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I. THE THREE-NODE BUDDING YEAST CELL CYCLE MODEL

In this section, we first construct a key regulatory network for the budding yeast cell cycle process, then reduce it
to a three-module network, and establish a coarse-grained three-node model to explore its essential architecture and
function of cell cycle network rather than specific molecular components. We will utilize this three-node yeast cell
cycle model to investigate the dynamic robustness of the system and adaptation to noise and outside signals. These
coarse-graining approaches have been applied to study the designing principles of genetic regulatory networks [1–3].

Based on the yeast cell-cycle network (Figure 3-34 in [4]) with intra-S and spindle checkpoint [5], the budding
yeast cell-cycle regulatory network can be constructed as shown in Fig. S1A, where the nodes represent cyclins, tran-
scriptional factors and inhibitors, and the green and red lines represent activation (transcription) and the inhibition,
respectively; and Cln2, Clb5 and Clb2 are used to represent Cln1,2, Clb5,6 and Clb1,2 respectively for simplification.
We denoted it as the full cell cycle networks.

In the full cell cycle networks, the positive and negative feedback loops in the network play important role in
governing yeast cell-cycle process. In the START point of G1 phase, the G1 cyclin Cln3 and CDK trigger the
activation of transcriptional factors (TFs) SBF and MBF, SBF and MBF transcript the S phase cyclins Cln1,2 and
Clb5,6. Cln1,2 and Clb5,6 will also activate SBF and MBF. This is the positive feedback in S phase [6]. Activated
Cln3, Cln1,2 and Clb5,6 will also repress the activity of cell-cycle inhibitors, Whi5, Sic1, Cdh1/APC. S phase cyclins
Cln1,2 and Clb5,6 form complex with CDK and start the events of daughter cell budding and DNA replication. At
the end of S phase, the yeast cells finish the DNA replication event, then the DNA replication checkpoint mechanism
is turned off. An unknown pathway will activate the activity of M phase TFs Mcm1/SFF. Mcm1/SFF transcribes the
M phase cyclin Clb1,2 and Clb3,4, where Clb1,2 and Clb3,4 also activate Mcm1/SFF. This is the M phase positive
feedbacks. The high level Clb1,2 will repress the activity of S phase TFs SBF and MBF. This is the negative feedback
from early M phase to S phase. There is the metaphase/anaphase transition (M/A transition) in the M phase that
spindle assemble and separation event is executing, and if there is any error the spindle checkpoint should be turned
on to stop the consequent event only when the spindle assemble and separation is well finished. In the late M phase,
the inhibitors Cdh1/APC and Cdc20/APC are activated to degrade the M phase cyclins Clb1,2 and Clb3,4, this is
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the negative feedback from late M phase to early M phase. The positive feedbacks had been found between Pds1
and Cdc14 in spindle separation process [7], and complex regulations in mitotic exit process [8,9]. In the end of yeast
cell-cycle, the inhibitor Whi5, Sic1 and Cdh1/APC are activated.

In Fig. S1A, the yeast cell-cycle regulatory network can be separated into G1/S, early M and late M modules.
Based on this fact, a fundamental simplified 3-module network is constructed in Fig.S1B to focus on the interactions
and regulations among the G1/S phase, early M phase and late M phase modules. In Fig.S1B, different modules
are connected with activation and repression interactions, and x represents the concentration of activities of the
key regulators in the excited G1/S phase, such as cyclins Cln2, Clb5 and transcriptional factors SBF and MBF. y
represents the key regulators activities in early M phase, such as cyclins Clb2 and transcriptional factor Mcm1/SFF.
And z represent the key inhibitors activities in late M/G1 phase, they are Cdh1, Cdc20 and Sic1.

The deterministic equations we used to model this three-node network are shown as below:

dx

dt
=

x2

j2
1 + x2

− k1x− xy + a0, (S1a)

dy

dt
=

y2

j2
2 + y2

− k2y − yz + ka1x, (S1b)

dz

dt
=

ksz
2

j2
3 + z2

− k3z − zx+ ka2y. (S1c)

Parameter sets are searched to ensure the S phase and M phase event order and long duration time for both events.
One typical set of parameters are j1 = j2 = j3 = 0.5, k1 = k2 = k3 = 0.2, ki = 5.0, ks = 1.0, ka1 = ka2 = 0.001. The
corresponding evolution trajectories as the function of time and the trajectories in phase space are shown in Fig. 1B
and C.

At the beginning of the cell-cycle process, in the G1 phase state, inhibitor z is in high level with low level of x and
y, this is the P1 in the main text Figure 1C. The cell is in the resting G1 state. Once the system enters the cell-cycle
process, it is excited G1 state and P2 in the main text Figure 1C, then the x wave is activated and represses the
inhibitor z to lower level. In S phase the x wave is activated and dominant, in early M phase y wave is activated and
dominant, and activated y represses x in turn. In late M and G1 phase z wave is triggered by y and increases to high
level. We denote this as wave transition model of yeast cell-cycle.

More details and analysis of the three-node deterministic model concerning network reduction, model assumptions,
formulation, and parameter setting can be found in a recent manuscript by one of the current authors (arXiv:1312.5204
[q-bio.MN]) [10].

II. STOCHASTIC MODEL

We model the cell cycle process with intrinsic noise as a Gillespie’s jump process [11]. In this section, we illustrate
how to construct a jump process based on Equation (S1).

