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随机分析 2025 刘勇

1 9 月 9 日

1. 阅读 [GQ] p2-3 引理 1.1、引理 1.2 和引理 1.3, 或者《随机微积分和 Itô 公式》引理 5.3.1、
推论 5.3.1、引理 5.3.2 和引理 5.3.3.

2. 阅读《随机微积分和 Itô 公式》(由助教发给选课的同学).
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随机分析 2025 刘勇

2 9 月 11 日

1. 设 ξt 是定义在带流概率空间取值于 (Rn,B(Rn)) 的轨道右连续的随机过程. 若 G 是开
集, 证明 τ(ω) = inf{t > 0, ξt ∈ G} 是宽停时; 若 ξt 的轨道是连续的, F 是闭集, 证明
τ ′(ω) = inf{t > 0, ξt ∈ F} 是停时.

可以参阅 [KS]p7 Problem 2.6, 2.7
也可以参阅 《随机过程引论》(第二版) 钱敏平 龚光鲁 编著 北京大学出版社 p43 例 7
(但这个证明有些漏洞)

2. 阅读 [KS]p1-5. p47-71 (Chapter 2.1-2.4), p10 Definition 2.25

3. 阅读 [GQ]p2 定义 1.4, 1.5, p3 定义 1.6；命题 1.1

4. [KS] p4 Exercise 1.7, Exercise 1.8
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随机分析 2025 刘勇

3 9 月 18 日

1. 若将平方可积鞅限制在有限闭区间 [0, T ], 得到M2,T (Ft) = {(Mt)t∈[0,T ] 是 (Ft) 右连左极

平方可积鞅 }, 在其中定义范数 ‖M‖2,T = (EM2
T )

1
2 .

(1) 证明: M2,T (Ft) 在范数 ‖M‖2,T 下成为一个 Hilbert 空间;
(2) 记 M c

2,T (Ft) = {(Mt)t∈[0,T ] 是 (Ft) 连续平方可积鞅 }. 证明: M c
2,T (Ft) 是 M2,T (Ft)

的闭子空间.

可以参阅 [GQ] p12 引理 1.7

2. 设 Nt 是强度参数为 λ 的 Poisson 过程. Ft = σ(Ns, s ≤ t).

(1) 求 (Nt − λt)2t≥0 的 Doob-Meyer 分解;
(2) 设 (Xn)n≥0 是 i.i.d 的随机变量序列, X0 的密度函数为 p(x), E|X0| < ∞, (Nt)t≥0 与

(Xn)n≥0 独立的 Poisson 过程, 其强度参数为 λ. 设 Yt =
∑Nt

n=0Xn, 则 (Yt)t≥0 是一
个时间齐次的独立增量过程, 称为复合 Poisson 过程. 此问中取 Ft = σ(Ys, s ≤ t). 求
(Yt)t≥0 的 Doob-Meyer 分解.

3. 设 Xt 是一个单生过程, 即其状态空间为 Z+ = {0, 1, 2, · · · }, 转移速率矩阵 Q 满足

Qij =

{
λi j = i+ 1,

−λi j = i.

进一步假定
∑∞

i=0
1
λi

= ∞, 即 Xt 非爆炸 (保守的), 而且 t ≥ 0, EXt < ∞, X0 = 0. 求 Xt

的 Doob-Meyer 分解并证明你的结论.

4. 阅读 [GQ] 第 1.2, 1.3 节内容；p76 定理 2.1, p77 命题 2.19, 定义 2.23, 例 1；p78 命题
2.21.

5. 阅读 [KS] Chapter 1.4; Chapter 1.5 p30-p31.

6. 阅读 [KS] p32-34, Theorem 5.8, Lemma 5.9, Lemma 5.10 及其证明.

7. 阅读 [LG] p79-84, Theorem 4.9 及其证明.

8. 有兴趣的同学可以阅读 [CW2] p18-22 可料集和可料过程等概念的进一步讨论.
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随机分析 2025 刘勇

4 9 月 23 日

1. 设 (Mt)t≥0 ∈ Mc
2(Ft). 证明:

(1) 设 0 ≤ t0 ≤ t1 < t2, ξt1 关于 Ft1 可测的有界随机变量, 则

E
[
ξt1(Mt2 −Mt1)

2
∣∣Ft0

]
= E

[
ξ2t2

(
〈M〉t2 − 〈M〉t1

)∣∣Ft0

]
.

(2) 设 0 ≤ t0 < t1 < t2 < t3 < t4, ξt1 是关于 Ft1 可测的有界随机变量, ξt3 是关于 Ft3 可
测的有界随机变量, 则

E
[
ξt1ξt3

(
Mt4 −Mt3

)(
Mt2 −Mt1

)∣∣Ft0

]
= 0.

