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Local Existence for the Dumbbell Model
of Polymeric Fluids
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ABSTRACT

A local existence and uniqueness theorem is proved for a micro-macro model
for polymeric fluid, as well as the property of the solution. The polymer stress
tensor is given by an integral which involves the solution of a diffusion equation,
the coefficient of this diffusion equation depends on the gradient of the solution
of the Navier–Stokes equation.
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1. INTRODUCTION

In this paper we prove the well-posedness of coupled kinetic–hydrodynamic
models for polymeric fluids. These models differ from traditional hydrodynamic
models by taking explicitly into account the micromechanical structure of the
polymers. The simplest class of micromechanical models which is capable of
reproducing some aspects of polymeric flow behavior is the class of dumbbell
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models. In these models, each polymer molecule is represented as two beads joined
together by elastic spring or rigid rod. For dilute polymer solutions, elastic dumbbell
models have been exclusively used for complex flow simulations. The configuration
of the spring then specifies the conformation of the polymer.

An incompressible fluid is subject to the following system of equations:

ut + �u · ��u + �p = �u + � · �� for x ∈ �� (1)

� · u = 0� for x ∈ �� (2)

u = 0� for x ∈ � = ��� (3)

where � is a bounded domain in �3 with smooth boundary. Here p and u denote
the pressure and the velocity field, respectively. All of the coefficients are normalized
to one in the equations. In contrast to traditional models of complex fluids which
express polymer stress � using empirical constitutive relations, � expresses the
polymer stress in terms of the microscopic conformations of the polymers

� = �g�Q�⊗Q� =
∫
�3

g�Q�⊗Q	dQ� (4)

where 	 obeys the Fokker–Planck equation

	t + �u · ��	 = −�Q · 
�� ·Q− g�Q��	�+�Q	
 (5)

Here we use subscript Q to denote the derivatives with respect to Q, without the
subscript, the differentiation is understood to be in x. Q is the independent variable
in the configuration space of the dumbbell and 	 (depending on x�Q, and t) is
configuration distribution function. � = ��u�T , g�Q� is a vector function, which
denotes the spring force between two beads. We refer the reader to Bird et al. (1987),
Doi and Edwards (1986), and Risken (1984) for the details.

An elastic dumbbell model has six configuration degrees of freedom. Two types
of elastic dumbbells are important in flow modeling. The first is the Hookean
dumbbell. In this model, the connector is a Hookean spring, and the connector force
g�Q� is given by g�Q� = Q. In this special case, we get from (1)–(5) a reduced system
of equations for u and �,

ut + �u · ��u + �p = �u + � · �� � · u = 0� (6)

�t + �u · ���− ��u�T �− ��u + �− I = 0
 (7)

In this way, one eliminates Q as an independent variable. This is the well-known
Oldroyd-B model. Its well-posedness has been studied by Guillopé and Saut (1990),
Lions and Masmoudi (2000) and its numerical simulation has been completed by
Feigl et al. (1995) and Laso and Öttinger (1993). However, their methods do not
seem to extend to more general cases when closed systems of equations such as
(6)–(7) are not available. The second type of model is done by using the force law

g�Q� = Q
1− �Q/Q0�

2

where Q, the length of the connector, is not allowed to exceed some fixed Q0. This
is known as the FENE model, for Finitely Extensible Non-linear Elastic dumbbell.
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In general, the spring force law should be nonlinear vector function. Assume
the nonlinear force

g�Q� = f��Q�2�Q (8)

where f satisfies the following condition:

(G) The function f is C�-smooth from 
0��� to �0���, and there exist
number � ≥ 0 and k > 0 such that lim�Q�→� f��Q�2�/�Q�� = k. Moreover,

lim sup
�Q�→�

�f ′��Q�2��/�Q��−2 ≤ C

and higher derivatives of f have at most polynomial growth as �Q� → �.

The recent resurgence of interest on (1)–(5) comes from chemical engineers
who are interested in designing stochastic modeling techniques for polymeric fluids.
One of the most popular approach uses the so-called Brownian configurational
fields (BCF) which is a stochastic field variable Q�x� t� that describes the local
conformation of the polymers Hulsen et al. (1997). For the simplest dumbbell
model, Q satisfies:

Qt + �u · ��Q = ��u�TQ− g�Q�+ v̇�t�� (9)

where v̇�t� is the temporal Gaussian white noise. Equation (6) is the Fokker–Planck
equation for (9). For smooth solutions the systems (1)–(5) and (1), (4), (9), are
equivalent. For one-dimensional shear flows, the convergence numerical analysis
was carried out in Li and Zhang (2002) and Jourdain et al. (2002) for linear spring
force and well-posedness in Jourdain et al. (2004) for nonlinear spring force using
the specific structure of the shear flow system. To extend such analysis to high
dimension, a crucial step (Li and Zhang, 2003) has been done to analyze the local
well-posedness of the coupled system (1), (4), (9) with periodic boundary condition.

