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1 Introduction

The Heisenberg group is a fundamental model case which shows up in various contexts.
It is the simplest nilpotent group, it is the boundary of a pseudoconvex domain which
is biholomorphically equivalent to the ball in complex Euclidean space and it is the
simplest example of a space with a natural contact structure.

Motivated by these basic aspects we set out to study the simplest nilpotent Lie group
with a complex structure. We investigate in this paper the natural mappings and
flows on the complexified Heisenberg group. Basic for our approach is the fact, that
the complexified Heisenberg group is a nilpotent Lie group of H—type and some of
the methods used generalize directly to the setting of this bigger class of step two
nilpotent groups. The main result is, that orientation preserving generalized contact
mappings and contact flows necessarily have to be holomorphic. This is a Liouville
type of result: The mappings are characterized by the infinitesimal condition that
the tangent mapping preserves the horizontal subbundle of the tangent space. As a
consequence of this condition, which - it should be emphasized - is a real condition,
we find that the mappings have to be holomorphic. The same is true for the contact
flows. We give an independent proof for this, though this could have been derived
from the information that the contact mappings must be holomorphic.

2 H-type groups
Let n be a real nilpotent Lie algebra equipped with a scalar product such that
n=voz
decomposes as an orthogonal direct sum of its center z and a subspace v with
[v,v] C z.
The linear mapping J : z — End(v) is defined by
(JzX,X") ={(Z,[X,X"]) VXX'ev,VZez

The algebra n - and with it the connected and simply connected Lie group N with
Lie algebra n - is of H—type if for every X € v of unit length the mapping ad(X) is



an isometry from (ker ad(X))' onto z. The mapping Jz satisfies
Jy = —Jy VZe€z
and on H—type algebras
JzJz + Iz dz = =22, 7' 1
in particular
JZ = —|Z)°1

In [CDKR] Cowling, Dooley, Koranyi and Ricci characterized the H—type groups
which appear as the N—groups in the Iwasawa decomposition of simple Lie groups of
real rank one. These algebras are denoted by IR?, n¢, n§ and n} (in the notation of
[CDKR]) and correspond to the Iwasawa N—groups of SOy(1,n),SU(1,n),Sp(1,n)
and F4(—20)

In [K] it is shown, that in the Iwasawa decomposition g = k ® a ® n of a simple
Lie algebra of real rank one, the nilpotent group n equipped with the inner product
—IH}—MB( . ,0.), where B is the Killing form, is an H—type group (p = dimv,q =
dim z).

In [CDKR] it is shown, that these H—type algebras satisfy the J?—condition:

For all X € v and Z,Z' € z with (Z,Z') = 0 there exists Z” € z such that
JzJzn X = JznX. Furthermore, it is shown that this condition characterizes the
nilpotent groups n in the Iwasawa decomposition of the simple real rank one Lie al-
gebras among all H—type groups.

In H—type Lie algebras, the exponential mapping is a bijection of n onto the con-
nected and simply connected Lie group N with Lie algebra n. The elements n € N
are parametrized by (X,Z) e vz =n:

n =exp(X + Z).
The Baker-Campbell-Hausdorff formula then determines the multiplication law on N:
(X,2)(X',2') = (X + X', Z + Z' + }[X, X))  V(X,Z),(X',2Z) € N.

The isometric automorphisms of H—type algebras have been determined by Riehm
[R]. The full automorphism group of H—type algebras was determined by L. Saal [S].

3 The complexification

The Lie algebra ngy of the Heisenberg group is the 3-dimensional real Lie algebra
generated by the vectors Wy, Wy, Z with commutator relations

Wi, Wa] = Z
[Wi,Z] = [Wa, Z]=0.



The Heisenberg group Ny is the connected nilpotent Lie group with Lie algebra ng. If
we assume that Wy, W, Z form an orthonormal basis, ng clearly is a H —type algebra.
The complexified Lie algebra n = (ng)€ is obtained by taking Wy, W, Z to be the
generators of a complex Lie algebra with the same bracket relations as above.

The complexified Heisenberg group is the (uniquely defined) connected complex Lie
group N with Lie algebra n. As a model for N we use the space C* = {(wy, w2, 2)}
with the multiplication law derived from the Baker-Campbell-Hausdorff formula:

1
(wlaw%z)(wllawéazl) = (wl + wia“’? + wl2az +2'+ 5(’!1)1'11)& - Wlel)).
The Lie algebra is isomorphic to the space of left invariant holomorphic vectorfields

in T9C? (the holomorphic tangent space of C2). Under this isomorphism Wy, Ws
and Z are mapped onto the vectorfields

0 1 0
Wi = B 220,
0 1 0
Wy = 6—11)2 + 5’1111&
0
7z = —.
0z
The dual left invariant forms are dw;, dws and
1 1
¥ =dz+ §w2 dwy, — 511]2 dws.