2. 证明 [KS]p137-138 中的等式 (2.13),(2.14) 和 (2.16).

3. [KS] p35 Problem 5.12
设 X ∈ Mc

2, T 是 (Ft) 停时. 若 〈X〉T = 0, a.s.dP , 证明:

P(XT∧t = 0, ∀0 ≤ t ≤ ∞) = 1.

4. 做 [KS]p20 Problem 3.24 (可以参阅 [RY] p71 Corollary 3.6)

5. 阅读 [KS]p128-145
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随机分析 2025 刘勇

5 9 月 25 日

1. (1) 证明: |〈X,Y 〉|2 ≤ 〈X〉〈Y 〉.
(2) 设 ξt = 〈X,Y 〉t, ξ̆t 是 ξ 在 [0, t] 上的全变差, 证明:

ξ̆t(ω)− ξ̆s(ω) ≤
1

2

[
〈X〉t(ω)− 〈X〉s(ω) + 〈Y 〉t(ω)− 〈Y 〉s(ω)

]
几乎处处成立.
可以参阅 [GQ] p78 命题 2.20 Kunita-Watanabe 不等式的证明. [KS] p31
Problem 5.7

2. 设 X,Y ∈ L0, M,N ∈ Mc
2, 证明:

〈IM (X), IN (Y )〉t =
∫ t

0
XuYud〈M,N〉u.

3. 证明 Kunita-Watanabe 不等式.

参考 [KS] p142-143 Proposition 2.14 和 [GQ] p78 命题 2.20.
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随机分析 2025 刘勇

6 10 月 9 日

1. 设 M ∈ Mc
2(Ft), τ 为 (Ft)t≥0 停时.

(1) 证明: (Mt∧τ )t≥0 ∈ Mc
2(Ft);

(2) 求 (Mt∧τ )t≥0 的特征;
(3) 若对于任意的 t ≥ 0, Mt∧τ = 0, 证明: 对于任意的 N ∈ Mc

2(Ft), 任意的 t ≥ 0,
〈M,N〉t∧τ = 0.

2. 阅读 [KS] p36 Definition 5.15.

3. 阅读 [KS] p36 Remark 5.16, 并完成 Remark 中提示的习题.

4. 阅读 [GQ] p79 命题 2.22.

5. [RY] p131 Exercise 1.27
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随机分析 2025 刘勇

7 10 月 16 日

1. Suppose M,N ∈ Mc,loc and X ∈ P∗
g (M)∩P∗

g (N). Shows that for every pair (α, β) of real
numbers we have

IαM+βN (X) = αIM (X) + βIN (X).

[KS] p147 Problem 2.25

2. 阅读 [KS] p145-148

3. 利用 [KS] p32 Theorem 5.8 证明 [KS] p149 Problem 3.2.

4. 设 B = (Bt)0≤t≤1 是标准布朗运动. X = (aBt)0≤t≤1, 其中 a > 0, a 6= 1. 证明: B 和 X 在
(C([0, 1]),B(C([0, 1])) 上诱导的测度相互奇异.

5. 阅读 [GQ] p25-29 Itô 公式证明, 阅读 [KS] p149-153 Itô 公式证明.

6. [KS] p155 Problem 3.12
Suppose we have two continuous semimartingales

Xt = X0 +Mt +Bt, Yt = Y0 +Nt + Ct; 0 ≤ t < ∞,

where M and N are in Mc,loc and B and C are adapted, continuous processes of bounded
variation with B0 = C0 = 0 a.s. Prove the integration by parts formula∫ t

0
XsdYs = XtYt −X0Y0 −

∫ t

0
YsdXs − 〈M,N〉t.

7. 阅读 [KS] p153-156

8. 阅读 [GQ] p29-37

9. 阅读 [GQ] p3 命题 1.1，[KS] p85 Lemma 6.13.

10. [KS] p158 Exercise 3.17 Let Wt = (W
(1)
t ,W

(2)
t ,W

(3)
t ) be a three-dimensional Brownian

motion starting at the origin and define

X =
3∏

i=1

sgn(W (i)
1 ),

M
(1)
t = W

(1)
t ,M

(1)
t = W

(2)
t ,M

(3)
t = XW

(3)
t .

Show that each of the pairs (M (1),M (2)), (M (1),M (3)) and (M (2),M (3)) is a two-dimensional
Brownian motion, but (M (1),M (2),M (3)) is not a three-dimensional Brownian motion.
Explain why this does not provide a counter-example to Theorem 3.16, i.e., a three-
dimensional processes which is not a Brownian motion but which has components in
Mc,loc and satisfies

〈M (k),M (j)〉t = δijt; 1 ≤ k, j ≤ d.

