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Given a large and complex network, we would like to find the partition of this network into a small number
of clusters. This question has been addressed in many different ways. In a previous paper, we proposed a
deterministic framework for an optimal partition of a network as well as the associated algorithms. In this
paper, we extend this framework to a probabilistic setting, in which each node has a certain probability of
belonging to a certain cluster. Two classes of numerical algorithms for such a probabilistic network partition
are presented and tested. Application to three representative examples is discussed.
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I. INTRODUCTION

In recent years, the problem of partitioning complex net-
works into a small number of clusters has attracted a great
deal of attention, many different strategies have been pro-
posed �1–11�. Of particular interest among these strategies is
the concept of modularity proposed by Newman and co-
workers �1–4� as well as the different algorithms introduced
for maximizing modularity, such as the greedy algorithm,
spectral bisection method, simulated annealing, etc �2,4,8�.
The community structure of complex networks has also been
studied from the viewpoint of statistical learning. Algorithms
such as the hierarchical clustering analysis, parameter esti-
mate of mixture models, and k-means type methods are some
of the examples of methods introduced from this viewpoint
�3,5–7�.

All these algorithms produce a partition of the network
and, for any given network, different algorithms may pro-
duce different partition. It is natural to ask whether we can
quantify the quality of these partitions. This means introduc-
ing quantitative measures for the quality of different parti-
tions. One example is the modularity concept discussed ear-
lier. Another example of such a measure was introduced in
�6�, in the spirit of the optimal prediction theory proposed by
Chorin et al. �12,13�. The basic idea is to associate the net-
work with a Markov chain �14�, introduce a metric on the
space of Markov chains �or stochastic matrices� on the net-
work, and then optimally reduce the given Markov chain
under this metric. The final minimization problem is solved
by an algorithm analogous to the traditional k-means algo-
rithm used in clustering �15�. This approach also bears some
similarity to the modified normalized cut �MNCut� algo-
rithms in image segmentation �16,17� and the diffusion maps
in data mining �18�.

The current paper extends the work in �6� to a probabilis-
tic setting. Instead of assigning nodes to specific clusters, we
say that each node has a certain probability of belonging to a
certain cluster. We introduce a free energy in the space of

probabilistic distributions on the clusters. At zero tempera-
ture, this free energy reduces to the functional proposed in
�6�. We also develop algorithms for partitioning the network
in this setting. This extension is quite natural and useful,
particularly, for networks whose community structure is not
that pronounced. It is also similar in spirit to “soft clustering”
�7� and the fuzzy c-means �FCM� algorithm in data mining
�19,20�. As we will see later, soft clustering usually contains
more detailed information.

We will present two classes of algorithms: one based on
iterating alternatively between the two Euler-Lagrange equa-
tions obtained from minimizing the free energy and the other
based on the steepest-decent dynamics for the free energy.
These algorithms are tested on three examples: the Zachary’s
karate club network, a sample network generated from a
Gaussian mixture model, and the ad hoc network model with
1280 nodes. Our numerical results suggest that the alternat-
ing iteration algorithm is usually more efficient and accurate.
But as an iterative method for a nonlinear problem, conver-
gence is not guaranteed. In this case, the steepest-descent
method may provide a reasonable alternative.

The rest of the paper is organized as follows. In Sec. II,
we first briefly review the framework in �6� and then intro-
duce our fuzzy network partition formulation. In Sec. III, we
introduce the two algorithms alternating iteration algorithm
with projections �AIP� and exponentially transformed
steepest-descent �ETSD�. In Sec. IV, we apply the two algo-
rithms to three examples mentioned before and compare the
numerical results and performance of the algorithms. All de-
tails of the derivation are left in the Appendix.

II. FRAMEWORK FOR PROBABLISTIC PARTITION
OF NETWORKS

We will start with a brief review of the framework of
optimal network partition proposed in �6�. Let G�S ,E� be a
network with n nodes, where S is the set of nodes, E
= �e�x ,y��x,y�S is the weight matrix and e�x ,y� is the weight
for the edge connecting the nodes x and y. A simple example
of the weight matrix is given by the adjacency matrix
e�x ,y�=0 or 1, depending whether x and y are connected. We
can relate this network to a discrete-time Markov chain with
stochastic matrix P= �p�x ,y�� whose entries are given by
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p�x,y� =
e�x,y�
d�x�

, d�x� = �
z�S

e�x,z� , �1�

where d�x� is the degree of the node x �14,21�. This corre-
sponds to the isotropic random walk on the network and this
chain has stationary distribution

��x� =
d�x�

�z�Sd�z�
�2�

and it satisfies the detailed balance condition.
For a given partition of S as S=�k=1

N Sk with Sk�Sl=� if
k� l, let p̂kl be the coarse-grained transition probability from
Sk to Sl on the state space S= �S1 , . . . ,SN�. This matrix can be
naturally lifted to the space of stochastic matrices on the
original state space S via

p̃�x,y� = �
k,l=1

N

1Sk
�x�p̂kl�l�y� , �3�

where 1Sk
�x�=1 if x�Sk and 1Sk

�x�=0, otherwise, and

�k�x� =
��x�1Sk

�x�

�̂k

, �̂k = �
z�Sk

��z� . �4�

Similar ideas to compress and lift the size of stochastic ma-
trices while preserving their “stochastic matrix” properties
are also proposed in �18,22,23�, etc.