We denote state as a vector X = (X,Y, Z), where each component represents the number of molecules for the
corresponding specie. Then translate each term in (S1) into a chemical reaction. Taking equation (S1a) as an
example, we have four associated reactions for the four terms. The state change vector for each reaction channel has
the form ν1 = ν4 = [1, 0, 0] and ν2 = ν3 = [−1, 0, 0], which corresponds to the plus or minus sign in the equation.
Once the j-th reaction fires, the state of the system X would be updated to X+νj . The reaction propensity function
is determined by each term and the volume size (or system size) V , where ε ≡ V −1 characterizes the magnitude of
intrinsic fluctuations. In (S1a), the four propensity functions are

a1(X) =
V X2

(j1V )2 +X2
, a2(X) = k1X, a3(X) =

XY

V
, a4(X) = a0V.

Equation (S1b) and (S1c) and be translated similarly. The propensity functions and state change vectors are listed
in Table I. With these setup the stochastic reaction process X(t) can be established [11].

We choose these propensity functions because a(X) ∼ O(V ) when X ∼ O(V ). The concentration process x(t) ≡
X(t)/V tends to deterministic process (S1) as V tends to infinity. To show this, we first write down the Kolmogorov
backward equation for u(t,X) defined as the expectation of any smooth function f(X(t)) starting from X at time 0

∂u

∂t
=
∑
j

aj(X)(u(t,X + νj)− u(t,X)). (S2)
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TABLE I: Propensity functions and state change vectors

Reaction 1 Reaction 2 Reaction 3 Reaction 4

State change vector [1, 0, 0] [−1, 0, 0] [−1, 0, 0] [1, 0, 0]

Propensity function
V X2

(j1V )2 +X2
k1X

XY

V
a0V

Reaction 5 Reaction 6 Reaction 7 Reaction 8

State change vector [0, 1, 0] [0,−1, 0] [0,−1, 0] [0, 1, 0]

Propensity function
V Y 2

(j2V )2 + Y 2
k2Y

Y Z

V
ka1X

Reaction 9 Reaction 10 Reaction 11 Reaction 12

State change vector [0, 0, 1] [0, 0,−1] [0, 0,−1] [0, 0, 1]

Propensity function
V ksZ

2

(j3V )2 + Z2
k3Z

ZX

V
ka2Y

where u = u(t,X) is a smooth function defined on R×N3. The concentration variable x ≡X/V lives on the rescaled
lattice N3/V . Denoting āj(x) ≡ aj(X)/V , we rewrite equation (S2) in terms of x and ā:

∂u

∂t
= V

∑
j

āj(x)(u(t,x+ νj/V )− u(t, x)) (S3)

=
∑
j

ājνj(x)
∂u

∂x
+O(

1

V
). (S4)

So when V tends to infinity, the O(1/V ) term vanishes and we have

∂u

∂t
=
∑
j

ājνj(x)
∂u

∂x
. (S5)

This equation exactly corresponds to the backward equation of the deterministic process

dx

dt
=
∑
j

ājνj , (S6)

and this is exactly Equation (S1). In our case, ā1(x) = x2

j21+x2 , ā2(x) = k1x, ā3(x) = xy and ā4(x) = a0.

III. LARGE DEVIATION THEORY AND THE HAMILTONIAN

In the presence of small random perturbations in dynamical systems, the behavior of the systems can not be
described by the deterministic models all the time and the effect of the noise becomes ubiquitous. When the events
with very little likelihood occurs, large deviation theory gives a rough estimate for the probability that the trajectory
Xε(t), t ∈ [0, T ], T < ∞, of the random dynamical system lies in a small neighborhood around a given path ψ ∈
C(0, T ), where C(0, T ) denotes the space of all continuous functions mapping from [0, T ] into Rn [12]. The theory
asserts that, for ε sufficiently small,

Px{ sup
0≤t≤T

|Xε(t)− ψ(t)| ≤ δ} ≈ exp(−ε−1ST (ψ)), (S7)

where Px denotes the probability conditioned on Xε(0) = x and assume ψ(0) = x. The action can be written as

ST (ψ) =

{ ∫ T
0
L(ψ, ψ̇)dt if ψ ∈ C(0, T ) is absolutely continuous and the integral converges,

+∞ otherwise,
(S8)
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where the Lagrangian L(x, y) is given by

L(x, y) = sup
θ∈Rn

(〈y, θ〉 −H(x, θ)). (S9)

Here 〈·, ·〉 denotes the Euclidean scalar product in Rn and H(x, θ) is the Hamiltonian.
In our work, we mainly focus on two kinds of dynamical systems: diffusion process and Markov jump process. Here

we give the Hamiltonian of each type. Readers may find more details in [13]. For a diffusion process on Rn with drift
vector b and diffusion tensor a = σσT , i.e.,

dXε(t) = b(Xε(t)) dt+
√
εσ(Xε(t)) dW (t). (S10)

The Hamiltonian H and Lagrangian L are given by

H(x, θ) = 〈b(x), θ〉+
1

2
〈θ, a(x)θ〉 , (S11)

L(x, y) =
1

2

〈
y − b(x), a−1(x)(y − b(x))

〉
. (S12)

As for a continuous-time Markov jump processes on εZn with a generator Q defined for every test function f :
Rn → R by

(Qf)(x) = ε−1
N∑
j=1

aj(x)
(
f(x+ ενj)− f(x)

)
, (S13)

where aj : Rn → (0,+∞), j = 1, . . . , N , are the rates (or propensities) and νj ∈ Zn, j = 1, . . . , N, are the state change
(or stoichiometric) vectors. The Hamiltonian H for this type of dynamics is given by