11. 设 ϕ ∈ Lloc
2 , 若 〈

∫ ·
0 ϕsdBs〉t = f(t), 其中 f(t) 为连续严格单调的非随机函数. 证明:

(
∫ t
0 ϕudBu)t≥0 为独立增量过程且

∫ t
s ϕudBu 服从 N(0, f(t)− f(s)).

12. 阅读 [LG] 第 5.1 节、第 5.2 节和第 5.3.1 节.
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随机分析 2025 刘勇

8 10 月 21 日

1. 设 (B
(1)
t , B

(2)
t )是二维布朗运动, (B(1)

0 )2+(B
(2)
0 )2 6= 0. 判断 (B

(1)
t B

(2)
t )t≥0与

(
ln

[
(B

(1)
t )2+

(B
(2)
t )2

])
t≥0
是否是 (FB

t )t≥0 鞅, 是否是 (FB
t )t≥0 局部鞅, 并请写出你的判断的数学证明.

2. 阅读 [KS] p158-163

3. 阅读 [KS]163-167 Martingale Moment Inequalities.

4. 阅读《一维扩散过程尺度函数讲义》(由助教发给选课同学) .

5. 考虑如下的随机微分方程 (平方 Bessel 过程)

dX(t) = ndt+ 2
√
X(t)dBt,

其中, n 为大于 1 的正整数. 设 τ0 = inf{t ≥ 0, Xt = 0}. 证明: P(τ0 = ∞|X0 = x) = 1,
x > 0.

6. [KS] p162 Problem 3.23
Let R = {Rt,Ft}t≥0 be a Bessel process with dimension d ≥ 2 starting at r > 0, and
define

m = inf
t≥0

Rt.

(i) Show that if d = 2, then m = 0 a.s. P.

(ii) Show that if d ≥ 3, then m has the beta distribution

P(m ≤ c) =
( c
r

)d−2
; 0 ≤ c ≤ r.

7. [KS] p163 Problem 3.24
Let R be a Bessel process with dimension d ≥ 3 starting at r ≥ 0. Show that

P( lim
t→∞

Rt = ∞) = 1.

8. 阅读 [KS] p169-173; 阅读 p174 Problem 4.5 (预习).

9. 阅读 [GQ] p145 引理 3.8 及其证明; p37-39.

10. 利用内蕴时间变换给 10 月 16 日第 11 题一个新的证明.

11. 能否构造一个连续局部鞅 (Mt)t∈[0,1] 其特征是 [0, 1] 上的康托函数.
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随机分析 2025 刘勇

9 10 月 23 日

1. 有兴趣的同学可以读下面论文的 Proposition 3.

Nualart, D. and Peccati, G., Central limit theorems for sequences of multiple stochastic
integrals. Ann. Probab. (2005) Vol. 33. No.1 p177-193

2. 设 (Bt = B
(1)
t + iB(2)

t )t≥0 是复 BM，其中 B(1) 和 B(2) 独立的 BM. 设 D ⊂ C 是一个连
通开子集, f : D 7→ C 是一个非常数的解析函数, τD = inf{t ≥ 0, Bt /∈ D}, B0 = z ∈ D.
设 St =

∫ t
0 |f

′(Br)|2dr, 0 ≤ t < τD, σs = S−1
s , 即

∫ σs

0 |f ′(Br)|2dr = s. 证明: Ys = f(Bσs),
0 ≤ s < SτD 与从 f(z) 出发在 SτD 上停止的复 BM 同分布.

3. 阅读 [KS] p174-180 Continuous Local Martingales as Time-Changed Brownian Motions
章节及定理的详细证明. 关注 Proposition 4.8. 特别是比较 p179 页 Knight 定理的表述与
课堂所讲的复 Brownian motion 例子间的差别.

4. 阅读 [KS] p38 Problem 5.24 及 p45 的解答提示.

5. 阅读并证明 [RY]p182 Dambis, Dubins-Schwarz 定理的一般化 (Theorem 1.7).
There exist an enlargement (Ω̃, F̃t, P̃) of (Ω,FTt ,P) and a BM β̃ on Ω̃ independent of M
such that the process

Bt =

{
MTt if t < 〈M〉∞,

M∞ + β̃t−⟨M⟩∞ if t ≥ 〈M〉∞

is a standard BM. The process

Wt =

{
MTt for t < 〈M〉∞
M∞ if t ≥ 〈M〉∞

is a (F̃t)-BM stopped at 〈M〉∞.

