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I. MEAN FIELD LIMIT OF THE CME

In this section we take the singular perturbation analysis [1] to analyze the large system size limit of the stochastic
equations when K goes to infinity. This result gives the rationale in what sense that the deterministic dynamics is
related to the stochastic dynamics.

At first the backward operator L, i.e. the infinitesimal generator of the considered chemical reaction process (also
the adjoint operator arising in chemical master equations (CMEs)) has the form

Lh(0,M,N,D) =k0D [h(1,M,N,D)− h(0,M,N,D)] + Ah(0,M,N,D) + a0(E1
M − 1)h(0,M,N,D),

Lh(1,M,N,D) =γ0 [h(0,M,N,D)− h(1,M,N,D)] + Ah(1,M,N,D) + a(E1
M − 1)h(1,M,N,D), (1)

where h is any function of 4-tuple (α,M,N,D) ∈ {0, 1} × N3. M,N,D represent the number of mRNAs, proteins,

and dimers respectively. α = 0, 1 represent the inactive and active state of DNA, respectively. EiM ,E
j
N ,E

k
D are

corresponding raising operators that EiMf(M,N,D) = f(M + i,N,D). The operator A is defined as

Af(M,N,D) =γNN(E−1
N − 1)f(M,N,D) + γmM(E−1

M − 1)f(M,N,D) + bM(E1
N − 1)f(M,N,D)

+k1N(N − 1)(E−2
N E1

D − 1)f(M,N,D) + γ1D(E2
NE−1

D − 1)f(M,N,D).
(2)

Taking the adjoint of L, we get the CMEs for this system. Denote Pmnd, Qmnd the probability distribution function
(PDF) of inactive/active DNA state with m mRNAs, n proteins and d dimers at time t. The CMEs have the form:{

Ṗmnd = L∗Pmnd = γ0E
−1
d Qmnd − k0dPmnd + [A∗ + a0(E−1

m − 1)]Pmnd,

Q̇mnd = L∗Qmnd = −γ0Qmnd + k0E
1
d(dPmnd) + [A∗ + a(E−1

m − 1)]Qmnd,
(3)

where A∗ is the adjoint of A. That is,

A∗ = γm(E1
m − 1)m+ bm(E−1

n − 1) + γn(E1
n − 1)n+ k1(E2

nE
−1
d − 1)n(n− 1) + γ1(E−2

n E1
d − 1)d.

To investigate the evolution of the concentration variables, we consider the variables

x = M/K, y = N/K, z = D/K (4)
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on the rescaled lattice N3/K. Correspondingly, the infinitesimal generator L̃ on the rescaled lattice has the form

L̃h(0, x, y, z) =Kk0z [h(1, x, y, z)− h(0, x, y, z)] +KÃh(0, x, y, z) +Kã0(E1
M − 1)h(0, x, y, z),

L̃h(1, x, y, z) =Kγ̃0 [h(0, x, y, z)− h(1, x, y, z)] +KÃh(1, x, y, z) +Kã(E1
M − 1)h(1, x, y, z), (5)

where the rescaled operator

Ãf(x, y, z) =γny(E−1
N − 1)f(x, y, z) + γmx(E−1

M − 1)f(x, y, z) + bx(E1
N − 1)f(x, y, z)

+k̃1y
2(E−2

M E1
D − 1)f(x, y, z) + γ1z(E

2
NE−1

D − 1)f(x, y, z).
(6)

Define u(x, y, z) = h(0, x, y, z), v(x, y, z) = h(1, x, y, z), ε = K−1, then we have the backward equations for the
rescaled dynamics through Taylor expansion

du

dt
=ε−1k0z(v(x, y, z)− u(x, y, z)) +Au+ ã0∂xu+ o(ε),

dv

dt
=ε−1γ̃0(u(x, y, z)− v(x, y, z)) +Av + ã∂xv + o(ε), (7)

where

γ̃0 = γ0/K, ã = a/K, ã0 = a0/K, k̃1 = Kk1. (8)

The operator A is the differentiation form of Ã as

Af(x, y, z) =− γny∂yf(x, y, z)− γmx∂xf(x, y, z) + bx∂yf(x, y, z)

+k̃1y
2(−2∂yf(x, y, z) + ∂zf(x, y, z)) + γ1z(2∂yf(x, y, z)− ∂zf(x, y, z)).