�6� introduces a metric �Hilbert-Schmidt norm in math-
ematical language� in the space of stochastic matrices. Let
p1= �p1�x ,y�� and p2= �p2�x ,y�� be two stochastic matrices.
Define

�p1 − p2��
2 = �

x,y�S

��x�
��y�

	p1�x,y� − p2�x,y�	2. �5�

The optimal partition is found by minimizing �p̃− p��.
In the formulation given above, after the partition, every

node belongs to one and only one cluster. This is often too
restrictive since in many cases, there are nodes on the net-
work that share commonalities with more than one cluster. In
the graphical representations, nodes at the boundary between
different clusters are typically of this type. In social net-
works, when one wants to divide the people into different
groups according to their mutual social contacts, some of
them will have nonzero probability belonging to different
clusters. They play the role of the intermediates. In molecu-
lar dynamics, when one aims to divide the trajectory into
different domains which subordinate to different metastable
states, the transitional nodes will stay in the middle and play
the role of bottlenecks. This motivates the extension of the
optimal partition theory to a probabilistic setting.

The main idea is to replace the indicator function 1Sk
�x� in

Eq. �3� by a general probability functions �k�x�, where �k�x�
is the probability that the node x belongs to the kth commu-
nity. Naturally, we require

�k�x� � 0, �
k=1

N

�k�x� = 1, �6�

for all x�S. As before, we define the transition-probability
matrix of the induced Markov chain as

p̃�x,y� = �
k,l=1

N

�k�x�p̂kl�l�y�, x,y � S , �7�

where

�k�x� =
�k�x���x�

�̂k

, �̂k = �
z�S

�k�z���z� . �8�

The idea of lifting the size of stochastic matrices is similar as
the hard clustering case and it expresses the perspective that
the node x transits to y through different channels from com-
munity k to community l with their corresponding belonging
probability and stay there in equilibrium state. It is not diffi-
cult to check that p̃�x ,y� is indeed a transition-probability
matrix and satisfies the detailed balance condition with re-
spect to � if p̂kl satisfies the detailed balance condition with
respect to �̂.

Given the number of the communities N, we optimally
reduce the Markov chain from the network dynamics by con-
sidering the following minimization problem:

min
�k�x�,p̂kl

J = �p − p̃��
2 = �

x,y�S

��x�
��y�

	p�x,y� − p̃�x,y�	2 �9�

subject to the constraints �Eq. �6�� and

p̂kl � 0, �
l=1

N

p̂kl = 1. �10�

The minimization problem �9� can be understood as the
infinite “temperature” version of the following problem:

min
�k�x�,p̂kl


J +
1

T
�

x
�

k

�k�x�ln �k�x�� , �11�

where the non-negative parameter T plays the role of tem-
perature. When T=0, the last term in Eq. �11� becomes a
hard constraint, namely, �k�x� is either 0 or 1. When T=�,
we recover Eq. �9�. Note a peculiar feature of the functional
�11�: 1 /T rather than T appears in front of the entropy term.

To minimize the objective function J in Eq. �9�, we define

p̂kl
� = �

x,y�S

�k�x�p�x,y��l�y� =
1

�̂k
�

x,y�S

��x��k�x�p�x,y��l�y� ,

�12�

which is motivated by the hard clustering case. Then p̂kl
� is

indeed a stochastic matrix since �z�S�k�z�=1 for all k. Fur-
thermore, it is easy to see that p̂kl

� satisfies the detailed bal-
ance condition with respect to �̂.

The optimization of J with constraints �k=1
N �k�x�=1 cor-

responds to find the critical points of Eq. �9�. We can derive
the Euler-Lagrange equations as

�I�̂
−1 · �̂̂� · p̂ · �I�̂

−1 · �̂̂� = p̂�, �13a�
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� = I�̂p̂−1�̂̂−1�pT, �13b�

where �= ��k�x�� is an N�n matrix, I�̂ and �̂̂ are two N
�N matrices with entries

�̂̂kl = �
z�S

��z��k�z��l�z� = �� · I� · �T�kl, �14�

and

�I�̂�kl = �̂k�kl, k,l = 1, . . . ,N , �15�

respectively. Here I��x ,y�=��x���x ,y�, where ��x ,y� and �kl
are both Kronecker delta symbols.

All of the derivation details for Eqs. �13a� and �13b� are
left in the Appendix. They give the necessary condition that
the miminizer should satisfy.

III. ALGORITHMS

A. Algorithm based on the Euler-Lagrange equations

A strategy suggested immediately by the Euler-Lagrange
equations �13� is to iterate alternatively between the equa-
tions for p̂ and �. To ensure realizability, i.e., the non-
negativity and normalization conditions for p̂ and �, we add
a projection step after each iteration, i.e., we change the op-
timality conditions �13� to

p̂ = P��̂̂−1 · I�̂ · p̂� · �̂̂−1 · I�̂� , �16a�

� = P�I�̂p̂−1�̂̂−1�pT� . �16b�

Here P is a projection operator which maps a real vector into
a vector with non-negative normalized �sum is one� compo-
nents. This leads to the following.

Algorithm 1: AIP.
Step 1: set up the initial state ��0� as the indicator matrix

for each node in the network with the k-means algorithm in
�6�, n=0.

Step2: perform the following simple iteration until
���n+1�−��n���Etol:

p̂�n+1� = P���̂̂−1 · I�̂ · p̂� · �̂̂−1 · I�̂��n�� , �17a�

��n+1� = P��I�̂p̂−1�̂̂−1�pT��n�� . �17b�

Here Etol is a prescribed tolerance.
Step 3: the final ��n� gives the fuzzy partition for each

node.
Two choices of the projection operator P are used in our

computation. The numerical results seem to be insensitive to
the choice. Let u= �u1 ,u2 , . . . ,un��Rn, and ui�0 when i
�	.