3. 阅读并证明 [RY]p183 Proposition
For a continuous local martingales M , the sets {〈M〉∞ < ∞} and {limt→∞Mt exists} are
almost-surely equal. Furthermore, lim supt→∞Mt = +∞ and lim inft→∞Mt = −∞ a.s.
on the set {〈M〉∞ = ∞}.

6. [RY]p186 Exercise 1.15
Let M be a continuous local martingale. Prove that on {〈M〉∞ = ∞}, one has

lim sup
t→∞

Mt√
2〈M〉t log log〈M〉t

= 1 a.s.

7. [RY]p187 Exercise 1.20 If X is a cont. semimartingale and λ the Lebesgue measure
on R+ prove that

λ
({

t ≥ 0 : lim sup
ε↓0

ε−α|Xt+ε −Xt| > 0
})

= 0 a.s.

for every α < 1
2 .

8. [KS]p178 Problem 4.11
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随机分析 2025 刘勇

We cannot expect to be able to define the stochastic integral
∫ 1
0 XsdWs with respect to BM

W for measurable adapted processes X which do not satisfy
∫ 1
0 X2

sds < ∞ a.s. Indeed,
show that if

P
[ ∫ t

0
X2

sds < ∞
]
= 1, for 0 ≤ t < 1 and E

△
=

{∫ 1

0
X2

sds = ∞
}
,

then
lim sup

t↑1

∫ t

0
XsdWs = − lim inf

t↑1

∫ t

0
XsdWs = +∞, a.s. on E.

9. [KS]p179 Problem 4.12 Consider the semimartingale Xt = x + Mt + Ct with x ∈ R,
M ∈ Mc,loc, C a continuous process of bounded variation, and assume that there exists
a constant ρ > 0 such that |Ct|+ 〈M〉t ≤ ρt, ∀t ≥ 0 is valid almost surely. Show that for
fixed T > 0 and sufficiently large n ≥ 1, we have

P
[

max
0≤t≤T

|Xt| ≥ n
]
≤ exp

{ −n2

18ρT

}
.

10. 阅读 [KS] p180-190 内容, 特别关注 p189 Exercise 4.22.

11. 阅读 [GQ] p45-48 内容, 特别关注定理 1.9 关于 [0,∞) 区间的讨论
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随机分析 2025 刘勇

10 10 月 30 日 (今天有测验)(习题有答案提示)

1. 设 (Bt) 是标准布朗运动. (Ft)t≥0 为 (Bt)t≥0 的通常化扩张. 利用鞅表示定理证明并求去
存在一个 L∗(B) 过程 (Ht)t≥0 使得

B3
1 =

∫ 1

0
HsdBs.

4. [RY] p206 Exercise 3.16
Let t be fixed and ϕ be a bounded measurable function on R. Find the explicit martingale
representation for the random variable F = exp

( ∫ t
0 ϕ(Bs)ds

)
.

提示:

设 Ms = E[F |Fs], 0 ≤ s ≤ t; v(s, x) = E
(

exp(
∫ t
s ϕ(Bu)du)

∣∣Bs = x
)
.

– 由 Brown 运动的马氏性可以得到

Ms = exp(
∫ s

0
ϕ(Bu)du)E

[ ∫ t

s
ϕ(Bu)du

∣∣Fs

]
= exp(

∫ s

0
ϕ(Bu)du)E

[ ∫ t

s
ϕ(Bu)du

∣∣Bs

]
= exp(

∫ s

0
ϕ(Bu)du) v(s,Bs).

– 由 Feynman-Kac 公式得到−∂v(s, x)

∂s
=

1

2
∆v(s, x) + ϕ(x)v(s, x)

v(t, x) = 1

.

– 由 Itô 公式

dv(s,Bs) =
(∂v(s,Bs)

∂s
+

1

2

∂2v(s,Bs)

∂x2
)
ds+ ∂v(s,Bs)

∂x
dBs

= − ϕ(Bs)v(s,Bs)ds+
∂v(s,Bs)

∂x
dBs.

– 记 Ys = exp(
∫ s
0 ϕ(Bu)du), 则 Ms = Ys v(s,Bs).

dMs = d(Ys v(s,Bs))

= v(s,Bs)dYs + Ysdv(s,Bs)

=Ys ϕ(Bs) v(s,Bs)ds+ Ys
[
− ϕ(Bs)v(s,Bs)ds+

∂v(s,Bs)

∂x
dBs

]
=Ys

∂v(s,Bs)

∂x
dBs.

将 Ms 写成随机积分的形式为

Ms = E
[

exp(
∫ t

0
ϕu(Bu)du)

∣∣B0

]
+

∫ s

0
Yu

∂v(u,Bu)

∂x
dBu.
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11 11 月 4 日

1. [KS] p167 Exercise 3.31. 习题具体见 [KS], 这里不再抄录.