(9)

From (7), the slow scale equation can be obtained by a weighted summation

d[γ̃0u+ k0zv]

dt
=(bx− γny − 2k̃1y

2 + 2γ1z)(k0z∂yv + γ̃0∂yu)− γmx(k0z∂xv + γ̃0∂xu)

+ã0γ̃0∂xu+ ãk0z∂xv + (k̃1y
2 − γ1z)(k0z∂zv + γ̃0∂zu) + o(ε).

(10)

By a perturbation expansion

u(x, y, z) = u0(x, y, z) + εu1(x, y, z) + ε2u2(x, y, z) + o(ε2),

v(x, y, z) = v0(x, y, z) + εv1(x, y, z) + ε2v2(x, y, z) + o(ε2),

we find that the leading term O(ε−1) of (7) gives

u0(x, y, z) = v0(x, y, z) (11)

and (10) gives

du0(x, y, z)

dt
= (bx− γny − 2k̃1y

2 + 2γ1z)∂yu0 − γmx∂xu0 +
ã0γ̃0 + ãk0z

γ̃0 + k0z
∂xu0 + (k̃1y

2 − γ1z)∂zu0. (12)

This equation exactly corresponds to the backward equation of the deterministic process

dx

dt
=
ã0γ̃0 + ãk0z

γ̃0 + k0z
− γx,

dy

dt
=bx− γny − 2k̃1y

2 + 2γ1z,

dz

dt
=k̃1y

2 − γ1z. (13)

Transforming back to M,N,D variables according to (4), we obtain

dM

dt
=
a0γ0 + ak0D

γ0 + k0D
− γmM,

dN

dt
=bM − γnN − 2k1N

2 + 2γ1D,

dD

dt
=k1N

2 − γ1D. (14)
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This is exactly the mean field ODEs satisfied by the number of mRNAs, proteins and dimers.
The steady states of Eq. (14) satisfy

γmk0k1b
2

γ1γ2
n

M3 − ak0k1b
2

γ1γ2
n

M2 + γ0γmM − a0γ0 = 0,

N =
b

γn
M,

D =
k1

γ1
M2.

(15)

It is easy to find that the system (15) has three positive solutions. We denote them as (Mi, Ni, Di) (i = 1, 2, 3),
where M1 < M2 < M3. A linearized stability analysis tells us these three states have different stability property. The
Jacobian of ODEs (14) is−γm 0 (a−a0)k0γ0

(γ0+k0D)2

b −(4k1N + γn) 2γ1

0 2k1N −γ1

 . (16)

When the parameters assume values k0 = 1, r0 = 50, a0 = 0.4, a = 400, b = 40, γm = 10, γn = 1, k1 = 0.0002, and
γ1 = 2, the Jacobian matrix (16) has eigenvalues

λ = −9.8224,−0.2467,−3.8710 at (M1, N1, D1),

λ = −9.9971,−0.9765,−2.0276 at (M3, N3, D3).

They are stable nodes. On the other hand, the eigenvalues

λ = −9.5176, 0.2414,−4.0625 at (M2, N2, D2).

Thus it is a saddle.
The parameter values we used above are based on the references [2] and [3]. Their biological relevance can be

referred to the Table I below (we assume the volume of a prokaryotic cell to be 3 µm3 and the number of amino acids
of one protein to be 500).

TABLE I: The biological relevance of the parameter values

Parameters In Refs. Unit Transformed to our model Normalized by γn Value we used

k0 (DNA activate) 2.8e+7 [4] s−1M−1 0.0066 16.5 1

γ0 (DNA inactivate) 0.022 [4] s−1 0.022 55 50

γm (mRNA decay) 5∼10 [5] min (half-life) 0.0048∼0.0024 12∼6 10

γn (protein decay) 60 [6] min (half-life) 0.0004 1 1

a (transcription) 45 [7] bases/sec 0.03 75 400

b (translation) 15 [7] residues/sec 0.03 75 40

In addition, we choose the values of parameters k1 and γ1 based on the Ref. [8] (the number of dimers per
exponentially growing cell is around 113).

II. COMPARISON OF HAMILTONIANS

In this section, we will compare the differences between the Hamiltonian obtained by our approach and the Hamil-
tonian derived from WKB asymptotics, e.g. what was taken in [2].