We will also look at n as a real Lie algebra ng with complex structure J derived from
multiplication by ¢. This algebra is then generated as a vector space by

X1, X0, X3 =JX1, Xy =JXs, Z1, Zo=J7Z;

and the bracket relations are
7y = [X1, Xo) = —[ X3, X4]
Zy = [X1, X4] = —[ X2, X5]

with the remaining undefined brackets equal to zero. The bracket is of course J—invariant:
[JX,Y] = J[X,Y] X,Y € ng.
The Lie algebra ng is of H—type. To verify this, set
ngR =v-+=2z

with v = span{ X1, X2, X3, X4} and z = span{Z;, Z,} such that one has



[v,v] = =z

[v,z] = [z,2]=0.

Define the scalar product on ng in such a way, that {X1, Xa, X3, X4, Z1,Z2} is an
orthonormal system and consider the mappings J; : v — v ¢ = 1,2 defined by the
relations

(JzX,Y): (Zza[XY]) X,YEV.

Explicit calculations give

HXi = X bXi = X4
JXy = =X, Xy = —X;
hXs = —X4 SXz = X
J Xy = X3 HXy = =Xy

and J = —J2J1 = J1J2.
It is now clear that ng is a Lie algebra of H—type: The conditions

=T =-I

are clearly satisfied. The left invariant vectorfields on Ngr are

Xy = o _1 (m2i+x4i>

Ox; 2 0z 0z
X = aixz-k% (mlaizl +a:36iz2>
X3 = %4—% ($48iz1_$26iz2)
Xy = (,%4—% (xgaim—ml%)
7= o



and the dual left invariant forms are
d.Z'l, dafg, d.Z'g, da:4, 191 ; 192

with

04t

1
dz1 + 5(.’1’:2 dry — x1drs — 24 dx3 + 23 d.’L'4)

1
Yo = dzo+ 5(.@4 dr1 — w3 dxs + 19 dxs — 21 d.CE4)

4 Contact mappings

On an H—type Lie algebra n = v & z we choose an orthogonal system

X1, X0, 200y Zom X;ev j=1..n
i €2 7 =1....m
For the group elements (X, Z) the coordinates (x1,...,%n,21,---,2m) are used. If

n m
X =% 2;X;, Z=73 z;Zj, then (X, Z) € N stands for the element
j=1 j=1

n m

exp(X+Z) = exp ZZ'JX],—FZZJZJ
j=1 Jj=1

In the coordinates, a 1—parameter group through 0 € N in direction X is given by
(tX;,0). Under left translation by (X, Z) € N this becomes the curve

(X7Z)(th70) = (X+tX]'7Z+ %[X7tXJ])

through (X, Z) € N. In local coordinates, the tangent vector to this curve at (X, Z)
is the vector (Xj, $[X,X;]). The left invariant vectorfield X;, which corresponds to
X; € v is then

m
XJ(X7Z) = %"'%Z(Zka[XaXJ])%
k=1
m
= -3 UnX)X) &%
k=1

and the left invariant vectorfields Z; are Z;(X, Z) = aizj'



A dual basis to Xi,...,Xm, Z1,...,2, is
dxy,...,dx,,91,...,9,

with
O = dzp, + %Z <JZka,X) d:lfj.
J
For fixed k the form dvy, is calculated to be

ddy = % Z*yl’j dz; A\ dz;
ail

where Jz, X; = 3_ vf; X;. This shows that
]

Z.d9y=0 VZez
and o
—d’lgk(X,Y):<JZkX,Y) VX,)Y ev
Mappings f : N — N which preserve the horizontal bundle

HN = span {X;,...,X,} CTN

are called generalized contact mappings. On the Heisenberg group Ny these map-
pings are in fact contact mappings as defined classically by the condition f*9¥ = ¢
for a contact form . On general H—type groups we will still call them contact map-
pings. Formulated in terms of the forms ¥;, this means, that f*¥; has to be a linear
combination of the forms ¥4,...,9,:

f*ﬂj:ZCjiﬁi ji=1...,m.

i=1

In matrix notation

ffv9=C9o
with C' = (C};) a regular matrix at every point of N, and with
th
9= :
Un
Grading preserving algebra homomorphisms lift to contact mappings on the groups.
An important example is the one parameter group D; of automorphisms given by

DX =etX Xev
D, Z =¢*Z Z ez



which lifts to the dilation group (s = e?)
8s(z, 2) = (sz,8%2) (z,2) € N.