2. 利用 Picard 迭代求解如下的线性随机微分方程:

dXt = λXtdBt, X0 = ξ,

其中, ξ 与布朗运动 (Bt)t≥0 独立.

(可以参考 [GQ] p130 例 1)

3. Wiener-Itô 混沌分解的内容可以参考 M. Hairer 的讲义

https://www.hairer.org/notes/Malliavin.pdf

或者如下参考书的相关章节

D. Nualart and E. Nualart, Introduction to Malliavin Calculus. Cambridge University
Press, 2018

4. 阅读 [KS] p190-201, 多关注 p192 Discussion 和 p193 Remark 的内容; [GQ]
p39-45 内容

5. 证明: [GQ] p33 引理 1.19. 即:

(Ft)t≥0 上鞅 X 是 (Ft)t≥0 鞅, 当且仅当 EXt =常数, ∀t.

6. Brown 运动 Lev́y 构造的内容可以参考

P. Mörter and Y. Peres, Brownian Motion. (Cambridge University Press 2010) p9-12 内
容

或者

R.L. Schilling, Brownian Motion. 3rd Edition (DE GRUYTER 2021) Section 3.2, 3.3, 3.4,
3.5 内容
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随机分析 2025 刘勇

12 11 月 6 日

1. [KS] p147, Problem 2.28.

2. [KS] p201, Exercise 5.18
With W = {Wt,Ft; 0 ≤ t ≤ 1} is a Brownian motion, we define T = inf{0 ≤ t ≤
1; t+W 2

t = 1}, Xt = − 2
(1−t)2

Wt1{t≤T,t<1}; 0 ≤ t < 1,

(i) Prove that P(T < 1) = 1, and therefore
∫ 1
0 X2

t dt < ∞ a.s.

(ii) Apply Itô’s rule to the process {
(
Wt
1−t

)2
; 0 ≤ t < 1} to conclude that∫ 1

0
XtdWt −

1

2

∫ 1

0
X2

t dt = −1− 2

∫ T

0

[ 1

(1− t)4
− 1

(1− t)3

]
W 2

t dt ≤ −1.

(iii) The exponential supermartingale {Zt(X),Ft; 0 ≤ t ≤ 1} is not a martingale; however,
for each n ≥ 1 and σn = 1− 1√

n
, {Zt∧σn(X),Ft; 0 ≤ t ≤ 1} is a martingale.

3. [KS] p201, Exercise 5.20
Suppose that {Lt,Ft}t≥0 ∈ Mc,loc is such that Zt = exp[Lt− 1

2〈L〉t] is a martingale under
P, and define the new probability measure P̃T (A) = E(1AZT );A ∈ FT , then

M̃t = Mt − 〈L,M〉t = Mt −
∫ t

0

1

Zs
d〈Z,M〉s, 0 ≤ t ≤ T

is a (Ft)t≥0 continuous local under P̃.

4. [RY] p334, Exercise 1.23
Let B be the standard BM. For any stopping time T such that E[exp(12T )] < ∞, prove
that

E[exp(BT − 1

2
T )] = 1.

5. [RY] p334, Exercise 1.24
(1) Let B be the standard BM and prove that

T = inf{t : B2
t = 1− t}

is a stopping time such that P(0 < T < 1) = 1.

(2) Set Hs = −2Bs1{T≥s}
(1−s)2

and prove that for every t,∫ t

0
H2

sds < ∞, a.s.

(3) If Mt =
∫ t
0 HsdBs, compute Mt − 1

2〈M,M〉t + (1− t ∧ T )−2BT∧t.

(4) Prove that E[exp(M1 − 1
2〈M〉1)] < 1 and hence that {exp(Mt − 1

2〈M〉t), t ∈ [0, 1]} is
not a martingale.
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13 11 月 13 日

1. [RY] p336, Exercise 1.36
Let P be the Wiener measure on Ω = C([0, 1],R), Ft = σ(ω(s), s ≤ t) and b be a bounded
predictable process. We set

Q = exp
{∫ 1

0
b(s, ω)dω(s)− 1

2

∫ 1

0
b2(s, ω)ds

}
· P

and θ(ω)t = ω(t)−
∫ t
0 b(s, ω)ds.

Prove that if (Mt, t ≤ 1) is a (Ft,P)-martingale then (Mt◦θ, t ≤ 1) is a (Ft, Q)-martingale.
For instance, if h is a function of class C2,1 such that 1

2
∂2h
∂x2 + ∂h

∂t = 0 then h(θ(ω)t, t) is a
(Ft, Q)-martingale.