Recall that our Hamiltonian derived from the large deviation theory [9,10] has the form

H(x,p) = A(x,p) + [as+ a0(1− s)](epx − 1)− (
√
k0z(1− s)−

√
γ0s)

2, (17)

where x = (x, y, z), p = (px, py, pz), s = 1/2 + t/(2
√
t2 + 4), t = (k0zγ0)−1/2[(a− a0)(epx − 1) + k0z − γ0], and

A(x,p) = γmx(e−px − 1) + bx(epy − 1) + γny(e−py − 1) + k1y
2(e−2py+pz − 1) + γ1z(e

2py−pz − 1).
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To obtain the Hamiltonian from WKB approach, we utilize the chemical master equation (3). In steady state, we
have

Qmnd = γ−1
0 E1

d{k0d−A∗ − a0(E−1
m − 1)}Pmnd. (18)

So we get

(A∗ + a0(E−1
m − 1))Pmnd + γ−1

0 [A∗ + a(E−1
m − 1)][k0d−A∗ − a0(E−1

m − 1)]Pmnd = 0. (19)

Denote (x, y, z) = (m/K,n/K, d/K) and P (x, y, z) ≡ Pmnd, we obtain the continuous approximation of the CMEs by
applying the same scaling in Section I

(A∗ − a0∂x)P (x, y, z) + [A∗ − a∂x][k0z −A∗ + a0∂x]P (x, y, z) = 0, (20)

where A∗ is the adjoint of A appeared in Section I. Plugging the WKB ansatz P (x, y, z) ∼ e−KS(x,y,z) into (20) and
keeping the leading terms, we get a Hamilton-Jacobi equation for S(x, y, z) as HWKB(x,∇xS) = 0 with Hamiltonian

HWKB(x,p) = A(x,p)− a0(epx − 1) + γ−1
0 [A(x,p) + a(epx − 1)][k0z + a0(epx − 1)−A(x,p)]. (21)

Here A(x,p) is the same as that containted in (17). One may find at the first sight that the Hamiltonian HWKB is
quite different from the H in (17). Furthermore HWKB is complex to be used.

We have proved in the main text that our Hamiltonian H is strictly convex and pointed out that HWKB does not
guarantee such a property. Indeed, in our parameter setup, we may easily find for example if (x, y, z) = (27, 755, 5)
and (px, py, pz) = (0.01, 0.01, 0.01), the eigenvalues of ∇2

pH
WKB are (-653.5176,1645.6911,2143.6604). The negative

eigenvalue means HWKB is not convex even when x, y, z are all in the physically meaningful domain. Of course, this
choice of x,p is based on a random sampling in the phase space. One can find the area for HWKB to be non-convex
is much larger than one single point. It is also found in our computations that this non-convexity leads to breakdown
or very slow convergence of the algorithm.

III. SCALE INDEPENDENCE ON THE CHOICE OF SYSTEM SIZE

We will prove the scale independence on the choice of system size for general chemical kinetic systems in this section.
The specification to our concrete model is straightforward. The overall analysis tells us that the different choices of
system size V (denoted as K in the main body of the paper) lead to equivalent results with the correct parameter
rescaling, which is essential for the analysis.

Let us consider the classical set-up for the chemical reactions with infinitesimal generator

Lf(x) =

M∑
j=1

aj(x; θ) (f(x+ νj)− f(x)) , x ∈ NN (22)

where θ is the parameters appearing in the system. Suppose the propensity functions satisfy the scaling

aj(V x;V αθ) = V aj(x; θ) (23)

where α ∈ R corresponds to the scaling relation of the parameters with the system size V . In realistic situations, α
usually takes values in {1, 0,−1, . . .}.

For a fixed system and parameter θ0 with different choices of system size Vi (i = 1, 2), we define

θVi0 = V −αi θ0, yVi = V −1
i x. (24)

where the superscripts characterize the dependence on Vi instead of the power of an exponent. It is not difficult to
show that the large volume limit of this process when Vi →∞ is

dyVi

dt
=

M∑
j=1

aj(y
Vi ; θVi0 )νj , yVi ∈ RN (25)

The fixed points of the above reaction rate equations satisfies

M∑
j=1

aj(y
Vi ; θVi0 )νj = 0 (26)
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It is straightforward to see that the fixed points {yVi∗,k}Kk=1 for two choices of the system size have the relation