H(x, θ) =

N∑
j=1

aj(x)(e〈θ,νj〉 − 1), (S14)

and L must be obtained via (S9)—in this case, no closed-form expression for L is available in general.
In our work, we use Eq. (S14) as our general Hamiltonian under intrinsic noise and Eq. (S11) for white noise which

mimic the extrinsic noise with a = id. The corresponding Hamiltonian for these two cases are

Hint(x1, x2, x3, θ1, θ2, θ3) =
x2

1

j2
1 + x2

1

(eθ1 − 1) + (k1x1 + x1x2)(e−θ1 − 1)

+(ka1x1 +
x2

2

j2
2 + x2

2

)(eθ2 − 1) + (k2x2 + x2x3)(e−θ2 − 1)

+(ka2x2 +
x2

3

j2
3 + x2

3

)(eθ3 − 1) + (k3x3 + kix1x3)(e−θ3 − 1) (S15)

and

Hext(x1, x2, x3, θ1, θ2, θ3) =
[ x2

1

j2
1 + x2

1

− (k1x1 + x1x2)
]
θ1 +

1

2
θ2

1

+
[
(ka1x1 +

x2
2

j2
2 + x2

2

)− (k2x2 + x2x3)
]
θ2 +

1

2
θ2

2

+
[
(ka2x2 +

x2
3

j2
3 + x2

3

)− (k3x3 + kix1x3)
]
θ3 +

1

2
θ2

3. (S16)

The local quasi-potential with respect to a stable state xs, is defined by minimizing action functional (S8). More
precisely,

S(x;xs) = inf
T>0

inf
ψ(0)=xs,ψ(T )=x

ST (ψ), (S17)

where S(x;xs) is the local quasi-potential with respect to xs, ψ is any connecting path satisfing ψ(0) = xs and
ψ(T ) = x, and ST (ψ) is an action functional of ψ. Generally, we will use the algorithm gMAM described below to
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obtain this quasi-potential. However, there is a special case that can be calculated explicitly. Suppose the dynamics
is simply a gradient system with a single-well potential driven by small noise, i.e.

ẋ = −∇U(x) +
√
εẇ, (S18)

where ε is a small parameter, and ẇ is the standard temporal Gaussian white noise with Eẇ(t) = 0 and Eẇ(s)ẇ(t) =
δ(s − t). We assume that U(x) ≥ 0 and U(xs) = 0 is the unique minimum of U(x). As shown in equation (S12),
choosing a = I, b(x) = −∇U(x), we have have

ST (ψ) =
1

2

∫ T

0

∣∣∣ψ̇ +∇U(ψ)
∣∣∣2 dt. (S19)

Here, we consider ψ(0) = xs, ψ(T ) = x. First we show that ST (ψ) ≥ 2U(x) for all ψ. Because

ST (ψ) =
1

2

∫ T

0

∣∣∣ψ̇ +∇U(ψ)
∣∣∣2 dt

=
1

2

∫ T

0

∣∣∣ψ̇ −∇U(ψ)
∣∣∣2 dt+ 2

∫ T

0

〈
ψ̇,∇U(ψ)

〉
dt

≥ 2

∫ T

0

〈
ψ̇,∇U(ψ)

〉
dt.

The last integral can be computed directly.

2

∫ T

0

〈
ψ̇,∇U(ψ)

〉
dt = 2

∫ x

xs

dU(ψ) = 2U(x)− 2U(xs) = 2U(x).

So ST (ψ) ≥ 2U(x). On the other hand, we can choose a special ψ̂ and T > 0 such that
˙̂
ψ = ∇U(ψ̂) and ψ̂(T ) = x.

For this special ψ̂,

ST (ψ̂) = 2

∫ x

xs

∇U(ψ̂)dψ̂ = 2U(x).

This equality means S(x;xs) = 2U(x). So S(x;xs) is a generalization of the usual potential concept U(x).
Moreover, we can show that the stationary distribution P (x) satisfies S(x;xs) = − lim

ε→0
ε logP (x). Since P (x)

satisfies the Fokker-Planck equation

1

2
∇2P (x) +∇ · (P (x)∇U(x)) = 0. (S20)

One can easily check that P (x) = 1
Z e
− 2U(x)

ε is the solution of equation (S20), where Z is a normalization factor. One
may refer to [12] that the relation S(x;xs) = − lim

ε→0
ε logP (x) still holds for a more general system.

IV. OVERVIEW OF THE CONSTRUCTION OF THE LANDSCAPE

In this section, we briefly describe the procedure of constructing the energy landscape for the cell cycle model. This
process can be easily extended to more general models.

First, we translate equation(S1) to a jump process by means that described in section II. Now we can write down
the Hamiltonian of this process according to formula (S14). The result is given by equation (S15).

The construction of global quasi-potential is quite involved. In simple terms, the global quasi-potential S(x) is a
proper sticking of two local version S(x;xs1) and S(x;xs2), where xs1, xs2 are two stable fixed points of equation
(S1a). The definition of local potential can be found in section V. In order to compute the local potentials, we need
the gMAM (geometric Minimum Action Method), which is described in detail in section IV.