In general, there will be more contact mappings than just the lifts of grading pre-
serving algebra homomorphisms. But surprisingly, in the case dimz > 2 it must be
expected that the contact diffeomorphisms derive from a finite dimensional Lie group
(see [R]). On the Heisenberg group contact diffeomorphisms abound whereas the
complexified Heisenberg group (with dimz = 2) is an intermediate case:

Theorem 4.1 If f is a C%—contact mapping on Nr with nonnegative Jacobian de-
terminant (det f. > 0) and such that the singular set

S ={pe Nr:det f.(p) =}
is nowhere dense, then f is holomorphic.

It should be observed, that the contact property is an infinitesimal condition which
is formulated in purely real terms. The complex structure on Ng is given by J and
the theorem expresses that J commutes with the tangent mapping f.. Written out
in coordinates, f then satisfies the Cauchy-Riemann equations.

The proof of the theorem is based on Pansu’s notion of differentiability on Carnot
groups and on the fact that the algebra automorphisms of ng which preserve the
grading necessarily have to be complex linear.

5 Quasiconformality and Differentiability

The Carnot-Caratheodory metric D on N is defined as follows [CDKR, p. 11]: Set

Bx,2) = (5F+12?) (x.2)enN
d(n,n') = B(n n) n,n' €N

and for piecewise smooth curves v : [0,1] = N set

A(y) = lim sup Zd(’y(tj),’y(tj_l) 0=ty <ty,...<t,=1
j=1

the limsup being taken as max; |t; — t;—1| — 0. Then, the Carnot-Caratheodory
distance between two points n and n' is defined as the infimum of the arc length A(y)
of all piecewise smooth curves «y connecting n to n'

D(n,n') = ir’}f A(Y).



The rectifiable curves are the curves with A(y) < oo. Tangent vectors to rectifiable
curves (when they exist) are horizontal: they are left translates of vectors in v.

A homeomorphism f : U — U’ between open subsets of an H—type group is a
K —quasiconformal mapping, if

max D(f(x), f(y))

H(X) = limsup fn(:’y) —7
ot D), £)

is uniformly bounded on n with ||H||. < K.

There is a notion of differentiability for H—type groups (introduced by Pansu in
1987): A continuous mapping f : U — U’ defined in a neighbourhood of 0 € N and
such that f(0) = 0 is differentiable at 0 if

Sgofodt

converges uniformly on compact sets when ¢ tends to oo. The limit is called the
P—derivative of f at 0. Using left translation on N, the derivative of f, Df(n), at an
arbitrary point n is defined. Pansu [P, 1987] proved the following Theorem.

Theorem 5.1 (Pansu). Quasiconformal mappings f : U — U’ between open sub-
sets of an H—type group are a.e. P—differentiable and the P—derivative is a group
homomorphism which commutes with 6.

In fact, Pansu states this theorem for more general nilpotent groups, the so called
Carnot groups. Furthermore, the mapping f can be taken to be a quasiconformal
mapping between two different groups.

The derivative D f at a point n € N is a group homomorphism and it induces an al-
gebra homomorphism df : n to n which leaves the subspaces v and z invariant (since
Df commutes with d;).

We specialize now to the complexified Heisenberg group. The mappings will be written
in coordinates

f($1,$2,$3,.’174721,22) = f(.fL',Z) = (<P17<P2;80379047¢17¢2)(1‘>Z) = (%w)(ﬂ?az)

The tangent mappings of f. will then be represented by the matrix

(e 5)

with



A = (dz;(f« X)) B = (dz;(f.Z4))
C = (9 (f+X;)) D = (9x(f«Zy))

If f is a contact mapping, then C' = 0. Furthermore
dl’z(f*X]) = X;p; and d.Z'z'(f*Zg) = Zyp;

whereas 9 (f« Z¢) is expressed through 9y = dzp, + 2?21 qridz; in a more complicated
way as

4
Oi(foZe) = Zo + Y awiZepi.

i=1

(The gx; have to be taken at the image point. They are linear combinations of the
P1, 92,93, $1.)

