−2

h
2

2−p , which is the

bigger root of the equation f̃(x) = 0. The proof is completed by taking a1 =

4
(√

C2
1 + 4C

1
2−p + C1

)−2

C
2

2−p and a2 = M2C−2
1 = (C + s)

2
2−pC−2

1 .

Theorem 5.4. Let C1 > 0, C2 > 0, 1 < p < 2 and C ≥ (2 − p)2p−1 be

given. Let a1 < a2, h̄0 and ĥ be the constants given in Lemma 5.3 and Theorem 5.2
respectively. For given ϵ0 < 1, let {ϵi, τi, Ni}mi=0 be defined by the meshing strategy

with h < h̄1 = min{h̄0, ĥ, C
2−p
1 a

1−p/2
1 (a2 − a1)

p−2, Cap−2
2 }. Then, we have

m ≤ M2 =

{[
log2 logb(h) ϵ0C

−2
1

]
+ 3 + [(Ch)−1], if a2h

2
2−p ≥ ϵ0;

[(Ch)−1], otherwise,
(5.6)

m ≥ M1 =
1−max{ϵ2−p

0 , a2−p
2 h}

Ch
− 1,(5.7)

where b(h) = a1C
−2
1 h

2
2−p . Consequently, the total degrees of freedom Nd satisfies

(5.8) ÑmM1 ≤ Nd ≤ N0M2,

where N0 and Ñm are given as in the meshing strategy (1).

Proof. By Lemma 5.3, C1x
1/2 < d(x, h) if x ≤ a1h

2
2−p , and C1x

1/2 ≥ d(x, h)

if x ≥ a2h
2

2−p . Hence, by (5.1), ϵi+1 = ϵi + C1ϵ
1/2
i if ϵi ≤ a1h

2
2−p , and ϵi+1 =

ϵi + d(ϵi, h) if ϵi ≥ a2h
2

2−p . Let ϵm1
be the biggest ϵi such that ϵi ≤ a1h

2
2−p , then for

all i ≤ m1, ϵi+1 = ϵi + C1ϵ
1/2
i . We have that ϵm1 = ϵm1−1 + C1ϵ

1/2
m1−1 > C1ϵ

1/2
m1−1 >

C
1+1/2
1 ϵ

1/22

m1−2 > · · · > C
1+1/2+···+1/2m1−1

1 ϵ
1/2m1

0 = C2
1 (

ϵ0
C2

1
)1/2

m1
. Let j be the smallest

integer i such that C2
1 (

ϵ0
C2

1
)1/2

i ≥ a1h
2

2−p , then m1 ≤ j. By the definition of j, one

has

(5.9) m1 ≤ j =

{
log2 logb(h)

ϵ0
C2

1
, if log2 logb(h)

ϵ0
C2

1
is an integer;[

log2 logb(h)
ϵ0
C2

1

]
+ 1, otherwise.

Let ϵm2 be the smallest ϵi such that ϵi ≥ a2h
2

2−p , then, for all m2 ≤ i < m,
ϵ2−p
i+1 = ϵ2−p

i +Ch = ϵ2−p
m2

+C(i+1−m2)h. It follows from the facts that ϵm+1 = 1.0
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and τm = min{1 − ϵm, d(ϵm, h), C1ϵ
1/2
m } that m is the smallest integer j such that

ϵ2−p
j + Ch = ϵ2−p

m2
+ C(j + 1−m2)h ≥ 1. Hence

(5.10) m =

m2 − 1 +
1−ϵ2−p

m2

Ch , if
1−ϵ2−p

m2

Ch is an integer;

m2 +
[ 1−ϵ2−p

m2

Ch

]
, otherwise.

Next, we estimate m2−m1. By the definition of m1, ϵm1+1 = ϵm1 +C1ϵ
1/2
m1 > a1h

2
2−p .

Thus, τm1+1 ≥ min{C1a
1
2
1 h

1
2−p , d(ϵm1+1, h)}. This implies ϵm1+2 > min{C1a

1/2
1 h

1
2−p

+a1h
2

2−p , (Ch)
1

2−p }. Hence, by the definition of h̄1, ϵm1+2 > a2h
2

2−p . Consequently,
by the definition of ϵm2 , we conclude m2 ≤ m1 + 2, which together with (5.9) and
(5.10) yields (5.6).

If ϵ0 ≥ a2h
2

2−p , then (5.7) follows directly from (5.10), since in this case m2 = 0.

If ϵ0 < a2h
2

2−p , then m2 ≥ 1 and ϵm2−1 < a2h
2

2−p by the definition of m2. Thus, for
all m2 ≤ i ≤ m, ϵ2−p

i = ϵ2−p
m2

+ C(i−m2)h ≤ ϵ2−p
m2−1 + C(i+ 1−m2)h. Set

(5.11) j0 =

m2 − 2 +
1−ϵ2−p

m2−1

Ch , if
1−ϵ2−p

m2−1

Ch is an integer;

m2 − 1 +
[ 1−ϵ2−p

m2−1

Ch

]
, otherwise.