2. 有兴趣的同学阅读可以阅读如下论文:

Sheffield, S . Gaussian free fields for mathematicians. Probab. Theory Related Fields 139
(2007), no. 3-4, 521–541.

3. 课堂上所讲的 Onsager-Machlup (OM) 泛函的内容可以阅读

Iketa, N., Watanabe S. Stochastic Differential Equations and Diffusion Processes. Second
Edition, North-Holland Publishing Company, 1989

Charpter VI, Section 9 的内容.

进一步想了解 OM 泛函也可以阅读如下比较好读的文献：

Dürr, Detlef; Bach, Alexander. The Onsager-Machlup function as Lagrangian for the most
probable path of a diffusion process. Comm. Math. Phys. 60 (1978), no. 2, 153–170.

4. 阅读 [GQ] p196-202 关于大偏差原理的内容

14
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14 11 月 18 日

1. 阅读《随机微分方程及其应用概要》(龚光鲁 编著, 清华大学出版社 2008) p156 问题 2, 定
理 7.13.

阅读 Iketa, N., Watanabe S. Stochastic Differential Equations and Diffusion Processes.
Second Edition, North-Holland Publishing Company, 1989

Lemma 8.1 p519

2. 设 g : R 7→ R 是一个处处 C1 光滑, 除有限个点 {x1, . . . , xn} 外，处处 C2 光滑, 且
|g′′(x)| ≤ M (g′′ 在不连续处左右极限存在). 证明: 下面的 Itô 公式成立:

g(Bt) = g(B0) +

∫ t

0
g′(Bs)dBs +

1

2

∫ t

0
g′′(Bs)ds.

3. 阅读 [GQ] p104-116 关于局部时的内容

4. 阅读 [KS] p201-226 关于局部时的内容, 注意 [KS] 定义的局部时与上课讲的差了一个
1
2 的系数

5. 阅读 [LG] Chapter 9, Local Times
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15 11 月 20 日

1. 阅读 [KS] p209 Problem 6.12
For a continuous function h : R → [0,∞) with compact support, the following interchange
of Lebesgue and Itô integrals is permissible∫ ∞

−∞
h(a)

(∫ t

0
1(a,∞)(Ws)dWs

)
da =

∫ t

0

(∫ ∞

−∞
h(a)1(a,∞)(Ws)da

)
dWs, a.s.P0.

2. 阅读 [KS] p225 Problem 7.7
Let X be a continuous semimartingale with decomposition

Xt = X0 +Mt + Vt; 0 ≤ t < ∞,

µ be a σ-finite measure on (R,B(R)), and h : R → [0,∞) be a continuous function with
compact support. Then∫ ∞

−∞
h(a)

(∫ t

0
1(a,∞)(Xs)dMs

)
µ(da) =

∫ t

0

(∫ ∞

−∞
h(a)1(a,∞)(Xs)µ(da)

)
dWs.

3. Show that the semimartingale local time of a continuous process of bounded variation is
identically zero.
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16 11 月 27 日

1. 阅读 [KS] p281-290

2. 阅读 [GQ] p119-130, 请特别关注 p125 中的“第二步”以及 p129 定理 3.2 关于局部化
的处理办法

3. 阅读 [RY] p365-375

4. 求如下随机微分方程

dXt = −1

2
e−2Xtdt+ e−XtdBt, X0 = a ∈ R,

在爆炸时 ξ 之前的解.

(可以参考 [GQ] p128 定义 3.4)

5. [KS] p293 Exercise 2.17
The stochastic equation

Xt = 3

∫ t

0
X

1
3
s ds+ 3

∫ t

0
X

2
3
s dWs

has uncountable many strong solution of the form

X
(θ)
t =

{
0; 0 ≤ t < βθ,

W 3
t ; β ≤ t < ∞,

where 0 ≤ θ ≤ ∞ and βθ = inf{s ≥ θ;Ws = 0}.
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17 12 月 2 日

1. 阅读 [KS] p291-300, 重点阅读 p291 Proposition 2.13 ( Yamada-Watanabe 唯一
性定理) 和 p293 Proposition 2.18 比较定理

2. 阅读 [LG] p231, Exercise 8.14.

3. [KS] p294 Exercise 2.19

4. [KS] p295 Exercise 2.20

5. [KS] p305 Exercise 3.12

6. [KS] p305 Problem 3.13.