A local existence and uniqueness theorem for solutions of Euler equation
coupled with kinetic theory of polymeric fluid was proved by Renardy (1990, 1991).
Energy methods were used to show the well-posedness of the Dirichlet initial
boundary value problem for incompressible hypoelastic materials. Since 	 is a
probability density, L1 spaces are natural for the Q dependence. The framework
is nice, but many important details for the estimates are missed out. These
details are important for further analysis, in particular numerical analysis of the
recently proposed multiscale numerical methods. In addition, the commonly used
formulation of the dumbbell model (1)–(5) (Bird et al., 1987; Doi and Edwards,
1986; Guillopé and Saut, 1990; Jourdain et al., 2002; Lions and Masmoudi, 2000)
is different from the one analyzed in Renardy (1991), where the model does not
include a solvent viscosity. Therefore it is of interest to supplement the work of
Renardy (1991) with a detailed well-posedness analysis for the (1)–(5). This is the
main objective of the present paper.

Suppose the system is supplied with the initial value

u�x� 0� = u0� 	�x�Q� 0� = 	0�x�Q�
 (10)
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and define the space for the distribution function 	

�n�0 =
{
	 � �3 → ��

∫
�1+ �Q�n��	�Q��dQ < �

}
� (11)

moreover we let �n�k be the space of all 	 whose derivatives with respect to Q up
to order k lie in �n�0. Finally, set

�k =
�⋂
n=0

�n�k� (12)

with the natural topology of a Fréchet space. The space �k consists of functions
which, together with their derivatives, vanish at infinite order as �Q� → �. Next we
state the main results.

The main assumptions of the theorem are:

(A1) The domain � ∈ �3 is bounded and �� is of class C4.
(A2) u0 ∈ H4���.
(A3) 	0 ∈ H4����2�, where H

k����l� stands for
⋂�

n=0 H
k����n�l�. Moreover,

	0 ≥ 0 and
∫
	0�x�Q�dQ = 1 for every x ∈ �.

In addition, we need compatibility conditions between the initial data and
the incompressibility and boundary conditions. So we assume the following
compatibility conditions:

(C1) div u0 = 0 and u0 = 0 on ��.
(C2) u1 vanishes on ��.

where u1 = ut�t=0.

Theorem 1. Assume that (A1)–(A3), (C1)–(C2) and (G) hold, then there exists T ′ > 0
such that the problem (1)–(5) and (10) has a unique solution with the regularity

u ∈
2⋂

k=0

Hk�
0� T ′�� H4−2k����� (13)

� ∈
1⋂

k=0

Hk�
0� T ′�� H3−2k����� (14)

	 ∈
1⋂

k=0

Hk�
0� T ′�� H3−2k����0��
 (15)

The paper is organized as follows. In the Sec. 2, we define iterative scheme of
the system to obtain the existence of the solution. The scheme alternates between
solving an equation of the same type as encountered in incompressible elasticity and
solving a linear diffusion equation. The Sec. 3 is devoted to giving the detailed proof
the main lemmas, where the estimates of 	 with respect to Lagrangian variable are
completed first, then the corresponding estimates with respect to Eulerian variable
are obtained. We draw the conclusion in Sec. 4.
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2. ITERATIVE CONSTRUCTION OF SOLUTION

In this section we construct an iterative scheme of the system (1)–(3) and (5)
to obtain the existence of the solution. Given an iterate um we determine um+1 by
solving the equations

um+1
t + �um · ��um+1 + �pm+1 = �um+1 + � · �m� (16)

� · um+1 = 0 (17)

with the initial condition um+1�x� 0� = u0�x� and boundary condition um+1�� = 0,
where

�m =
∫
�3

g�Q�⊗Q	m dQ
 (18)

Meanwhile, for given um, we determine 	m+1 from the initial value problem

	m+1
t + �um · ��	m+1 = −�Q · 
��m ·Q− g�Q��	m+1�+�Q	

m+1� (19)

	m+1�x�Q� 0� = 	0�x�Q�� (20)

where �m = ��um�T . Our eventual task is to show that the mapping � � um 
→ um+1

is a contraction in an appropriate complete space of functions. The fixed point of
the mapping is the solution we seek.

We will consider the mapping � in the function space S�M� T� with metric
d�·� ·� showed next. S�M� T� is the set of all functions u � �× 
0� T� → �3 with the
following properties:

u ∈
2⋂

k=0

Hk�
0� T��H4−2k����� (21)

�u�0�4 + �u�1�2 + �u�2�0 ≤ M� (22)

� · u = 0� (23)

u = 0 on �� (24)

u�x� 0� = u0� ut�x� 0� = u1�x�
 (25)

Here � · �k�l denotes the norm in Hk�
0� T��Hl����. The function u0� u1 lie in H4���
and H2���, respectively. On S�M� T�, we define the metric

d�u1� u2� = �u1 − u2�0�4 + �u1 − u2�1�2 + �u1 − u2�2�0
 (26)

Lemma 1. If M is chosen large enough, S�M� T� is not empty. Moreover, the metric d
is complete on S�M� T�.

The proof will be given along the line of the argument of Lemma 1 by Renardy
(1990) with slight modifications.
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The contraction of the mapping � is established by proving the next five
lemmas.

Lemma 2. Assume that the bounds of the following kind hold:

�um�0�4 + �um�1�2 + �um�2�0 ≤ M� (27)

��m�0�3 + ��m�1�1 ≤ K (28)

Then (16)–(18) has a solution

um+1 ∈
2⋂

k=0

Hk�
0� T��H4−2k���� (29)

and we have

�um+1�0�4 + �um+1�1�2 + �um+1�2�0 ≤ �1�M� T�K�� (30)

where �1�M� T�K� may depend on the initial value u0 and u1, and it is bounded if the
parameters M , T and K are bounded.

