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BEFLS AT 2025 XI55

1 9H9H

1. [Ei [GQ p2-3 57 1.1, 2[5 1.2 18| 1.3, 5 <BEPLBFRFI Ito 242 5|7 5.3.1.
12 5.3.1. B]HE 5.3.2 f15| M 5.3.3.

2. B3z <BEHUR AT 166 203> (F B UL 451 IR [F] 7).
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1.

W& B E AR AR R [ BUE T (R, B(RY)) EEAESN TR & G 2F
&, B 7(w) = inf{t > 0,& € G} BIWEN; 5 & WBLERELN, F 2 W%, k]
7'(w) = inf{t > 0,& € F} J245H].

TX %M [KS]p7 Problem 2.6, 2.7

HTRASH KHENGRIIRY (FoHR) BT 2% HF LXXFHRLE P H 7
(A2 X ANMERR A 207 R)

. [z [KS]pl-5. p47-71 (Chapter 2.1-2.4), p10 Definition 2.25

i3z [GQIp2 iFEX 1.4, 1.5, p3 EX 1.6; i 1.1

[KS] p4 Exercise 1.7, Exercise 1.8
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3 9H18H

L 4TI A BRI A TR X I [0, T), 135 Mor(Fy) = {(My)eom B (Fr) H1E/EHE
SR ), FEE b TR | M oy = (BEM2)3.

(1) EMY: Mo (F) AEVEEL | M |20 " 1~ Hilbert Z3[H);

(2) 12 M5 7(F) = {(Mi)scjor) & (Fr) BELPITal L }. bR MS1(F) 72 Mar(F)
[ A 725 ).

TRAEN [GQ] p12 F18 1.7
2. & Ny @5 FSECH A 1Y Poisson 2. Fy = o(Ng, s < t).

(1) ﬁ% (Nt - )\t)%zo EI/‘] DOOb—Meyer éj\ﬁg’

(2) # (Xn)nzo J2 Lid WIBEHIAE R FH, Xo MIEEEERECH p(e), E[Xo| < 00, (Ni)iz0 5
(Xn)n>0 MSLHY Poisson ifF2, HIMFESHCH X % Ve = 3000 Xo, M (V)0 £
AR FF VR A BT 189 F 1R, FROAE 4 Poisson iR, LRI Fy = o(YVs, s < t). 3R
(Y1)e>0 By Doob-Meyer 4)fi#.

3. 1% Xy @A R, RTHDIRAZS BN Z1 = {0,1,2,- - }, BB R Q Wi

Ni j=i+1,
Q”_{ N\ j=i.

HE—BBE 20720+ = oo, B X, JEMAE (IR5FH), TEL £ > 0, BX, < o0, Xo = 0. 3k X;
i) Doob-Meyer 3 fifF1E BRI 2518

4. % [GQ) 4 1.2, 1.3 A p76 &8l 2.1, p77 A/l 2.19, & X 2.23, il 1; p78 il
2.21.

5. [ [KS] Chapter 1.4; Chapter 1.5 p30-p31.
6. [ [KS] p32-34, Theorem 5.8, Lemma 5.9, Lemma 5.10 Az HIiERH.
7. g [LG] p79-84, Theorem 4.9 Az HAIEHA.

8. AU LA [CW2) pls-22 iPRHISIA RHI R S At — .
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4 9 H23H
L (Mi)iso € MS(F). EWT:
(1) "0<ty<t <ty & KT Fpy, AIHIAFRAHIASE, N
B[&, (M, — My )| Fio] = BIEE (M), — (M)y,) | Fro].

(2) HO<ty<ts <ty<ts<ty, & KT F, AIMAERMENA T, &, 2XT Fiy Al
WA FBENLAS &, T

E[&, & (My, — Myy) (My, — My,) | Fy, | = 0.

2. JER [KS|p137-138 il st (2.13),(2.14) I (2.16).

3. [KS] p35 Problem 5.12
w X e M§, T2 (F) 4. & (X)r =0,a.s.dP, 1ERA:

P(XT/\t = O,VO S t S OO) =1.