�i� Choice 1: direct projection to the boundary.
When i�	, we set Pui=0; otherwise, we set Pui

=ui /� j�	uj.
�ii� Choice 2: iterative projection.
First project u to the hyperplane �i=1

n ui=1. Then check
each component of the projected u. If ui0

�0, we take Pui0
=0 and project it again to a reduced hyperplane �i�i0

ui=1.

Repeat the projection procedure to lower and lower dimen-
sional hyperplane until no component is negative.

We have found that the convergence rate depends on the
structure of the network. For a complex network with well-
clustered community structure, the convergence is usually
fast. But for a very diffusive network, convergence may be
very slow.

Now let us estimate the computational cost in each itera-
tion. In the iteration step for p̂, all of the matrices are on the
order of N�N.

�a� The cost in the step for p̂. It is easy to see that the
computation of �̂ costs O�Nn�, and the computation of �̂̂
costs O�N2n�. The computation for p̂� costs O�N2E�, where E
represents the number of edges, which is usually assumed to
be O�n� in realistic networks. The cost of computing �̂̂−1 is
O�N3�. Therefore, the total cost in in the step of computing p̂
is O�N2�E+n��.

�b� The cost in the step for �. The cost for �pT is O�NE�,
for I�̂p̂−1�̂̂−1 is O�N3�. So the cost for � is also O�N2n
+NE�.

B. Variants of the steepest-descent method

Another obvious choice is to minimize the objective func-
tion using the steepest-descent method. Then the gradient
flow of Eq. �9� is given by

dp̂

dt
= −

�J

� p̂
�p̂,�� , �18a�

d�

dt
= −

�J

��
�p̂,�� . �18b�

Constraints must be enforced to guarantee realizability.
There are two natural strategies for enforcing realizability.
The first is similar to the procedure used in AIP, namely, to
apply projection after each step. In the steepest-descent set-
ting, this is

p̂�n+1� = P
p̂�n� − 

�J

� p̂
�p̂�n�,��n��� , �19a�

��n+1� = P
��n� − 

�J

��
�p̂�n�,��n��� , �19b�

where 
�0 is a time stepsize. Another strategy is to use
simple transforms of the type

p̂kl =
eYkl

�
m=1

N

eYkm

, �k�x� =
eZk�x�

�
m=1

N

eZm�x�
, �20�

where �Ykl�, �Zk�x���R are the generalized coordinates for
p̂kl and �k�x�, respectively.

To obtain an implementable scheme, let us define the aux-
iliary matrices

M1 = p̂I�̂
−1�̂̂I�̂

−1p̂T� − p̂I�̂
−1�pT, �21a�
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M2 = I�̂
−1p̂T�̂̂p̂I�̂

−1� − I�̂
−1p̂T�pT. �21b�

Then the Euler-Lagrange equations for the minimization
problem �9� with the transformation �20� can be given by
straightforward calculations,

�J

�Y
= 2���̂̂p̂I�̂

−1�̂̂I�̂
−1� � p̂ − �p̂��T � p̂ − diag��̂̂p̂I�̂

−1�̂̂I�̂
−1 · p̂T� · p̂

+ diag��p̂��T · p̂T� · p̂� , �22a�

�J

�Z
= 2��M1 + M2� � � − � · diag��T · �M1 + M2��

− diag�I�̂
−2�̂̂I�̂

−1p̂T�̂̂p̂� · � + diag�p̂�p̂I�̂
−1� · �

+ � · diagvm�11�N · ���̂̂p̂I�̂
−1�̂̂I�̂

−2� � p̂� · ��

− � · diagvm�11�N · ��p̂��T � p̂� · I�̂
−1���I�, �22b�

where � denotes the element-by-element multiplication of
matrices, diag�A� is the diagonal part of the matrix A, and
diagvm�u� is a diagonal matrix formed using the components
of the vector u. This leads to the following version of the
steepest-descent algorithm.

Algorithm 2: ETSD.
Step 0: get p̂� and � as the indicator matrix obtained from

the k-means algorithm in �6�.
Step 1: set up the initial value of the matrix Ykl

�0�=ln p̂kl
� ,

take Zk
�0��x�=0 if �k�x�=1 and Zk

�0��x�=−5 if �k�x�=0 for sim-
plicity �exp�−5��0.006 7�.

Step 2: update Y and Z with the steepest-descent algo-
rithm,

Y�n+1� = Y�n� − 

�J

�Y
�Y�n�,Z�n�� , �23a�

Z�n+1� = Z�n� − 

�J

�Z
�Y�n�,Z�n�� , �23b�

where 
 is the stepsize for Y and Z.
Step 3: repeat step 2 until 	J�n+1�−J�n�	�Etol. The final

��n+1� gives the fuzzy partition probability for each node.
Here taking Zk

�0��x�=−5 when �k�x�=0 in the initial step is
one of the many reasonable choices. It does not affect the
final result. We can estimate the computational cost in each
iteration as follows.

�i� The cost in the step for Y. Similar to the AIP algorithm,
the cost for computing �̂̂ is O�N2n�, for p̂� is O�N2E�. The
others are dominated by these two. Thus, the cost for com-
puting �J /�Y is O�N2�E+n��. So the total computational cost
in one step for Y is O�N2�E+n�� for multiplications and
O�N2� for exponential operations.