Lemma 3. Consider (16) and a second equation

vm+1
t + �vm · ��vm+1 + �qm+1 = �vm+1 + � · �m� � · vm+1 = 0 (31)

and the initial and boundary conditions are

vm+1�x� 0� = u0�x�� vm+1 = 0� on �
 (32)

Here we assume vm ∈ S�M� T�, vm = um� �m = �m for t = 0, and the assumptions of
Lemma 2 also hold for (31) (with the same constants M�K). Then we have an estimate
of the form

�um+1 − vm+1�0�4 + �um+1 − vm+1�1�2 + �um+1 − vm+1�2�0
≤ �2�M� T�K� · ��um − vm�0�4 + �um − vm�1�2 + �um − vm�2�0
+��m − �m�0�3 + ��m − �m�1�1��

where �2�M� T�K� is similar as �1�M� T�K� in Lemma 2, moreover
limT→0 �2�M� T�K� = 0.

Lemma 4. Given um ∈ S�M� T�, there exists a unique solution of (19)–(20) which has
the regularity

	m+1 ∈
1⋂

k=0

Hk�
0� T��H3−2k����0��
 (33)
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Let � · ��n� be the norm in

1⋂
k=0

Hk�
0� T��H3−2k����n�0�
 (34)

We have an estimate of the form

�	m+1��n� ≤ K1�n�M� T�� (35)

where K1 is similar to �1 in Lemma 2.

In fact, we obtain the regularity of 	m+1 is better than (33) in the proof of
Lemma 4. But we only need the estimate of 	m+1 in the norm � · ��n�, so we only
emphasize the estimate of (33).

Let us consider a second equation of the same form:

	̂m+1
t + �vm · ��	̂m+1 = −�Q · 
��̂m ·Q− g�Q��	̂m+1�+�Q	̂

m+1� (36)

	̂m+1�x�Q� 0� = 	̂0�x�Q�
 (37)

Here �̂m = ��vm�T and we assume vm�t=0 = u0. In addition to (19), the following
result holds.

Lemma 5. Let um� vm ∈ S�M� T� be given. Then for every n, we have an estimate of
the form

�	m+1 − 	̂m+1��n� ≤ K2�n�M� T�d�um� vm�� (38)

where K2 is similar to �2 in Lemma 3.

Lemma 6.

�m ∈
1⋂

k=0

Hk�
0� T��H3−2k���� (39)

and

��m − �m�0�3 + ��m − �m�1�1 ≤ K2�� + 2�M� T�d�um−1� vm−1�


provided that 	m� 	̂m ∈ ⋂1
k=0 H

k�
0� T��H3−2k����0�� and �m = ∫
�3 g�Q�⊗Q	̂m dQ.

Here � is defined in the condition (G).

By combining Lemmas 2–6, it follows easily that � is a contraction in S�M� T�
if M is chosen sufficiently large and T is chosen sufficiently small, then Theorem 1
follows immediately. Next we will be concerned with the proofs of lemmas.
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3. PROOF OF LEMMAS

3.1. Estimates of u

In this subsection we will give the proof of Lemmas 2 and 3.

Let um = v� um+1 = w and q = pm+1. (16) can be rewritten as

wt + �v · ��w + �q = �w + f� � · w = 0� (40)

w = 0 on �� w�x� 0� = u0
 (41)

Here f = � · �m. Next setting z = wt, then (40) will be transformed to

z = �w − �v · ��w − �q + f� � · w = 0
 (42)

After utilizing the operator �/�t to (42), we obtain

zt = �z− �v · ��z− ��+ h�w� �w� ft� (43)

� · z = 0� z = 0 on �� (44)

z�x� 0� = z0�x� = u1
 (45)

Here h�w� �w� ft� = −vt · �w + ft and � = qt.
If we know z, we can solve the Stokes’ problem (42) to obtain w. Meanwhile,

we will obtain the solution z by solving the parabolic problem (43)–(45) when w is
given. Next we will solve these two problems by using the Galerkin approximation.

Let V be the space of all divergence-free vector in H1
0 ���, and let ��i�i ∈ �� be

a basis for V . We seek an approximation to z of the form

zN �x� t� =
N∑

n=1

�n�t��n�x�
 (46)

For given zN , let wN be the corresponding approximate solution of (42). Now we
solve the following approximate version of (43). For n = 1� 2� 
 
 
 � N , we require that

∫
�
�n

{
zNt + �v · ��zN −�zN − PN�h�wn��wn� ft��

}
dx = 0 (47)

and we impose the initial conditions

zN �x� 0� = PNz0�x�
 (48)

Here PN is the orthogonal projection in V onto the span of �1� �2� 
 
 
 � �N .
Equations (47) and (48) is an initial value problem for a linear system of first-order
ODE’s, and existence and uniqueness of the solutions are trivial.