V1y
V1

∗,k = V2y
V2

∗,k, k = 1, 2, . . . ,K (27)

from (23). The Hamiltonian in the large deviation theory has the form

H(yVi ,pVi) =

M∑
j=1

aj(y
Vi ; θVi0 )

[
exp

(
pVi · νj

)
− 1

]
. (28)

The transition path connecting different fixed points in time T satisfies the Hamiltonian dynamics

dyVi

dt
=

M∑
j=1

aj(y
Vi ; θVi0 )νj exp

(
pVi · νj

)
(29)

dpVi

dt
= −

M∑
j=1

∇yaj(yVi ; θVi0 )

[
exp

(
pVi · νj

)
− 1

]
(30)

with boundary conditions

yVi(0) = yVi∗,k1 , yVi(T ) = yVi∗,k2 . (31)

It is easy to observe that if{
yVi(t),pVi(t);yVi∗,k1 ,y

Vi
∗,k2 , aj(y

Vi ; θVi0 )
}

(32)

is a solution, where the last three variables in the parenthesis represents the related boundary points and reaction
rates. Then{

Viy
Vi(t),pVi(t);Viy

Vi
∗,k1 , Viy

Vi
∗,k2 , aj(Viy

Vi ;V αi θ
Vi
0 )
}

(33)

is also a solution by the scaling (23) and

∇yaj(V y;V αθ) = ∇yaj(y; θ) (34)

by direct differentiation with respect to y to both sides of (23). This explains the scale independence of the system
with respect to the choice of system size V . The key point is that the choice of V does not matter but the scaling
relation (23) is crucial for the considered system.

The above analysis can be generalized to the system with multiple parameters and condition

aj(V x;V α1θ1, V
α2θ2, . . . , V

αmθm) = V aj(x; θ1, θ2, . . . , θm) (35)

or more generally

aj(x; θ1, θ2, . . . , θm) = ãj(x; θ1, θ2, . . . , θm) + V −lbj(x; θ1, θ2, . . . , θm), l ≥ 1, ãj , bj ∼ O(1) (36)

such that ãj satisfies the relation (35) [11].
All of the analysis generalizes to the considered genetic switching case without any difficulty.

IV. INTRODUCTION OF THE GMAM

For the ease of readers, we here give a brief synopsis of the Geometric Minimum Action Method (gMAM), one can
have a more detailed reading by reference [12].

The geometric minimum action method (gMAM) is a variant of the minimum action method (MAM)13. Both of
them are going to minimize the action functional required to compute quasi-potential V (x1, x2) in Freidlin-Wentzell
theory and finding the minimizer.

For the presence of small random perturbations in dynamical systems, the behavior of the systems can’t be described
by the deterministic models all the time and the effect of the noise becomes ubiquitous. When event with very little
likelihood occurs, large-deviations theory gives a rough estimate for the probability that the trajectory Xε(t), t ∈
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[0, T ], T <∞, of the random dynamical system lies in a small neighborhood around a given path ψ ∈ C(0, T ), where
C(0, T ) denotes the space of all continuous functions mapping from [0, T ] into Rn. The theory asserts that, for σ and
ε sufficiently small,

Px{ sup
0≤t≤T

|Xε(t)− ψ(t)| ≤ δ} ≈ exp(−ε−1ST (ψ)), (37)

where Px denotes the probability conditioned on Xε(0) = x and assume ψ(0) = x. The action can be written as

ST (ψ) =

{ ∫ T
0
L(ψ, ψ̇)dt if ψ ∈ C(0, T ) is absolutely continuous and the integral converges,

+∞ otherwise,
(38)

where the Lagrangian L(x, y) is given by

L(x, y) = sup
θ∈Rn

(〈y, θ〉 −H(x, θ)). (39)

Here 〈·, ·〉 denotes the Euclidean scalar product in Rn and H(x, θ) is the Hamiltonian.
One can obtain the quasi-potential of a system by minimize its action functional

V (x1, x2) = inf
T>0

inf
ψ∈C̄x2x1 (0,T )

ST (ψ), (40)

where C̄x2
x1

(0, T ) denotes the space of all absolutely continuous functions f : [0, T ] → Rn such that f(0) = x1 and
f(T ) = x2. This is a double minimization problem. The key idea behind the gMAM is to reformulate the Freidlin-
Wentzell action functional on the space of curves, thus eliminates the minimization problem to only the spacial
dimension, instead of the double minimization on both spacial and temporal dimensions in MAM.