We can summarize the procedure in flow chart Algorithm 1. One may follow this guidelines and substitute a
particular ODEs in this flow chart to obtain its own landscape.
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ALGORITHM 1: Guide of constructing global quasi-potential

INPUT: The deterministic ODE
OUTPUT: Global quasi-potential, 2-D version S(x, y), 3-D version S(x, y, z) and pseudo-potential S̃(x, y) if needed
1: Translate ODE to a Markov jump process. The change vector of each reaction is determined by the sign of each term, the

reaction rate function is the value of the term, as described before;
2: Write down Hamiltonian of the Markov jump process according to equation (S14);
3: Compute stable fixed points xs1,xs2 of ODE;
4: For every x = (x, y, z), compute local potential S(x;xs1) and S(x;xs2) by algorithm gMAM. Details of gMAM is fully

explained in section IV;
5: Sticking S(x;xs1) and S(x;xs2) to global quasi-potential S(x) following the guide lines in section V-A, V-B and V-C;
6: Project 3-D potential S(x, y, z) to a 2-D version S(x, y) following the method in section V-E;

7: If pseudo-potential S̃(x) is needed, the way to obtain it is illustrated in section V-D.

RETURN:3-D quasi-potential S(x, y, z), 2-D version S(x, y) and Pseudo potential S̃(x, y).

V. INTRODUCTION OF THE GMAM

For the ease of readers, we here give a brief synopsis of the geometric Minimum Action Method (gMAM). One can
find more details from the reference [13].

The geometric minimum action method (gMAM) is a variant of the minimum action method (MAM) [14]. Both
of them are going to minimize the action functional required to compute local quasi-potential V (x1, x2) in Freidlin-
Wentzell theory and finding the minimizer.

One can obtain the quasi-potential of a system by minimize its action functional

V (x1, x2) = inf
T>0

inf
ψ∈C̄x2x1 (0,T )

ST (ψ), (S21)

where C̄x2
x1

(0, T ) denotes the space of all absolutely continuous functions f : [0, T ] → Rn such that f(0) = x1 and
f(T ) = x2. This is a double minimization problem. The key idea behind the gMAM is to reformulate the Freidlin-
Wentzell action functional on the space of curves, thus eliminates the minimization problem to only the spacial
dimension, instead of the double minimization on both spacial and temporal dimensions in MAM.

Now we skip the proof and go straight to the essence and algorithm of the gMAM. The key idea is to reformulate
(S21) geometrically in terms of curves γ = {ϕ(α) | α ∈ [0, 1]}, where ϕ : [0, 1]→ Rn is an arbitrary parameterizations
of the curve γ. The main result in this direction is that the quasi-potential (S21) can be expressed as

V (x1, x2) = inf
ϕ∈C̄x2x1 (0,1)

Ŝ(ϕ) with Ŝ(ϕ) = sup
ϑ:[0,1]→Rn,H(ϕ,ϑ)≡0

∫ 1

0

〈ϕ′, ϑ〉dα (S22)

=

∫ 1

0

〈ϕ′, ϑ̂(ϕ,ϕ′)〉dα (S23)

=

∫ 1

0

L(ϕ, λϕ′)

λ
dα, λ = λ(ϕ,ϕ′). (S24)

Here, the functions ϑ̂(x, y) is implicitly defined for all x ∈ D and y ∈ Rn\{0} as the unique solution ϑ̂, λ ∈ Rn× [0,∞)
of the system

H(x, ϑ̂) = 0, Hθ(x, ϑ̂) = λy, λ ≥ 0. (S25)

Since there is no close form of Lagrangian generally, the algorithm of gMAM can be expressed in two steps. The

first is solve (S25) to have ϑ̂ and λ, we call it innerloop. The second it that assuming ϑ̂ and λ are known, design
a steepest-decent algorithm to solve Euler-Lagrange equation, we call it outerloop. Of course, if explicit form of
Lagrangian is available, innerloop step can be ignored.

A. The Outer Loop

The Euler-Lagrange equation of the variational problem (S22) is given by([13]):{
− λ2ϕ′′ + λHθxϕ

′ −HθθHx − λλ′ϕ′ = 0

ϕ(0) = x1, ϕ(1) = x2.
(S26)
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whereλ = 〈Hθ,ϕ′〉
|ϕ′|2 , and Hx, Hθ, Hθθ are evaluated at (ϕ′, ϑ̂(ϕ,ϕ′)).

In the steepest-descent algorithm, we use τ to represent time and α still the curve parameter. First we discretize
ϕ(τ, α) both in τ and α; i.e., we define ϕki = ϕ(k∆τ, i∆α), k ∈ N0, i = 0, . . . , N, where ∆τ is the time step and
∆α = 1/N if we discretize the curve into N + 1 points. Then we discretize the initial condition ϕ(0, α) to obtain
{ϕ0

i }i=0,...,N and, for k ≥ 0, use a two-step method to update these points, which is described in Algorithm 2.

ALGORITHM 2: Outerloop of gMAM

INPUT: Current ϕki , start point x1 and end point x2;
OUTPUT: Path of next step ϕk+1

i

1: Compute ϕ′
k
i = (ϕki+1 − ϕki−1)/(2/N), and run innerloop to obtain ϑ̂ki = ϑ̂(ϕki , ϕ

′k
i ) for i = 1, . . . , N − 1,;

2: Compute λki = 〈Hθ(ϕki , ϑ̂ki ), ϕ′
k
i 〉/|ϕ′

k
i |2 for i = 1, . . . , N − 1. Set λk0 = 3λk1 − 3λk2 + λk3 , λkN = 3λkN−1 − 3λkN−2 + λkN−3;

3: Compute λ′
k
i = (λki+1 − λki−1)/(2/N) for i = 1, . . . , N − 1.;

4: WHILE some stopping criterion is not fulfilled DO
5: Let {ϕ̃i}i=0,...,N be the solution of the linear system

ϕ̃i − ϕki
∆τ

= (λki )2
ϕ̃i+1 − 2ϕ̃i + ϕ̃i−1

1/N2
− λkiHθxϕ′

k
i +HθθHx + λki λ

′k
i ϕ
′k
i , i = 1, . . . , N − 1,

ϕ̃0 = x1,

ϕ̃N = x2,

(S27)

where Hθx, Hθθ, and Hx are evaluated at (ϕki , ϑ̂
k
i ).