To obtain an estimate uniform in N , we replace �n by zN . It is a standard
procedure to obtain the following estimate (Temam, 1995)

�zN �t��2L2 +
∫ T

0
��zN �s��2L2 ds ≤ �PNz0�2L2 + C

∫ T

0
�h�2L2 ds
 (49)
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This implies that

zN ∈ L��
0� T�� L2���� ∩ L2�
0� T�� V � (50)

if h ∈ L2�
0� T�� L2����, which will be showed later. Now we replace �N by zNt to
obtain∫ T

0
�zNt �2L2 ds + ��zN�2L2 ≤ C

∫ T

0
�h�2L2 + ��zN0 �2� (51)

which implies

zN ∈ L��
0� T�� V�� zNt ∈ L2�
0� T�� L2���� (52)

if h ∈ L2�
0� T�� L2����. From (50) and (52), it is obtained that the regularity
through zN of Eq. (43) (Evans, 1998)

�zN�2H2��� ≤ C
(�zNt �2L2��� + �h�2L2��� + �zN�2L2���

)

 (53)

Therefore,

zN ∈ L��
0� T�� V� ∩ L2�
0� T��H2���� (54)

provided that h ∈ L2�
0� T�� L2����.
In order to show that h ∈ L2�
0� T�� L2����, the same Galerkin technique is

applied to w’s Eq. (40). wN satisfies

wN
t = �wN − �v · ��wN + PN�f − �q�� � · wN = 0� (55)

wN = 0 on �� wN�x� 0� = u0
 (56)

Similar as the estimate (53), we have

�wN�2H2��� ≤ C
(�wN

t �2L2��� + �f�2L2��� + �wN�2L2���

)

 (57)

provided that f ∈ L2�
0� T�� L2���� and u0 ∈ H2���, which implies that h ∈
L2�
0� T�� L2���� when f ∈ H1�
0� T�� L2����.

Higher regularity of wN can be obtained similarly. Recalling the definition of
f and the condition on �, we have f ∈ L2�
0� T��H2���� ∩H1�
0� T�� L2����, and
correspondingly we obtain

wN ∈
2⋂

k=0

Hk�
0� T��H4−2k���� ∩W 1���
0� T��H1����
 (58)

Passing N → �, we complete the proof of Lemma 2.
Proof of Lemma 3 is based on the same type of estimates. Let Um+1 =

um+1 − vm+1, sm+1 = pm+1 − qm+1� �m = �m − �m. Then Um+1 satisfies

Um+1
t + �vm · ��Um+1 + �sm+1 = �Um+1 + � · �m +Um · �vm+1


Then along the argument of Lemma 2 with slight modification, we can obtain
Lemma 3 by studying the equation of Um+1 since vm+1 satisfies the result of
Lemma 2.
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3.2. Estimates of �

Proof of Lemma 6. From the definition of �, it is straightforward to obtain the
estimate of it from the assumption of 	. It is easy to check that

���2L2�
0�T��L2���� ≤ C
∫ T

0

∫
�

( ∫
�3

�Q�2f�Q�	dQ
)2

dx dt


From the condition (G) and 	 ∈ L2�
0� T�� L2����0�� we obtain the estimate of � in
L2�
0� T�� L2����. By Lemma 5 and 6 we can obtain

��m − �m�L2�
0�T���� ≤ C�	m − 	̂m���+2�

≤ K2�� + 2�M� T�d�um−1� vm−1�


Higher derivatives can be obtained similarly.

3.3. Estimates of � with Respect to Lagrangian Variables

We will obtain the estimate of 	 with respect to Lagrangian variables first, then
translate them to the Eulerian variables. Consider the flow map

�

�t
x��� t� = um�x��� t�� t�� x��� 0� = �� (59)

where � denotes the Lagrangian coordinates, and define ����Q� t� = 	m+1

�x��� t��Q� t�, then (5) can be rewritten in the form

�

�t
����Q� t� = −�Q · 
�� ·Q− g�Q����+�Q� (60)

����Q� 0� = 	0���Q�
 (61)

In this subsection we still denote ��u�x��� t�� t��T by � with the loss of confusion. It
follows from the maximum principle that positivity is preserved, and by integrating
both sides of (60) we find that∫

�3
����Q� t�dQ =

∫
�3

����Q� 0�dQ = 1 for all t


Because the coefficients of Eq. (60) are unbounded, standard existence results for
parabolic equations cannot be used. Now we are strongly motivated by the work
of Renardy (1991) to use a sequence of approximating problems with bounded
coefficients, for which we derive uniform estimates.

Let ��Q� be a C�-function such that ��0� = 1� � is a monotone decreasing
function of �Q�, and ��Q� = �Q�−� for large �Q�, where � is a sufficiently large
number. For N ∈ �, let �N �Q� = ��Q/N�. We now consider (60) the approximate
problem

�

�t
�N���Q� t� = −�Q · 
�N �Q��� ·Q− g�Q���N �+�Q�N� (62)

�N���Q� 0� = 	0���Q�
 (63)
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The existence of solutions of the Cauchy problem (62) and (63) is standard results
since the coefficients of (62) are bounded. Next we will consider the estimates �N

and its derivatives with respect to � and Q. In order for the convenience of the
notation, we will denote

�
�i1�i2�


�im�j1�j2�


�jn�
N = �mQi1

�Qi2
�


�Qim

�n�j1 ��j2 �


��jn
�N � (64)

and specially we define

�
�i1�i2�


�im�0�
N = �mQi1

�Qi2
�


�Qim

�N � �
�0�j1�j2�


�jn�
N = �n�j1 ��j2 �


��jn

�N 
 (65)

The summation convention is assumed in the following content.

