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On the Poisson approximation to photon distribution for faint lasers
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Abstract

The photon number statistics for attenuated faint laser pulses is quantitatively studied. It confirms that, even for a non-Poissonian laser source,
after being attenuated into faint laser with ultra-low mean photon number, the photon number distribution would approximately be a Poisson dis-
tribution. The error of such an approximation is estimated, and numerical tests verify our theoretical analysis. This work lays a sound mathematical
foundation for the well-known intuitive idea which has been widely used in quantum cryptography.
© 2007 Elsevier B.V. All rights reserved.
1. Introduction

The security of Quantum Key Distribution (QKD) is based
on the non-cloning principle of an unknown quantum state [1].
In the implement of QKD based on BB84 protocol [2], one
expects that each pulse contains only one photon. If not, the
eavesdropper can acquire information using beamsplitter attack
[3] without exposing its existence. However, since an ideal sin-
gle photon state is difficult to prepare, practically, faint laser
pulse with ultra-low mean photon number is used as a conve-
nient realization of pseudo-single photon source [4].

By letting a laser source pass through a strong attenuator
we get faint laser pulse. For security concern the mean photon
number in each faint laser pulse is kept very small (about 0.1).
In the literature, the photon number in faint laser is treated as
Poissonian distributed. More precisely, the probability of find-
ing n photons in each faint laser pulse is e−〈n〉〈n〉n/n!, where
〈n〉 is the mean photon number in each pulse. It is all right if the
input laser before attenuation is Poisson. However, practically
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we may have input laser whose photon number statistics is not
Poisson [5]. In this case, the attenuated laser may not be Poisson
either. But there is a common belief that no matter what distri-
bution the input laser is, if we attenuate it into a faint laser with
sufficient small mean photon number, then Poisson distribution
would be a good approximation of photon number distribution
in the faint laser pulse. So far, however, this claim has not been
mathematical rigorously proved, which is the motivation of this
work.

We investigated the quantitative relation between photon
number distributions before and after the attenuation. We find
that, even if the input laser source is not Poissonian, after strong
attenuation, the photon number distribution in the faint laser can
still approximately be a Poisson distribution. The errors of this
approximation is estimated and numerical examples are carried
out. The numerical result coincide with theoretical estimation.

2. Preliminary

Consider N independent particles (photons in laser pulses)
passing through an attenuator. The attenuating coefficient is η

(0 � η � 1), which means each particle has a probability of η to
penetrate the attenuator. We define X to be the number of parti-
cles before decay (Input), and Xη to be the number of particles
after decay (Output). X and Xη are random variables taking val-
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ues in the natural number system N, and their probability mass
functions (PMF) are P(N) and Pη(n), respectively.

P(N) and Pη(n) is connected by the binomial decay trans-
formation [6]

(1)Pη(n) =
∞∑

N=n

(
N

n

)
ηn(1 − η)N−nP (N),

where the parameter η is the attenuating coefficient we men-
tioned above. It is easy to check that Pη(n) � 0, ∀n ∈ N, and∑∞

n=0 Pη(n) = ∑∞
N=0 P(N) = 1, which indicates Pη is indeed

a PMF. So the binomial decay transformation is a map from
PMFs to PMFs. Here we present some properties of it.

Lemma 1. For any positive integer l, we have

E

[
l−1∏
i=0

(Xη − i)

]
= ηlE

[
l−1∏
i=0

(X − i)

]
.

Proof. By the definition of expectation and Eq. (1),

E

[
l−1∏
i=0

(Xη − i)

]

=
∞∑
n=l

[
l−1∏
i=0

(n − i)

] ∞∑
N=n

(
N

n

)
ηn(1 − η)N−nP (N)

=
∞∑

N=l

P (N)

N∑
n=l

[
l−1∏
i=0

(n − i)

](
N

n

)
ηn(1 − η)N−n

= ηl

∞∑
N=l

[
l−1∏
i=0

(N − i)

]
P(N)

= ηlE

[
l−1∏
i=0

(X − i)

]
. �

For l = 1, the result reduces to E(Xη) = ηE(X), which says
the expectation of attenuated distribution is exactly η times the
expectation of the input distribution.