Then, it is easily verified that ϵi < 1, for all i ≤ j0. Hence, by the definition of m, we

conclude m ≥ j0, which implies (5.7), since m2 ≥ 1 and ϵm2−1 < a2h
2

2−p .

It is worth noticing that there are two solution-dependent constants C1 and C2,
which are not known a priori, used in the meshing strategy. In applications, we can

always start with C1 := d(ϵ0, h)ϵ
−1/2
0 and C2 := Ñmϵ

1/2
0 , which are the least C1

and greatest C2 such that the orientation-preservation conditions will practically not
affect the mesh produced. It is of vital importance to know what would happen if
the constants are not properly given, and how to adjust the mesh in an a posteriori
fashion so that the conditions C1-C4 are satisfied in the end. To specify this, we
present below two examples in both the radially-symmetric and the nonsymmetric
cases, where the energy density is given by (1.6) with p = 3/2, ω = 2/3, and g(x) =
2−1/4( 12 (x− 1)2 + 1

x ), and we take A = A1 = A2 = 0.8, h = 0.05.

Example 5.5. In the radially-symmetric case, let ϵ0 = 0.0001, u0(x) = 2x, and
Ni = Nh = A/h. For C = 2, C1 = 1.0 and 0.9, the mesh strategy produces two
meshes shown in Table 5.5. While the numerical solutions obtained on both meshes
successfully capture the cavitation, the solution with a C1 marginally too big fails to be
orientation preserving. In fact, det∇uh(x) < 0 is detected on the element vertices on
the inner boundary {x : |x| = ϵ0}, where the preservation of orientation is found most
easily broken. Our numerical experiments show that, whenever this happens, instead
of reducing C1, a proper mesh can be obtained simply by dividing the innermost layer
into two, repeating if necessary, according to condition C3.

Table 1
Radially-symmetric case: ϵ0 = 0.0001, Ni = 16, 0 ≤ i ≤ 9, ϵ10 = 1.0.

C1 ϵ1 ϵ2 ϵ3 ϵ4 ϵ5 ϵ6 ϵ7 ϵ8 ϵ9
1 0.0101 0.0402 0.0903 0.1604 0.2505 0.3606 0.4907 0.6408 0.8109

0.9 0.0091 0.0382 0.0873 0.1563 0.2454 0.3545 0.4836 0.6327 0.8017
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Example 5.6. Let ϵ0 = 0.0005 and u0(x) = (2.5x1, 2x2)
T , then, the corre-

sponding cavity solution is non-radially-symmetric. Now, we are facing the problem
of choosing C1 and C2 appearing in the conditions τ ≤ C1ϵ

1/2 and N ≥ C2ϵ
−1/2.

For C = 3, C1 = 1.0 and, C2 = 1.1, the meshing strategy produces a mesh shown in
“Test 1” in Table 2, where Ni = N0/2, ∀i ≥ 1, which holds also for other three tests.
It turns out that the numerical solution obtained on this mesh is indeed orientation
preserving, while for C1 = 1.25 (see Test 2) or C2 = 0.9 (see Test 3), the numerical
solutions obtained on the corresponding meshes will fail to be orientation preserving.
Again, it is found that the failure is most likely to happen on the element vertices on
the inner boundary of the domain Ωϵ0 . And again, instead of reducing C1 or increas-
ing C2, a proper mesh can usually be obtained simply by dividing the inner most layer
into two (see Test 4 where ϵ8 = 1.0), according to condition C3, or doubling N0, or
both, and repeating the process if necessary.

Table 2
Non-radially-symmetric case: ϵ0 = 0.0005, u0(x) = (2.5x1, 2x2)T .

Test ϵ1 ϵ2 ϵ3 ϵ4 ϵ5 ϵ6 ϵ7 N0 Result

1 0.0229 0.0907 0.2036 0.3614 0.5643 0.7946 1.0 50 Succeed

2 0.0285 0.1016 0.2198 0.3829 0.5911 0.8442 1.0 50 Fail

3 0.0229 0.0907 0.2036 0.3614 0.5643 0.7946 1.0 40 Fail

4 0.0091 0.0285 0.1016 0.2198 0.3829 0.5911 0.8442 50 Succeed

Remark 5.7. In our code, the condition det∇uh > 0 is firstly only checked
on quadrature nodes in a gradient flow iteration; after the iteration converges, the
condition det∇uh > 0 is checked on elements vertices, particulary those on the inner
boundary of the domain Ωϵ0 , where the condition is most easily broken; the mesh layer,
where det∇uh < 0 is detected, is then refined accordingly. Such a modified meshing
strategy practically makes the whole process more efficient, though a mesh so obtained
is not necessarily “optimal”.