Now we skip the proof and go straight to the essence and algorithm of the gMAM. The key idea is to reformulate
(40) geometrically in terms of curves γ = {ϕ(α) | α ∈ [0, 1]}, where ϕ : [0, 1]→ Rn is an arbitrary parametrization of
the curve γ. The main result in this direction is that the quasi-potential (40) can be expressed as

V (x1, x2) = inf
ϕ∈C̄x2x1 (0,1)

Ŝ(ϕ) with Ŝ(ϕ) = sup
ϑ:[0,1]→Rn,H(ϕ,ϑ)≡0

∫ 1

0

〈ϕ′, ϑ〉dα (41)

=

∫ 1

0

〈ϕ′, ϑ̂(ϕ,ϕ′)〉dα (42)

=

∫ 1

0

L(ϕ, λϕ′)

λ
dα, λ = λ(ϕ,ϕ′). (43)

Here, the functions ϑ̂(x, y) is implicitly defined for all x ∈ D and y ∈ Rn\{0} as the unique solution ϑ̂, λ ∈ Rn× [0,∞)
of the system

H(x, ϑ̂) = 0, Hθ(x, ϑ̂) = λy, λ ≥ 0. (44)

As to our problem, Freidlin-Wentzell theory only provide the form of Hamiltonian. Though for some special cases,
such as SDE

dXε(t) = b(Xε(t))dt+
√
εσ(Xε(t))dW (t), (45)

the form of Lagrangian can be solved explicitly by Legendre transform of Hamiltonian, there is no close form of

Lagrangian generally. So the algorithm of gMAM can be expressed in two steps. The first is solve (44) to have ϑ̂ and

λ, we call it innerloop. The second it that assuming ϑ̂ and λ are known, design a steepest-decent algorithm to solve
Euler-Lagrange equation, we call it outerloop. Of course, if explicit form of Lagrangian is available, innerloop step
can be ignored.

A. The Outer Loop

The Euler-Lagrange equation of variational problem (41) is given by([12]):{
− λ2ϕ′′ + λHθxϕ

′ −HθθHx − λλ′ϕ′ = 0

ϕ(0) = x1, ϕ(1) = x2.
(46)
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whereλ = 〈Hθ,ϕ′〉
|ϕ′|2 , and Hx, Hθ, Hθθ are evaluated at (ϕ′, ϑ̂(ϕ,ϕ′)).

In the steepest-descent algorithm, we use τ to represent time and α still the curve parameter. First we discretize
ϕ(τ, α) both in τ and α; i.e., we define ϕki = ϕ(k∆τ, i∆α), k ∈ N0, i = 0, . . . , N, where ∆τ is the time step and
∆α = 1/N if we discretize the curve into N + 1 points. Then we discretize the initial condition ϕ(0, α) to obtain
{ϕ0

i }i=0,...,N and, for k ≥ 0, use the following two-step method to update these points:

(1) Given ϕki , compute ϕ′
k
i = (ϕki+1 − ϕki−1)/(2/N), ϑ̂ki = ϑ̂(ϕki , ϕ

′k
i ), and λki = 〈Hθ(ϕ

k
i , ϑ̂

k
i ), ϕ′

k
i 〉/|ϕ′

k
i |2 for i =

1, . . . , N − 1, and set λk0 = 3λk1 − 3λk2 + λk3 and λkN = 3λkN−1 − 3λkN−2 + λkN−3. Finally, compute λ′
k
i =

(λki+1 − λki−1)/(2/N) for i = 1, . . . , N − 1.

(2) Let {ϕ̃i}i=0,...,N be the solution of the linear system
ϕ̃i − ϕki

∆τ
= (λki )2 ϕ̃i+1 − 2ϕ̃i + ϕ̃i−1

1/N2
− λkiHθxϕ

′k
i +HθθHx + λki λ

′k
i ϕ
′k
i , i = 1, . . . , N − 1,

ϕ̃0 = x1,

ϕ̃N = x2,

(47)

where Hθx, Hθθ, and Hx are evaluated at (ϕki , ϑ̂
k
i ).

(3) Interpolate a curve across {ϕ̃i}i=0,...,N and discretize this curve to find {ϕk+1
i }i=0,...,N so that the prescribed

constraint on the parametrization of ϕ is satisfied.