Define P λ(n) the Poisson PMF with parameter λ, i.e.,
P λ(n) = e−λλn/n!, n ∈ N. It is a well-known fact that the bi-
nomial decay transformation preserves the Poisson character,
which is formulated in Lemma 2.

Lemma 2. If P(N) = P λ(N), then Pη(n) = P ηλ(n).

Proof. From Eq. (1),

Pη(n) =
∞∑

N=n

(
N

n

)
ηn(1 − η)N−nP λ(N)

= (ηλ)n

n!
∞∑

N=n

e−λ

(N − n)!
[
λ(1 − η)

]N−n

= (ηλ)n

n! e−ηλ

= P ηλ(n). �
3. Poisson approximation

From Lemma 2 we know that if P(N), the photon num-
ber distribution in the laser pulse before attenuation, is Poisson,
then Pη(n), the decayed distribution, is also Poisson. However,
practically P(N) may not be a Poisson distribution [5]. If so,
then Pη(n) is not a Poisson distribution, either. Nevertheless, It
is believed that faint laser with ultra-low mean photon number
can be, at least approximately, treated as Poisson distributed.
Now we shall verify this assertion.

Proposition. Suppose that X is a random variable whose PMF
is P(N). E(X) and Var(X) are the mean and variance of X,
respectively. For small positive value λ, choose the attenuating
coefficient η = λ/E(X). Then after a binomial decay transfor-
mation with parameter η, (i) the expectation of the decayed
random variable Xη is λ, and (ii) its PMF Pη satisfies

(2a)Pη(0) = 1 − λ + λ2

2
+ C(X)λ2 + O

(
λ3),

(2b)Pη(1) = λ − λ2 − 2C(X)λ2 + O
(
λ3),

(2c)Pη(2) = λ2

2
+ C(X)λ2 + O

(
λ3),

(2d)
∞∑

n=3

Pη(n) = O
(
λ3),

where C(X) ≡ Var(X)−E(X)

2E(X)2 .

Proof.
(i) From Lemma 1, we have

Eη(X) = ηE(X) = λ

E(X)
E(X) = λ.

So the expectation of Xη is λ.
(ii) The generating function of X is

G(z) =
∞∑

N=0

P(N)zN , z ∈ R.

Taking the nth order derivatives of G(z) with respect to z yields,

G(n)(z) =
∞∑

N=n

N(N − 1) · · · (N − n + 1)P (N)zN−n.

From Eq. (1), it follows,

Pη(n) =
∞∑

N=n

(
N

n

)
ηn(1 − η)N−nP (N)

= ηn

n!
∞∑

N=n

N(N − 1) · · · (N − n + 1)P (N)(1 − η)N−n

= ηn

n! G
(n)(1 − η).

Expanding G(n)(1 − η) into Taylor serials, in the case of n = 0,
one has

Pη(0) = G(1) − ηG′(1) + η2

G′′(1) + O
(
η3).
2
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By noticing

G(1) = 1,

G′(1) = E(X),

G′′(1) = Var(X) + [
E(X)

]2 − E(X),

we have

Pη(0) = 1 − ηE(X)

+ η2

2

[
Var(X) + [

E(X)
]2 − E(X)

] + O
(
η3).

Replace η with λ/E(X), and note that O(λ3) ∼ O(η3) because
E(X) is a constant once X is given, it follows

Pη(0) = 1 − λ + λ2

2
+ λ2 Var(X) − E(X)

2[E(X)]2
+ O

(
λ3)

= 1 − λ + λ2

2
+ C(X)λ2 + O

(
λ3).