4. fi [KS]p20 Problem 3.24 (7] L2} [RY] p71 Corollary 3.6)

5. Bilig [KS|p128-145
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5 9 H25H
Lo (1) GEHT: (X, V)2 < (X)(Y).
(2) # & = (X,Y), & & € 7E [0,¢] BRYLA2E, TEH:

E(w) — E) < 2 [(X(w) = (0)4(0) + (V) e) = (¥)2(w)]
JUPALAE ST
TAER [GQ] p78 ## 2.20 Kunita-Watanabe &% X #4E8. [KS] p31
Problem 5.7

2. W X,Y € L M,N € M§, iiFi:
t
IM(x), IN(Y)); = / X, Y, d(M,N),.
0

3. 1A Kunita-Watanabe ANZEZ.
%7 [KS] p142-143 Proposition 2.14 fi1 [GQ] p78 il 2.20.
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6 10 H9 H
1. %% M € M%(]:t), TN (]'_t)tzo 1"%'%[3?

(1) "LJ—_EE% (Mt/\T)tZO S Mg(ft),
(2) K (Miar)e=o FUEFIE;

(3) AXTAEER) t > 0, Mynr = 0, IEH]: X TAEER N € M§(F), (EER) ¢ > 0,
<Ma N>t/\T =0.

[\

. 7352 [KS] p36 Definition 5.15.
3. [ [KS] p36 Remark 5.16, 3152 % Remark FrE/RAYg >J 2.
4. B [GQ) pT9 i 2.22.

5. [RY] p131 Exercise 1.27
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7 10 H 16 H

[a—

10.

11.

12.

Suppose M, N € M%°¢ and X € Py (M)NP;(N). Shows that for every pair (a, 3) of real
numbers we have
TeMABN (Xy = o™ (X) 4 IV (X).

[KS] p147 Problem 2.25

. i [KS] p145-148
. M [KS] p32 Theorem 5.8 iEAH [KS] p149 Problem 3.2.

. W B = (Bt)o<i<1 sehnEAINEDN. X = (aBt)o<i<i, HH a > 0,a # 1. 1E: B {1 X 1£

(C([0,1]), B(C([0,1])) i SR BEAH Hoay 5.

- Bk [GQ) p25-29 1t A FUER, (152 [KS] p149-153 It /2 IEH.

[KS] p155 Problem 3.12

Suppose we have two continuous semimartingales
Xe=Xo+My+ By, i =Yg+ Nt +C; 0< ¢ < o0,

where M and N are in M%!¢ and B and C are adapted, continuous processes of bounded
variation with By = Cyp = 0 a.s. Prove the integration by parts formula

t t
/ X,dY, = X,; — Xo¥p - / Y,dX, — (M, N),.
0 0

FEis2 [KS] p153-156
Bk [GQ] p29-37
i [GQJ p3 i 1.1, [KS] p85 Lemma 6.13.

[KS] p158 Exercise 3.17 Let W; = (Wt(l), t(2), t(g)) be a three-dimensional Brownian
motion starting at the origin and define

3
X = Hsgn(Wl(Z)),
i=1

MO — w® p® Z @ @ o ®),

Show that each of the pairs (MM, M@) (MM MG))and (M?), M®)) is a two-dimensional
Brownian motion, but (M W M@ M (3)) is not a three-dimensional Brownian motion.
Explain why this does not provide a counter-example to Theorem 3.16, i.e., a three-
dimensional processes which is not a Brownian motion but which has components in
M&loc and satisfies

(MW MDY, =65t 1<k,j<d.

B¢ € Lo, B (fydsdBa)e = f(t), Horh f(£) e 1% 98 () ( BE LR KL, IE B
(Jd pudBu)iso AL [T ¢ud By R N(O, £(£) — f(s)).

3L [LG] 45 5.1 95, 28 5.2 FifI4s 5.3.1 5.
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8 10 § 21 H

- % (B, By 2 getimizah, (BY)2+(BE)? # 0. #5 (BYBP)is0 15 (In [(BY)2+
(BP)?]) n0 AT (FP)izo B, AT (FP)imo JAHBBE, H355 RIS B BT,

2. P [KS] pl158-163

[a—

3. [ [KS]163-167 Martingale Moment Inequalities.
4. i <R BUS R RE AU SO (B EL IR IR
5. % B AR JT R ((FJT Bessel idHE)

dX(t) = ndt + 2¢/X (t)d B,

Forf, n O NAT 1 IEEEL B o = inf{t > 0, X, = 0}. EW: P(ro = 00| Xo = 2) = 1,
x> 0.