�ii� The cost in the step for Z. The cost for computing
�J /�Z is also O�N2�E+n�� since p̂� is involved in the equa-
tions. So the total computational cost in one step for Z is
O�N2�E+n�� for multiplications and O�Nn� for exponential
operations.

Note that the computational cost in each iteration step is
of the same order as the AIP algorithm except the exponen-
tial operations.

IV. NUMERICAL EXAMPLES

We will test these algorithms for three examples: the ka-
rate club network, sample network generated from Gaussian
mixture model, and the ad hoc network with 1280 nodes. We
will compare the convergence rate and numerical results for
the two algorithms proposed above.

A. Karate club network

This network was constructed by Zachary after he ob-
served social interactions between members of a karate club
at an American university �24�. Soon after, a dispute arose
between the clubs administrator and main teacher and the
club split into two smaller clubs. It has been used in several
papers to test the algorithms for finding community structure
in networks �3,6�.

There are 34 nodes in karate club network �see Figs. 2 and
3�, where each node represents one member in the club. In
Zachary’s original partition, each node belongs to only one
subclub after splitting. We label it as black or white color in
the figures to show its attribute in the graph representation.
From the viewpoint of the soft clustering, the attribute of
each node is no longer an indicator function but rather a
discrete probability distribution. In our following notations,
the association probability �K and �W means the probability
of each node belonging to black or white colored group,
respectively.

The convergence rate. The convergence history for both
methods AIP and ETSD are shown in Fig. 1. We set the
tolerance Etol=10−6 in both algorithms. It is used to control
���n+1�−��n�� in AIP and 	J�n+1�−J�n�	 in ETSD. We simply
choose 
=20 in the computations since numerically we ob-
served that larger values of 
 cause blow up. For the AIP
algorithm, the number of iterations needed is 47 with Jmin
=4.039 030, which is smaller than the result Jmin
=4.179 811 using the k-means algorithm �6�. For ETSD, the
number of iterations needed is 631 with Jmin=4.039 674. To
further improve the accuracy of ETSD, we use smaller and
smaller values for Etol, the results are shown in Table I. We
observe that even with Etol=10−9 and after 1944 iteration
steps, the resulting Jmin is still not good enough compared
with the result by AIP. Our explanation is as follows. At first
let us remind that the direct iteration of the Euler-Lagrange
equations �13a� and �13b� gives negative components, which
means that we may have zero components for the final �
when constrained to the convex domain �k=1

N �k�x�=1, say
�k0

�x0�=0. These zero components are achieved by the pro-
jection step in AIP. But in ETSD, we take the exponential
transformation, which implies that the corresponding compo-
nent Zk0

�x0�=−�. To reach this limit, we should have long
enough iteration steps. In practical computations, the
steepest-descent method drives the component Zk0

�x0� to a
negative number, but it will be stopped after some marching
steps with the stopping criterion 	J�n+1�−J�n�	�Etol. This
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stopping may introduce noticeable error for �k�x�. To achieve
better accuracy, we should set the tolerance Etol smaller and
smaller and run more and more iterations, but it may cause
numerical efficiency problem.

The association probability �. The final clustering results
are presented in Table II, where �K and �W are the probabili-
ties of belonging to the black or white colored group shown

in Fig. 2, respectively. Comparing �K or �W between AIP and
ETSD, we find that almost all the errors are less than 10−2,
but the association probability—or the soft clustering prob-
ability �—is quite different from the 0-1 distributions ob-
tained in the k-means algorithm.

Now let us compare the association probability �K ,�W
obtained by AIP with the original partition result
obtained by Zachary. In �24�, Zachary gave the
partition SW= �1:8 ,11:14,17,18,20,22� and SK
= �9,10,15,16,19,21,23:34�. If we classify the nodes ac-
cording to the majority rule, i.e., if �K�x���W�x� then we set
x�SK, otherwise, we set x�SW, we obtain the same parti-
tion as Zachary’s �see Fig. 2�. But in fact we have more
detailed information at least geometrically. From Table II, we
find �W=1 for nodes �5:7, 11:13, 17:18, 22�, which lie at the
boundary of the white colored group, and �K=1 for nodes
�15:16, 19, 21, 23:27, 30, 33�, which mostly lie at the bound-
ary of the black colored group �except node 33, which lies at
the center of the black colored group�. The others belong to
the black and white colored groups with nonzero probability
but they fit the intuition from Fig. 2. The nodes �3, 9, 10, 14,
20, 31� have more diffusive probability and they play the
role of transition nodes between the black and white colored
groups. In particular, node 3 is the most diffusive one. We
can visualize the data � more transparently with the gray-
scale plot for each node shown in Fig. 3.

From this result, one would naturally speculate that the
members in the middle are somewhat closely associated with
both clusters and would be the people who would have a
hard time deciding which group to join when the club splits
into two, though at this point, we have no additional data to
substantiate this.

B. Sample network generated from the Gaussian mixture
model

Our second example is a sample network generated from
a Gaussian mixture model. This model is related the concept
of “random geometric graph” proposed by Penrose �25�, ex-
cept that we take Gaussian mixture here instead of uniform
distribution in �25�.

First we generate n sample points �xi� in two-dimensional
Euclidean space subject to a 3-Gaussian mixture distribution,

�
i=1

3

qiN�ui,�i� , �24�

where �qi� are weights that satisfy 0�qi�1, �i=1
3 qi=1. ui

and �i are the mean positions and covariance matrices for
each component, respectively. Next, we generate the network
with a thresholding strategy. That is, if 	xi−x j	�dist, we as-
sign an edge between the ith and jth nodes; otherwise, they
are not connected. With this strategy, the connectivity of the
network is induced by a metric. We are interested in the
connection between our network clustering and the tradi-
tional clustering in the metric space.