Analogously, Eqs. (2b), (2c) can be derived. Finally,

∞∑
n=3

Pη(n) = 1 − [
Pη(0) + Pη(1) + Pη(2)

] = O
(
λ3),

which yields Eq. (2d). �
If we expand the Poisson distribution with expectation λ into

Taylor series, then we have

(3a)P λ(0) = 1 − λ + λ2

2
+ O

(
λ3),

(3b)P λ(1) = λ − λ2 + O
(
λ3),

(3c)P λ(2) = λ2

2
+ O

(
λ3),

(3d)
∞∑

n=3

P λ(n) = O
(
λ3).

By comparing Eqs. (3a)–(3d) with Eqs. (2a)–(2d), we see
that Pη(n) asymptotically approaches the Poisson distribution
P λ(n) for λ � 1. The error �(n) = Pη(n) − P λ(n) is

(4a)�(0) = λ2C(X) + O
(
λ3),

(4b)�(1) = −2λ2C(X) + O
(
λ3),

(4c)�(2) = λ2C(X) + O
(
λ3),

(4d)�(n) = O
(
λ3), n � 3.

Note that C(X) = [G2(X) − 1]/2, where G2(X) = E[X(X −
1)]/[E(X)]2 is the normalized second-order correlation coef-
ficient [7]. With Lemma 1 it is easy to show that G2(X) is
invariant under binomial decay transformation, i.e., for any
0 < η � 1, G2(Xη) = G2(X), which also means C(Xη) = C(X).

C(X) is crucial for estimating the error of a Poisson ap-
proximation. From Eqs. (4a)–(4c) we see that, when Var(X) =
E(X), for example if X is a Poisson distribution, then C(X) = 0
and the approximation error reduce to O(λ3). For some sin-
gular P(N), however, C(X) may become so big that Pη(n)

can no longer be well approximated by Poisson. Fortunately,
in practice the common photon number distributions, such as
super(sub)-Poisson distribution, Bose–Einstein distribution and
Gauss distribution, C(X) is small and λ2C(X) can be neglected
for λ � 1. This explains why we can treat photon number dis-
tribution in faint laser pulse as Poisson distribution.

C(X) also has close connection to the security of QKD.
When we use faint laser to simulate a single photon source in
QKD, it is important to estimate Pη(n > 1|n > 0), the probabil-
ity that a non-empty pulse contains more than one photon [4].
According to our estimation,

Pη(n > 1|n > 0) = 1 − Pη(0) − Pη(1)

1 − Pη(0)

≈
λ2

2 + C(X)λ2

λ − λ2

2 − C(X)λ2
.

Here we have neglected the λ3 and higher order terms. We fur-
ther simplify it by removing the λ2 terms in the denominator,
which gives

(5)Pη(n > 1|n > 0) ≈
[

1

2
+ C(X)

]
λ.

Since in QKD we want Pη(n > 1|n > 0) as small as possible,
Eq. (5) implies that the smaller C(X) is, the better for the secu-
rity concern. If the input distribution is Poisson, then C(X) = 0.
After we attenuate it to faint laser that contains an average of
0.1 photon in each pulse, which means λ = 0.1, we would have
Pη(n > 1|n > 0) = 0.05. Each non-empty faint laser pulse has
about 5% chance to contain more than one photon. If the in-
put laser X follows the Bose–Einstein distribution, then the
PMF is

(6)P(N) = E(X)N

[1 + E(X)]N+1
,

where E(X) is the mean photon number in the input laser pulse.
In this case, C(X) = 0.5 so Pη(n > 1|n > 0) ≈ λ. Again for
λ = 0.1 the probability for each non-empty faint laser pulse to
contain more than one photon is about 10%.

One might think if we use sub-Poisson laser (Var(X) <

E(X)) as input, then C(X) < 0 and Pη(n > 1|n > 0) would
become smaller. However, even if Var(X) = 0, we got C(X) =
−[2E(X)]−1, which is only slightly below zero because E(X)

is very big for practical laser pulse. So for strongly attenuated
faint laser, a Poisson distribution is almost the best distribution
one can expects in the sense that there hardly has any room
to reduce Pη(n > 1|n > 0) by attenuating some sub-Poisson
laser.