7. [KS] p306 Problem 3.15

8 阅读 [KS] p301-306

9 阅读 [GQ] p132-145
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18 12 月 4 日

1. 阅读 [KS] p306-311

2. 阅读 [GQ]p154 定理 3.6 及其证明, 并与 [KS] p305 Problem 3.13 比较.
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19 12 月 11 日 (今天有测验)

1. 阅读 [KS] p314-320

2. 阅读 [GQ] p145-148

3. 考虑 SDE

X
(i)
t = X

(i)
0 +

∫ t

0
bi(s,Xs)ds+

r∑
j=1

∫ t

0
σij(s,Xs)dW j

s , i = 1, · · · , d. (1)

证明: 对于带流概率空间 (Ω,F , (Ft)t≥0,P) 及其上的循序可测过程 X, 若任意的 f ∈
C1,2
0 ([0,∞)× Rd),

Mf = f(t,Xt)− f(0, X0)−
∫ t

0

[∂f
∂s

(s,Xs) +Asf(s,Xs)
]
ds

为 (Ft)t≥0 鞅, 则 X 为 SDE(1) 的弱解 (可以在扩展的概率空间中考虑). 其中

Asg(x) =
1

2

d∑
i=1

d∑
k=1

aik(s, x)
∂2g

∂xi∂xk
(x) +

d∑
i=1

bi(s, x)
∂g

∂xi
(x), (aij)1≤i,j≤d = σσT .

若 g ∈ C1,2
0 ([0,∞)× Rd), 求 〈Mf ,Mg〉.
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20 12 月 16 日

1. 阅读 [KS] p319-328, 特别是 p321 Lemma 4.19

2. 阅读 [GQ] p186-203

3. 阅读 [GQ] p149-153

4. 阅读 [KS] p60-71
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21 12 月 18 日 (习题有答案提示)

1. 阅读 [GQ] p77-95 第 2.4 节，第 2.5 节，第 2.6 节

2. 设 (Nt)t≥0 是强度参数为 λ 的 Poisson 过程. Ft = σ(Ns, s ≤ t). 已知 (Nt − λt)t≥0 是鞅,
求其平方 (二次) 变差过程. (平方变差概念的定义可以参见 [GQ] p31 的 3◦ 或 [KS] p32
第二段内容)

3. 证明: 右连左极非随机函数 f(t) 是半鞅的充要条件是 f(t) 是有界变差的函数.

4. 有兴趣的同学可以思考: 设 (Bt)t≥0 是一维 Brown 运动, 证明:(|Bt|α)t≥0, 0 < α < 1 不是
半鞅; (

∫ t
0 (t− s)αdBs)t≥0, 0 < α < 1

2 不是半鞅.

5. 设 (Nt)t≥0 是强度参数为 λ 的 Poisson 过程. Ft = σ(Ns, s ≤ t). 已知 (Ñ(t) = Nt−λt)t≥0

是鞅, 利用随机积分的定义求
∫ t
0 Ñ(s−)dÑ(s).

证明梗概: 设 Π = {0 = t0 < t1 · · · < tn = t}.∫ t

0
Ñ(s−)dÑ(s)

= lim
∥Π∥→0

n∑
i=1

Ñ(ti−1−)[Ñ(ti)− Ñ(ti−1)] in L2(Ω)

= lim
∥Π∥→0

n∑
i=1

Ñ(ti−1)[Ñ(ti)− Ñ(ti−1)] +
n∑

i=1

[Ñ(ti−1−)− Ñ(ti−1)][Ñ(ti)− Ñ(ti−1)]

= I + II.

I =
1

2
lim

∥Π∥→0

[ n∑
i=1

2Ñ(ti−1)Ñ(ti)− 2N2(ti−1)
]

=
1

2
lim

∥Π∥→0

[ n∑
i=1

[
N2(ti)−N2(ti−1)−

(
N(ti)−N(ti−1)

)2]]
=

1

2
lim

∥Π∥→0

[
Ñ2(t)− Ñ2(0)

]
− 1

2
lim

∥Π∥→0

n∑
i=1

[
Ñ(ti)− Ñ(ti−1)

]2
=
1

2

[
Ñ2(t)−N(t)

]
对于 II, [

Ñ(ti−1−)− Ñ(ti−1)
][
Ñ(ti)− Ñ(ti−1)

]
= −∆N(ti−1)

[
Ñ(ti)− Ñ(ti−1)

]
.

考虑 E
(∑

∆N(ti−1)
[
Ñ(ti) − Ñ(ti−1)

])2
. 与布朗运动类似, 利用独立性, EÑ(t) = 0, 注

意到 ∆N(ti−1) 与 Ñ(ti)− Ñ(ti−1) 独立, 可以证明交叉项为零.

E
[∑(

∆Ñ(ti−1)
)2(

Ñ(ti)− Ñ(ti−1)
)2]

=
∑

E
(
∆Ñ(ti−1)

)2(
Ñ(ti)− Ñ(ti−1)

)2
=

∑
E
(
∆Ñ(ti−1)

)2E(Ñ(ti)− Ñ(ti−1)
)2
.