(4) Repeat until some stopping criterion is fulfilled.

B. Evaluating the Action

After the outer loop above, one can easily compute the value of the action by adding the following steps:

(5) Given {ϕki }i=0,...,N , compute ϕ′
k
i , ϑ̂

k
i , and λki as in Step 1 for every i = 0, . . . , N.

(6) Return the action

Ŝ =
1

N

(3

2
〈ϕ′ki , ϑ̂k1〉+

N−2∑
i=2

〈ϕ′ki , ϑ̂ki 〉+
3

2
〈ϕ′kN−1, ϑ̂

k
N−1〉

)
. (48)

C. The Inner Loop (Computing ϑ̂(ϕ,ϕ′))

In order to compute ϑ̂(ϕ,ϕ′) from (44), we use function h(·) to denote the strictly convex and twice-differentiable
function H(ϕ, ·). The quadratically convergent routine is as follows. For p ≥ 0 :

(1)

ϑ̂p+1 := ϑ̂p + h−1
θθ

(
λ̃(ϑ̂p)ϕ′ − hθ

)
with λ̃(θ̂p) :=

(
〈hθ, h−1

θθ hθ〉 − 2h

〈ϕ′, h−1
θθ ϕ

′〉

)1/2

+

, (49)

where w
1/2
+ =

√
w if w ≥ 0 and w

1/2
+ = 0 otherwise, and where h, hθ, and hθθ are evaluated at ϑ̂p.

(2) Repeat until convergence.

It is shown in [12] that this algorithm guarantees local quadratic convergence. So when applying this algorithm,
we need a proper initial guess of ϑ. However, we usually have little knowledge about ϑ. If one find in a particular
problem, innerloop does not converge, we suggest the following improvement.

Equation (44) can be viewed as Lagrange multiplier method that solves constrained optimization problem:{
max〈ϑ, ϕ′〉
s.t. h(ϑ) = 0

(50)
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So we can first apply a quadratic penalty method on this optimization problem. That is, we solve unconstrained
problem

min
1

2
µh2(ϑ)− 〈ϑ, ϕ′〉 (51)

where µ is a penalty factor. We can simply use Newton method with a proper line search to solve this problem. We
know from [14] that Newton method with exact line search guarantees global convergence. Although this step may
be a little expansive in computing, we need only a few step to offer the original innerloop a proper initial value. It is
also easy to show that this strategy guarantees global convergence.

V. STOCHASTIC SIMULATION

To check our theoretical predictions, we performed Monte Carlo (MC) simulations using the Gillespie algorithm
[15] and implemented it in Microsoft Visual C++ Express 2010.

A. Transition Trajectory from MC Simulation

The value of each parameter chosen for simulation are: k0 = 1, r0 = 50, a0 = 0.4, a = 400, b = 40, γm =
10, γn = 1, k1 = 0.0002, and γ1 = 2. With these parameters, the mean numbers of mRNA (m) , protein (n) and
dimer (d) obtained from the deterministic equations are: moff = 0.04,mon = 29.4, noff = 1.6, non = 1175.1, doff =
0.0003, don = 138.1. There are two kinds of typical criterion for switch in MC simulation. One is to check whether the
system has passed through the stable manifold of the saddle-node point, the other is to define two small boxes around
each stable point and check whether the system has jumped from one box to the other. Because between two switches,
most of the time is wasted in randomly walking around one of the two stable points and after passing the stable
manifold of the saddle-node point, the system converges quickly to the corresponding stable point. Therefore, this
two kinds of criterion mentioned above is almost the same. Here for convenience, in Fig. 2 we adopted the second kind
of criterion and in Fig. 4 the first kind. The two boxes are defined as below: {off: moff ±2.5, noff ±20.0, doff ±3.5}
and {on: mon ± 5.0, non ± 70.0, don ± 10.} We use the following method to record each transition trajectory:

(1) Determine the system being in which box.

(2) Wait until the system goes out of this box, and note down the trajectory to a memory unit.

(3) If the system comes back to the same box, free the memory unit and goes to step (2); if the system goes into
the other box, output the transition trajectory in the memory unit and free it.

(4) Repeat from step (2) until the stopping criterion is fulfilled.