3.3.1. The Estimate of �N

Multiplying (62) with �Q�2n and integrating by parts yields

�

�t

∫
�3

�Q�2n�N dQ = �4n2 + 2n�
∫
�3

�Q�2n−2�N dQ+ 2n
∫
�3

�Q�2n−2�N �Q�

× �Q · � ·Q−Q · g�Q���N dQ
 (66)

Pay attention that Q · g�Q� is nonnegative thus we obtain

�

�t

∫
�3

�Q�2n�N dQ ≤ �4n2 + 2n�
∫
�3

�Q�2n−2�N dQ+ 2n���
∫
�3

�Q�2n�N dQ


(67)

Application of the Gronwall’s inequality and u ∈ S�M� T� yields

∫
�3

�Q�2n�N dQ ≤ K�n�M� T�
∫
�3
�1+ �Q�2n�	0 dQ� (68)

where K�n�M� T� is bounded if n�M� T is bounded, so we have

�N ∈ L��
0� T�� L�����0�� if 	0 ∈ H2����0�
 (69)

3.3.2. The Estimate of �m
Q�N �m = 1� 2� 3�

Differentiating (62) with respect to Qi, we obtain the following equation
for ��i�0�

N :

�

�t
�

�i�0�
N = −�Q · [�N �Q��� ·Q− g�Q���

�i�0�
N

]+�Q�
�i�0�
N +�i (70)

�
�i�0�
N ���Q� 0� = �Qi

	0���Q�� (71)
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where

�i = −��Qi
�N 
�jk ·Qk − gj�Q��+ �N �Q�
�ji − �Qi

gj�Q����
�j�0�
N

−�Q · ��Qi

�N �Q��� ·Q− g�Q�����N

= �+
i +�−

i 
 (72)

Here �+
i = �i ∨ 0 and �−

i = −��i ∧ 0�.
Now we decompose �

�i�0�
N = �

�i�0�
N+ − �

�i�0�
N− , in which �

�i�0�
N+ and �

�i�0�
N− are solutions

of the following problems,

�

�t
�

�i�0�
N+ = −�Q · [�N �Q��� ·Q− g�Q���

�i�0�
N+

]+�Q�
�i�0�
N+ +�+

i (73)

�
�i�0�
N+ ���Q� 0� = max��Qi

	0���Q�� 0�� (74)

and respectively,

�

�t
�

�i�0�
N− = −�Q · [�N �Q��� ·Q− g�Q���

�i�0�
N−

]+�Q�
�i�0�
N− +�−

i (75)

�
�i�0�
N− ���Q� 0� = max�−�Qi

	0���Q�� 0�
 (76)

Since �
�i�0�
N+ and �

�i�0�
N− are both positive, we can now proceed as the estimate of �N .

We obtain

�

�t

∫
�3

�Q�2n��i�0�
N+ dQ = �4n2 + 2n�

∫
�3

�Q�2n−2�
�i�0�
N+ dQ

+ 2n
∫
�3

�Q�2n−2�N �Q��Q · � ·Q−Q · g�Q���
�i�0�
N+ dQ

+
∫
�3

�Q�2n�+
i dQ
 (77)

By using (72), we have

∫
�3

�Q�2n�+
i dQ ≤

∫
�3

�Q�2n�N ��Q · ��Qi

�N �Q��� ·Q− g�Q�����dQ

+
∫
�3

�Q�2n(��j�0�
N+ + �

�j�0�
N−

)
���Qi

�N ����jk��Qk� + �gj�Q���
+ �N �Q����ji� + ��Qi

gj�Q����dQ (78)

The first integral on the right hand side of (78) involves only �N and no derivatives
of �N ; it can be controlled using (68). The integrand in the second integral can



ORDER                        REPRINTS

Dumbbell Model of Polymeric Fluids 915

be estimated for large �Q� by a constant times �N �Q��M�Q�2n + �Q�2n−1�g�Q���∑
j��

�j�0�
N+ + �

�j�0�
N− �, Thus we obtain

�

�t

∫
�3

�Q�2n��i�0�
N+ dQ

≤ C1�n�M�
∫
�3
�1+ �Q�2n���i�0�

N+ dQ+ C2�n�M�

− 2n
∫

�Q�2n−2�NQ · g�Q��
�i�0�
N+ dQ+ K3

∫
�3
�1+ �Q�2n−1�N �g�Q��

+M�N �Q�2n�∑
j

��
�j�0�
N+ + �

�j�0�
N− �dQ
 (79)

Similar estimate can be done for �
�i�0�
N− . Summing up all the index i and the +�−

equations we obtain an inequality of quantity
∫
�3 �Q�2n ∑i ���i�0�

N �dQ. Noticing when
n is sufficiently large, the third integral may be controlled by the second integral,
thus we obtain

∫
�3
�1+ �Q�2n�∑

i

���i�0�
N �dQ ≤ K�n�M� T�

( ∫
�3
�1+ �Q�2n����Q	0� + �	0��dQ

)



(80)

It implies

�N ∈ L�(
0� T�� L�(���1

))
if 	0 ∈ H2

(
���1

)

 (81)

By the same way, we may obtain for k = 2

�N ∈ L�(
0� T�� L�(���2

))
if 	0 ∈ H2����2�
 (82)

3.3.3. The Estimate of ��N �t

We take the absolute value to the two sides of the symbol “=” to (62) and
multiply it by 1+ �Q�2n and integrate it in Q space. It will be obtained that

��N �t ∈ L�(
0� T�� L�(���0

))
if 	0 ∈ H2

(
���2

)