6: Interpolate a curve across {ϕ̃i}i=0,...,N and discretize this curve to find {ϕk+1
i }i=0,...,N so that the prescribed constraint

on the parameterizations of ϕ is satisfied.
7: END WHILE

RETURN:Path of next step ϕk+1
i , i = 0, 1, . . . N .

B. Evaluating the Action

After the outer loop, one can easily compute the value of the action following Algorithm 3.

ALGORITHM 3: Evaluating action

INPUT: Most probable path {ϕki }i=0,...,N , computed by outerloop;
OUTPUT: Action value of S(x2;x1)

1: Compute ϕ′
k
i , ϑ̂

k
i , and λki as in Step 1 of Algortihm 2 for every i = 0, . . . , N.;

2: Action value is

Ŝ =
1

N

(3

2
〈ϕ′ki , ϑ̂

k
1〉+

N−2∑
i=2

〈ϕ′ki , ϑ̂
k
i 〉+

3

2
〈ϕ′kN−1, ϑ̂

k
N−1〉

)
. (S28)

RETURN:S(x2;x1) = S.

C. The Inner Loop (Computing ϑ̂(ϕ,ϕ′))

In order to compute ϑ̂(ϕ,ϕ′) from (S25), we use function h(·) to denote the strictly convex and twice-differentiable
function H(ϕ, ·). The quadratically convergent routine is as follows. Set p = 0 initially, one can do innerloop according
to Algortihm 4.

It is shown in [13] that this algorithm guarantees local quadratic convergence. So when applying this algorithm,
we need a proper initial guess of ϑ. However, we usually have little knowledge about ϑ. If one find in a particular
problem, innerloop does not converge, we suggest the following improvement.
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ALGORITHM 4: Innerloop of gMAM

INPUT: Current ϕki , i = 0, 1, . . . N ;

OUTPUT: General momentum ϑ̂ki = ϑ̂(ϕki , ϕ
′k
i ), i = 1, . . . , N − 1,;

1: Give a proper guess of ϑ̂ki , set them ϑ̂0

2: WHILE Convergence criterion is not fulfilled DO
3:

ϑ̂p+1 := ϑ̂p + h−1
θθ

(
λ̃(ϑ̂p)ϕ′ − hθ

)
with λ̃(θ̂p) :=

(
〈hθ, h−1

θθ hθ〉 − 2h

〈ϕ′, h−1
θθ ϕ

′〉

)1/2

+

, (S29)

where w
1/2
+ =

√
w if w ≥ 0 and w

1/2
+ = 0 otherwise, and where h, hθ, and hθθ are evaluated at ϑ̂p;

4: p=p+1;
5: END WHILE

RETURN:ϑ̂k = ϑ̂p

Equation (S25) can be viewed as Lagrange multiplier method that solves the constrained optimization problem:{
max〈ϑ, ϕ′〉
s.t. h(ϑ) = 0

(S30)

So we can first apply a quadratic penalty method on this optimization problem. That is, we solve unconstrained
problem

min
1

2
µh2(ϑ)− 〈ϑ, ϕ′〉 (S31)

where µ is a penalty factor. We can simply use Newton method with a proper line search to solve this problem. We
know from [15] that Newton method with exact line search guarantees global convergence. Although this step may
be a little expansive in computing, we need only a few step to offer the original innerloop a proper initial value. It is
also easy to show that this strategy guarantees global convergence.

VI. CONSTRUCTION OF GLOBAL QUASI-POTENTIAL ENERGY LANDSCAPE

We describe the method to construct the global quasi-potential energy landscape below. In general, the global
quasi-potential is a proper sticking of local quasi-potentials. For a dynamic system with several stable states, one can
define local quasi-potential with respect to a stable state x0 as

S(x;x0) = inf
T>0

inf
ϕ,ϕ(0)=x0,ϕ(T )=x

∫ T

0

L(ϕ, ϕ̇)dt. (S32)

It is easy to see that one can compute local quasi-potential by applying gMAM algorithm, i.e. equation (S28).
Choosing x0 as initial point and x final point, gMAM will return the value of S(x;x0).

In our work, we mainly deal with dynamic systems with one or two stable states and dynamic system with a stable
limit cycle. We will describe ways of constructing global quasi-potential of each case below. One may find a systematic
strategy of sticking local quasi-potential in [12].

A. Landscape with One Stable State

For a system with only one stable state, such as an excitable system, the global quasi-potential is just local one.
So the procedure of construction of the Quasi-potential energy landscape simply applying gMAM, which is shown in
Algortihm 5.

B. Landscape with Two Stable States

For a system have two metastable state looks like “stable-saddle-stable”, such as when the checkpoint mechanism
is activated, the process of reconstruction is described as follow.
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ALGORITHM 5: Constructing landscape for system with one stable state

INPUT: The deterministic ODEs
OUTPUT: Quasi-potential landscape S(x)
1: Work out the stable points xs from deterministic equations;
2: REPEAT
3: Set xs as the starting point, with different ending point Pi, run the gMAM once and obtain S(Pi) = S(Pi;xs);
4: UNTIL All of the points Pi you concerned have been computed.