B. Mean Switching Time (MST) from MC simulation

Here we use Mean First-Passage Time (MFPT) to approximately represent MST. Because the system is three
dimensional, in each set of parameters we first set the system at the corresponding initial state, and run MC simulation
until the system crosses the saddle node (thus crosses the stable manifold of saddle node). For each set of parameters,
we run MC simulation 1000 times.

C. Local Property: Fluctuation around Stable States

As to the inconsistent portion between analytical and simulation results (the left part of the line with slow promoter
transition rates in Fig. 5A), the reason is below. In Fig. 5, from right to left the high stable state is losing its stability.
During this process, the standard deviation is increasing while the distance between high stable point and saddle point
is decreasing. Because our analytical results were based on the local information around high stable state, and the
MC simulation results were constricted by the stability of the high stable state. Therefore the inconsistency becomes
apparent when the noise is high.



9

VI. ANALYSIS OF UPHILL PATH

We will do more analysis about uphill path for both diffusion process and chemical jump process. Recall that that
the uphill path has the form

ẋ = ∇pH(x,∇xS). (52)

For the diffusion process

ϕ̇ = b(ϕ) +
√
εσ(ϕ) · ẇ (53)

where wj are independent temporal Gaussian white noise with properties Eẇj(t) = 0, Eẇj(t)ẇk(s) = δjkδ(t − s).
The Hamiltonian is H(ϕ,p) = b(ϕ) · p+ 1

2p
T · a · p and the diffusion matrix a(ϕ) = σ · σT . With this specific form

we obtain the uphill path

ẋ = b(x) + a · ∇xS(x). (54)

If the drift b has the decomposition b(x) = −a · ∇xU(x) + l(x) such that l(x) · ∇xU = 0, then we have the result
S(x) = 2U(x)16, which gives the rationale why S(x) is called quasi-potential16. This orthogonal decomposition also
tells that the uphill path is given by ẋ = a(x) · ∇U(x) + l(x).

For the general chemical jump processes, the similar picture still holds, but the argument on the orthogonal type
decomposition of the drift is no longer valid if we recall that the uphill dynamics is ẋ = ∇pH(x,∇xS). In general,
this form does not permit to specify some matrix a and make a meaningful decomposition because of full nonlinearity
of H. However, it is instructive to do analysis under the condition that p is small. Recall that the Hamiltonian of a
chemical jump process has the form

H(x,p) =

M∑
j=1

aj (x)(ep·νj − 1) , (55)

thus the uphill path

ẋ =

M∑
j=1

aj(x)νje
∇xS·νj = b(x) +

M∑
j=1

aj(x)νj
(
e∇xS·νj − 1

)
(56)

where b(x) =
∑M
j=1 aj(x)νj is exactly the right hand side of the deterministic mean field dynamics. If p is small, we

can make the approximation

e∇xS·νj ≈ 1 +∇xS · νj , (57)

then (56) leads to

ẋ = b(x) +

M∑
j=1

aj(x)νj ⊗ νj · ∇xS. (58)

This is exactly the uphill path for chemical Langevin dynamics

ϕ̇ =

M∑
j=1

aj(ϕ)νj +

M∑
j=1

√
aj(ϕ)νj · ẇj , (59)

This analysis tells us that near the critical points, that is, the optimal uphill path of a chemical jumping process can
be well approximated by the uphill path of a chemical Langevin dynamics. The situation with DNA fast switching is
discussed in the main text.

VII. APPLICATION IN TRANSCRIPTIONAL CASCADES

The model we used was based on the previous work of Sara Hooshangi and Ron Weiss, etc17. In their work, they
synthesized transcriptional cascades comprising one, two, and three repression stages and analyzed the sensitivity and
noise propagation as a function of network complexity. The original gene network they used is shown in Fig. S1.
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FIG. S1: The network design of three synthetic transcriptional cascades17. In all circuits, TetR is expressed constitutively
from PlacIq promoter. aTc, which freely diffuses into the cell, binds TetR and prevents the repression of PLtet−O1. (A) In the
one-stage cascade (circuit 1), eyfp expression is under the control of TetR repressor. (B) Circuit 2 has an additional repression
stage where the expression of eyfp is controlled by LacI protein, which can be repressed by the TeR repressor. (C) In circuit
3, eyfp expression is controlled by the CI repressor. cI expression is controlled by LacI protein, which is under the control of
TetR.