6. Numerical experiments and results. In our numerical experiments, the
energy density is given by (1.6) with p = 3/2, ω = 2/3, and g(x) = 2−1/4( 12 (x− 1)2 +
1
x ), the domain Ωϵ0 = B1(0) \Bϵ0(0) with a displacement boundary Γ0 = ∂B1(0) and
a traction free boundary Γ1 = ∂Bϵ0(0), and the meshes used are shown in Table 3
and Table 4, which are produced by the meshing strategy with C = 2, C1 = 0.9,
A = 0.8 for ϵ0 = 0.01, ϵ0 = 0.0001 and various h. It happens that, in all these meshes,
Ni = Nh = A/h on each of the m + 1 mesh layers. Figure 3 shows that the total
degrees of freedom Nd is basically a quadratic function of h−1.

Table 3
ϵ0 = 0.01.

h min τi max τi m Nh

0.04 0.0224 0.1504 11 20

0.03 0.0156 0.1164 14 30

0.02 0.0096 0.0768 22 40

0.01 0.0044 0.0396 44 80

0.005 0.0021 0.0199 89 160

Table 4
ϵ0 = 0.0001.

h min τi max τi m Nh

0.04 0.008 0.1488 12 20

0.03 0.0048 0.1128 16 30

0.02 0.0024 0.076 24 40

0.01 0.0008 0.0392 49 80

0.005 0.0003 0.0197 98 160

6.1. Radially-symmetric case with u(x)|Γ0 = λx. The convergence behavior
of the radially-symmetric numerical cavity solutions corresponding to λ = 2.0 obtained
by the dual-parametric bi-quadratic FEM are shown in Figure 4-Figure 6, where the
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high precision numerical solutions to the equivalent 1-D ODE problem are taken as
the exact solutions [2, 14].
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Fig. 3. Nd ∼ Kh−2.
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Fig. 4. The energy error.

Figure 4 shows that the energy error |E(u) − E(uh)| = O(N−2
d ) = O(h4), which

is even better than our energy error estimate on the interpolation function (see (5.4)).

In Figure 5 and Figure 6, it is shown that ∥u − uh∥0,2 = O(N
−3/2
d ) = O(h3) and

∥u − uh∥1,p = O(N−1
d ) = O(h2) respectively, which are in good agreement with our

interpolation error estimates (see (5.2) and (5.3)).

A comparison between W 1,p errors of the iso-parametric triangular FEM ([24])
and the dual-parametric bi-quadratic FEM is also shown in Figure 6, which demon-
strates that the latter should be a more efficient method in cavitation computations.

2.9 3.2 3.5 3.8 4.1 4.4
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

log
10

Nd

lo
g 10

er
r 2(u

h)

 

 

ǫ0 = 0.01
ǫ0 = 0.0001
slope=1.5

Fig. 5. The L2 errors of uh.
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Fig. 6. The W 1,p errors of uh.

6.2. Non-radially-symmetric case with u(x)|Γ0 = (λ1x1, λ2x2)
T . The nu-

merical results for λ1 = 2.5, λ2 = 2.0, ϵ0 = 0.01 obtained on the mesh given in
Table 3 are shown in Figure 7-Figure 10.

Figure 7 shows the numerical solution with h = 0.02, where the cavity is seen
to be approximately an ellipse. The convergence behaviors of the energy, semi-major
axis, and semi-minor axis of the cavity, with respect to the mesh size h, are displayed
respectively in Figure 8, Figure 9(a) and Figure 9(b). The convergence behavior of
∥uh−uh/2∥0,2 and |uh−uh/2|1,p, in terms of Nd ∼ h−2, are demonstrated respectively
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Fig. 7. The numerical solution.
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Fig. 9. The convergence behavior of the cavity of uh.
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in Figure 10(a) and Figure 10(b). The numerical results are clearly in good agreement
with our analytical results (see (5.2)-(5.4)).

7. Conclusion. We derived the orientation-preservation conditions and interpo-
lation errors of the dual-parametric bi-quadratic rectangular FEM for both radially-
symmetric and general non-symmetric cavity solutions, which is the first theoretical
result of its kind in this field, and established an optimal meshing strategy for the
method in computing void’s growth based on an error equi-distribution principle. We
would like to emphasize here that, even though there are two a priori unknown solu-
tion dependent constants C1 and C2 involved in the meshing strategy, we can always
make a posteriori adjustments so that the strategy works well (see § 5 for details).
Numerical results obtained on the meshes produced by our meshing strategy verified
the efficiency of the method. In fact, our numerical experiments showed that the con-
vergence rates of the finite element cavitation solutions are in good agreement with
our interpolation error estimates, and the total degrees of freedom needed for the
method to achieve a given level of approximation accuracy is of an optimal order, and
is much less than that of the iso-parametric quadratic triangular FEM in practical
cavitation computations.
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