RETURN:S(P )

First, we choose the two stable points (xs1, xs2) solved by the deterministic equations as our starting and ending
point and obtain S(xs2;xs1) and S(xs1;xs2). Denote the difference ∆S = S(xs1;xs2) − S(xs2;xs1). Then to obtain
the value of S(x) of each point Pi, we run the gMAM twice with xon and xoff as initial point respectively and Pi the
final point. Now we have two values of action S(Pi;xs1) and S(Pi;xx2) respectively. Freidlin-Wentzell theory shows
that S(Pi) = min(S(Pi;xs2) + ∆S, S(Pi;xs1)). Repeat this procedure for every Pi to get the global quasi-potential.
We summarize the steps of reconstruct global quasi-potential in Algortihm 6:

ALGORITHM 6: Constructing landscape for system with two stable states

INPUT: The deterministic ODEs
OUTPUT: Quasi-potential landscape S(x)
1: Work out the stable points xs1 and xs2 from deterministic equations;
2: Run gMAM twice to get S(xs2;xs1) and S(xs1;xs2) and compute ∆S = S(xs1;xs2)− S(xs2;xs1);
3: REPEAT
4: For every point Pi,

S(Pi) =

{
S(Pi;xs1) if S(Pi;xs1) 6 S(Pi;xs2) + ∆S

S(Pi;xs2) + ∆S otherwise

5: UNTIL All of the points Pi you concerned have been computed.
RETURN:S(P )

C. Landscape with one stable limit cycle

The procedure is almost the same as Case A, i.e. the system with one stable state. The difference is that the
original starting point xs (stable points) now turns into any point on the limit cycle.

D. Pseudo Landscape with the Non-gradient Force

To further explore the details of the flat canal, we came up with a different way of constructing the energy landscape.
The main idea behind this method is to temporarily remove the global stable state from our model and only focus on
the cycling, flat canal after the saddle point. Thus the landscape constructed this way is only a local landscape and
does not reflect the global stationary probability distribution any longer.

The main idea behind our framework is to compulsively let the system move from a low-action point to a high-action
point.The gMAM algorithm will find the transition path of maximum likelihood and give the action value at the same
time. However, if the transition path contains a part of ODE trajectory (we will call it a downhill part), the action
cost of this part will be zero, not a negative value. At this time the real action difference between the starting and
ending point may not be truly reflected, and we need to recompute the action for each cycling path in the optimal
transition path. The algorithm to get pseudo potential is Algortihm 7.

E. Projecting the 3-D Landscape onto 2-D Plane

When we are only interested in the 2-D configuration of the landscape, we need to reduce our 3-D landscape into
a 2-D version. Suppose we have already had the 3-D global quasi-potential S(x, y, z) and the stationary distribution
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ALGORITHM 7: Constructing pseudo landscape

INPUT: The deterministic ODEs
OUTPUT: Pseudo landscape S̃(x)
1: Work out the stable points xs from deterministic equations;
2: REPEAT
3: For every point Pi, set xs as the starting point, run the gMAM once, obtain S0(Pi;xs) and the corresponding optimal

transition path Li0;
4: Find the downhill part in Li0, say, downhill parts are (l1, r1), (l2, r2) . . . (lk, rk). Set new starting point rj , ending point
lj and compute out the corresponding action S(l1; r1), S(l2; r2), . . . S(lk; rk),

5: S̃(P ) = S0(Pi;xs)− (S(l1; r1) + S(l2; r2) + · · ·+ S(lk; rk)).
6: UNTIL All of the points Pi you concerned have been computed.

RETURN:S̃(P )

of the three types of proteins is

P (x, y, z) ∝ exp(−KS(x, y, z)). (S33)

Note that our 2-D version quasi-potential S(x, y) must also follow

P (x, y) ∝ exp(−KS(x, y)), (S34)

where P (x, y) is the stationary distribution of two types of proteins. By definition, this distribution is given by

P (x, y) =

∫
P (x, y, z)dz ∝

∫
exp(−KS(x, y, z))dz ∝ exp(−KS(x, y)). (S35)

Therefore we know that there is a normalization factor Z that

S(x, y) = −K−1 ln

∫
exp(−KS(x, y, z))dz +K−1 lnZ. (S36)

As the volume of the system goes to infinity (noise level goes to infinitely small), K tends to infinity, now we have:

S(x, y) = lim
K→+∞

−K−1 ln

∫
exp(−KS(x, y, z))dz. (S37)

Now we apply Laplace’s approximation. This theorem (readers may refer to [16])states that if g(t) attain its minimum
at t0, and

g(t) = g0 + g1(t− t0) + o(t− t0)

where g0, g1 are constant, then as K → +∞∫ b

a

e−Kg(t)dt ∼ 2

(
1

Kg1

)2

exp(−Kg0).

Here we take S(x, y, z) as g, denote S0 = min
z
S(x, y, z), (S37) implies

S(x, y) = lim
K→+∞

−K−1 ln

∫
exp(−KS(x, y, z))dz

= lim
K→+∞

−K−1 ln
(
2(KS1)−2 exp(−KS0)

)
= lim
K→+∞

− ln 2− 2 ln(KS1)

K
+ S0

= S0 = min
z
S(x, y, z).

(S38)

This result implies we can construct the 2-D quasi-potential by taking minimum of 3-D quasi-potential S(x, y, z)
with respect to z.
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VII. FORCE STRENGTH AND LANDSCAPE CANAL WIDTH

In this section, the path we focus on is exactly the path depicted by the ODE Eqs. (1), which is also the cycling
path and the flat canal on the quasi-potential energy landscape. From Eqs. (1), we define the ”Force strength” as√

(dx
dt )2 + (dy

dt )2 + (dz
dt )

2, which is used to describe the strength of the driving force.