4. Numerical examples

Here we give two numerical examples. The results verify
theoretical estimates in the last section quite well.

The first example illustrates Pη(n) approaching P λ(n) as-
ymptotically as λ → 0. We choose X to obey the Bose–Einstein
distribution (see Eq. (6)). The expectation of X is set as E(X) =
100. For different λ, we computed the attenuated distributions
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Fig. 1. Comparison between Pη(n) and Pλ(n). Pη(n) is computed by Eq. (1)
with a given P(N), which is a Bose–Einstein distribution with expectation be-
ing 100. We choose η to be λ/100 for (a) λ = 1; (b) λ = 0.5 and (c) λ = 0.1,
respectively. Pλ(n) is the corresponding Poisson distribution with parame-
ter λ. Pη(n) (represent as ‘◦’s) and Pλ(n) (represent as ‘×’s) are plotted for
n = 0,1, . . . ,9 (since Pη(n) and Pλ(n) are neglecting small for big n). We
can see for λ = 1 and 0.5 the difference between Pη(n) and Pλ(n) is evident.
However, for λ = 0.1, the Poisson distribution Pλ(n) makes a very good ap-
proximation to Pη(n).

Pη(n) (λ = ηE(X)). In Fig. 1, the attenuated distributions
Pη(n) (represented in ‘◦’s) are compared with Poisson distri-
butions P λ(n) (represented as ‘×’s) for λ = 1, 0.5 and 0.1. As
we can see, the condition that λ � 1 is important for Poisson
approximation. If λ is large, this approximation may be bro-
ken.
Table 1
Approximation errors between Pη(n)s and Pλ(n)s. For a given Poisson distri-
bution with parameter λ0 = 100, we randomly perturb it to get a PMF P(N).
Pη(n) is then computed from P(N) by Eq. (1). We choose a proper η to let the
expectation of Pη(n) always be 0.1. �(n) = Pη(n) − Pλ(n) (λ = 0.1) is the
Poisson approximation error of Pη(n). Each row corresponds to an indepen-
dently perturbed P(N), and the value of λ2C(X) and �(n) for n = 0,1,2,3,4
are given in the table. It appears that generally �(1) ≈ 2�(0) ≈ 2�(2). And
�(0), �(1), �(2) are bounded by Eqs. (4a)–(4c)

λ2C(X) �(0) �(1) �(2) �(3) �(4)

0.0044 0.0010 −0.0019 0.0007 0.0001 0.0000
0.0037 0.0010 −0.0019 0.0007 0.0001 0.0000
0.0020 0.0007 −0.0012 0.0005 0.0001 0.0000
0.0016 0.0006 −0.0011 0.0005 0.0001 0.0000
0.0007 0.0003 −0.0006 0.0002 0.0000 0.0000

In the second example, we quantitatively study the approx-
imation errors �(n) = Pη(n) − P λ(n). The input distribution
P(N) is generated as follows: (i) Set P(N) initially as a Pois-
son distribution with parameter λ0 = 100; (ii) Randomly per-
turb the value of P(N) for some N ; (iii) Make sure P(N) � 0
and renormalize it so that P(N) is still a PMF. After this we
get a distribution P(N) perturbed from a Poisson distribution.
The random perturbation process helps to study the behavior of
the error and also has some physical meaning since practical
laser source is perturbed by random noise constantly. We want
the expectation of the attenuated distribution to be 0.1, which
can be achieved by choosing a proper attenuating coefficient η.
Then the attenuated distribution Pη(n) is computed with P(N)

by Eq. (1). Subtracting Pη(n) with the Poisson PMF which has
the same expectation as Pη(n), we get the approximation error
�(n) = Pη(n) − P λ(n). Table 1 lists the values of λ2C(X) and
�(n) for n = 0,1,2,3,4. Each row corresponds to an indepen-
dent trial. We can see that generally �(1) ≈ 2�(0) ≈ 2�(2)

and �(0), �(1), �(2) are all bounded by the theoretical esti-
mates Eqs. (4a)–(4c).
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