We take n=40 and generate sample points with the means

u1 = �1.0,4.0�T,u2 = �2.3,5.3�T,u3 = �0.5,5.8�T, �25�

and the covariance matrices
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FIG. 1. �Color online� Shown above is the convergence history
of the objective function J. The panels �a� and �b� show the results
of AIP and ETSD, respectively. The number of iterations needed is
47 for AIP when the Etol=10−6 and 631 for ETSD when the Etol

=10−6 and 
=20.

TABLE I. The value of the objective function with different
tolerances in ETSD. Here 
=20.0.

Etol IterStepa Jmin

10−5 183 4.040980

10−6 631 4.039674

10−7 1861 4.039190

10−8 1901 4.039187

10−9 1944 4.039188

aThe number of iteration steps.
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�1 = �2 = �3 = 0.15 0

0 0.15
� . �26�

Here we pick nodes 1:10 in group 1, nodes 11:25 in group
2, and nodes 26:40 in group 3 for simplicity. With this
choice, approximately q1=10 /40, q2=q3=15 /40. We take
dist=1.0 in this example. The sample points are shown in
Fig. 4 and the corresponding network is shown in Fig. 5.

To evaluate our result obtained by the algorithms pro-
posed above, we first define a priori soft clustering probabil-
ity �i

priori�x� for any x as

�i
priori�x� =

qipi�x�

�
i=1

N

qipi�x�
,

where pi�x� is the Gaussian probability density function with
mean ui and covariance �i. Notice that this priori probability

is independent of the topology of the network, which can be
only considered as a reasonable reference value but not an
exact object.

It will be instructive to compare our result with those
obtained from fuzzy c-means algorithm �19,20� since the
metric is known in this case. We also apply it to classify the
samples. The main idea of the traditional fuzzy c-means al-
gorithm is to minimize the objective function

JFCM = �
j=1

N

�
i=1

n

� j�xi�b�xi − m j�2,b � 1, �27�

where xi are samples and m j are cluster centers. We choose
b=2 in our computation. � j�xi� denotes the probability that xi
belongs to cluster j, which satisfies the condition

TABLE II. The association probability of each node. �K and �W are the probabilities of belonging to the black or white colored groups
in Fig. 2, respectively.

Nodes 1 2 3 4 5 6 7 8 9 10 11 12

AIP �K 0.0427 0.0821 0.4314 0.0015 0 0 0 0.0111 0.6619 0.7430 0 0

�W 0.9573 0.9179 0.5686 0.9985 1.0000 1.0000 1.0000 0.9889 0.3381 0.2570 1.0000 1.0000

ETSD �K 0.0485 0.0898 0.4412 0.0046 0.0010 0.0007 0.0007 0.0087 0.6718 0.7564 0.0010 0.0027

�W 0.9515 0.9102 0.5588 0.9954 0.9990 0.9993 0.9993 0.9913 0.3282 0.2436 0.9990 0.9973

Nodes 13 14 15 16 17 18 19 20 21 22 23 24

AIP �K 0 0.2262 1.0000 1.0000 0 0 1.0000 0.3012 1.0000 0 1.0000 1.0000

�W 1.0000 0.7738 0 0 1.0000 1.0000 0 0.6988 0 1.0000 0 0

ETSD �K 0.0014 0.2359 0.9984 0.9984 0.0012 0.0019 0.9984 0.3114 0.9984 0.0019 0.9984 0.9993

�W 0.9986 0.7641 0.0016 0.0016 0.9988 0.9981 0.0016 0.6886 0.0016 0.9981 0.0016 0.0007

Nodes 25 26 27 28 29 30 31 32 33 34

AIP �K 1.0000 1.0000 1.0000 0.9496 0.8344 1.0000 0.7210 0.8956 1.0000 0.9475

�W 0 0 0 0.0504 0.1656 0 0.2790 0.1044 0 0.0525

ETSD �K 0.9987 0.9988 0.9984 0.9570 0.8473 0.9992 0.7305 0.9026 0.9982 0.9550

�W 0.0013 0.0012 0.0016 0.0430 0.1527 0.0008 0.2695 0.0974 0.0018 0.0450
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FIG. 2. �Color online� The partition obtained using the majority
rule, i.e., if �K�x���W�x� then we set x�SK; otherwise, we set x
�SW. The result is the same as Zachary’s.
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FIG. 3. �Color online� The grayscale plot of �K and �W for each
node in karate club network. The darker the color, the larger the
value of �K. The transition nodes or intermediate nodes are clearly
shown.
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0 � � j�xi�,�
j=1

N

� j�xi� = 1, i = 1,2, . . . ,n . �28�

We can derive the Euler-Lagrange equations for this objec-
tive function with respect to m and � and iterate until the
fixed points are found. We refer the readers to �19,20� for
more details.

In Table III, we compare the needed iteration steps, the
minimum value of the objective function Jmin, and the mean
and maximal L� error of � compared with the traditional
fuzzy c-means algorithm and the priori probabilities for AIP
and ETSD. The intermediate association probabilities � are
listed in Table IV. Comparing AIP and ETSD, we can say
AIP is more efficient. The maximal deviation of � between
these two algorithms is less than 0.03. Comparing our meth-
ods with the traditional FCM, the mean deviation of � is less
than 0.083, but the maximal deviation is about 0.22. Com-
paring with the priori probabilities, the mean deviation of �
is less than 0.063, which is smaller, but the maximal devia-
tion is about 0.40, which is larger. A detailed inspection
shows that the nodes with large deviations are all located in
the transition region and the largest deviation occurs for node

20. From the above comparisons, our methods achieve rea-
sonable results that fits the intuition from the network topol-
ogy visualization.