In order to measure the restricting strength of the canal in the landscape, we investigate the change of the landscape
in the transverse direction of the canal, i.e. the cell cycle trajectory after the saddle node. Our analysis is based on
the idea that we constrain the system in the transverse plane of any point ’x0’ in the ODE path and use the coefficient
of variation to curve its fluctuation strength.

First we should find two orthogonal directions in the transverse plane of the ODE trajectory. We denote these
two directions as v1 and v2 and the direction of ODE trajectory as v0. Notice that the stationary distribution
p(x) � exp{−KS(x)}, we can expand S(x) in the vicinity of the fix point x0 up to second order thus get the
Gaussian approximation

p(x) ' 1

(2π)1|Σ| 12
exp

{
− 1

2K
(x(v1, v2))Σ(x(v1, v2))T

}
. (S39)

Here, Σ = (Sij)2×2, and |Σ| is the determinant of matrix Σ. Eq. (S39) holds only in the vicinity of x0 with standard

deviations σv1 = (KS′′v2v2)/|Σ|) 1
2 and σv2 = (KS′′v1v1)/|Σ|) 1

2 . Then we diagonalize the σ matrix to find the maximum
eigenvalue σmax. In Fig. S2B the canal width is the normalized λmax for each point in the ODE trajectory.

VIII. ANALYSIS OF THE NON-GRADIENT FORCE

From the view of classic mechanics, the most probable cycling path is given by a Hamilton canonical equation:

dx

dt
= ∇pH(x,∇S(x)) = F (x), (S40)

dp

dt
= −∇xH(x,p), (S41)

where S(x) is the quasi-potential and the canonical momentum p ≡ ∇S(x). Based on the fact that H(x, 0) ≡ 0, we
have ∇xH ≡ 0 when p = 0. At saddle point, p = ∇S(x) = 0, so the cycling path, i.e. the path passed saddle point,
satisfies p = ∇S(x) ≡ 0, and

dx

dt
= ∇pH(x, 0)).

Note that∇pH(x, 0)) is nothing but the deterministic dynamic b(x), so the cycling path is exactly the ODE trajectory.
If the dynamic system is a gradient system ẋ = −∇V (x), the quasi-potential is simply S(x) = 2V (x). So ∇S(x) = 0

implies the cycling path is ẋ = 0. So the cycling phenomena is typically caused by non-gradient force.
As for a general path, we use the case of extrinsic noise to show some heuristic insight. For a diffusion process

dXε
t = b(Xε

t ) dt+
√
εdWt,

Feidlin-Wentzell theory [12] tells us that the drift term b(x) has a decomposition

b(x) = −∇S(x) + l(x),

where S(x) is quasi-potential, l(x) is perpendicular to ∇S(x), 〈∇S(x), l(x)〉 = 0. The uphill path, by Hamilton
canonical equaiotn(S40), is given by

dx

dt
= ∇S(x) + l(x).

So it can be seen that the most probable dynamic is driven by two forces: the gradient force ∇S(x) and the non-
gradient force l(x). If l(x) = 0, the dynamic is a gradient system and is governed by gradient force only. In general,
these two force together determine the dynamic of the system. When gradient force is 0 or small, the most probable
dynamic is dominated by non-gradient force. Although for a Markov jump process, the drift does not guarantees such
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a decomposition, our analysis about the combination of gradient and non-gradient force is still helpful. This intuitive
can provide a clear understanding of the most probable dynamic, except the two exceptions we will discuss below.

One is the energy barrier in the bottom right corner of Fig. 2B in the maintext, also the circled area in Fig. S3A.
Given the set of parameters we used one can easily find out that in this area, it always has dy

dt > 0. While in the
energy landscape it turns out to be an energy barrier between the S phase canal and the M phase canal. This arises
the problems that we cannot always tell the movement of the system purely by the energy landscape which essentially
reflects the stationary probability distribution of the system, also we cannot always compare the stationary probability
of two adjacent points in the state space purely from the deterministic description of the system (Eqs. [1]). Another
inconformity is shown in the circled area in Fig. S3B.

IX. SIGNALS REGULATION IN THE CELL CYCLE MODEL

To make sure the cell cycle can be regulated by the outer signals and be more robust to the emergencies during the
process, in budding yeast, the cell cycle control system can also responds to the signals both from the environmental
and the cell cycle it controls. In the main text we show the quasi-potential energy landscape under two types of signal,
one is the nutrients in the environment and the other is the checkpoint signal from the cell itself.

According to [17], a central metabolite of glucose catabolism, acetyl-CoA, induces CLN3 transcription by promoting
the acetylation of histones present in its regulatory region. Thus in our computing (S1), we set a0 = 0.001 when the
nutrient is not appropriate for dividing, and set a0 = 0.01 when the nutrient is enough. In our model we also assume
the other parameters are not affected by the nutrient level.

When the DNA replication during S phase goes wrong, the DNA replication checkpoint is activated. On the one
hand cell activates a pathway that tries to solve the replication problem, on the other hand, cell holds the signal that
blocks the activation effect the S-CDK has on G2-CDK. In our computing (S1), we use parameter ka1 to represent
the activation effect that the S-CDK has on G2-CDK. Thus we set ka1 = 0.001 when the activation effect exists, and
ka1 = 0.0001 when the activation effect is blocked.