 (83)

3.3.4. The Estimate of ���N

In the following we will show that
∫
�3 ����N �dQ is bounded. Differentiating (62)

with respect to �i yields the equation

�
�t
�

�0�i�
N = −�Q · [�N �Q��� ·Q− g�Q���

�0�i�
N

]+�Q�
�0�i�
N +�i

�
�0�i�
N ���Q� 0� = ��i	0���Q��

(84)
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where

�i = −�Q · 
�N �Q���i� ·Q�N�

= −�Q · 
�N �Q���i� ·Q��N − 
�N �Q���i� ·Q� · �Q�N

= �+
i +�−

i 
 (85)

Here �+
i and �−

i have the similar definition as before.
Let ��0�i�

N = �
�0�i�
N+ − �

�0�i�
N− , where ��0�i�

N+ and �
�0�i�
N− are the solutions of the following

problems

�

�t
�

�0�i�
N± = −�Q · [�N �Q��� ·Q− g�Q���

�0�i�
N±

]+�Q�
�0�i�
N± +�±

i (86)

�
�0�i�
N± ���Q� 0� = ���i	0�

±
 (87)

Because ��0�i�
N+ and �

�0�i�
N− are positive, we can proceed as above once more. Observing

that there are only �N and �
�j�0�
N terms involved in �i, and using ��� ∈ L2�
0� T��

L����� (see formula (119)) we will obtain
∫
�3
�1+ �Q�2n�∑

i

���0�i�
N �dQ ≤ K�n�M� T�

( ∫
�3
�1+ �Q�2n�����	0� + �	0��dQ

)



(88)

That shows

���N ∈ L��
0� T�� L�����0�� if 	0 ∈ H3����2�
 (89)

3.3.5. The Estimate of �Q���N and �2
Q���N

Next we will estimate the mixed derivatives of �N . Differentiating (84) with
respect to Qj yields the equation of ��j�i�

N ,

�

�t
�

�j�i�
N = −�Q · [�N �Q��� ·Q− g�Q���

�j�i�
N

]+�Q�
�j�i�
N +�ji (90)

�
�j�i�
N ���Q� 0� = �Qj

��i	0���Q�� (91)

where

�ji = −��Qj
�N 
�lk ·Qk − gl�Q��+ �N �Q�
�lj − �Qj

gl�Q����
�l�i�
N

−�Q · ��Qj

�N �Q��� ·Q− g�Q�����

�0�i�
N

−�Q · 
�Qj
�N��i� ·Q�N�− �Ql


�N �Q���i�lj�N �

−�Q · [�N �Q���i� ·Q�
�j�0�
N

]
= �+

ji +�−
ji 
 (92)

Here �+
ji and �−

ji have the similar definition as before.
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Let ��j�i�
N = �

�j�i�
N+ − �

�j�i�
N− , where �

�j�i�
N+ and �

�j�i�
N− are the solutions of the following

problems

�

�t
�

�j�i�
N± = −�Q · [�N �Q��� ·Q− g�Q���

�j�i�
N±

]+�Q�
�j�i�
N± +�±

ji (93)

�
�j�i�
N± ���Q� 0� = ��Qj

��i	0�
±
 (94)

Because �
�j�i�
N+ and �

�j�i�
N− are positive, we can proceed as before. The terms involving

�
�l�i�
N in �ji may be controlled by the terms from (90) by integrating by parts as in

(79), and the other terms has been estimated in former subsections. Then by using
��� and � belong to L2�
0� T�� L����� we find

∫
�3
�1+ �Q�2n�∑

ij

∣∣��j�i�
N

∣∣dQ

≤ K�n�M� T�

( ∫
�3

(
1+ �Q�2n)

[ 1∑
l�m=0

��l
Q�

m
� 	0���Q� t��

]
dQ

)

 (95)

That shows

���N ∈ L��
0� T�� L�����1�� if 	0 ∈ H3����2�
 (96)

By the same way we can obtain that

���N ∈ L��
0� T�� L�����2�� if 	0 ∈ H3����2�
 (97)

3.3.6. The Estimate of ����N�t

We take absolute value to both sides of the symbol “=” to (84) and multiply it
by �Q�2n and integrate it to Q. Moreover we have to integrate it to � since the factor
��i� of �i in (84) is only belong to L2�
0� T�� L�����. After the utilization of (96)
and (97) it will be obtained that

����N�t ∈ L2�
0� T�� L�����0�� if 	0 ∈ H3����2�
 (98)

This yields

�N ∈ H1�
0� T��H1����0�� (99)

if 	0 ∈ H3����2�.
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3.3.7. The Estimate of �2
��N

Next we estimate the high order derivative of �N with respect to �.
Differentiating (84) with respect to �j yields the equation

�

�t
�

�0�i�j�
N = −�Q · [�N �Q��� ·Q− g�Q���

�0�i�j�
N

]+�Q�
�0�i�j�
N +�ij (100)

�
�0�i�j�
N ���Q� 0� = �2�i�j	0���Q�
 (101)

where

�ij = −�Q · 
�N �Q��2�i�j � ·Q�N�− �Q · [�N �Q���i� ·Q�
�0�j�
N

]
−�Q · [�N �Q���j� ·Q�

�0�i�
N

]
= �+

ij +�−
ij 
 (102)