The P—derivative at a point p is the linear mapping determined by the matrices A
and D of the tangent mapping f. at p:

Df(x,z) = (Az, Dz).

6 The grading preserving algebra homomorphisms

According to Pansu’s result, C' —contact diffeomorphisms are P—differentiable. This
brings us to the problem of classifying the Lie algebra homomorphisms which preserve
the grading.

The groups Auty (n) of grading preserving automorphisms of the H—type Lie algebras
have been classified by Riehm [R] and L. Saal [S]. For the complexified Heisenberg
group their considerations simplify. This allows us to include a complete argument.
Let us write (g, h) with g € End(v), h € End(z) for a grading preserving homomor-
phism of the algebra of the complexified Heisenberg group. This algebra is considered
as a real algebra with additional complex structure J. The condition is then, that

l9z, 9y] = h[z,y] for all z,y € v.
Furthermore, the mappings

(Jos=pz)  J2[=1

with p, the reflection in the line orthogonal to z generate a subgroup called Pin(2) of
the automorphism group. Note that {p, : |2| = 1} generates all of 0(2).

A grading preserving homomorphism (g, h) can therefore be represented by decom-
posing h as

h=kdky, d= diag(dl,dQ) di >0,dy >0, ki,ke € 0(2)



and it takes the form

(9,h) = (91,k1)(90,d) (92, k2)

with (g;, k;) € Pin(2) for ¢ = 1,2. For the grading preserving homomorphism (go, d)
one finds for i = 1,2

(Ji90X,90Y) = (Zi, (90X, 90Y]) = (Zi, d[X,Y]) = di(J: X, Y).

This then shows that

9 Jigo = diJ;
detgs = di =d>.

We distinguish now two cases. Either d; = ds # 0 wich leads to

(90:ho) = 6:(g', 1)  *=dy =dy,
(9,h) = 03(gsks)(g", 1)

with (gs3,k3) € Pin(2), ¢” € GL(4) with detg” = %1, or d; = d2 = 0 and the
homomorphism is of the form

(g,0) detg = 0.

Let us first look at (g,I) € Auty (ng). From

(Jigz,gy) = (Jiz,y)  i=1,2

it follows that gtJig = J; i = 1,2 and therefore Jg = JiJog = Ji(gt) 'Jo =
(gt )V = —gJ; M = gJiJa = gl

This equality expresses, that g is complex linear (hence detg = 1). The elements
(Jy, —p.) which generate Pin(2) are all complex antilinear, since

JJi = hJoJi = =N J
JJo = J1JaJo = —JoJ.

Consequently, (g3, k3) is complex linear or complex antilinear according to whether
det k3 is +1 or —1. Altogether it follows that an automorphism (g, k) is either complex

linear or complex antilinear. If it is complex linear, (g, k) can be expressed with respect
to the basis {Wy,Wa, Z} as a complex matrix

a 0 B aip 012
0 4§ = Qa1 Q22

10



and the commuator relation [gWy, gWa] = kZ gives

6 = deta.

For complex antilinear mappings ( @ ) describes the mapping T1:°C? — T%1C?

1)
with respect to the bases {Wy, Ws, Z} and {W, W, Z}.

At last we have to look at the homomorphisms

(9,0) detg = 0.

They satisfy

(Jigz,9y) =0  Vz,yev.

The range R = {gxz € v : & € v} and its image J;R under J; are therefore orthog-
onal. This implies dimg R < 2. Furthermore, if dimg R = 2, then J1R = JoR by
orthogonality. Consequently, the range is complex invariant: JR = R. In general, it
cannot be concluded that g is complex linear and in fact, the kernel of g can be an
arbitrary real subspace of dim > 2. The classification is now complete (cf. [R], [S]).
It is summarized in the

Proposition 6.1 The grading preserving automorphisms of ng = v + z are complez
linear if the orientation is preserved and complex antilinear, if it is reversed. These
automorphisms can be represented by complex matrices

ail; 02 a
Q21 Q22 = ( det a )

A

The grading preserving homomorphisms, which are not invertible are of the form (g,0)
with rankg g < 2. In the case rankrg = 2 the range of the homomorphism is complex
1nvariant.