A. Step 1: Deterministic Model Described by the ODEs

To further illustrate the powerful visual effect of quasi-potential energy landscape and the abundant quantitative
information it contains, here we simplify the network by modeling each stage as a Gillespies birth-death process and
reaction rate of each stage is governed by a Hill function. The simplified model is

x→ y1 a y2 a y3

Here, x denotes the concentration of original inducing signal atc, and y1, y2, y3 correspond to the concentration of
GFP in each cascade, i.e. the expression level of protein LacI, CI, Eyfp, respectively. This model involves 9 reactions
and we state the model in Table II as below.

TABLE II: The list of reactions in the transcriptional cascades model

Reaction Propensity Function Stoichiometric Vector

∅ −→ y1 a0 (1, 0, 0)

∅ −→ y2 a0 (0, 1, 0)

∅ −→ y3 a0 (0, 0, 1)

x −→ y1 f1(x) (1, 0, 0)

y1 −→ y2 f2(y1) (0, 1, 0)

y2 −→ y3 f3(y2) (0, 0, 1)

y1 −→ ∅ γ1y1 (−1, 0, 0)

y2 −→ ∅ γ2y2 (0,−1, 0)

y3 −→ ∅ γ3y3 (0, 0,−1)

Here γi = 1 (i = 1, 2, 3), fi(u) are Hill functions with form

fi(u) =

(ai − a0)

(
u

Ki

)n
1 +

(
u

Ki

)n , i = 1, 2, 3.

x is a parameter used to denote the concentration of aTc, a0 the basal production rate of each protein, ai the maximum
production rate of each protein, yi the output concentration in circuit i, Ki the microscopic dissociation constant,
i = 1, 2, 3, and n the Hill coefficient. The values of parameters are a0 = 1, n = 2, ai = 101, Ki = 10, i = 1, 2, 3. The
corresponding deterministic equations are given by

dy1

dt
=a0 +

(a1 − a0)

(
x

K1

)n
1 +

(
x

K1

)n − y1,

dy2

dt
=a0 +

a2 − a0

1 +

(
y1

K2

)n − y2,

dy3

dt
=a0 +

a3 − a0

1 +

(
y2

K3

)n − y3.

(60)
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B. Step 2: Hamiltonian Derived from the Large Deviation Theory

The stochastic model is the Gillespie type birth-death process without DNA switching. Recall routines stated in
section II and equation (17), the Hamiltonian of this system is given by

H(y,p) =

3∑
i=1

a0(epi − 1) + fi(yi−1)(epi − 1) + (e−pi − 1), (61)

where y = (y1, y2, y3),p = (p1, p2, p3). Here we denote y0 ≡ x.

C. Step 3: Constructing the Quasi-potential Energy Landscape

Here we skip the process of computation and directly give the final results. Detailed information of gMAM may be
found in section IV. In Fig. 6, we show the The probability distribution of the final output as a function of inducing
signal concentration with different depths of cascades. Here we use the information from Fig. 6 to directly compute
the coefficient of variation (CV) as a function of mean output (see Fig. S2). We also show the MC simulation results
of our simplified model described by Eq. (60). From Fig. S2 we can see that as the total layers of cascades increase,
the corresponding fluctuation of output (described by CV) increases, especially when the level of output is in its
intermediate state.

The Hill coefficient for each response curve in Fig. 6 is calculated as follows. In each subfigure of Fig. 6, we find out
the maximum output value induced by each input signal, then we have three functions y1(x), y2(x), y3(x). Actually,
they are consistent with the results by setting each equation to zero in Eq. (60). Then for i = 1, 2, 3, we have

yi(x
(i)
1 ) =0.1(a1 − a0) + a0,

yi(x
(i)
2 ) =0.9(a1 − a0) + a0.

Thus the Hill coefficient n for each cascade is

n(1) =
ln 81

ln

(
x

(1)
2

x
(1)
1

) , n(2) =
ln 81

ln

(
x

(2)
1

x
(2)
2

) , n(3) =
ln 81

ln

(
x

(3)
2

x
(3)
1

) .

FIG. S2: Coefficient of variation as a function of mean output is used to show the fluctuation in the transition region.
Analytical results obtained directly from Fig. 6 is shown in solid line, while MC simulation is shown in discrete markers.
Circuit 1 corresponds to red solid line and red square, circuit 2 magenta solid line and magenta circle, circuit 3 blue solid line
and blue diamond.
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