Here �+
ij and �−

ij have the similar definition as before.
As before we decompose ��0�i�j�

N = �
�0�i�j�
N+ − �

�0�i�j�
N− , where ��0�i�j�

N+ and �
�0�i�j�
N− satisfy

�

�t
�

�0�i�j�
N± = −�Q · [�N �Q��� ·Q− g�Q���

�0�i�j�
N±

]+�Q�
�0�i�j�
N± +�±

ij (103)

�
�0�i�j�
N± ���Q� 0� = ��2�i�j	0�

±
 (104)

From (102) we have

∫
�3
�1+ �Q�2n��+

ij dQ

≤ ��2
� ��

( ∫
�3
�1+ �Q�2n��N dQ+

∫
�3
�1+ �Q�2n�∑

k

���k�0�
N �dQ

)

+ �����
( ∫

�3
�1+ �Q�2n�∑

l

���0�l�
N �dQ+

∫
�3
�1+ �Q�2n�∑

k�l

���k�l�
N �dQ

)

 (105)

Multiplying both sides of (103) by �1+ �Q�2n�, integrating to Q and summing them
altogether, we obtain

�

�t

∫
�3
�1+ �Q�2n����0�i�j�

N �dQ

≤ K�M� n�
∫
�3
�1+ �Q�2n����0�i�j�

N �dQ

+ ��2
� ��

( ∫
�3
�1+ �Q�2n��N dQ+

∫
�3
�1+ �Q�2n�∑

k

���k�0�
N �dQ

)

+ �����
( ∫

�3
�1+ �Q�2n�∑

l

���0�l�
N �dQ+

∫
�3
�1+ �Q�2n�∑

k�l

���k�l�
N �dQ

)
(106)
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Now we multiply
∫
�3�1+ �Q�2n����0�i�j�

N �dQ to (106) and integrate it in � space. It can
be obtained

�

�t

∫
�

( ∫
�3
�1+ �Q�2n����0�i�j�

N �dQ
)2

d�

≤ K�M� n�
∫
�

( ∫
�3
�1+ �Q�2n����0�i�j�

N �dQ
)2

d�+ C1

∫
�
��2

� ��2 d�+ C2�����2L� 


(107)

Here we used that∫
�3
�1+ �Q�2n��N dQ�

∫
�3
�1+ �Q�2n�∑

k

���k�0�
N �dQ

∫
�3
�1+ �Q�2n�∑

l

���0�l�
N �dQ�

∫
�3
�1+ �Q�2n�∑

k�l

���k�l�
N �dQ

belong to L��
0� T�×�� and the boundedness of �. By using ����� ∈ L2�
0� T��
L����� and Gronwall’s inequality, we obtain

�N ∈ L��
0� T��H2����0�� if 	0 ∈ H3����2�
 (108)

3.3.8. The Estimate of �3
��N

Differentiating (100) with respect to � yields the equation

�

�t
�

�0�i�j�k�
N = −�Q · [�N �Q��� ·Q− g�Q���

�0�i�j�k�
N

]+�Q�
�0�i�j�k�
N + �ijk (109)

�
�0�i�j�k�
N ���Q� 0� = �3�i�j�k	0���Q�� (110)

where

�ijk = −�Q · 
�N �Q��3�i�j�k� ·Q�N�− �Q · [�N �Q��2�i�j � ·Q�
�0�k�
N

]
−�Q · [�N �Q��2�i�k� ·Q�

�0�j�
N

]− �Q · [�N �Q��2�j�k� ·Q�
�0�i�
N

]
−�Q · [�N �Q���i� ·Q�

�0�j�k�
N

]− �Q · [�N �Q���j� ·Q�
�0�i�k�
N

]
−�Q · [�N �Q���k� ·Q�

�0�i�j�
N

]
= �+

ijk + �−
ijk
 (111)

Here �+
ijk and �−

ijk have the similar definition as before.
As before we decompose ��0�i�j�k�

N = �
�0�i�j�k�
N+ − �

�0�i�j�k�
N− , where ��0�i�j�k�

N+ and �
�0�i�j�k�
N−

are satisfied

�

�t
�

�0�i�j�k�
N± = −�Q · [�N �Q��� ·Q− g�Q���

�0�i�j�k�
N±

]+�Q�
�0�i�j�k�
N± + �±

ijk (112)

�
�0�i�j�k�
N± ���Q� 0� = (

�3�i�j�k	0

)±

 (113)
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By (111) we can find that
∫
�3
�1+ �Q�2n��+

ijk dQ

≤ ��3
� ��

( ∫
�3
�1+ �Q�2n��N dQ+

∫
�3
�1+ �Q�2n�∑

l

���l�0�
N �dQ

)

+ ��2
� ��

( ∫
�3
�1+ �Q�2n�∑

l

���0�l�
N �dQ+

∫
�3
�1+ �Q�2n�∑

m�n

���m�n�
N �dQ

)

+ �����
( ∫

�3
�1+ �Q�2n�∑

m�n

���0�m�n�
N �dQ+

∫
�3
�1+ �Q�2n� ∑

l�m�n

���l�m�n�
N �dQ

)



(114)

Multiplying both sides of (112) by �1+ �Q�2n�, and integrating to Q and summing
them altogether, we obtain