7 Proof of the theorem

The C?—contact transformations f are P—differentiable. if the derivative f, is given
by the matrix

A B

0 D

then the P—derivative is the group homomorphism (A, D). This can be seen directly
from the definition of P—differentiability. The induced Lie algebra homomorphism
df is also described by (A, D). Let us now assume that det f, > 0 at p € Ng. Then
(A, D) is an automorphism and by the proposition it is complex linear:

11



JA=AJ and JD=DJ

where J is the complex structure (restricted to v and z respectively). It remains
to show that B commutes with J. For this purpose let us first reformulate the
J—invariance of A: The tangent mapping f. maps the left invariant horizontal vector
fields X =" ¢; X, ¢j € R, into the horizontal vector fields

Zaijch,- = Z(XJLPZ)CJX, = Z()((p,))(z
2 2 i

(Here and in the following we omit the ~ in the notation for the left invariant vector
fields).
J—invariance of A then means

S (Xe)IX; = (X)X

2 K3

We now claim that

> (Ze)IXi =D (JZpi)X;

(2 2

for all Z € z, and this is the same as saying that B commutes with J.

Since f, is continuous and since the singular set S is assumed to be nowhere dense,
we can then conclude that f, commutes with J at all points, i.e. f is holomorphic.
For the proof of our claim we start with the basic equation

D (X)) TXi = 3 (TXpi) Xi.

2 k3

If s =" s;X; is an arbitrary horizontal vector field, then

(Z(X%)JXi;S) = ZX%S]‘(JXi;Xj) = (Z JX%'Xi,S) = Z(JX%')Si-

K3

If det f.(p) > 0, then f is injective in a neighbourhood U of p and the horizontal
C?—vector fields on fU can be represented in the form

s=Y s;X;(fp) peU

J

with X; the basic left invariant vector fields (j =1,...,4).
We express the previous equation in form of an integral equation and use partial
integration. For all horizontal C2?—vector fields s with compact support in fU

0= /Zgoiij(JXi,Xj)dp—/Zg@i(JXsi)dp
U b u ¢

12



(dp denotes the invariant measure on Ngr). Conversely, if we establish that for all
Z € z and for all such vector fields s

0:/ZgoiZsj(JXi,Xj)dp—/Zgo,-(JZsi)dp
i b o

then our claim is proved.
Start then by differentiating the integral equation with respect to the left invariant
horizontal vector field Y:

sz,J YSD’XSJ(JXUXJ)dp_ fzz YQDZJXSzdp
+ f Zi,j SDZYXSJ(JX’M Xj)dp - f Ei (PiYJXS,' dp =0.

Interchange X with Y and subtract to get

J{SY0iXsj(JXi, X;) — 3 XopiV's;(J X, X;) bp
©J %]
- f{Z YoiJXsi— 3 XpiJYsi}tdp
— [ X @ilX, Y]si(I X, X;)dp
The same equation with X,Y replaced by JX, JY is
JAX IV idXsj(JX;, X;) = 3 JX @i JY s;(JX;, X;) bdp
+ [{X IV iXsi — 3 JX¢;Ys; }dp

+ [{X piJYXs; — > i JXYs;}dp = 0.

Subtract the 2 equations to get

D= IZYQOiXSj(JX,',Xj)dp— fZJchszzdp
—IZXLpiYSj(JXi,Xj)dp-l-fZJX(,OiYSZ'dp
—fZJYgoiJXSj(JX,’,Xj)dp—fEYgOiJXSidp

13



+ [ IXpidYs;(JX;, X;)dp + [ > Xp; JY s;dp
= [ X @il X, Y]s;(JXi, X;)dp + [ 30 @il X, JY]s; (T X5, X;)dp
—[Y piYJXsidp+ [ Y i JXY s;dp
+ [ Y0 XTIV sidp— [ > i JY Xs;dp.
By hypothesis, the first four pairs each add up to zero. Therefore

0= _2IE‘P1'[X7 Y]Sj(JXian)dp"'fE‘Pi[JX: Y]Sz'dp-i-fZ%[Xa JY]sidp
0= [ ilX,Y]s;(JXi, X;)dp — [ 3 i J[X,YV]sidp.

8 Local one-parameter families of contact mappings
Let us come back to the general case of H—type groups. The contact mappings f
on N preserve the horizontal bundle HN = span{Xy,...,X,} C TN. This can be
expressed with the dual forms as

ffo=0Co

with the matrix notation of section 4.