X. EXTRINSIC AND INTRINSIC NOISE

It is well known that when the system size V is large enough, a Markov jump process can be well approximated by
a chemical Langevin equation (CLE) [18]. Suppose a jump process described by equation (S13), when system size is
large enough, this process can be approximated by CLE

dX

dt
=

N∑
j=1

aj(X)νj +
√
ε

N∑
j=1

√
aj(X)νjẆj , (S42)

where Ẇj , j = 1, 2, . . . N are independent Gaussian white noise. In this equation, the drift term is nothing but the
deterministic flux. The diffusion term, which measures the strength of noise, is positively correlated with the strength
of the drift. Therefore, when the cycling process is perturbed by intrinsic noise, the width of main canal is positively
correlated to the strength of flux. The larger |b(x)| is, the wider the main canal is. This observation coincides with
the numerical result shown in Fig. 3B in the main text.

On the other hand, if the cycling process is perturbed by extrinsic noise, the dynamic is

dX

dt
= b(X) +

√
εẆ ,

from which noise strength is independent of the propensity. Therefore the width of main canal is independent of the
strength of the drift (see Fig S2).

XI. PARAMETERS SENSITIVITY ANALYSIS

In the main text, we do not give the analysis of parameters sensitivity. The word “robustness” in the title mainly
refers to the robustness of the system under perturbation in state space. Here in Fig. S4 we changed each parameter
value and see their effects on the global evolution trajectory and the depth of energy well indicating the stable G1
state. In Fig. S4 A to K, we demonstrate the global evolution trajectory when each parameter value is increased
or decreased by 20%. We can see that the global trend of evolution trajectory does not change much under single
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parameter perturbation. In Fig. S4L, we show the relative change of the depth of energy well corresponding to
the stable G1 state under the same parameters perturbation. We can see that the well depth is sensitive to four
parameters: j1(#1), k1(#4), ks(#8), and a0(#11). All the parameters in Eq. 1a (j1, k1, a0) are in the list. We
suggest this sensitivity partly comes from the lack of redundancy of our simplified model.

In the main text, we changed the values of three parameters {a0, ka1, ka2} to simulate the effects of external
signals. To be specific, we increased a0 to simulate the effect of additional nutrients, and decreased ka1 and ka2 to
simulate the effects of the activation of checkpoints. When we decrease a0 to 0, the global landscape would almost be
the same with a0 = 0.001. However, when we increase ka1 or ka2 significantly, the global picture would be evidently
different. This has been discussed in detail in [10] and we briefly discussed it from the view of energy landscape.
Figure S5 demonstrate the deterministic evolution trajectory and the energy landscape on x-y plane with z = 0 when
ka1 and ka2 are increased from 0.001 to 0.04. We will refer to them as imperfect parameters [10]. From Fig. S5 we
can see that the sharp corners that guarantee enough duration time of each cell-cycle state disappear, and the energy
landscape transforms to a less constraining one, and have wider canals in general.
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FIG. S1: The regulatory network of cell-cycle process in budding yeast. (A) The regulatory network of key regulators in
budding yeast cell-cycle process. It can be separated into G1/S, early M and late M modules, where the nodes represent

cyclins, transcriptional factors and inhibitors, and the green and red lines represent activation (transcription) and the
inhibition, respectively. (B) The essential network of yeast cell-cycle network, where X, Y and Z represent key regulators of

the G1/S, early M and late M modules respectively, different modules are connected by activation and inhibition interactions.
More details can be found in the main text10.
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FIG. S2: The effects of extrinsic noise on the yeast cell-cycle network. (A) The quasi-potential energy landscape under
extrinsic noise perturbation, the x-y plane where z = 0. (B) The ODE driving flux strength (black dashed line) in the ODE
path and the fluctuation strength in the vertical direction of the ODE path perturbed by intrinsic noise (red solid line) and

extrinsic noise (blue solid line). The letters ’a’, ’b’ and ’c’ mark three points on the ODE trajectory with large force strength.
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FIG. S3: The inconformity between energy landscape and deterministic description of system. (A) The energy landscape in
x-y plane with z = 0. (B) The pseudo energy landscape on x-y plane with z = 0. The red dashed boxes mark the energy

barriers that contradict with the deterministic description of system.
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FIG. S4: Effects of parameter perturbations on global evolution trajectory (A-K) and the depth of energy well corresponding
to the stable G1 state (L). In each subfigure, we either increase (blue solid line) or decrease (red dashed line) the value of a
certain parameter by 20%. Subfigures from A to K, and the numbers on x-axis in subfigure (L) correspond to parameters:

j1, j2, j3, k1, k2, k3, ki, ks, ka1, ka2, a0, respectively. (L) ∆S denotes the depth of energy well corresponding to the stable
G1 state with wild-type parameters, and δS denotes the changes of depth after each parameter is increased or decreased.
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FIG. S5: The evolution trajectory (A) and the energy landscape on x-y plane with z = 0 (B) with imperfect parameter
values: j1 = j2 = j3 = 0.5, k1 = k2 = k3 = 0.2, ki = 5.0, ks = 1.0, and ka1 = ka2 = 0.04.

0x =

4P

S

y
zearly M

late M

FIG. S6: The landscape on the y-z plane with x=0 corresponds to the late M phase. In the second part of the cell cycle, the
system evolves through the early M flat canal to the vertex P4 over a sufficient duration for the mitosis event. When the

system passes through P4, y triggers the activation of the late M variable z, and the activated z begins to repress y. This is
the transition from the early M phase to the late M phase. The “early M” and “late M” in bold refer to early M phase and

late M phase respectively.