6. [KS] p162 Problem 3.23

Let R = {Ry, Fi}+>0 be a Bessel process with dimension d > 2 starting at » > 0, and
define
m = inf R;.

>0
(i) Show that if d = 2, then m =0 a.s. P.
(ii) Show that if d > 3, then m has the beta distribution

Pim<e¢) = (;)d_z; 0<ec<r.

7. [KS] p163 Problem 3.24

Let R be a Bessel process with dimension d > 3 starting at » > 0. Show that

P(lim R; = o0) = 1.

=00
8. [l [KS] p169-173; 5] p174 Problem 4.5 (#i>J).

9. FiiE [GQJ p145 5[FE 3.8 N HAIEH]; p37-39.

10. FIFHAZEIS RIS 2G 10 H 16 HE 11 80— 3 aYiE.

11, REAHIE— PSR (Me)iep,) HAEHIEE [0,1] ERIHEFTRREL
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1.

ALY R 27T LAsE R T e SCHY Proposition 3.
Nualart, D. and Peccati, G., Central limit theorems for sequences of multiple stochastic
integrals. Ann. Probab. (2005) Vol. 33. No.1 p177-193

. % (B, = B{" +iB{®)iz0 2% BM. Hr BV Il B® fiszfy BM. % D C C —4i%

W, f: D= C *AEIEF%%ZE’J%H‘E #, p =inf{t > 0,B; ¢ D}, B =2 € D.
WS = f0|f’ 2|2dr, 0 <t <7p, o5 =S5, B [ |f/(By)[Pdr = s. 1EHA: Y, = f(Bo,),
0<s<S, '?U\ f(z) HURAE Srp J:%JLEI’JE BM I_J/VFE'

)12 [KS] p174-180 Continuous Local Martingales as Time-Changed Brownian Motions
B MCEEAUER. OC1E Proposition 4.8. REAIZ AL p179 U1 Knight EHY LS
PREFT RIS Brownian motion iR 2E 5.

. i [KS] p38 Problem 5.24 J% p45 [HfREHER.

32 FFE [RY]p182 Dambis, Dubins-Schwarz & # &) —# 4t (Theorem 1.7).

There exist an enlargement (Q, F;, P) of (Q, Fr,,P) and a BM 5 on Q independent of M
such that the process

B, — MTt if t< <M>oo;
' Moo + Bi—(myee i T2 (M)o

is a standard BM. The process

W, — MTt for t<<M>OO
YT My if t> (M)

is a (F;)-BM stopped at (M )y

123 1ERH [RY]p183 Proposition

For a continuous local martingales M, the sets {(M ) < oo} and {lim;_,~ M exists} are
almost-surely equal. Furthermore, limsup,_,., M; = +oo and liminf; . M; = —o0 a.s.
on the set {(M), = oo}.

[RY]p186 Exercise 1.15
Let M be a continuous local martingale. Prove that on {(M)., = oo}, one has

: M,
lim sup =1 a.s.
1o \/2(M)¢loglog(M),

[RY]p187 Exercise 1.20 If X is a cont. semimartingale and A the Lebesgue measure
on R prove that

A({t >0:limsupe” ¥ Xppe — Xy > 0}) =0 a.s.
el0

1
for every a < 3.

[KS]p178 Problem 4.11



BEFLS AT 2025 XI55

We cannot expect to be able to define the stochastic integral fol XdW, with respect to BM
W for measurable adapted processes X which do not satisfy fol X2ds < oo a.s. Indeed,
show that if

t A 1
P[/des<oo]:1,for0§t<1andE:{/de:s:oo},
0 0

then . .
limsup/ X, dW, = —liminf/ X, dWs = 400, a.s. on E.
11 0 i1 0
9. [KS]p179 Problem 4.12 Consider the semimartingale X; = x + M, + C; with z € R,
M € M¢&loc ¢ a continuous process of bounded variation, and assume that there exists
a constant p > 0 such that |Cy| + (M); < pt,Vt > 0 is valid almost surely. Show that for
fixed T > 0 and sufficiently large n > 1, we have

2

—nNn
P[ X, > }< { }
(s [X] 2 n| < exp

10. 3k [KS] p180-190 A %, % %] X pl89 Exercise 4.22.