�

�t

∫
�3
�1+ �Q�2n����0�i�j�k�

N �dQ

≤ K�M� n�
∫
�3
�1+ �Q�2n����0�i�j�k�

N �dQ

× ��3
� ��

( ∫
�3
�1+ �Q�2n��N dQ+

∫
�3
�1+ �Q�2n�∑

l

���l�0�
N �dQ

)

+ ��2
� ��

( ∫
�3
�1+ �Q�2n�∑

l

���0�l�
N �dQ+

∫
�3
�1+ �Q�2n�∑

m�n

���m�n�
N �dQ

)

+ �����
( ∫

�3
�1+ �Q�2n�∑

m�n

���0�m�n�
N �dQ+

∫
�3
�1+ �Q�2n� ∑

l�m�n

���l�m�n�
N �dQ

)



(115)

Now we multiply
∫
�3�1+ �Q�2n����0�i�j�k�

N �dQ to (115) and integrate it to �. It can be
found

�

�t

∫
�

( ∫
�3
�1+ �Q�2n����0�i�j�k�

N �dQ
)2

d�

≤ K�M� n�
∫
�

( ∫
�3
�1+ �Q�2n����0�i�j�k�

N �dQ
)2

d�

+C1

∫
�
���3

� ��2 + ��2
� ��2�d�+ C2�����2L� (116)

Here we used that∣∣∣
∫
�3
�1+ �Q�2n��N dQ�

∫
�3
�1+ �Q�2n�∑

l

���0�l�
N �dQ�

∫
�3
�1+ �Q�2n�∑

l

���l�0�
N �dQ�

∫
�3
�1+ �Q�2n�∑

m�n

���m�n�
N �dQ
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belong to L��
0� T��H2����0�� and the boundedness of �. Application of
Gronwall’s inequality and ��� ∈ L2�
0� T�� L����� implies that

�N ∈ L��
0� T��H3����0�� if 	0 ∈ H3����2�
 (117)

3.4. Estimate of � with Respect to Eulerian Variable

3.4.1. The Estimate of Flow Map

Since we need the estimates of the derivatives of 	 to x but now we have only
those of 	 to �, Eq. (59) implies that we will have them if we can obtain the estimate
of x��� t� of (59).

Since um ∈ S�M� T�, we have �um ∈ L��
0� T�×�� (see Evans, 1998, pp. 287).
From Eq. (59) we have

�

�t
���x� = �um · ��x
 (118)

By utilizing this equation we know ��x ∈ L��
0� T�×��, thus it is deduced that

��� = �
��um�x��� t�� t��T � · ��x ∈ L2�
0� T�� L�����
 (119)

Moreover, �/�t��� · ��x� = 0 implies

�

�t
�� = −�� · �

�t
���x� · ���x�

−1
 (120)

Combining of (118) and (120) yields

�

�t
���� = �� · �um
 (121)

From �um ∈ L��
0� T�×�� we obtain

�� ∈ L��
0� T�×��
 (122)

Now by using (121)–(122) we have

�

�t
��2��2L2��� ≤ C1��2��2L2��� + C2��2um�2L2���
 (123)

The Gronwall’s inequality implies

�2� ∈ L��
0� T�� L2���� (124)

when um ∈ S�M� T�. Similarly we can find

�

�t
��3��2L2��� ≤ C1��3��2L2��� + C2��2��2L2��� + C3��3um�2L2���
 (125)

It implies if um ∈ S�M� T�,

�3� ∈ L��
0� T�� L2����
 (126)
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3.4.2. Estimate of �N w.r.t. x

By (122), (124), (126) and

��N�x�Q� t� = ���N · �� (127)

we have

�N�x�Q� t� ∈
1⋂

k=0

Hk�
0� T��H3−2k����0�� (128)

when um ∈ S�M� T� and

�N���Q� t� ∈
1⋂

k=0

Hk�
0� T��H3−2k����0��
 (129)

3.4.3. The Limit of �N When N → �

All of the estimates above are uniform in N and the restriction to the initial
data is 	0 ∈

⋂2
i=0 H

3����i�. But when N passes to �, the limit of the sequence �N

may not in
⋂1

k=0 H
k�
0� T��H3−2k����0�� since �k are based in L1-type norms and

the limit of a distributionally convergent bounded sequence in L1 may not be an
L1-function, but a singular measure. In order to overcome the difficulty, now we can
utilize the technology in Renardy (1991) to improve the regularity of 	0. This is the
cause to suppose 	0 ∈ H4����2� in the condition (A3) of Theorem 1. The detail is
similar to that in Renardy (1991).

The proof of Lemma 5 is based on the same type of estimates, applied to the
function 	− 	̂. We omit the details.

4. CONCLUSION

A detailed well-posedness analysis for the dumbbell model of polymeric fluids
is finished in this paper. The model considered is a coupled system of fluids
velocity u and distribution density 	 for polymeric fluids in kinetic theory of
polymers. The main theoretical framework is originally in the paper Renardy (1991),
but a more detailed analysis is focused on the derivative estimate of 	 with
respect to space variable �. In particular, the L� norm of

∫
�3�1+ �Q�2n��N dQ,∫

�3�1+ �Q�2n���Q�N �dQ,
∫
�3�1+ �Q�2n���x�N �dQ and

∫
�3�1+ �Q�2n���x�Q�N �dQ

are essential for the proof, which is the key point of the priori estimate. This work
is crucial for the numerical analysis of the recently proposed multiscale methods for
solving (1)–(5) (Jendrejak et al., 2002).
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