The weights ��k�x�� are shown in Fig. 6. This is done as
follows. Assume that the vectorial representations for the
colors red, yellow, and green in the visualization tool are vR,
vY, and vG, respectively. Then the color vector for the node x
is given by the weighted average �R�x�vR+�Y�x�vY
+�G�x�vG. This shows more clearly the transition between
different communities. In particular, the nodes �4, 6, 9, 11,
18:20, 25, 31:32, 37:38� show clearly transitional behavior.
If we further partition by the majority rule, namely, cluster
the nodes according to their maximum weight, AIP and
ETSD give almost the same result except for node 31 �the
figures are not shown here�. From Table IV, we see that node
31 has almost equal weight of belonging to the green or red
clusters.

Next we take n=400, where nodes 1:100 are in group 1,
nodes 101:250 in group 2, and nodes 251:400 in group 3.
This means approximately q1=100 /400, q2=q3=150 /400.
The other model parameters are chosen as

u1 = �1.0,4.0�T,u2 = �2.5,5.5�T,u3 = �0.5,6.0�T, �29a�

�1 = �2 = �3 = 0.15 0

0 0.15
� . �29b�

Here we take dist=0.8. Then we generate the network and
perform clustering using the methods proposed here. The
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FIG. 5. �Color online� The network generated from the sample
points in Fig. 4 with the parameter dist=1.0.−0.5 0 0.5 1 1.5 2 2.5 3 3.5

3

3.5
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5

5.5

6

6.5

x

y

Samples in group 1

Samples in group 2

Samples in group 3

FIG. 4. �Color online� 40 sample points generated from the
given 3-Gaussian mixture model. The star symbols represent the
centers of each Gaussian component. The diamonds, circles, and
squares represent the sample points in the three different compo-
nents, respectively.

TABLE III. The number of iterations, the value of the objective function Jmin, and the mean and maxi-
mum L� error of � for AIP and ETSD compared with the traditional fuzzy c-means algorithm and the priori
probability for the sample network with 40 nodes generated from the 3-Gaussian mixture model.

Iterstep Jmin E�
m a E�

� b Ē�
m c Ē�

� d

AIP 27 1.1554 0.0810 0.2143 0.0628 0.3984

ETSD 859 1.1557 0.0821 0.2130 0.0628 0.4015

aThe mean L� error: 1
n�i=1

n ���xi�−�FCM�xi���.
bThe maximal L� error: maxi���xi�−�FCM�xi���.
cThe mean L� error: 1

n�i=1
n ���xi�−�priori�xi���.

dThe maximal L� error: maxi���xi�−�priori�xi���.
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numerical results are shown in Table V and in Fig. 7. The
partition obtained by the majority rule gives the same results
for AIP and ETSD in this sample.

C. Ad hoc networks with 1280 nodes

Our third example is the ad hoc network with 1280 nodes.
The ad hoc network is a benchmark problem used in many
papers �2,3,6,8�. It has a known community structure and is
constructed as follows. Suppose we choose n=1280 nodes,
split them into four communities with 320 nodes each. As-
sume that pairs of nodes belonging to the same communities
are linked with probability pin and pairs belonging to differ-
ent communities with probability pout. These values are cho-
sen so that the average node degree d is fixed at d=160. In
other words, pin and pout are related as

319pin + 960pout = 160. �30�

We will denote S1= �1:320�, S2= �321:640�, S3= �641:960�,
and S4= �961:1280�. To test on a more diffusive network, we
take zout=960pout=80. The numerical results are shown in
Table VI and in Fig. 8. In Table VI, we compare �k�x� with
an interesting quantity, the degree fraction �̃k�x� which is
defined as

�̃k�x� =
Ek�x�
d�x�

, k = 1, . . . ,4, x � S , �31�

where Ek�x� is the number of nodes that are connected with x
and lie in group Sk. Thus, we have �k=1

4 Ek�x�=d�x�. With this
definition, �̃k�x� means the fraction of the edges connected
with the node x in the kth community. Note that this is not
the same as the clustering probability, even though it is an
interesting quantity to be compared with. We found that the
deviation between these two is about 0.2. Let us also remark

that the iteration number for ETSD is less than that for AIP
in this example though the final accuracy is not better.

In Fig. 8 we plot the probability distribution function
�pdf� of �k and �̃k �k=1,2 ,3 ,4�. We observe that the shapes
of the pdf for �k or �̃k are almost the same. Note that all the
�k’s have a lower peak centered at about 0.7, which corre-
sponds to the nodes in this community, and a higher peak
centered at about 0.1, which corresponds to the other nodes
outside of this community. The case for �̃k is similar but with
the lower peak centered at about 0.5 and the higher peak
centered at about 0.5/3. We note here that the center 0.5
exactly corresponds to the choice of the parameters zout /d
=0.5. If we partition the network using the majority rule, we
obtain the four-group partition exactly for this model. This
also verifies the accuracy of our algorithms; but our algo-
rithm gives more detailed information for each node.