10
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10 10 A 30 H ($XENR) (SFAERET)

L. % (By) @A BIEE). (Fi)iso A (Br)eo BT 5K, R & BIE ISR A
FAE— L5(B) i (Hy)i>o 15

1
B} = / H.dB;.
0

4. [RY] p206 Exercise 3.16

Let t be fixed and ¢ be a bounded measurable function on R. Find the explicit martingale
representation for the random variable F' = exp ( fg d)(Bs)ds).

P
% My =E[F|F,0<s<t;v(s,x) = E(exp(fst gﬁ(Bu)du)‘Bs = x)

— 1y Brown i&3h 69 3 K4 7T LA4F 5]
M, =expl [ o) E] | 5B 7]
—exp( [ o(B)aE] | 6(B.)du| B,
— exp( | 6(B)du) o(s. Ba).

— W Feynman-Kac 2 X /% 3|

Os

{81)(8, x) _ %AU(S, x) + ¢(x)v(s, x) '
v(t,z) =1

— & Ito AKX

_ Ovu(s,Bs)  10%v(s, By) ov(s, Bs)
du(s, Bs) = ( 9 + 3 a2 )ds + D dBs

—  b(Ba)u(s, Byds + 20 B g

Ox
— 32 Yy = exp( [y ¢(By)du), B M =Y, (s, Bs).
dMs =d(Ysv(s, Bs))
=v(s, Bs)dY;s + Ysdu(s, Bs)
— Y, ¢(Bs) v(s, By)ds + Y[ — ¢(Bs)v(s, B)ds + 8”(;;33) dB,]
_Y;@v(s, BS)dBS.
Ox

F M, BRI 6 XA

t S
MszE[exp(/O $(By)du)| Bl +/0 Yuav(g;B“)dBu.

11
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1.

2.

11 A4 H
[KS] p167 Exercise 3.31. J#MEAAR [KS], XEZRFIHXE.
FIFH Picard i ASRARITT I Ze kAR T7 72

dX; = AX:dB;, X = ¢,

Hrh, & SIIEs) (By)iso M7
(TREF [GQ] p130 4] 1)

. Wiener-Tto il 5MRAI A 27T EAZ% M. Hairer i X

https://www.hairer.org/notes/Malliavin.pdf

BEE I N 2 B RETY

D. Nualart and E. Nualart, Introduction to Malliavin Calculus. Cambridge University
Press, 2018

i3 [KS] p190-201, % %7 p192 Discussion # p193 Remark # A %&; [GQ]
p39-45 A &

. EM: [GQ] p33 F1# 1.19. [

(F)ezo EBE X 2 (F)eso B, Y HAE EX, = HEL VL

. Brown jz3f] Lety HIEH WA T LIS

P. Morter and Y. Peres, Brownian Motion. (Cambridge University Press 2010) p9-12 A
//'_é\_:

ey

R.L. Schilling, Brownian Motion. 3rd Edition (DE GRUYTER 2021) Section 3.2, 3.3, 3.4,
3.5 WA

12
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1.

2.

11 § 6 H
[KS] p147, Problem 2.28.

[KS] p201, Exercise 5.18

With W = {W;,F;0 < ¢t < 1} is a Brownian motion, we define 7' = inf{0 < t <
1,t + Wt2 = 1}7 Xt = _ﬁth{tST,t<1}; 0 S t < 17

(i) Prove that P(T < 1) = 1, and therefore fol X?dt < 0o as.
(ii) Apply It6’s rule to the process {(%)2, 0 <t < 1} to conclude that

/1XdW 1/1X2dt——1—2/T[ Vo b Jpegre 1
o Ut fy T o L=t (-3t

(iii) The exponential supermartingale {Z;(X), F;;0 < ¢t < 1} is not a martingale; however,
for each n > 1 and o, =1 — ﬁ, {Zipno, (X), F;0 <t <1} is a martingale.