Assume now u is a vector field on N with associated flow f; satisfying

fi = Co.
Then differentiation in t gives
*) w1 dd+duad) =AW
with
A = (CC7Y) o fr = (asg)-
Decompose

u=h+p

with h € HN and p € ZN = span{Zi,...,Z,}, p= . p;Z;.
Observing that p 1 dd = 0 and h 1 ¥ = 0, equation (*) can be expressed as

(1) hadd+d(p o) = A0
with
Y1(p) 2
pad = = :
U (p) Pm



dpod) = :
dpm
Applied to the vectorfield Z; equation (1) gives

Zaijﬁj —dp; | (Zy) =0  foralli,k
j=1

J

ZyPi = Qik;-
Equation (1) becomes
hadd; = Y (Zkpi)dx — dp;
k=1
(2) n
= - (X;pi)dz;.

1

The problem then is to find conditions on the py, ..., p, such that the equations (2)
have a common solution h.

We set h = ) h;X; where h; are functions of (X,Z) € N
=1

(h_l dﬁz)(X):dﬁz(h,X):—sz i:l,...,m.

If the mappings Jz, of v onto itself are considered as mappings on the left invariant
vectorfields, then —d¥;(X,Y) = (Jz, X,Y). Therefore the equations have the solution

(3) h = —Jzgradyp; i=1,...,m

n
where gradop; = Y (X;p;) X is the “horizontal gradient”. The equation (1) can then

be solved for h if and only if Jz,gradgp; is independent of 4. The solution is given by
(3) and the vector fields in (*) must be of the form

u = —Jz,gradyp; + Zp,-Z,-

i=1

with Jzgrad,p; independent of i. Conversely, if p1,...,pm can be found such that
Jz;gradyp; is independent of 4, then the flow generated by the vector field

u = —Jgzgradyp; + Zpizi

i=1

15



is a local flow of contact transforms. We thus have a method at hand to construct
contact mappings.

We summarize our findings in the following

Theorem 8.1 On H—type groups the vector fields u which generate local one-parameter
flows of contact mappings are of the form

u=—Jzgradgpi + Y _p;Z;

with p1,...,pm such that Jz,gradyp; is independent of <.

9 Contact flows on the complexified Heisenberg group

We specialize now to the complexified Heisenberg group. {X1,..., X4, Z1,Z>} is the
basis of the Lie algebra (as a real vector space) introduced in section 3. The mappings
Ji,J2 and J = JiJ are given by

JiXi = Xo JX1 = X4 JXi = Xs
JiXo = -Xi JoXo = —X3 JXy = X4
Ji1Xs = —Xy JoXs = Xo JX; = —-Xi
Ji Xy = X3 DXy = -Xi JXy = —Xs.

They reflect multiplication by 4, j, k in the space of quaternions. The requirement

Jigradgp: = Jagradyps
is equivalent to the “Cauchy-Riemann” equation

Xip1 = Xapo Xopr = Xupo
Xap1 = —Xip2 Xup1 = —Xops.

In complex notation, with

wp = I1+1ix3
Wy = To+1iT4
Z = 214129
W= 3% —iXy) = g und W = - imd
Wy =3(Xz —iXy) = 322 + 3w aaz W, = 8%2 + %wl%
Z=3(Z1-iZ) = £ z = £

16



the “potential” p = p; + ip, then has to satisfy the equations
Wlp = 0
sz = 0

and the bracket relations [Wy, Wa] = Z, [W1, W2] = Z imply

Zp=0Q.
As a consequence, %p = 8%1 p= 8%2 p = 0, which means that p has to be holomorphic
in its Lie algebra coordinates wy,ws, z. Let us summarize our findings about contact
flows on the complexified Heisenberg group:

Theorem 9.1 On the complexified Heisenberg group the vector field
u=p1Z1+p2Zs

with
h= —Jlgradopl

generates a local flow of contact transformations if and only if p1 +ips is holomorphic.
In this situation, Jigradypr = Jogradgps.

We conclude by writing the flow in complex notation. Using the standard isomor-
phism TC? — T1:°C? of the real tangent space to C? onto the (1,0)—vectors in the
complexified tangent space (T'C?) ® C, the vector field u is given by

u = pZ + WaopW; — WipWs.

The tangent mapping f;, of the holomorphic flow f; can be described by a
3 x 3—complex matrix

dwi(fsW1)  dwi(fiWa)  dwi(fZ)

fr. = | dwa(fW1) dwa(fuWa) dwr(fiZ)
0 0 I(f.Z)

with

’19 = ’191 +’L’l92

1 1
dz + szdwl — §w2dw1-

Furthermore, if

(e RS ST

>

*

Il
oo 9
> % %



then the equality A = ad — bc holds. This follows from

0=\
Frd¥|an = AdY| N

and the fact that d¥ = —dw; A dwa.

18
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