D. Determination of the number of communities

So far, we have assumed that the number of communities
N was given. In many applications, this number is not known
beforehand and needed to be determined. Suppose we have
an optimal number of partitions N0 for a fixed network. Na-
ively, we may expect that when we artificially choose the
number of communities bigger, say N�N0, the fuzzy clus-
tering weights will tend to a common limit ��x� for each
node x. That is, the components of ��x� corresponding to the
ghost communities will be zero. However, this is not true for
the current model. Suppose we have already obtained � and
p̂ when N=N0, now we choose a larger N and make the
following extensions. We extend the value of �k�x� to zero in
the new added communities and p̂ by an N−N0-dimensional
identity matrix. With this extended �, p̂, and community
number N, the objective function value J will be equal to the
value when N=N0 if we ignore the singularity of �̂ ��̂k=0 in

TABLE IV. The nodes that have intermediate weights of belonging to different clusters in the 3-Gaussian mixture model. �G, �R, and �W

are the weights of belonging to green, red, or yellow clusters, respectively. The other nodes have weights 0 or 1. Nodes 1:3,5,7,8,10 have
weight �R=1. Nodes 12:14,16,17,21:24 have weight �Y =1. Nodes 26,28,29,33,35,36,39,40 have weight �G=1. The tolerance Etol=10−6 for
both methods. The stepsize of ETSD is 
=26.0.

Nodes 4 6 9 11 15 18 19 20

�G 0.0944 0.0987 0.0757 0 0.0160 0.1509 0.1811 0.5965

AIP �R 0.8247 0.7392 0.9243 0.0417 0 0.1275 0 0

�Y 0.0809 0.1621 0 0.9583 0.9840 0.7216 0.8189 0.4035

�G 0.1124 0.1169 0.0916 0.0026 0.0054 0.1646 0.1764 0.5977

ETSD �R 0.7985 0.7122 0.9051 0.0301 0.0015 0.1069 0.0019 0.0019

�Y 0.0891 0.1709 0.0033 0.9673 0.9931 0.7285 0.8217 0.4004

Nodes 25 27 30 31 32 34 37 38

�G 0.2222 0.9980 0.9980 0.4994 0.7941 0.9981 0.6152 0.6943

AIP �R 0.1805 0.0020 0.0020 0.5006 0.0084 0.0019 0.3098 0.2114

�Y 0.5973 0 0 0 0.1975 0 0.0750 0.0943

�G 0.2386 0.9977 0.9977 0.5147 0.8022 0.9981 0.6351 0.7138

ETSD �R 0.1563 0.0011 0.0011 0.4833 0.0032 0.0012 0.2845 0.1873

�Y 0.6051 0.0012 0.0012 0.0020 0.1945 0.0007 0.0804 0.0989
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the ghost communities�. This can be easily seen from Eqs.
�7� and �8�. The minimization results by k-means and AIP
algorithm are shown in Fig. 9. As the prescribed number of
communities is increased, the minimized objective function
value J is also decreased �the minimized J is obtained by
using initial values from the k-means algorithm�. This is
similar to the case in the k-means algorithm �6�. In fact even
for nodes in Euclidean space, one cannot simply use the
fuzzy c-means algorithm to do model selection �26�.

V. CONCLUSIONS

We have presented a probabilistic framework for network
partition, which can be considered as a natural extension of

either the fuzzy c-means algorithm in statistics to network
partitioning, or the deterministic framework for optimal net-
work partition presented in �6�. Two algorithms, the AIP and
the ETSD, are proposed and successfully applied to three
representative examples. Our numerical results show that
they produce similar results, but the AIP algorithm has better
efficiency and accuracy.

The probabilistic framework outlined here is a much more
mature way of discussing network partition. More impor-
tantly, it has more predictive power than the old way of
doing network partition. One could imagine, for example,
using the algorithms discussed here on the voting recording
of the U.S. senators, and predict who is most likely to switch
parties.

One open question is how to determine the number of
clusters to begin with. This is a generic issue in network
partition. We are investigating a number of strategies, but
clearly help is needed on this issue.
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(b)
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FIG. 6. �Color online� The visualization of the weights ��k�x��.
The color vector for each node is given by the weighted average
�RvR+�YvY +�GvG, where vR ,vY ,vG are the vector representations
for the colors red, yellow, and green, respectively. The panels �a�
and �b� show the results by using AIP and ETSD, respectively. The
nodes �4, 6, 9, 11, 18:20, 25, 31:32, 37:38� have observable transi-
tion colors, and they play the role of transition nodes in the
network.

TABLE V. The number of iterations, the value of the objective function Jmin, and the mean and maximum
L� error of � compared with the traditional FCM and the priori probabilities for the sample network with 400
nodes generated from the 3-Gaussian mixture model.

Iterstep Jmin E�
m E�

� Ē�
m Ē�

�

AIP 16 1.7942 0.1037 0.3837 0.0116 0.2243

ETSD 104 1.7962 0.1014 0.4045 0.0126 0.3193
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FIG. 7. �Color online� The visualization of the weights ��k�x��
obtained with AIP for 400 nodes from 3-Gaussian mixture model.
The color vector for each node is given by the weighted average as
in Fig. 6. The nodes �20, 37, 54, 66, 86, 95, 104, 147, 159, 172, 205,
269, 281, 305, 317, 386� have more diffusive weights than the
others, which show transition colors in the figure.
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APPENDIX: DERIVATION OF EQS. (13)

To derive the Euler-Lagrange equations of problem �9�,
we first take the variation in J with respect to p̂kl. We have

�J

� p̂kl

= − 2 �
x,y�S

��x���y�
 �
m,n=1

N

�m�x��n�y� p�x,y�
��y�

−
p̂mn

�̂n
�� · 
 �

s,t=1

N

�s�x��t�y�
1

�̂t

�ks�lt� = 0.