[KS] p201, Exercise 5.20
Suppose that {L;, Fi}i>0 € Moo is such that Z; = exp[L; — %(L)t} is a martingale under
P, and define the new probability measure P7(A) = E(14%7); A € Fr, then

t
- 1
Mt:Mt—<L,M)t:Mt—/ 7d<Z,M>s,O§t§T
0 S

is a (F;)i>0 continuous local under P.

[RY] p334, Exercise 1.23

Let B be the standard BM. For any stopping time 7T such that E[exp(%T )] < oo, prove
that
1
Elexp(Br — iT)] =1.
[RY] p334, Exercise 1.24

(1) Let B be the standard BM and prove that
T=inf{t: B} =1—1t}

is a stopping time such that P(0 < T < 1) = 1.

2) Set Hy; = —QBSI_# and prove that for every t,
(1-s)

t
/ H2ds < o0, a.s.
0
(3) If My = [} HydB,, compute My — 2(M, M)+ (1 —t AT)"2Br.

(4) Prove that E[exp(M; — 2(M)1)] < 1 and hence that {exp(M; — $(M);),t € [0,1]} is
not a martingale.

13



BEFLS AT 2025 XI55

13 11 4 13 H

1. [RY] p336, Exercise 1.36

Let P be the Wiener measure on 2 = C([0,1],R), F; = o(w(s),s < t) and b be a bounded
predictable process. We set

Q@ =exp { /01 b(s,w)dw(s) — ;/01 b2(5,w)ds} -P

and O(w); = w(t) — [ b(s,w)ds.

Prove that if (M, t < 1) is a (F¢, P)-martingale then (M;o6,t < 1) is a (F, @Q)-martingale.

For instance, if h is a function of class C*! such that %% + %—? =0 then h(f(w),t) is a

(F, Q)-martingale.

2. A G A7 AT LA R e S0
Sheffield, S . Gaussian free fields for mathematicians. Probab. Theory Related Fields 139
(2007), no. 3-4, 521-541.

3. PRE_ERriERY Onsager-Machlup (OM) 2 BRI A2 AT LA 152

Iketa, N., Watanabe S. Stochastic Differential Fquations and Diffusion Processes. Second
Edition, North-Holland Publishing Company, 1989

Charpter VI, Section 9 [N %.
HE—2E R T i OM 2 bRt ] DAFE 20 Lo g 152 (19 SCHik -

Diirr, Detlef; Bach, Alexander. The Onsager-Machlup function as Lagrangian for the most
probable path of a diffusion process. Comm. Math. Phys. 60 (1978), no. 2, 153-170.

4. Wik [GQ] p196-202 % F kb £RIH A X

14
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L. BEise <BEFLGS 7 RE R R IR (&
B 7.13.

¥

%
&
-
%
=
=
H
=
z
T

2
°
&
no
i

Lemma 8.1 p519

Bog: R RE—AMAE O Sl BRARAI {1, 2} S, 404 C* 6, H
9" (x)] < M (¢" TERFEBAAATRIRAELE). HEDD: PTG T6o 2SR

N

9(Bt) = g(Bo) —i—/o ¢ (Bs)dBs + ;/0 g"(Bs)ds.

w

. Wik [GQ] pl04-116 £ FRIFEGHE

. 3% [LG] Chapter 9, Local Times

15
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1. B¢ [KS] p209 Problem 6.12

For a continuous function h : R — [0, 0c0) with compact support, the following interchange

of Lebesgue and It0 integrals is permissible

/OO h(a)(/otya,oo)(ws)dws)da_ /Ot (/oo h(a)l(am)(Ws)da)dWS, a.5.PC.

—0o0 —00

2. Wi [KS] p225 Problem 7.7

Let X be a continuous semimartingale with decomposition
Xi=Xo+ M +V; 0<t< o0,

i be a o-finite measure on (R, B(R)), and h : R — [0,00) be a continuous function with

compact support. Then

[ w0 ([ tasoeraart)uan = [ ([ bt (nta)a.