因为 Ñ(t) 在固定时间点方式跳的概率为 0, 所以 E
(
∆Ñ(ti−1)

)2
= 0.

由此得到 II = 0. 综上所述
∫ t
0 Ñ(s−)dÑ(s) = 1

2

[
Ñ2(t)−N(t)

]
.
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22 12 月 25 日

1. 阅读 [GQ] p272-283 第 7.1 节

2. 设 X 是半鞅, 证明下面的方程

Y (t) = Y (0) +

∫ t

0
Y (s−)dX(s),

有如下唯一解

Y (t) = E(X)(t) := eX(t)−X(0)− 1
2
⟨Xc⟩(t)

∏
s≤t

(1 + ∆X(s))e−∆X(s)

= eX(t)−X(0)− 1
2
[X](t)

∏
s≤t

(1 + ∆X(s))e(−∆X(s))+ 1
2
(∆X(s))2 .

E(X) 称为 X 的随机指数.

3. 设 X 是有限变差半鞅, 写出关于 X 的 Itô 公式.

4. 设 X 是有限变差半鞅, 且 ∆X(t) = 1 或 0, 求 E(X).
(注记: 补充一个引理: 有限变差局部鞅是纯断的)

5. 阅读《应用随机分析讲义》p44-45, 例 3.2.2. (由助教发给大家)

6. 阅读 [GQ] p283-302 第 7.2-7.6 节; 也可以继续阅读 p302-332 第 7.7-7.9 节. 其中 Brown
运动游弋律是很有趣, 也很深刻的内容, 值得学学.

7. 设 T 是取值于 (0,∞) 的随机变量, ∀t ≥ 0, P(T > 0) > 0. 记 F (t) 为其分布函数. 设

Xt(ω) =

{
1 t ≥ T (ω)

0 t < T
.

X0 = 0, (Ft)t≥0 是 (Xt)t≥0 生成的事件域流经过通常化扩张得到的事件域流. (Xt,Ft)t≥0

是下鞅. 证明: 其 Doob-Meyer 分解的可料增过程, 即其补偿子 (compensator) 是

At =

∫
(0,t∧T ]

dF (s)

1− F (s−)
.

8. 设 T 是取值于 (0,∞) 的随机变量, ∀t ≥ 0, P(T > 0) > 0. 记 F (t) 为其分布函数. 设随机
变量 ξ(ω) 满足 P(ξ(ω) = 0) = 0. 设

Yt(ω) =

{
ξ(ω) t ≥ T (ω)

0 t < T
.

Y0 = 0, (Ft)t≥0 是 (Yt)t≥0 生成的事件域流经过通常化扩张得到的事件域流. 设

µ(ω, t, B) = 1{t≥T}1{ξ∈B},

其中 B ∈ B(R \ {0}). 设 λ(B, t) 是 ξ 关于 T 的正则条件分布, At =
∫
(0,t∧T ]

dF (s)
1−F (s−) . 设

µp(ω, t, B) =

∫
(0,t]

λ(B, s)dAs.

证明: (µp(ω, t, B))t≥0 是可料过程, 而且 (µ(ω, t, B)− µp(ω, t, B),Ft)t≥0 为鞅. 进一步证明
(Yt)t≥0 有如下随机测度的典则分解 (canonical decomposition):

Yt(ω) =

∫
(0,t]

∫
R\{0}

x
[
µ(ω, t, dx)− µp(ω, t, dx)

]
+

∫
(0,t]

∫
R\{0}

xµp(ω, t, dx).
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9. 设 (Tn, Zn)n≥1 是一列随机向量, 0 < Tn < Tn+1 < ∞, Zn 6= 0. 设

Xt = X0 +
∞∑
n=1

Zn1{Tn≤t},

Ft = σ(Xs, s ≤ t). (Xt)t≥0 称为标记点过程 (Marked Point Process). 设 limn→∞ Tn = ∞,
E|Zn| < ∞, ∀n ≥ 1. 设 ∀n ≥ 1, Tn+1 − Tn 关于 FTn 的正则条件概率存在, 记

Fn(t) = P(Tn+1 − Tn ≤ t|FTn), F0(t) = P(T1 ≤ t),

mn = E[Zn+1|FTn ] = E[XTn+1 −XTn |FTn ],

At =
∞∑
n=0

mn

∫ t∧Tn+1−t∧Tn

0

dFn(s)

1− Fn(s−)
.

证明: (Xt)t≥0 可以分解为 (其实就是 Doob-Meyer 分解)

Xt = Xt −At +At,

其中 (At)t≥0 为可料有界变差过程, (Xt −At)t≥0 为 (Ft)t≥0 鞅.
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