After suitable manipulations, we obtain

�
x,y�S

�
m,n=1

N

��x���y��m�x��n�y�
p̂mn

�̂n

�k�x��l�y�

= �
x,y�S

��x�p�x,y��k�x��l�y� = �̂kp̂kl
� . �A1�

Representing the above result with matrix form gives Eq.
�13a�.

We can prove that p̂ is a stochastic matrix from Eq. �13a�.
To do this, we should note that

�̂̂ · 1N�1 = �̂, I�̂ · 1N�1 = �̂ ,

where 1N�1 means the N by 1 vector with all entries equal to
1. Now it is straightforward to obtain the following:

p̂ · 1N�1 = �̂̂−1I�̂p̂��̂̂−1I�̂ · 1N�1 = 1N�1,

if �̂̂ is invertible.
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FIG. 8. �Color online� The panels �a�–�d� show the pdf of �k and �̃k �k=1,2 ,3 ,4� for the ad hoc network with 1280 nodes. The solid and
dashed lines represent the pdf of �k and �̃k, respectively. In each figure, the lower peak corresponds to the nodes in this community and the
higher peak corresponds to the other nodes outside of the community.

TABLE VI. The results obtained for the ad hoc network with
1280 nodes and zout=80. The tolerance is Etol=10−6 in both meth-
ods. The differences between � and �̃ �the fraction of the edges
defined in Eq. �31�� are shown in the last two columns.

Iterstep Jmin E�
m E�

�

AIP 907 6.603824 0.182283 0.269223

ETSD 494 6.604187 0.182256 0.266623
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We can also prove that p̂ satisfies the detailed balance
condition with respect to �̂,

p̂ · I�̂
−1 = I�̂

−1p̂T, �A2�

under the condition that p̂� satisfies the detailed balance con-
dition with respect to �̂.

Now we take the variation in J with respect to �r�z� under
the normalization condition �m=1

N �m�x�=1. We define the ex-
tended objective function with Lagrange multipliers �x�

J̃ = J + �
x�S

�x�
�
m=1

N

�m�x� − 1� . �A3�

The variation in J̃ with respect to �r�z� gives

�
y�S

�
k,l=1

N

�
n=1

N

��y��k�z��l�y��n�y� p�z,y�
��y�

−
p̂kl

�̂l
�

� p�z,y�
��y�

−
p̂rn

�̂n
� + �

y�S
�

k,l=1

N

�
n=1

N

��y��k�z��l�y��n�y�

� p�y,z�
��z�

−
p̂lk

�̂k
� p�y,z�

��z�
−

p̂nr

�̂r
�

+ �
x,y�S

�
k,l=1

N

�
n=1

N

��x���y��k�x��l�y��n�x��r�y�

� p�x,y�
��y�

−
p̂kl

�̂l
� p̂nr

�̂r
2 = −

�z�
2��z�

. �A4�

We simply denote the above formula as

P1 + P2 + P3 = −
�z�

2��z�
.

We have

P3 = �
n=1

N

p̂nr
� �̂n

p̂nr

�̂r
2 − �

k,l=1

N

�
n=1

N

�̂̂nk�̂̂lr
p̂kl

�̂l

p̂nr

�̂r
2 . �A5�

With the derived Eq. �13a�, we actually have P3=0!. Further-
more, we have

P1 = 1N�1 · diagmv�p2 · I�
−1 − p · �T · I�̂

−1 · p̂T · ��

− p̂ · I�̂
−1 · � · pT + p̂ · I�̂

−1 · �̂̂ · I�̂
−1 · p̂T · � . �A6�

P2 = 1N�1 · diagmv�p2 · I�
−1 − p · �T · p̂ · I�̂

−1 · ��

− I�̂
−1 · p̂T · � · pT + I�̂

−1 · p̂T · �̂̂ · p̂ · I�̂
−1 · � . �A7�

Here the symbol diagmv�A� is the matrix-to-vector opera-
tor, which extracts the diagonals of the matrix A. With con-
dition �A2�, we obtain

P1 = P2 = 1N�1 · diagmv�p2 · I�
−1 − p · �T · p̂ · I�̂

−1 · ��

− p̂ · I�̂
−1 · � · pT + p̂ · I�̂

−1 · �̂̂ · p̂ · I�̂
−1 · � .

After suitable manipulations, we obtain

� = − �̂ · 
diagmv�p2 · I�
−1 − p · �T · p̂ · I�̂

−1 · ��

+
1

2
diagmv�I · I�

−1�� + I�̂p̂−1�̂̂−1�pT. �A8�

With the normalization condition of �, we set the
Lagrange multiplier

�z� = ��z��
y�S

�
k,l=1

N

�k�z��l�y�p�z,y�
p̂kl

�̂l

− �
y�S

p�z,y�p�y,z� .

�A9�

Substituting Eq. �A9� into Eq. �A8�, we obtain the equa-
tion for �, finally,

� = I�̂p̂−1�̂̂−1�pT. �A10�
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FIG. 9. �Color online� The minimized objective function J ver-
sus the number of communities. The dashed line and circles corre-
spond to the result using the k-means algorithm. The solid line and
squares correspond to the result using AIP. One can see that the
minimum objective function is decreased with the increasing num-
ber of communities, and the final values of J obtained by AIP are
less than those by k means.
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