—0o0 —00

3. Show that the semimartingale local time of a continuous process of bounded variation is

identically zero.

16
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. Wit [RY] p365-375
ORI B T R
dX, = —%e’Qdet +e XdBy, Xo=a€R,
FESRNEIT & ZHTHYAR.
(T$# [GQ] pl128 £ X 3.4)

. [KS] p293 Exercise 2.17

The stochastic equation
t o t oo
Xy = 3/ Xs3ds+3/ X2dW,
0 0

has uncountable many strong solution of the form

6) 0; 0<t< By,
Xt = W3, B<t<
t = 007

where 0 < 6 < o0 and [y = inf{s > 6; W, = 0}.

17



BEHLAT 202;4%
17 12 H 2 H

1. M [KS] p291-300, & %54 p291 Proposition 2.13 ( Yamada-Watanabe *#—
M Z ) F= p293 Proposition 2.18 bk 22

2. Wi [LG] p231, Exepcise 8.14.
3. [KS] p294 Exercise2.19

4. [KS] p295 Exetcise 2.20
5. [KS] p305 Exercise 3.12
6. [KSY'p305 Problem 3.13.
[KS] p306 Problem 3.15
8 Wik [KS] p301-306

9 Fit [GQ] p132-145

18
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18 12 A 4 H
1. B [KS] p306-311

2. [z [GQIpl54 EHE 3.6 M HIEM, 3f5 [KS] p305 Problem 3.13 H4%.

19
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19 12 f§ 11 B (&KEN%K)
1. i [KS] p314-320
2. Wit [GQ] pl45-148
3. % & SDE

. . t Tt A
Xt(’):Xg“Jr/ bi(s,Xs)ds+Z/ oii(s, X)dWI, i=1,--- d. (1)
0 — Jo

HET: XA 22 ] (, F, (F)iso, P) M FEIERF AT RE X, £EEH f €
Cy?([0,00) x RY),

t
MY = 6.0 = £0.X0) = [ [5(6X0) + 4S5, X0 s
o (Foeso 8 00 X oy SDED s (otres szt 5). ok

5

=1

0? 0
aZk g IL‘ —1—25 S, X ag (l’), (aij)lgi,jgd:O'UT-

8:6 0T T;

I\D\H
B
-

1

# g e Cy?([0,00) x RY), sk (M, M9).

20
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20 12 H 16 H
1. Bgik [KS] p319-328, #5%|% p321 Lemma 4.19
2. ik [GQ] p186-203
3. Wit [GQ] p149-153

4. Mg [KS] p60-71

21
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21 12 § 18 H (IBAERRR)
1. Mk [GQ] p77-95 £ 2.4 %, £25 %, £ 26 %

2. % (Np)i>0 MR ESECH A 1 Poisson 12, Fy = 0(Ns, s < t). BA (Ny — A)i>0 2,
SRESETT (Tak) . CEAZRZEMESIE XTI [GQ] p31 1Y 3° 5 [KS] p32
BBNA)

3. UEM: I ARREHLER AL f(t) 2B R f(t) BA RS I R AL

4. %’%ﬁéﬁﬁl#ﬁ'vx,‘&% 15'a (Bt)tzo 2—%4 Brown Eijl iEEU%:OBtP)tZO,O <a<lRg
s (Jo (1 — )7dBy)iz0,0 < a < § ASEHL

5. W (Ne)i>0 2HEESECN X 11 POISson WA Fr = o(Ng,s <t). T8 (N(t) = Ny — M)i0
B, FFBENURUHE SR [y N(s—)dN(s).

FERAARAE: E [I={0=1to <t <tn—t}.

= ”1%1”11_1}02 N(ti1)[N(t:) = N(ti1)] + Z[N(tiflf) — N(ti—)][N(t:) — N(ti—1)]

=I+1I
"2 ||H||—>0 {Z2N i—1)N(ti) — 2N?(t;- 1)}
‘5||$ﬁfgo[Z[N2<tz> N2(tio) - (N(t) — Niti)’]]
=—1 2(t) — N? —Z 1 ol Nt )2
2 i [V VO] =3 ﬁnao; [N (t) = N(ti-)]
— L[N0 - M)
*tF I,

[N(tioi—) — N(ti-1)]

[N(t;) — N(ti—1)]
— _ AN(t;_ 1)[N( ) N(tz 1)]

%R E(ZAN(ti_l)[N(ti) . N(ti_l)D . BABES EM, A ARLE, EN(t) =0, &
&3 AN(ti1) 5 N(t;) — N(ti—1) k%, TRIEH XA A E.

[Z(AN( - >)2(N< t;) — N(tie1))?]

=) E(AN Vit ~ Nt D)

=Y E(AN (N N(t; 1)
BA N(t) £8EZRA éﬁéiﬁlsé‘:mzwb 0, Bk E(AN(t;_ 1)) = 0.
BARE 11 =0. HEARR [j N(s—)dN(s) = §[N2(t) - N(t)].
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22 12 H 25 H

1. lik [GQ] p272-283 £ 7.1 ¥
2. 1% X &, R R E TR

t
+ /0 Y (s—)dX (s)
A0 i

Y (1) = E(X)(t) == XOXOXVIOTT(1 + AX(s5))e X

s<t

X (1) =X (0)—3[X](¢) H(l + AX(S))G(_AX(S)H—%(AX(s))2‘

E(X) Bk X MBEHLIRAL
3. X AWEAZER, FIHET X H) T A5t
4 X RARASER, B AX() =150, 5k £(X).
(36 KA ARIERFRAAN )
5. Bl CRLABBHUAMTHE pad-15, ] 3.2.2. (MEIHELAE)

6. P [GQ] p283-302 4 7.2-7.6 ; AT LALRLE [ p302-332 4 7.7-7.9 5. Hr Brown
B VAR IRA R, WRRZIN N, ([EIF

7. % T ZEUET (0,00) WIBENLAS I, VE > 0, P(T > 0) > 0. id F(t) NHAAEEL %

X 1 t>T(w)
tw) = 0 t<T '

Xo =0, (Ft)ez0 72 (Xe)ezo AAVF BRI H Y 5K B FHAFT. (X, Fi)io
J& M UEM: L Doob-Meyer 73 rPEHE AR, RIHAME T (compensator) &

A= / dF'(s)
" Joun 1= F(s=)

8. W T ZBUET (0,00) HIEANLAZ L, VE > 0, P(T > 0) > 0. id F(t) NH A% Bkl
Akt §(w) W2 P(§(w) =0) =0. &

Yilw) = { Ew) t>T(w)
! 0 t<T

Yo =0, (Fi)ezo /2 (Ye)eso ZERAYERHER L B ALY ST 2R SRR 15
ww,t, B) = 1y>mlieeny,
Horp B e BR\{0}). # A(B,t) /& & X%T T IMENEIEI, A = o Tori ¥
(@, t, B) = /( B

BEW: (pp(w, t, B))ezo s FPRHLRE, TH. (1w, t, B) — pp(w, b, B), Fi)i>o A#L PE— LM
(Ye)ezo A7 N BEAILINEE A9 L 73 f#% (canonical decomposition):

w-/ / p(w, t,dz) — pp(w, t, dz)] / / pp(w, t, dx).
(0.4] R\{O} (0,¢] JR\{0}
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9. & (Tna Zn)nZl %*ﬂ[ﬁﬁmﬁi, 0< T, <Thyr <00, Zy ?é 0. %

o
Xe=Xo+ ) Zlig,<iys

n=1

Fi=0(Xs,8 <t). (Xe)e>0 FRAMRCAIFE (Marked Point Process). % lim,, o0 1), = 00,
B|Zn| < 00,V > 1. ¥ Vn > 1, Tnsy — T X Fr, BIEMSEBEERAAE, 1T

Fo(t) = P(Thy1 — Tn < t|F1,), Fo(t) =P(T1 <t),

my, = E[Zp1|Fr,| = E[ X7, ,, — X1, |FT,],

i tAT 41 —tATy dF (3)
A = n _—n\v)
g / = Fals)

HEW: (Xi)eso ATEAMEON (ML S22 Doob-Meyer 73if)
Xi =Xy — A+ Ay,

HAr (A0 AT A ZWRE, (X — Ao M (Fo)iso BE.
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